SPECIAL SECTION ON INNOVATION AND APPLICATION OF INTELLIGENT PROCESSING
OF DATA, INFORMATION AND KNOWLEDGE AS RESOURCES IN EDGE COMPUTING

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 13, 2019, accepted April 2, 2019, date of publication April 10, 2019, date of current version April 17, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2909642

A Thread-Oriented Memory Resource
Management Framework for Mobile

Edge Computing

ZONGWEI ZHU1, FAN WU“1, JING CAO"“", X1 LI', AND GANGYONG JIA2

!'Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou 215000, China

2Department of Computer Science, Hangzhou Dianzi University, Hangzhou 310000, China

Corresponding author: Fan Wu (wf18 @mail.ustc.edu.cn)

ABSTRACT Increasing the number of cores is one of the most effective methods to enhance performance.
However, an extensive experimental study on mobile edge computing (e.g., Android devices) indicates
that the memory management system has gradually become a key performance bottleneck. Studies on
improving memory management mainly focus on exploring the trade-off between avoiding fragmentation
and improving allocation efficiency. From our previous research, we know that the fragmentation is no longer
a crucial bottleneck; instead, inter- and intra-thread behavior should be focused on, and thus, we introduce
memory management based on thread behaviors (MMBTB). Unfortunately, it lacks a unified optimization
program interface and good architecture. Consequently, in this paper, we propose a memory resource
management at operating system (OS) layer of mobile edge computing, called the thread-oriented memory
management layer (TOMML) to address this problem, which follows the microkernel architecture pattern
and can meet the user’s requirements for selecting plug-ins to achieve different optimization goals. This
paper is divided into several sections as follows. First, we demonstrate the efficiency of TOMML through
theoretical simulation and experimentation. The experimental result is that TOMML can improve memory
allocation efficiency by 12%-20%. Furthermore, we introduce a plug-in to save power, which can further
promote 6%—25% bank free compared with previous excellent research.

INDEX TERMS Memory management, power control, parallel algorithms, edge computing, thread

behaviors.

I. INTRODUCTION

Driven by the growth of the Internet of Things (IoT) and
cloud services, a new computing paradigm is becoming more
and more popular, edge computing, in which data process-
ing are placed at the network edge in close proximity to
mobile devices [1], [2]. This emerging technology has the
potential to solve response time requirements as well as
data privacy and safety, but this will place highly demands
on the power of resource-limited mobile devices. Therefore,
multicore processors are becoming a common choice for
manufacturers especially when it is difficult to increase the
clock frequency, such as Freescale, MediaTek, Samsung, and
Texas Instruments. They have introduced dual-core, quad-
core, and even eight-core processors to enhance multicore

The associate editor coordinating the review of this manuscript and
approving it for publication was Honghao Gao.

processor performance. Unfortunately, it has been shown that
the shared main memory is still a bottleneck of system perfor-
mance. Therefore, how to optimize the memory management
system has become an urgent problem that needs to be solved
in industry. Meanwhile, memory management has attracted
considerable attention from academia since it immensely
affects the whole performance [3]. Modern multicore systems
may not be able to directly adopt traditional memory man-
agement systems, such as segregated fits, sequential fits, best
fits, and simple segregated storage. Xiao et al. [4] propose
a novel methodology to model the dynamic execution of
an application and partition the application into an optimal
number of clusters for parallel execution. But, the program
needs to be analyzed first and divided into clusters for parallel
execution. This may not be suitable for individual users.
Research [5]-[9] on improving memory management focuses
primarily on exploring the trade-off between improving

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 7, 2019

Personal use is also permitted, but republication/redistribution requires IEEE permission.

45881

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3607-2631
https://orcid.org/0000-0002-5071-5026
https://orcid.org/0000-0002-9485-4204

IEEE Access

Z. Zhu et al.: Thread-Oriented Memory Resource Management Framework for Mobile Edge Computing

distribution efficiency and reducing fragmentation. However,
most existing research does not specifically analyze inter- and
intra- thread behaviors.

