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ABSTRACT Recently, data centers (DCs) have become an indispensable part of modern computing
infrastructures. However, DCs often consume a significant amount of energy and lead to the workload
unbalance with increasing service requests. Keeping focus on this point, in this paper, we propose a novel
energy-aware DC management scheme. To design an efficient DC control algorithm, the main challenge
is uncertainties such as uncertain energy price and unpredictable users’ demands. In response to these
uncertainties, we adopt the idea of cooperative game theory, and introduce a new two-phase bargaining
model to get themutual advantage. To decide the energy price, we formulate the Stackelberg bargaining game
while adapting the current system situation. To balance the workloads among DCs, the migration bargaining
game is developed. These two game models are tightly coupled to achieve greater and reciprocal advantages
during dynamic DC operations. The main novelty of our proposed two-phase bargaining approach is to
handle comprehensively contradictory requirements for the DC management. Finally, extensive experiment
results validate the efficiency of our proposed algorithm by comparing with the existing state-of-the-art DC
management protocols in terms of average payoff of all DCs, system throughput and fairness among DCs.

INDEX TERMS Data centers, smart grid, Stackelberg bargaining game, migration bargaining game,
cooperative game theory.

I. INTRODUCTION
Data center (DC) has emerged as one of the leading ICT-
based infrastructures for providing on-demand services to the
end users. As a cost-effective platform for hosting large-scale
Internet applications, the DC may enjoy economies of scale
by amortizing long-term capital investments over a consid-
erable number of computing machines. It creates multiple
copies of virtual resources deployed over a physical server to
provide services such as network, storage, and computational
power to end users. However, multiple DCs incur enormous
energy costs. In 2013, the energy consumption of DCs was
almost 91 billion KWh, and it is expected to grow to 8 per-
cent of the global electricity supply at each year. Currently,
data centers use about 200 TWh per year, or 1% of global
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electricity demand, but it is projected as up to 13% of global
power demand by 2030. Therefore, energy efficiency in DCs
has an attractive and primary concern from both the research
community and the industry [1], [2].

The electronic power transmission grid has been progres-
sively developed for over a century. Traditionally, the power
grid is typically seen as a transmission system that transfers
electricity from bulk generation systems to power distribution
substations, and each substation finally delivers electricity at
a low voltage to their end users. Recently, the development
of human society and economic needs drive the revolution of
transmission grids stage-by-stage with the aid of innovative
technologies. As a new backbone used to deliver electricity
from points of generation to the consumers, smart grid (SG)
refers not only to the physical power grid, but also to the
controls and devices supporting the function of the intelligent
power grid. As an exponential increase in energy demands,

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 3461

https://orcid.org/0000-0003-1967-151X
https://orcid.org/0000-0002-3156-1287


S. Kim: Adaptive DC Management Algorithm Based on the Cooperative Game Approach

the SG has become one of the most powerful technologies
of the modern era. Especially, it forms an intelligent web of
distributed generation, transmission, delivery, and storage of
energy with an inclusion of information and communication
technologies [2], [3].

To make the SG more reliable and robust, tremendous
research efforts have focused on running DCs in SG system;
it is a good choice to enhance the energy efficiency, sus-
tainability and reliability of electrical services. Moreover,
the SG system can facilitate the integration of distributed
renewable power generations such as wind energy, solar
energy, and other renewable energy sources. To be specific,
some geo-distributed DCs are deployed in the self-owned
SG and the energy demand of DCs could be satisfied by
multiple energy resources. Usually, the energy cost is domi-
nating all other types of costs in the DC system. Therefore,
the major objective of DC management is to minimize
the expected energy cost by considering the time-coupling
uncertainties in electric price, renewable energy and arrival
workloads [4], [5].

The current SG technology is undergoing a transformation
from a centralized, producer-controlled platform to a dis-
tributed and consumer-interactive network. Therefore, power
generation companies can employ a location-dependent
dynamic pricing strategy while incentivizing the workload
shifting mechanism from one physical DC location to another
DC location. In addition, the dynamic pricing policy is
extremely useful to effectively integrate renewable power
generation facilities into the SG system despite their inter-
mittent nature. Therefore, DCs in different locations can take
advantage of dynamic pricing policy to develop an efficient
DC management algorithm that adaptively re-distributes the
workload among DCs in multiple locations. In this way,
the key idea is to constantly monitor the energy prices of
different region DCs andmay shift the workloads toward DCs
to minimize the total electric cost. With the appropriately
designed dynamic pricing policy, it is possible to formulate
the interactions between SG system and DCs based on the
active control decisions on both sides [5].

In this study, we design a new DC management algorithm
with the goal of improving the overall system performance.
By taking into account the strategic properties of SG and
DCs’ behaviors, we adopt the basic idea of game theory.
Especially, we transform the functional space of DC man-
agement algorithm into a mathematical space of a formulated
two-stage cooperative game, and implement two different
bargaining solutions for each stage game. For the first-stage
game procedure, the energy price is dynamically decided for
each geo-distributed SG by adopting the Stackelberg bar-
gaining approach. For the second-stage game procedure, the
migration bargaining approach is implemented to balance the
workload among DCs by dispatching computation tasks to
neighboring DCs. Based on the dynamic online process, two
game steps work together in a coordinated manner toward an
appropriate system performance.

