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ABSTRACT Crowds are playing an increasingly important role in the research and application of geo-
science by providing spatial data via crowdsourcing. However, low-public participation and poor quality
of data submissions have greatly restricted the application of spatial crowdsourcing (SC) and other similar
models, thus garnering the attention of scientists in this field. In this paper, we design a precise incentive
mechanism based on a Bayesian game for SC that successfully avoids the conditions limited by the Gibbard–
Satterthwaite impossibility theorem. Under this mechanism, the outsourcer carries out a Bayesian game with
the participants under the circumstance of incomplete information by setting a certain amount of reference
information that is not visible to the participants. Participants gain far more utility by telling the truth than that
of they gain by lying and thus have a stronger motivation to submit higher-quality data. In implementing this
mechanism to automatically compute the actual utility of participants and integrate data results, we propose a
geometric primitive matching algorithm based on the Jaccard coefficient. Through both rigorous theoretical
analyses and real experiments, the incentive mechanism that we propose is incentive-compatible and can
greatly improve data quality.

INDEX TERMS Spatial information, crowdsourcing, incentive mechanism, Bayesian game, Jaccard
coefficient.

I. INTRODUCTION
Crowdsourcing, developed in the Web 2.0 environment, is
a model by which people contribute their labor and knowl-
edge to a project under the condition of full information
sharing. In recent years, spatial crowdsourcing (SC) [1],
which inspires crowds to submit spatial information of true
ground targets, has become a topic of great interest in
the field of geoscience and has been widely used in land
use [2], [3], disaster prevention and mitigation [4], [5],
resource exploration [6], environmental protection [7], etc.
The United States [8] and the European Union [9] have
released citizen observation plans and have implemented sev-
eral large SC projects. The crowd thus plays an increasingly
important role in the research and application of geoscience.

However, the crowdsourcing model is not impeccable,
as it can be difficult to encourage crowd participation gener-
ally. Crowdsourcing is different from outsourcing, and there
is no contractual relationship between the crowd and the
outsourcer. Whether the public participates is completely

voluntary. Without an incentive, a crowdsourcing plan often
can only recruit a very small number of people, a phe-
nomenon referred to by scholars as the 90-9-1 rule [10] or
the 1% [11] principle. As a result, participation enthusiasm is
diminished, and the crowdsourcing plan cannot be completed
within the expected time or at all. Without exception, SC is
facing the same problem. Take Tomnod [12], an SC platform,
for example: On 22 September 2017, Puerto Rico, a territory
of theUnited States, was hit byHurricaneMaria, and a crowd-
sourcing project was launched to encourage people to partic-
ipate in the visual interpretation of remote sensing images to
identify damaged targets such as collapsed houses, damaged
roads, and flooded farmland; one year later, however, less
than 75% of the tasks were accomplished, and the timeliness
of this plan was greatly reduced. For disaster prevention
and mitigation, we have also established a crowdsourcing
platform for damaged target recognition, but there have been
few enthusiastic participants, and the spatial information they
have submitted is not satisfactory. Therefore, an SC plan has
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two core problems to be solved: how to recruit more people
involved and how to enhance the motivation of participants to
submit high-quality data.

At present, research in this area mostly focuses on par-
ticipant motivation and data mining algorithms. Researchers
consider that people who participate in crowdsourcing
must have some internal or external motivation, such as
money [13], [14], curiosity, occupation, interest, self-
actualization [15], altruism [16], sincerity, or appeal to
knowledge or opinions [17]. The main methods of extract-
ing qualified content from spatial information contributed
by the public are the simple voting method, the expecta-
tion maximization method [18], the Bayesian data fusion
approach [19], and the open-sourcemethod [20]. Thesemeth-
ods can be used only when the information submitted by the
participants achieves a certain accuracy. When these methods
are used to judge the quality of the data, the outsourcer will
give the initiative to the participants, and the participants will
be motivated to tell a lie; for example, when using the simple
voting method, participants can submit bad information via
collusion to obtain rewards and avoid punishment. Clearly,
SC faces a dilemma.

Therefore, a good crowdsourcing plan must implement a
reasonable incentive mechanism to promote public enthusi-
asm to participate in it. Many scientists have noted that it
is highly important to implement an incentive mechanism in
crowdsourcing [13], [21], [22]. Under a suitable incentive
mechanism whereby participants who submit high-quality
information are rewarded and those who submit poor-quality
information are punished, participants will be more willing to
submit correct information. Otherwise, participants will be
more willing to submit incorrect information. At this point,
determining which participants should receive more rewards
or remuneration requires the outsourcer to determine whether
the information submitted by someone is of high or low
quality.