As an intelligent control paradigm, cooperative game the-
ory is a cross-discipline subject to study the interactions and
competitions among rational game players. In 1950, the ear-
liest major contribution for cooperative games was made by
J. Nash. It is a bargaining solution, which became associated
with his name as well. Classical Nash bargaining solution
(NBS) is the unique solution to a two-person bargaining
problem based only on information about each player’s pref-
erences. The NBS is formulated by expected utility functions
over the set of feasible agreements and the outcome which
would result in case of disagreement. However, one of the
criticisms of NBS is precisely that it is not fair, in the sense
that it ignores the players’ ideal payoffs [6], [7].

The Raiffa-Kalai-Smorodinsky bargaining solution
(RKSBS) was designed to argue that one player’s gain should
be proportional to his maximum gain but the NBS fails to
satisfy this requirement. The RKSBS places the same weight
on individual player’s gain and other players’ losses. The
modified Thomson bargaining solution (MTBS) maximizes
the sum of all game players’ normalized payoffs. The RKSBS
andMTBS are very helpful for reaching a fairer andmore effi-
cient solutions to solve the DC management problem [6], [7].
With the RKSBS and MTBS, we develop a two-stage coop-
erative game model to implement our proposed scheme. In a
cooperative and coordinated manner, each individual agent
in the SG-DC combined platform makes decisions to reach a
mutually acceptable agreement.

Based on the current system workload situation, SG and
DCs have different viewpoints for the energy price and work-
load balancing issues. With the combination of RKSBS and
MTBS, control decisions aremade sequentially to leverage the
full synergy of different bargaining solutions. Our two-step
bargaining process, SG andDCs cause cascade interactions to
find the most profitable solution. Therefore, the main novelty
of our proposed scheme is its adaptability, flexibility and
responsiveness to current SG and DC system conditions.

The rest of this paper is organized as follows. Related
work is reviewed in Section II. Section III describes the
SG-DC system platform and basic assumptions. And then,
we introduce the basic ideas of RKSBS and MTBS to design
our DC management scheme. In a sequential cooperative
fashion, the energy price decision and DCs’ workload migra-
tion problems are formulated as a novel two-phase bargaining
game model. To increase readability, the main steps of our
proposed algorithm are given. Section IV presents the per-
formance evaluation results to validate the performance and
effectiveness of the proposed algorithm. Finally, the study is
summarized and some concluding remarks are provided in
Section V.

II. RELATED WORK
In this section, we present a brief review of some related
work. The papers [16]–[21] adopt the idea of game theory for
the SG-based energy management problem. In [16], the pric-
ing strategy in the SG is analyzed by modelling the economic

3462 VOLUME 9, 2021



S. Kim: Adaptive DC Management Algorithm Based on the Cooperative Game Approach

dispatch problem as a bi-level game in the electricity market.
To guarantee the profit of the energy generation company and
the social welfare of the utility companies simultaneously,
the Nash bargaining solution is adopted to find an optimal
wholesale price. In the retail market, the Shapley value is uti-
lized to achieve profit distribution among the utility compa-
nies, and then a distributed gradient algorithm is proposed to
search for the optimal retail price. The paper [17] proposes a
novel two-stage game-theoretic residential photovoltaic (PV)
panels planning scheme for distribution grids with poten-
tial PV prosumers. In the first stage, a Stackelberg game
based stochastic bi-level energy sharing model is proposed
to determine the optimal sizing of PV panels with uncertain
PV energy output, load demand, and electricity price. In the
second stage, a stochastic programming based residential PV
panels deployment model is proposed for all PV prosumers.

The authors in [18] introduce a hierarchical system model
where multiple providers and prosumers interact to define the
best price and demands. They highlight the capacity of a pro-
sumer to produce energy andminimize the dependency on the
providers in the overall proposed energy management. The
paper [19] has demonstrated a viable method to discriminate
price per unit of energy between different energy users in a
smart grid system when the energy users sell their surplus
energy to a shared facility controller. Based on the cake cut-
ting gamemodel, this approach can leverage the generation of
discriminate pricing within a constrained budget of the shared
facility controller.

Recently, Kai Ma et al. propose new SG management pro-
tocols [20], [21]. In [20], they propose an economic dispatch
strategy for the electricity system, and formulate a wholesale
price negotiation problem between the generation company
and multiple utility companies. Then, they prove that the
negotiation problem between the generation company and
multiple utility companies is a bargaining problem. In [21],
they employ the base stations as relays and formulate the elec-
tricity costs-based upon the regulation errors and the pack-
ets loss model. Specifically, they formulate the interactions
between the utility company and the relay as a bargaining
problem. Second, we utilize the Nash bargaining solution and
Raiffa–Kalai–Smorodinsky bargaining solution to achieve the
Pareto-optimal outcome.