Unlike other crowdsourcing scenarios, for which it is easy
to judge the convergence point of a task or it is clear whether
the task has been completed (such as the project of finding
a hot-air balloon [23]), SC possesses unique characteristics.
First, the task is complex. The participants must submit all
of geometric information and attribute information correctly,
and the outsourcer must correctly check the spatial primitives
one by one. Because of the enormous amount of data, the lat-
ter is difficult for the outsourcer. Second, SC is a cooperative
task [24] that must be accomplished through public coop-
eration; otherwise, the advantage of crowdsourcing—that is,
a large number of people offer a great amount of strength—
will not be brought into play. Therefore, it is necessary to
reanalyze the structure of the SC model and design a better
incentive mechanism.

Mechanism design is the reverse engineering of game
theory [25], [26] to make a set of rules for a game. Here,
we demonstrate a new incentive mechanism based on a
Bayesian game (IMBG). By establishing hidden reference
information, this scheme creates an incomplete information

environment. This Bayesian game between the outsourcer
and the participants incentivizes the participants to tell the
truth rather than to lie because the expected utility of honesty
is much higher than that of deceit. Therefore, the mech-
anism can not only enhance the enthusiasm of the public
but also improve data quality. Furthermore, to implement
this mechanism, a geometric primitive matching algorithm
based on the Jaccard coefficient [27] (GPMJC) is designed
to precisely check and aggregate the results submitted by the
crowd automatically. To the best of our knowledge, this is
the first study to design IMBG and GPMJC algorithms for
improving the data quality of SC.

The remainder of this paper is organized as follows: In the
second section, we summarize work related to mechanism
design. In Section III, we illustrate the IMBG for SC and
demonstrate its rationality. In Section IV, we elaborate the
GPMJC algorithm, which is used to judge whether partici-
pants have submitted high- or low-quality data. In Section V,
we obtain a real data set through an SC project and validate
the effectiveness of the IMBG based on these data, including
the degree of participation and the accuracy of the results.
Finally, Section VI concludes this article.

II. RELATED WORK
The public will actively participate in crowdsourcing projects
only if they are motivated by material or psychological
factors. Paying rewards often involves problems such as
privacy leakage and distrust. Determining how to pay rewards
reasonably comprises the incentive mechanism. In recent
years, proposed crowdsourcing incentive mechanisms have
mainly fallen into the following categories. 1) Game-theory-
based mechanisms. For example, Yang et al. [28] designed an
incentive mechanism using a Stackelberg game to maximize
the utility of the platform when the platform is the leader
while the users are the followers. Li et al. [29] proposed
two incentive mechanisms to stimulate mobile users to con-
tribute indoor trajectory data for crowdsourcing-based indoor
localization with differential privacy to prevent mobile users’
privacy leakage based on a two-stage Stackelberg game.
Wu et al. [30] designed a Stackelberg-game-based mecha-
nism by which the requester fixes a certain total payment to
encourage participants to participate in a task. 2) Auction-
based mechanisms. For example, to solve the problem that
users should be selected as sensors in each time slot, aim-
ing to maximize social welfare and ensure the long-term
participation incentive of users, Gao et al. [31] proposed
a Lyapunov-based VCG auction policy for on-line sensor
selection. Additionally, Yang et al. [28] proposed an auction-
based incentive mechanism that is computationally efficient,
individually rational, profitable, and truthful. For a specific
task that is budget-constrained and requires one or more
skills, Zhang et al. [32] proposed a solution based on reverse
auction theory, assigning tasks to competent people and
preventing false quotations. Zhu et al. [33] proposed an
incentive mechanism based on reverse auctions and Vickrey
auctions to prevent malicious competition behavior and the
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‘‘free-riding’’ phenomenon in crowdsourcing services.
Zhang et al. [34] designed a truthful auctionwith countermea-
sures against false-name attacks as an auction-based incentive
mechanism for crowdsourcing. Li et al. [35] proposed a ran-
domized combinatorial auction mechanism for the social cost
minimization problem. Luo et al. [36] designed an incentive
mechanism for scenarios involving heterogeneous types of
workers (and the beliefs about their respective types) using an
asymmetric all-pay contest (or auction) model. 3) Contract-
theory-based mechanisms. For example, Zhang et al. [37]
analyzed the typical contract problems of adverse selection
andmoral hazard and indicated that contract theory is a useful
framework for motivating the third party’s participation in
emerging wireless networks of multimedia and location-
based mobile services. In addition, incentive mechanisms
other than the three categories mentioned above have been
proposed. For example, Zhang et al. [38] designed a crowd-
sourcing tournament to maximize the principal’s utility in
crowdsourcing and provide continuous incentives for users
by rewarding them based on the rank they achieved.

In this paper, we are more concerned about the quality
of the data participants submit. Dai et al. [39] proposed an
integrated incentive mechanism that utilized reverse auction,
gamification, and reputation updating to incentivize crowds
to actively participate and provide high-quality sensing data.
In addition, incentive mechanisms proposed by researchers to
improve data quality are as follows: determining data quality
through users’ reputation history [40], [41], evaluating data
quality through behavioral representations associated with
users [42], [40], improving data quality by an expectation
maximization algorithm [43], using participant confidence to
measure the quality of data generated [44], assessing data
quality based on the past experience of mobile users [45], etc.