Earlier our study [22] explores the triple-bargaining game
model to balance electric power production and consump-
tion within the hierarchical smart grid infrastructure. With
the Nash, extended-egalitarian and proportional bargaining
solutions in three control levels, the total energy of smart-grid
system is hierarchically controlled, and the smart-grid utility
is maximized adaptively to increase the system reliability.
Even though research literatures in [16]–[22] introduce some
interesting methods for the energy management and price
decision problems, theymainly focus on the SG control issues
without considering the SG-DC combined platform.

To address various DC control problems, multiple litera-
ture papers have been published. This section presents prior
efforts related to the DC management issue. The paper [8]

propose the QoS-Efficient DC Management (QEDCM)
scheme to operate the virtual machine (VM) placement. This
scheme adopts the idea of a non-cooperative game to simul-
taneously improve energy efficiency and guarantee quality
of service (QoS). This game formulates a strategic rela-
tionship between the volume of the resources requested by
VMs and the supply volume of physical resources. It models
the essence of the limited virtual resource scheduling and
re-allocation during the VM placement process. And then,
the QEDCM scheme searches the corresponding VM place-
ment method for each item of game strategies. Finally,
the Nash equilibrium solution for the game matrix is obtained
via payment function values of different VM placement
methods. Simulation results and their analytical compari-
son demonstrate that the QEDCM scheme can achieve an
optimum balance between improving energy efficiency and
guaranteeing QoS [8].

The Fair Cost DC Control (FCDCC) scheme is developed
based on the cooperative game, which is adopted to deter-
mine the price that end-users would pay for their requested
VMs [9]. To achieve an optimal fair solution for the VM pric-
ing problem, a coalition structure has been adopted under a
cooperative environment, and queuing techniques are imple-
mented to handle large sets of incoming VM requests onto
DCs. And then, Shapley value is used to estimate the frac-
tion of capital expenditure that would be included in the
VM price. During the VM placement process, Shapley value
is computed to estimate the placement cost of each VM in
a cooperative game situation. Finally, an integer linear pro-
gramming is proposed to reduce the energy consumption,
which contributes toward reduction in operational cost and
VM price. Simulation results show that the cooperative game
based VM placement approach can achieve a low price for
different VM configurations [9].

R. Kaewpuang et al propose the Cooperative Virtual
Machine Control and Management (CVMCM) scheme to
reduce the total system cost [10]. To achieve an optimal and
fair solution, they develop a new framework composed of vir-
tual machine allocation, cost management, and cooperation
formationmodel. Due to the SG’s uncertainties, the stochastic
programming method is designed to obtain the optimal deci-
sions to allocate VMs to the available resources while man-
aging the DC’s power consumption under various conditions.
To reduce the execution time of obtaining the VM alloca-
tion solution, the Benders decomposition algorithm has been
applied. The cost management among cooperative end-users
is formulated as the coalitional game, and the fair share of the
total cost is obtained according to the Shapley value. In addi-
tion, theMarkov chain model has been implemented to obtain
the stable cooperation formation of end-users. The major
contributions of the CVMCM scheme are at the mathematical
modeling and analysis which provide tools for designing the
optimal DC resource management [10].

Although a lot of researches have exploited exten-
sively the DC management techniques to improve the sys-
tem performance, fair-efficient control solutions for the
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SG-DC combined platform have not been fully utilized.
In addition, none of the researches in the literature consider
the two-phase bargaining approach to handle the DCmanage-
ment problem from an interactive perspective. As an extended
version of our earlier work published in [22], we integrate
the SG and DCs by considering the active decisions on both
sides, and formulate the interactions between SG and DCs as
a two-phase cooperative game model. Different from exist-
ing QEDCM, FCDCC and CVMCM protocols, our proposed
scheme can reach an agreement that gives mutual advantage,
and has more potential benefits in terms of average payoff,
system throughput and fairness.

III. THE BASIC IDEAS AND PROPOSED SCHEME FOR THE
SG-DC MANAGEMENT
In this section, we first present the basic ideas of RKSBS
and MTBS to design our two-phase bargaining game model.
And then, we introduce the SG-DC combined system infras-
tructure, and explain in detail the proposed DC management
algorithm.

A. THE BASIC CONCEPTS OF RKSBS AND MTBS
In a bargaining problem, a group of two or more game players
is faced with a set of feasible outcomes, any one of which will
be the result if it is specified by the unanimous agreement of
all players. LetN = {1, . . . , n} be a finite set of game players,
and RN is the n -fold Cartesian product of real number set R.
A feasible set S is a subset of the payoff space, and points in
S⊆ RN represent the feasible utility levels that the individual
players can get. If agreement is not reached, they will use
a given disagreement outcome (d) as the result. Any point
U ≤ S represents an outcome of the bargaining problem. The
ith coordinate of U, i.e., Ui, is the ith player’s payoff. Given
τ , τ ′ in RN , τ < τ ′ means τi < τ ′i and τ 6= τ ′ for all
i ∈ N ; τ < τ ′ means τi < τ ′i and for all i. A bargaining
problem can be described as a pair (S, d), and denote the
family of all bargaining problems by

∑
.
∏

denotes the class
of permutations of order N . Given S in

∑
and π in 5,

π (S) =
{
y ∈ RN | y = π (x) , x ∈ S

}
. Note that for π in∏

, if S is in
∑

, so is π (S), and if (S, d) is in
∑
′, so is

(π (S) , π (d)). A bargaining solution defined on
∑

is a rule
which associates to every bargaining probiem (S, d) in

∑
a

unique pointP. Usually,P is called as a bargaining solution
for (S, d) [14], [15].

Usually, bargaining solutions can be analyzed using a
weighting factor, players’ preference and utility functions.
Let ψ , vi and Umax

i be the weighting factor, player i’ prefer-
ence function, and maximum utility payoff, respectively. The
ψ measures the trade-off between player’s gain and another’s
loss. The ψ - dependent bargaining outcome, i.e., U∗ (ψ),
is the solution to [7];

U∗ (ψ) = max
∏

i∈N
vi (ψ)

s.t., vi (ψ) = (Ui − di)

+

 ψ

|N | − 1
×

 ∑
j∈N,j 6=i

(
Umax
j − Uj

) (1)

where ψ = 0, 1 (|N |-1) corresponds to the NBS, RKSBS
and MTBS, respectively. Approaches to bargaining problems
fall into strategic or axiomatic categories. In the strategic
bargaining, solution emerges as the equilibrium of a sequen-
tial game in the bargaining process. Without the bargaining
process, axiomatic bargaining assumes some desirable prop-
erties about the outcome, and identifies axioms that guarantee
this outcome. Generally, much of the literature dealing with
bargaining problems may use axiomatic approach; the NBS,
RKSBS and MTBS are also axiomatic bargaining solutions.
That is, axioms are specified that serve to characterize the
solutions uniquely. Since each solution satisfies different
axioms, they must have different properties. Based on pref-
erences towards these properties, we may choose a specific
bargaining solution. Usually, axiomatic bargaining solutions
are characterized by a collection of desirable axioms like
as, Pareto Optimality (PO), Symmetry (S), Invariance with
Respect to Affine Transformation (IRAT), Independence of
Irrelevant Alternatives (IIA), Monotonicity (M), and Weak
Inverse Monotonicity (WIM). The axioms involved in the
characterization of NBS are PO, S, IRAT, and IIA. The
RKSBS satisfy the axioms of PO, S, IRAT, andM. TheMTBS
may satisfy the PO, S, IRAT andWIM axioms [7], [14], [15].

• PO:
∑
′
≡ {(S, d)∃

∑
×RN |d ∈ S; ∃τ ∈ S, τ > d}.

∀S′ = (S, d) ∈
∑
′
,∀y ∈ S, y � f

(
S
′
)
.

• IIA: ∀S′ = (S, d),T ′ = (T , d0) ∈
∑
′
, [d = d0,T ⊂ S,

f (S′) ∈ T ]⇒ f (T
′

) = f (S
′

).
• IRAT: Given e = (a, b) in RN++ × RN , and x
in RN , V e(x) is the vector of RN whose ith coor-
dinate is (ai · xi) + bi. Given S in

∑
, V e (S) ≡{

y ∈ RN | y = V e (x) , x ∈ S
}
and if (S, d) is in

∑
′ so

is (V e(S),V e(d)). ∀S′ = (S, d) ∈
∑
′
,∀e = (a, b) ∈

RN++ × RN , f (Ve (S) ,Ve(d)) = Ve
(
f
(
S′
))
.

• M: If Sj ⊆ Si, max {Ui |U < Si} = max{Ui|U < Sj}
and max

{
Uj |U < Sj

}
≤ max{Uj|U < Si}, then

Uj
(
Pj
)
≤ Ui (Pi) , wherePi is the solution for (Si, d).

• WIM: If Sj ⊆ Si, P (Si) < Sj, max {Ui |U < Si} =
max{Ui|U<Sj} andmax

{
Uj |U < Sj

}
≤ max{Uj|U <

Si}, then Uj
(
P
(
Sj
))
≥ Uj (P (Si)).

• S: ∀S ∈
∑

,
[
∀π ∈

∏
, π (S) = S

]
H⇒ fi (S) = fj (S),

for ∀i, j ∈ RN .