However, when the result set is finite and contains at least
three elements, each participant’s preference covers all strict
total preference relations on the result set, and the social
choice function is full projection, the Gibbard–Satterthwaite
impossibility theorem shows that the social choice function
is incentive-compatible for the dominant strategy only if it
is dictatorial [46], [47]. Therefore, there are loopholes in
the application of the abovementioned incentive mechanism
to SC. Malicious participants can use these loopholes to max-
imize their utility. Therefore, the abovementioned incentive
mechanisms can hardly be applied to SC systems.

Unlike macrotasking crowdsourcing [48], SC is micro-
tasking crowdsourcing that requires the cooperation of many
participants. In this scenario, designing a Bayesian game
to motivate participants to submit real information about
true ground targets can avoid the conditions defined by the
Gibbard–Satterthwaite impossibility theorem. Because the
expected utility of honesty is much higher than that of deceit,
the approach is incentive-compatible.

The 9-Intersection Model (9IM), a topological model
proposed by Egenhofer [49]–[52] and developed by
Clementini et al. [53], [54] used to perform spatial analysis,
has become the standard for describing the spatial relations of

TABLE 1. Lookup table for key parameters.

two geometries in two dimensions. This model specifies very
strictly that two geometries are topologically equal if their
interiors intersect and no part of the interior or boundary of
one geometry intersects the exterior of the other. Based on
this model, when the difference between two polygons using
the Boolean operation NOT is zero, two geometric primitives
are deemed to coincide with each other [55]–[58]. However,
deviations caused by operation, instruments or computer sys-
tems are inevitable in practical spatial information projects;
therefore, we cannot use these methods to determine whether
two geometric primitives coincide with each other when these
deviations must be tolerated.

We propose a geometric primitive matching algorithm
based on the theory of the Jaccard coefficient, defined as
intersection over union over the range of [0, 1], which
can express the degree of overlap between two geometric
primitives.

For clarity, Table 1 lists the parameters and their meanings,
as used in this paper.

III. INCENTIVE MECHANISM BASED ON BAYESIAN
GAME
Suppose that an outsourcer wants to obtain spatial informa-
tion about certain types of ground objects in one geographic
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FIGURE 1. Work flow of IMBG.

area and encourages public participation with certain types
of incentives; we make the strategic choices of the partici-
pants and the outsourcer independent under this mechanism.
Because the conditional probabilities of each strategy are
equal to each other, this scenario is a Bayesian game. The
IMBG consists of the following modules, as shown in Fig 1.
1) According to their consideration, each participant extracts
the spatial information of a certain number objects as a
game strategy. 2) The outsourcer randomly chooses a certain
number objects in the region, obtains their correct spatial
information as seed primitives, and takes these seed primi-
tives as a game strategy to participate in the game. 3) The
outsourcer gives each participant a reward calculated by the
GPMJC algorithm. 4) Data integration is carried out accord-
ing to the correct rate of each participant in the game process.
5) The system generates thematic maps and delivers them to
the outsourcer.

A. TRADE BETWEEN OUTSOURCER AND PARTICIPANT
The task of a cyber-citizen participating in SC is to provide
spatial information of earth surface targets to the outsourcer.
The spatial information of ground objects includes two parts:
geometric and attribute information. Geometric information
is represented by geometric figures such as points, lines, and
polygons formed by spatial positions, and attribute informa-
tion is represented by descriptive information such as words
and numerical values.

In an SC project, there is no contractual relationship
between the outsourcer and the participant, but the two are
gaming. Through the game, each party adopts a certain strat-
egy to interact with the other to maximize its utility.

We can describe the game model as follows:
Suppose that participant p submits his or her results Sp =
{opi|1 ≤ pi ≤ Npi}

Np
pi=1, where opi represents one of the geo-

graphic information primitives and Np represents the num-
ber of primitives in Sp. If opi is correct, participant p gains
utility uc; now, set Tpi = 1. If opi is incorrect, participant

p gains utility ue; now, set Tpi = 0. The utility obtained by
participant p is synthesized into the following expression:

Up =
∑Np

pi=1

(
uc × Tpi + ue ×

(
1− Tpi

))
(1)

The wrong primitives are without meaning to the outsourcer;
that is, the latter part of the formula is negative for the
outsourcer such that the outsourcer’s utility is as follows:

Uo =
∑Np

pi=1
(uc × Ti − ue × (1− Ti)) (2)

The outsourcer and the participants are all rational decision-
makers—one of the basic conditions of game theory [59];
therefore, they are consistently able to find the best strategy
to maximize their utility. However, the strategy may not
necessarily be their true type, and they may also tell a lie.
For example, the participants can adjust the number of correct
and erroneous primitives according to rules of the game.
We hope that both the outsourcer and the participant can
achieve their highest expectations, namely, incentive com-
patibility [25] or Pareto efficiency [60]. Therefore, we must
design a reasonable mechanism to induce participants to tell
the truth. The core of mechanism design is the social choice
function, which is the combination of a series of rules in
a game [61]. Thus, when using the abovementioned simple
voting method, expectation maximization method, Bayesian
data fusion approach, or open-source method as the social
choice function, participants can find a dictatorial dominant
strategy to deceive the outsourcer. If the condition of the game
is relaxed to be Bayesian-incentive-compatible, the restric-
tion of the Gibbard–Satterthwaite impossibility theorem can
be avoided. When the game reaches equilibrium, the result
submitted by the participants is exactly the reaction of their
true type.

B. INCENTIVE MECHANISM DESIGN
For SC, the Bayesian incentive mechanism contains two ele-
ments: indirect revelation mechanisms and Bayesian incen-
tive compatibility.

Suppose the outsourcer wants to obtain the spatial infor-
mation of T ground objects in an area; that is, O =

{ot |1 ≤ t ≤ T }. Thus, we can design the incentive mecha-
nism as follows:

1. The two parties of the game are the outsourcer os and
one participant p.
2. Outsourcer os selects a certain number Tseed (T seed < T )

of ground objects in O and obtains absolutely accurate
spatial information about them to create seeds set Oseed .
Oseed constitutes one of his or her possible strategies. All
possible seeds sets form his or her strategies set; that
is, Sos = {Oseed |Oseed ⊂ O}, where Oseed , which has∑T

Tseed=0

(
Tseed
T

)
possibilities, is one subset of O. Gener-

ally,Oseed accounts for a small proportion ofO as a reference
set [62], [63]. Outsourcer os randomly arranges the seeds that
are invisible to the participants and thus creates an incomplete
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information environment, which is the basis of the Bayesian
game.

3. The candidate strategies set of participant p is all
the possible results that he or she can submit; that is,
Sp =

{
S jp | S

j
p =

{
oi | 1 ≤ i ≤ Np

}
, 1 ≤ j ≤ Mp

}
, where Np

andMp are natural numbers. Although there are infinite possi-
bilities for the results submitted by participant p, the strategies
set Sp is finite and countable when Np and Mp are given.
Additionally, an unalterable fact is that the number of correct
elements in S jp will not exceed T. How many elements in S jp
are correct or incorrect depends on the personal skill level and
subjective strategy choice of participant p. Every participant p
can choose his or her strategy S jp from the set Sp to maximize
utility.

4. If one primitive in S jp coincides with one seed in Oseed ,
then participant p gains utility uc. If one primitive in S jp inter-
sects with one seed in Oseed but the two are not congruent,
then participant p gains utility ue. Each seed can be hit by
the participant only once. The maximum number of seeds
that participant p hits is Tseed . Therefore, the social choice
function can be defined as

f
(
S jp,Oseed

)
= C

(
S jp,Oseed

)
∪ C−

(
S jp,Oseed

)
(3)

where function C (·) returns the primitives that coincide with
corresponding seeds and function C− (·) returns the primi-
tives that intersect with some seeds but that are not congruent.

The utility that participant p gains from the outsourcer is

Up = uc × |C
(
S jp,Oseed

)
| − ue × |C−

(
S jp,Oseed

)
|. (4)

As shown in Fig. 2, there are 15 ground targets in one geo-
graphic area. The outsourcer selects 5 randomly and obtains
their absolutely accurate spatial information. One participant
submits spatial information pertaining to 9 targets. Compar-
ing the spatial information of the two sides, 2 primitives are
correct and 1 is incorrect. Thus, the utility gained by this
participant is 2uc − ue.

C. INCENTIVE COMPATIBILITY
One reasonable incentive mechanism is incentive compatibil-
ity. We analyze and clarify the incentive compatibility of the
mechanism in three respects: the basic principle, the maxi-
mization of utility and the risk participants take.

1. Outsourcer os and participant p are independent when
choosing strategies in the abovementioned game; therefore,
the joint probability of choosing their strategies separately is

P
(
S jp,Oseed

)
= 1

/
(Mp ×

(
Tseed
T

)
) (5)

The belief function of outsourcer os can be solved by Bayes
formula as follows:

P
(
S jp |Oseed

)
= P

(
S jp,Oseed

)/∑
Sop∈Sp

p
(
Sop ,Oseed

)
= 1

/
Mp (6)

FIGURE 2. Illustration of Bayesian game-based incentive mechanism.

Similarly, the belief function of participant p can be solved
by

P
(
Oseed | S jp

)
= P (Oseed ) = 1

/(
Tseed
T

)
(7)

Thus, the mechanism satisfies the basic conditions of the
Bayesian game, that is, belief consistency.