B. SG-DC COMBINED SYSTEM INFRASTRUCTURE
Each individual DC consumes a large amount of energy
power and incurs a significant cost. In addition, due to the
increased flexible energy demands in the DC, we may face
more and more uncertainties from the overall workload.
Therefore, efficient energy policy becomes a major concern
for the multiple DC management. To improve the efficiency
of an electricity power system, the SG technology has been
introduced. Facilitated by advanced communication and com-
putation, the SG system provides opportunities to satisfy the
needs of DC electricity while minimizing their energy cost.
Also, the SG system includes renewable power sources to
improve the energy availability while promoting sustainable

3464 VOLUME 9, 2021



S. Kim: Adaptive DC Management Algorithm Based on the Cooperative Game Approach

green energy. So, the SG system can offer significant oppor-
tunities for the DC management problem to intelligently
control their energy needs with the aid of advanced metering
technique and two-way real time communication [10], [11].

With the growing demand of various application services,
more and more DCs were deployed globally. However, their
resource utilization has found to be low. Virtualization is one
of the critical technologies to transform DCs. The main goal
of virtualization is to tackle the low-utilization problem for
DC resources. Specifically, a virtualized server, referred to
as a VM, can be dedicated to a particular application. If all
the VMs are packed into a few physical machines, the energy
consumption in the data center will be significantly reduced.
In recent years, researchers have focused on the VM migra-
tion problem in order to reduce the energy cost of DCs.
Usually, VM migration can provide various benefits, such as
load balancing and performance optimization. However, the
VMmigration imposes new challenges onDC operations. For
example, placing an excessive number of VMs on one phys-
ical DC will result in substantial poor system performance.
Therefore, we should paymore attention to build a reasonable
trading between multiple VMs and physical DCs [12], [13].

In this paper, we study the DCmanagement problem based
on the independencies between DCs and the SG system. It is
worth noting that our work can accommodate a variety of
flexible workloads amongDCswith the dynamic energy price
policy. To provide opportunities to wisely operate the SG-DC
combined system, we incorporate the role of two-phase bar-
gaining game model into the DC management scheme. First,
we regulate the energy price at each local SG site while inte-
grating renewable energy sources energy; the dynamically
decided energy price can reflect the current demand-supply
power grid condition at that local area. Second, workload
balancing through the VM migration method enables DC
operators to better manage their energy consumptions. Based
on our two-step approach, we implement our advanced inter-
activemechanismwhile facilitating the information exchange
between SG and DC at each local site via smart meters.

We consider a discrete timemodel T ∈ {t1, . . . , tc, tc+1, . . .},
where the length of a time slot matches the time-scale at
which the dynamic energy price decisions and workload
migrations are updated. LetD = {D1, . . . ,Dn} denote the set
of geographically dispersed DCs where each D1≤i≤n
supports various kinds of task applications, and L =

{L1, . . . ,Ln} is the set of SG local operators where L1≤i≤n
is assigned to control the local area electricity including the
Di. Usually, the software stack required by end-users can
be packed into VMs and then physical machines in each
D are used to host VMs; VMswill be hosted in the computing
resources. There is a setV = {VD

1 , . . . ,V
D
m } of VMs, and the

pool of computing resources and services can be consolidated
by multiple VMs to save the total cost. The computation
demand to accommodate V1≤j≤m is denoted by QVj , and
VD = {. . .Vk . . .} is the set of VMs, which are generated
in the Di. In the multiple DC environments, the computing
resources of DCs can be shared by VMs so that the total

cost is reduced due to the increasing resource and service
utilization [10].

In this study, a modeling situation for the D, L and
V ’s interaction process is formulated as a two-phase bar-
gaining game (G) in a coordination manner; G is sub-
divided into GF

D,L and GS
L,V to develop the two-phase

bargaining algorithms. Based on the interactive feedback
manner, the GF

D,L and GS
L,V games are repeated sequen-

tially in a slotted time structure. Therefore, our DC man-
agement scheme is operated each time period during the
step-by-step iteration. Formally, we define game entities for
the SG-DC combined system, i.e., G = {GF

D,L,G
S
L,V } =

{{D,L,V}, {IBCU ,RBCU },F1≤i≤n, {D1≤i≤n ∈ D|TDi ,UDi},
{L1≤i≤n ∈ L|NR

Li
,ULi ,CLi},PL, {V1≤j≤m ∈ V |QV j , ϑVj},

T } of gameplay, and Table 1 lists the notations used in this
paper.

• G is a two-phase bargaining game consisting of GF
D,L

andGS
L,V games; they are related in a manner of mutual

and reciprocal interdependency.
• GF

D,L is a first-phase bargaining game to decide the
energy price. The interaction of each individual pair
(Li,Di) is formulated as a Stackelberg bargaining
model.

• GS
L,V is a second-phase bargaining game to migrate

VMs. The interaction of DCs with VMs is designed as a
migration bargaining model.

• IBCU is a basic computation unit for VM, and RBCU is a
basic energy unit to process one IBCU .

• F1≤i≤n represents all customers of Li; they are assumed
as a single follower in the GF

D,L.
• TDi and UDi are the total computation request and
utility function of Di, respectively.

• NR
Li

is the Li’s renewable power amount, and ULi is
the Li’s utility function. CLi is the computation request
without Di in the Li’s covering local area.