2. The incorrect primitives in the result submitted by par-
ticipant p based on his or her strategy cannot coincide with the
seeds because the seed primitives are correct. Therefore, these
incorrect primitives can be deleted when calculating their
positive expected utility. If Mc primitives in S jp are correct,
among them, M1

c primitives coincide with the seeds and
M0
c miss; hence, M0

c = Mc − M1
c . Therefore, the number

of real primitives not submitted by participant p is T −M c.
WhenMc+Tseed ≤ T , the number of primitives that coin-

cide with the seeds M1
c obeys a hypergeometric distribution;

that is, M1
c ∼ H (T ,Mc,Tseed ). therefore, the probability

P
(
M1
c

)
=

(
Mc −M1

c
T − Tseed

)
×

(
M1
c

Tseed

)
(
Mc
T

) , (8)

where M1
c = 0, 1, 2, 3, . . . ,min(M1

c ,Tseed ) and its expecta-
tion is

E
(
M1
c

)
=

∑min
(
M1
c ,Tseed

)
M1
c=0

(
Mc −M1

c
T − Tseed

)
×

(
M1
c

Tseed

)
(
Mc
T

) ×M1
c

= Mc × Tseed
/
T (9)

Therefore, the expected utility Up of participant p is a func-
tion of Mc, as follows:

Up (Mc) = uc ×Mc × Tseed
/
T (10)
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FIGURE 3. Risk of one participant.

When Mc + Tseed > T , there are at least Mc + Tseed − T
primitives coinciding with the seeds, andMc+Tseed−T is not
easily expressed by hypergeometric distribution. However,
the number of seedsM0

c that are not hit by the result submitted
by participant p obeys a hypergeometric distribution; that is,
M0
c ∼ H (T ,T −Mc,Tseed ). Therefore, the probability

P
(
M0
c

)
=

(
T −Mc −M0

c
T − Tseed

)
×

(
M0
c

Tseed

)
(
T −Mc
T

) , (11)

where M0
c = 0, 1, 2, 3, . . . ,min(M0

c ,Tseed ) and its
expectation

E
(
M0
c

)
=

∑min
(
M0
c ,Tseed

)
M0
c=0

(
T−Mc−M0

c
T − Tseed

)
×

(
M0
c

Tseed

)
(
T −Mc
T

) ×M0
c

= T −Mc × Tseed
/
T (12)

The expected utility not attained by participant p is

Up (T −Mc) = uc × (T −Mc)× Tseed
/
T (13)

Therefore, the expected utility that participant p obtains is the
total utility uc×Tseed minus the utilityUp (T −Mc) he or she
did not receive:

Up (Mc) = uc × Tseed − Up (T −Mc)
= uc ×Mc × Tseed

/
T (14)

Regardless of whether Mc + Tseed ≤ T or Mc + Tseed > T ,
the expected utility is always a function of Mc.
Similarly, if there areMe erroneous primitives in the result

submitted by participant p and M1
e primitives hit the seed,

then the negative expected utility obtained by the partici-
pant is

Up (Me) = ue ×Me × Tseed
/
T (15)

Clearly, Up (Me) is independent of M1
e .

Thus, the total utility participant p gains is

Up = Up (Mc)− Up (Me)

= (uc ×Mc − ue ×Me)× Tseed
/
T (16)

Up is clearly a monotonic, linearly increasing function of
Mc − Me, where 0 ≤ Mc ≤ T ,Me ≥ 0. Up reaches its
maximum only when Mc = T and Me = 0; that is, the only
Nash equilibrium in the game is that participant p submits the
T primitives of earth surface targets correctly.

3. We use the variance to calculate the risk of participants
and consider the two situations Mc + Tseed ≤ T and Mc +

Tseed > T comprehensively. The support of the stochastic
variable M1

c , which obeys a hypergeometric distribution, is
{max(0,Mc + Tseed − T ),min(Mc,Tseed )}. The variance can
be calculated by

Dp
(
M1
c

)
= Mc ×

Tseed
T
×
T − Tseed

T
×
T −Mc

T − 1
(17)

The derivation function of Dp
(
M1
c
)
about Mc is

∂Dp
(
M1
c
)

∂M1
c
=
Tseed
T
×
T − Tseed

T
×

1
T − 1

× (T − 2Mc)

(18)

Setting
∂Dp

(
M1
c
)

∂M1
c
= 0, Mc = T/2.

At this point, Dp
(
M1
c
)
reaches the maximum value. When

Mc = T or 0, Dp
(
M1
c
)
reaches a minimum value of 0.

As shown in Fig. 3, we set T = 100 and Tseed = 10; the
risk a participant p takes increases with the number of correct
results he or she submits, reaching a maximum of 2.27 at
Mc = 50 and then decreasing to 0 atMc = 100. This finding
suggests that participants take the lowest risk in two situa-
tions: not participating in crowdsourcing tasks or submitting
completely correct results.

The analysis above indicates that participants must sub-
mit more accurate results if they want to gain more utility
and decrease their risk; furthermore, receiving more high-
quality data yields the highest outsourcer utility. Therefore,
the incentive mechanismwe propose is incentive-compatible.
If the utility paid by the outsourcer constitutes a suffi-
ciently large incentive, the participants have sufficient moti-
vation to complete the crowdsourcing task with high-quality
data.

IV. GEOMETRIC PRIMITIVES MATCHING AND DATA
AGGREGATION ALGORITHM
One key to implementing the abovementioned incentive
mechanism is to decide which primitive completely coincides
with one seed. Manual processing of these data is unrealistic.
Thus, we need machine automation.

A. GEOMETRIC PRIMITIVES MATCHING ALGORITHM
BASED ON JACCARD COEFFICIENT
The Jaccard similarity coefficient, which is defined as the
size of the intersection divided by the size of the union of
two sample sets, is an excellent algorithm for measuring the
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FIGURE 4. J(A,B) = 0.934, where A = POLYGON ((2.9 0.6, 5.1 4.5, 1.2 4.6,
0.9 1.5, 2.9 0.6)) and B = POLYGON((2.9 0.6, 5.1 4.5, 1.2 4.6, 0.9 1.5,
2.9 0.6)).

similarity of two sets of discrete samples.With the increase in
intersection, the degree of similarity of the two sets increases.
Based on the same principle, the overlap degree of two poly-
gons increases with the increase in their intersection area.
We redefine the Jaccard coefficient expression to calculate
the degree of overlap of two geometries as follows:

J (A,B) =
area(A ∩ B)
area(A ∪ B)

(19)

where function area (·) represents the area of the corre-
sponding variable. The expression represents the value of
the overlapping area of the two polygons A and B divided
by their merged area. Whether a polygonal primitive sub-
mitted by someone and a seed polygonal primitive are
congruent can be directly judged by the Jaccard coeffi-
cient. If the Jaccard coefficient is close to 1, the polygo-
nal primitives are judged as congruent; otherwise, they are
not.

However, when the area of each of the two primitives
is very large, even if the boundary of the two primitives
deviates greatly, the Jaccard coefficient is still very close to 1.
As shown in Fig. 4, the Jaccard coefficient of polygons A
and B is 0.934. However, if we establish a buffer zone
with a threshold θ for A and B based on the boundary,
the Jaccard coefficient of their buffer polygons will clearly
be less than 1. For example, J (A,B) is only 0.239 when
θ = 0.3, far less than 1, as shown in Fig. 5. If poly-
gon A has flying points, the Jaccard coefficient of A and B
is 0.982, very close to 1, as shown in Fig. 6. Additionally,
if we create buffers for A and B based on the boundary,
the Jaccard coefficient of their buffer polygons is 0.237, far
less than 1, when θ = 0.3, as shown in Fig. 7. Therefore,
calculating the Jaccard coefficient based on the buffer zone
of the boundary of the two geometric primitives alone can
precisely indicate whether the two coincide with each other.
The buffer polygon of A and B in (19) should be calculated as

FIGURE 5. J(Buffer(A),Buffer(B)) = 0.239, where A = POLYGON((3 0.5, 5
4.5, 1 4.5, 1 1.5, 3 0.5)), B = POLYGON((2.9 0.6, 5.1 4.5, 1.2 4.6, 0.9 1.5, 2.9
0.6)), and θ = 0.3.

FIGURE 6. J(A,B) = 0.982, where A = POLYGON ((3 0.5, 5 4.5, 1 4.5, 1 1.5,
3 0.5)) and B = POLYGON ((3 0.5, 5 0.5, 3 0.6, 5 4.5, 1 4.5, 1 1.5, 3 0.5)).

follows:

Buffer (X) = buffer (X , θ)− buffer(X ,−θ ) (20)

where function buffer (·) represents the outward buffer of
a polygon X with a positive or, inward, negative value.
Thus, the Jaccard coefficient expression used to compare
two geometrical primitives is

J (A,B) =
area (Buffer (A) ∩ Buffer (B))
area (Buffer (A) ∪ Buffer (B))

(21)

J (A,B) is dimensionless with a range of [0, 1]. The results
of numerical simulation show that the buffer radius θ is
positively correlated with J (A,B). The smaller the value of
θ is, the smaller J (A,B) becomes. The buffer radius θ of
two polygons should be set according to the actual accu-
racy requirements of real projects. The higher the accuracy
requirements are, the smaller the buffer radius and the greater
J (A,B) become.

For projects that need to detect point and line targets,
we can still establish a buffer for each of the primitives to
use this algorithm to judge the degree of overlap of point and
line primitives.
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FIGURE 7. J(Buffer(A),Buffer(B)) = 0.237, where A = POLYGON ((3 0.5, 5
4.5, 1 4.5, 1 1.5, 3 0.5)), B = POLYGON((3 0.5, 5 0.5, 3 0.6, 5 4.5, 1 4.5, 1
1.5, 3 0.5)), and θ = 0.3.