• PL =
{
2L
min . . . 2

L
h . . . 2

L
max
}
is the set of L’s price

strategies where 2L
h means the hth price level to com-

pute one IBCU .
• QVj is the computation demand, and ϑVj is the operation
time requirement of theVj, respectively.TDi is total sum
of QVj where Vj ∈ VDi .

• T = {t1, . . . , tc, tc+1, . . .} denotes time, which is repre-
sented by a sequence of time steps.

As a kind of game theory, the Stackelberg game is a
non-cooperative game model based on two kinds of different
game players; a leader and followers. They are forced to act
according to their positions while attempting to maximize
their satisfaction. Usually, the Stackelberg game model is
widely used to decide the price for the system resource [6].
In this paper, each individual Li adopt the Stackelberg game
to decide its local energy price. Simply, we assume that
the Li is a leader, and all customers of Li are assumed as
a single follower, who is represented as Fi. Based on the
feedback mechanism, the price decision of Li might affect
the behavior of Fi. Therefore, the energy price is dynamically
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TABLE 1. The notations for abbreviations, symbols and parameters.

decided by considering the interactions of Li and Fi. Unlike
traditional Stackelberg game model, we formulate the com-
plicated interactive situation in the local SG-DC system as a

new cooperative Stackelberg game
(
GF

D,L

)
with bargaining

idea. To provide the fairness for asymmetric game players, the
M axiom is necessary. Therefore, we adopt the idea of RKSBS
for our Stackelberg bargaining approach. As a leader, the
Li’s utility function with price strategy 2L

h , i.e., ULi

(
2L
h

)
,

is definedwith purely selfish and altruistic subjects. Formally,
ULi

(
2L
h

)
is given by;

ULi

(
2L
h

)
= max

((⌊
TDi + CLi

IBCU

⌋
−

⌈
NR

Li

RBCU

⌉)
, ε

)
×

(
Fs

(
2L
h

)
− Fa

(
2L
h

))

s.t.,



Fs

(
2L
h

)
=

((
δ

exp
(
−β ×2L

h

))+ γ)

Fa

(
2L
h

)
=

((
% × exp

(
−α ×2L

h

))
+ θ

)
and

TDi =
∑

Vk∈VDi

QVk

(2)

where ε is a control factor for the ULi

(
2L
h

)
. δ, β, γ are

adjustment parameters for the Fs
(
2L
h

)
and %, α, θ are adjust-

ment parameters for the Fa
(
2L
h

)
.
(
TDi + CLi

)
is the total

computation amount in the Li. As a follower, the Fi’s utility
function with price strategy 2L

h , i.e., U
Li
Fi

(
2L
h

)
, is formally

derived as follows.

ULi
Fi

(
2L
h

)
= max

((⌊
TDi + CLi

IBCU

⌋
−

⌈
NR

Li

RBCU

⌉)
, ε

)
×

(
ξ − log

((
ξ +2L

h

)ϕ
+ µ

))
(3)

where ξ , ϕ and µ are control parameters for the ULi
Fi

(
2L
h

)
.

By using the solution concept of RKSBS, the Li’s price strat-
egy at time tc, i.e., 2L

k (tc) ∈ P
L, is decided as follows;

RKSBS = max
∏

c∈{L,F},
2L
min≤k≤max (tc)

vc
(
2L
k (tc)

)

s.t.,



vL
(
2L
k (tc)

)
=
(
ULi

(
2L
k (tc)

)
− dLi

)
+

(
ζ ×

(
Umax
Fi
− ULi

Fi

(
2L
k (tc)

)))
vF
(
2L
k (tc)

)
=

(
ULi
Fi

(
2L
k (tc)

)
− dFi

)
+

(
ζ ×

(
Umax
Li
− ULi

(
2L
k (tc)

)))
(4)

whereUmax
Li

and dLi (or U
max
Fi

and dFi ) are theLi’s maximum
payoff and disagree point (or the Fi’s maximum payoff and
disagree point). ζ is a control factor for (·). According to (4),
the energy price for each individual L is decided, and this
information is announced to its corresponding DC.

In the second-stage game
(
GS

L,V

)
, individual DCs are

symmetric game players, and dynamically adjust their
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workloads toward an appropriate system performance. In this
study, DCs are assumed to work together in a cooperative
manner, and they negotiate with each other to migrate their
VMs tomaximize the efficiency of SG-DC system. As a game
player, the Di’s utility function is defined with the set of its
VMs

(
VDi

)
and the Li’s price strategy

(
2

Li
h

)
. Formally,

UDi

(
VDi ,2

Li
h

)
is defined as follows;

UDi

(
VDi ,2

Li
h

)
= XDi

(
VDi ,2

Li
h

)
− YDi

(
VDi ,2

Li
h

)

s.t.,



XDi

(
VDi ,2

Li
h

)
= exp

((∑
Vk∈VDi

QVk
/AV

)
×2

Li
h

)−1
+ η

YDi

(
VDi ,2

Li
h

)
= log

(((∑
Vk∈VDi

QVk
/
AV

)
×2

Li
h

)
+ κ

)
AV =

( ∑
De∈D

∑
Vj∈VDe

QVj

)
/ |D|

(5)

where η and κ are control factors for the UD (·). To provide
the fairness for symmetric game players, the WIM axiom is
more suitable. Therefore, we choose the concept of MTBS
for our migration bargaining approach. By using the solution
concept of MTBS, the VM migration strategy among DCs at
time tc with VDi and 2

L
k (tc) is decided as follows;

MTBS =max
∏
Di∈D

VDi

(
VDi ,2

Li
k (tc)

)
s.t.,VDi

(
VDi ,2

Li
k (tc)

)
=

(
UDi

(
VDi ,2

Li
h

)
−dDi

)
+

 ∑
Dj∈D,Dj 6=Di

(
Umax
Dj
− UDj

(
VDj ,2

Lj
h

))
(6)

where Umax
Dj

is the Dj’s maximum payoff, and dDi is the
disagree point of Di. According to (6), the VMs in each DC
are migrated to get a fair-efficient system solution.

C. MAIN STEPS OF PROPOSED TWO-PHASE BARGAINING
SCHEME
The emergence of future networks has established a trend
toward building massive, energy-hungry, and geographically
distributed DCs. In recent years, the workloads of DCs are
large and are still increasing dramatically. Therefore, the total
energy consumed by DCs has been also risen. Due to their
enormous energy consumption, DCs are expected to have a
major impact on the SG technology. In this paper, we study
the DC management issue by using the bargaining game
theory. Based on the SG-DC combined platform, we adap-
tively explore the interaction of SG and DCs, and design
our two-phase DC management scheme to solve the price
decision and workload balancing problems. Under widely
different and diversified energy and workload situations, our
two-phase bargaining gamemodel can offer many advantages
to find an adaptable solution to effectively operate the SG-DC

combined system. The main steps of the proposed scheme
can be described, and they are described by the following
flowchart as follows:

Step 1: For our simulation model, the values of system
parameters and control factors can be discovered
in Table 2, and the simulation scenario is given in
Section IV.

Step 2: In each system operation period, individual DCs(
D1≤i≤n

)
generate their VMs, and contact their

corresponding local SG operator
(
L1≤i≤n

)
. Each

individual Li also gets its current NR
Li

and CLi to
handle adaptively the energy control problem.

Step 3: At the first phase, the Stackelberg bargaining
model is formulated. As a leader, the Li’s utility
function

(
ULi (·)

)
is defined by using (2). As a

follower, the Fi’s utility function
(
ULi
F (·)

)
is for-

mally derived from (3).
Step 4: By using the solution concept of RKSBS, the Li’s

price strategy at time tc
(
2L
k (tc)

)
is decided

according to (4).
Step 5: At the second-phase, individual DCs trade their

VMs by interacting with other DCs to dynamically
adjust their workloads. The Di’s utility function(
UDi (·)

)
is formally defined by using (5).

Step 6: By using the solution concept of MTBS, the VM
migration strategy among DCs is decided accord-
ing to (6).

Step 7: In the SG-DC combined platform, multiple
L1≤i≤n and D1≤i≤n collaborate with another in a

TABLE 2. System parameters used in the simulation experiments.

VOLUME 9, 2021 3467



S. Kim: Adaptive DC Management Algorithm Based on the Cooperative Game Approach

coordinated manner to strike the appropriate per-
formance balance while adaptively manipulating
the current energy and DC’s workload situations.

Step 8: Constantly, multiple L s and Ds are self-
monitoring the current SG-DC combined system
conditions, and proceed to Step 2 for the next
two-phase bargaining process.

FLOWCHART 1. Flowchart of the proposed algorithm.

IV. PERFORMANCE EVALUATION
In this section, we evaluate our proposed scheme by conduct-
ing extensive simulations. To validate our approach, we com-
pare the system performance with other existing protocols;
the QEDCM, FCDCC and CVMCM schemes [8]–[10].
To develop our simulation model, we have used the simula-
tion language ‘MATLAB’ to evaluate the proposed scheme
and compare it to other schemes. MATLAB is widely used
in academic and research institutions as well as industrial
enterprises. First, we describe the experiment settings and
simulation scenario, and then, present the numerical analysis.
The assumptions of our simulation environments are as
follows:

• The simulated SG-DC combined platform consists of
10 DCs (Ds) and 10 local SG operators (Ls) where
|D| = 10 and |L| = 10.

• DCs are geographically dispersed over the global SG
area, and each DC is connected to its corresponding L.

• The process for VM generations is Poisson with rate 3
(services/ t), and the range of offered VM was varied
from 0 to 3.0.