B. DATA AGGREGATION ALGORITHM
When all participants submit their results, that is, when they
each individually complete the game with the outsourcer,
we must filter the results submitted by each participant and
extract the highest-quality primitives for the outsourcer. If the
results submitted by participant p haveM1

c primitives correct
and M1

e incorrect, then the accuracy of participant p can be
estimated by

Ap =
M1
c −M

1
e

M1
c +M1

e
(22)

where the range of Ap is [−1, 1] when M1
c − M1

e > 0,
APp > 0. Accuracy Ap is a measure of the credibility of
the results submitted by participant p, which is directly pro-
portional to the actual utility of the participants and inversely
proportional to the number of primitives that intersect with
the seeds. When the accuracy of participants is relatively
high, this formula allows for suitable evaluation of the quality
of data submitted by participants. When the quality of the
submission is relatively low, the following expression can be
used:

Ap =
M1
c −M

1
e

Np
(23)

At this point, the accuracy is inversely proportional to the total
number of elements drawn by a participant; thus, a participant
is prevented from submitting a large number of inferior data
to gain higher utility.

When the information pertaining to a ground target is
submitted by multiple participants, the primitive of this target
that belongs to the participant whose accuracy is the highest
will be selected according to Algorithm 1.

V. EXPERIMENTS
To verify the effectiveness of the incentive mechanism based
on the Bayesian game, we chose part of the Qinghai-Tibet
Plateau in China as the test area. We developed and deployed

Algorithm 1 Data Aggregation
Input: The results of each participant p, Sp ={
oi | 1 ≤ i ≤ Np

}
Output: Primitive set with highest accuracy

1: For the result of each participant p, Sp =
{
oi | 1 ≤ i ≤ Np

}
,

calculate the number of primitives that coincide with the
seeds using (21), calculate his or her accuracy Ap using
(22) or (23), and assign Ap to each primitive oi in Sp;
2: Loop through all results S that are the union of all Sp,
search primitives whose geometry intersects with each other
and whose attribute data are the same as each other, and then
place the primitives into Otemp;
3: Search the primitives with the highest Ap in Otemp, and
insert them into O;
4: Delete the primitives in Otemp from S;
5: If S is not empty, return to step 2;
6: Return O.

aWebGIS-based SC platform usingGeoserver andOpenLay-
ers, which are open-source platforms for participants to per-
form interpretation work. Lakes in this area are less affected
by human activities than in other areas and have obvious
interpretable characteristics on Landsat 8 images, the ground
resolution of which is 30 meters. The study region contains
1678 lakes and 87 lake islands. With natural lakes as the
targets, we carried out an accurate interpretation of the entire
study area and selected 109 primitives, approximately 5%
of all primitives, as seeds. We used money to incentivize
the public to participate in this SC. The award rules served
as the incentive mechanism we designed. We promised the
public 109 targets set as seeds randomly and assigned 10CNY
to each seed; that is, uc = 10 CNY , ue = 10 CNY . The
maximum benefit of one participant was 1,090CNY . Because
the ground resolution of Landsat 8 images is low, there is
an uncertain transitional zone of approximately 60 meters
between water and land in the images. We set the buffer
radius 60 m, which equals the width of 2 pixels in the
Landsat 8 images. If the Jaccard coefficient of a primitive
drawn by one participant and one seed primitive is greater
than 0.333, a validated threshold in this experiment, the prim-
itive is judged to be correct, and the participant can gain
the money associated with this seed. Then, we announced
the task to the public on multiple social media platforms.
Three days later, we received 4921 primitives submitted by
38 participants. Fig. 8 shows the 4796 primitives submitted
by the top 20 participants who submitted the most. The
number of primitives belonging to each participant is listed
in Table 2. The number of results submitted by other par-
ticipants was too small; therefore, we did not analyze their
submissions.

The distribution of the number of elements submitted by
participants is close to the linear distribution under the incen-
tive mechanism, indicating that the result has broken through
the 90-9-1 or 1% rule.
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FIGURE 8. Map of data results of the top 20 participants who submitted the most primitives.

FIGURE 9. Expected utility function.

A. UTILITY ANALYSIS
We compared the result data submitted by each partici-
pant and the primitives precisely interpreted by the GPMJC
algorithm, the results of which are explained in detail in
Section IV. Then, the number of correct primitives Mc,
the number of misinterpreted primitives Me, the number
of correct primitives coinciding with the seed M1

c , and
the number of misinterpreted primitives intersecting with
the seeds but that were incorrect M1

e were obtained. For
example, participant P_1 submitted 973 primitives, among
which 47 primitives intersected with the seeds, including
43 correct and 4 incorrect primitives. The details of the
20 participants who submitted the most primitives are shown
in Table 2.

FIGURE 10. Actual utility of each participant.

The strategy adopted by the outsourcer was that the seed
primitives were invisible to every participant in the Bayesian
game. For every participant, the expected utility was a mono-
tonic, linearly increasing function of Mc − Me (Fig. 9)
according to (22), and the actual utility was a monotonic,
linearly increasing function of M1

c − M1
e . The expected

utilities EU and actual utilities AU were not related to the
number of seed primitives set by the outsourcer. M1

c and
M1
e all obeyed a hypergeometric distribution and correlated

positively with the number of correct primitives Mc and
the number of incorrect primitives Me separately. The seed
primitives were set randomly such that the actual utility of
each participant had a slight degree of fluctuation compared
with the expected utility; however, the actual utility and
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FIGURE 11. One target interpreted by multiple participants: map of primitive piles submitted by P_1, P_3, P_10, P_13, and P_6 and magnification of
part of the boundary.

FIGURE 12. Lake distribution map.

Mc − Me showed a high degree of positive correlation
(Fig. 10). In summary, each participant could achieve
greater utility only if he or she submitted more cor-
rect results and as few incorrect results as possible to
increase Mc − Me. Taking participant P_1 as an example,

973 primitives were submitted—840 correct, 133 incor-
rect; therefore, the expected utility was 436.62, calcu-
lated by 10 × (840 − 133) × 109/1765, and the actual
utility was 390, calculated by 10 × (43 − 4). Corre-
spondingly, 81 primitives were submitted by participant
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TABLE 2. Results for each participant.

P_10—30 correct, 51 incorrect; therefore, the expected utility
was −12.97, calculated by 10 × (30 − 51) × 109/1765, and
the actual utility was 0, calculated by 10× (2− 6) as 0 when
the value is less than 0.

All the expected and actual utilities of the top 20 partici-
pants are shown in Table 2.Without the Bayesian game-based
incentive mechanism, we can only consider all 4796 prim-
itives correct, and the expected costs is 2961.8 CNY , calcu-
lated by 4796×109/1765×10. However, when the filter rules
in this mechanism were used, bad primitives were wiped out.
Finally, the total expected utility was 2128.74 CNY , and the
cost we paid was 2120 CNY .

B. DATA AGGREGATION
We calculated the accuracy using (22) for every participant,
as shown in Table 3. For example, among primitives submit-
ted by participant P_1, the number that fully coincided with
seed primitives M1

c , i.e., the number of correct primitives,
was 43; furthermore, those that incompletely coincided with
seed primitives M1

e , i.e., the number of incorrect primitives,
was 4. Thus, the accuracy Ap of participant P_1 was 82.97%,
according to (22). The higher the accuracy is, the greater the
likelihood that the primitives of one participant will be correct
become. If multiple participants submitted primitives of one
ground target, the outsourcer should select the one submitted
by the participant with the highest accuracy Ap.
When a lake or islet is interpreted by multiple participants,

the primitive of this target that belongs to the participant
whose accuracy is the highest will be selected according

TABLE 3. The accuracy of each participant and the numbers of primitives
accepted and rejected.

to Algorithm 1. Take the largest primitive in Fig. 8 as an
example. Five participants (P_1, P_3, P_5, P_10, and P_13)
interpreted the lake target (Fig. 11). Among those partici-
pants, P_1 had the highest accuracy. Therefore, the primitive
submitted by P_1was selected, and the others were discarded.

The numbers of primitives selected and abandoned by
every participant are shown in Table 3. For example,
227 primitives of participant P_1 were adopted, and 746 were
abandoned. Ultimately, 1661 primitives submitted by 16 par-
ticipants were preserved, including 1602 lakes and 59 islands.
If a lake primitive contained islands, we used the island
primitive to clip the lake primitive and then obtained the real
lake primitivewithout small patches of land. After subtracting
island primitives from lake primitives, we obtained the actual
lake distribution map (Fig. 12). The total accuracy of this SC
project was 95.3%.

VI. CONCLUSION
For SC projects, an incentive mechanism must be imple-
mented to recruit a large number of participants to complete
tasks in a reasonable time. Many studies on crowdsourcing
projects have been carried out, and several incentive mecha-
nisms have been proposed. However, through the Gibbard–
Satterthwaite impossibility theorem, we find that there are
some loopholes in the application of these incentive mech-
anisms in SC projects involving micro tasks. With these
incentive mechanisms, because people have the motivation
to lie, the quality of data is not guaranteed. In this study,
we designed a Bayesian game-based incentive mechanism
with spatial data as the core. In the Bayesian game, because
of the hidden reference information, the participants were
deprived of the possibility of implementing a dictatorial strat-
egy through collusion or other means. The expected util-
ity that participants gain through honesty is much higher
than that gained through deceit. The only Nash equilibrium
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existing in the mechanism theoretically is that participants
submit accurate spatial information. In addition, in imple-
menting this mechanism, we proposed the GPMJC algorithm
based on the Jaccard coefficient, which can automatically
compare geometric primitives, calculate the utility of partici-
pants, evaluate the quality of data results, and integrate data.
Finally, the experiment proved that the IMBG is incentive-
compatible and can significantly improve the data quality
of SC projects. It should be noted that the value of the
utility set in the experiment is determined by our assessment
of the current average wage level in China. Clearly, as the
bonus increases, more participants will participate in this
SC project. However, when the bonus is too high, a certain
degree of resource waste will arise. A method for finding
the best balance, auction or public bidding may be a good
solution. Our future work will involve the development of
such a method.
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