• Six different kinds of VM tasks are assumed based
on operation duration and computation requirement.
In each DC, VMs are generated randomly, and they are
assumed the DC’s workload

• TheL’s price strategy set PL =
{
2L
min=1 . . . 2

L
max=5

}
is

defined as2L
1 = 0.2,2L

2 = 0.4,2L
3 = 0.6,2L

4 = 0.8,
and 2L

5 = 1.
• To reduce computation complexity, the amount of VM’s
computation workload is specified in terms of basic
computation unit (IBCU ), where one IBCU is the mini-
mum amount (e.g., 10 GHz in our system) of computa-
tion process.

• To process one IBCU , one basic energy unit (RBCU ) is
needed, where one RBCU the minimum amount (e.g.,
10 kW in our system) of computation process.

• NR
L is generated randomly within a range [100MW,

1GW], and CL is generated randomly within a range
[80GHz, 12THz].

• We restrict RKSBS and MTBS models to the case of
dL = 0 and dF= 0. Therefore, the utilities of disagree-
ment points are zeros in our system.

• System performance measures obtained on the basis
of 100 simulation runs are plotted as a function of the
offered VM request load.

• Performancemeasures obtained are average payoff of all
DCs, system throughput and fairness among DCs in the
SG-DC combined platform.

Fig.1 compares all DC management schemes in terms of
normalized average payoff of all DCs. In the viewpoint of
system operators, this performance criterion is a main con-
cern. When the VM generation ratio is low, i.e., 3 ≤ 0.25,
the performance of the all schemes is almost the same. This
is because all schemes can handle the enough system resource
to accept the requested workloads. As the DC workload rate
increases, the available system resource decreases. Thus, the
normalized average payoff is likely to be decreased. However,
our proposed scheme performs better than the other compared
protocols. The above analysis shows that our two-phase game
model proposed in this paper effectively facilitates the system
resource while ensuring DC task services. It can increase
the average payoff by an average of 10% than the QEDCM,

FIGURE 1. Normalized average payoff of all DCs.
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FCDCC and CVMCM schemes, and confirms that the advan-
tage of our proposed approach.

Fig.2 provides the comparison of system throughput for
different DC management schemes. Traditionally, the system
throughput is estimated as the successfully completed DC
task services. Therefore, as the DC workload rate increases,
the throughput of the SG-DC combined system is also risen.
As expected, we observe that our proposed scheme has a
comparatively better system throughput under light to heavy
workload distributions. In our approach, the limited system
resource is fair-efficiently shared while effectively migrating
VMs to balance the system workload. Due to this reason, our
proposed method is significantly superior to the QEDCM,
FCDCC and CVMCM schemes; specifically, we can achieve
an average of 10% higher system throughput than other exist-
ing methods.

FIGURE 2. Throughput ratio in the SG-DC combined system.

In order to effectively operate the SG-DC combined infras-
tructure, the fairness issue for each individual DC is very
important. Usually, the major challenge to develop novel
bargaining solutions is to provide the most proper combi-
nation of the efficiency and fairness. Based on the ideas of

FIGURE 3. Workload fairness among data centers.

RKSBS and MTBS, our two-phase bargaining approach can
effectively provide the most proper fairness among DCs. As a
consequence of iterative two-phase bargaining process, our
proposed scheme can improve the fairness index by an aver-
age of 15% than the existingQEDCM, FCDCC and CVMCM
schemes. From the simulation results in Fig.1-Fig.3, it is evi-
dent that, in general, our two-phase bargaining game model
is a promising approach to meet the demands of SG-DC com-
bined system under diversified workload condition changes.

V. SUMMARY AND CONCLUSION
Recently, the DC management in SG system has been an
active research area. In this paper, we consider an interactive
SG-DC system to take into account the price control and
workload balancing problems. By analyzing the strategic
relationship between SG and DC, we adopt the concept of
cooperative game, and formulate a novel two-phase bargain-
ing model based on the idea of RKSBS and MTBS. At the
first-phase, we use the Stackelberg bargaining approach to
decide the dynamic energy price according to the RKSBS.
At the second-phase, multiple DCs fair-efficiently share their
workloads by adopting the MTBS. Our major challenge is to
leverage the synergistic features of two different bargaining
solutions; they are sophisticatedly combined and act cooper-
atively to strike the appropriate performance balance. Finally,
we conduct a simulation analysis, and verify the superiority
of our two-phase bargaining approach as compared with the
existing QEDCM, FCDCC and CVMCM protocols. Major
lesson that we have learnt from this study is the feasibility and
effectiveness of our proposed two-phase bargaining approach
while ensuring different viewpoints of SG and DC.

Research on DC management is still in its infancy. For
the future work, our current study can be extended in a
number of ways. One future direction is to minimize the
control time with the consideration of backup generators and
the charging-discharging battery policy. Another potential
direction for the future research is to investigate equilibrium
pricing strategies using standard convex optimization tech-
niques. In addition, we will develop a new backward induc-
tion method by using heuristic search techniques to derive
the near-optimal or suboptimal strategies of DC management
issues.
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