For OS (e.g., Linux, Android) of mobile edge computing
devices, external fragmentation has a large impact on over-
all performance [9], so the global buddy system is used to
allocate memory to minimize fragmentation and provide con-
tinuous physical pages. However, according to the previous
research on thread behavior and lock contentions, we obtain
different conclusions. First, in most mobile apps, single-page
requests account for more than 96% of total memory requests
and external memory fragmentation rarely becomes a bottle-
neck in system performance. Although the Linux kernel intro-
duces per-CPU for single-page memory requests to speed up
single-page allocation, the algorithm with O(logn) complex-
ity (n being the size of the memory) is too high for hardware
and is not suitable for mobile edge computing devices [5].
Second, in multicore systems, the lock contentions will dom-
inate the execution time as the number of cores increases.

As described above, the external fragmentation issues may
not be as important as previously assumed. However, most
previous research only focus on decreasing the algorithm
complexity to improve memory allocation efficiency [5]-[9]
and ignore the impacts of inter- and intra- thread behaviors.
Therefore, in the previous study, we introduced MMBTB
to enhance memory management efficiency depending on
thread behavior. Unfortunately, due to the traditional archi-
tecture adopted by MMBTB [10], it lacks good scalability
and sufficient overall agility. This makes MMBTB unable
to adapt to the fast-changing Android devices. Similarly,
in terms of functions, it cannot meet the multiclass and
high-quality demands of users. More specifically, first,
MMBTB and the threads are tightly coupled and may not be
completely transparent to the threads, which causes unpre-
dictable problems when new threads are forked by mobile
system updating. Then, MMBTB is process-oriented, and the
entire program flow is designed to enhance the efficiency
of memory allocation. This makes it difficult to develop a
unified optimization program interface. That is, the users
cannot change optimization targets in different scenarios.
Consequently, it is important to propose a new memory man-
agement system as a solution to address this problem.

In this paper, we introduce a novel memory resource
management at OS layer of edge computing devices, called
TOMML, which takes the thread as the basic unit for man-
aging memory resources and locates it between the native
layer and the framework layer. Compared with MMBTB,
our main contributions are the following. (1) TOMML
adopts the microkernel architecture, and it is divided between
independent plug-in modules and the basic core system.
TOMML can meet the user’s requirements to select plug-ins
to achieve different optimization goals. In addition, TOMML
is completely transparent to threads, and in theory, it will
not cause any harmful effect on the new thread operation.
(2) TOMML internal modules have clear functions, respon-
sibilities and relationships with each other. For example,

45882

the thread interface module, plug-in database module, and
plug-in interface module have the functions of collecting
thread features, configuring plug-in running resources and
environment, and implementing different plug-ins. Each pro-
grammer can separately develop plug-ins with different func-
tions. In summary, TOMML speeds up the development of
plug-ins and realizes collaborative development. Therefore,
to prove the scalability of the plug-in interface layer, we make
and test a plug-in on the Android platform to save dynamic
random access memory’s (DRAM’s) self-refresh power.

The rest of this paper is organized as follows. The next
section discusses the TOMML scheme in detail. Methods for
experimental research and analysis of results are presented in
Section 3. Section 4 discusses the related work, and finally,
Section 5 concludes.

Il. PROPOSED MECHANISMS

A. THREAD MEMORY OPERATING BEHAVIOR

Thread behavior can be divided into single-thread behavior
and multithread interactions. First, in terms of a single thread,
as depicted in Fig. 1 (the x-axis represents the thread’s life
cycle, and the y-axis represents its memory resources), it has
two operations to manipulate memory resources, request and
release (TL represents a thread’s lifetime), and three lifetime
stages including creative, active and exit. As shown in Fig. 1,
the demand for memory dramatically increases when the
thread is in the creative stage, and all the memory resources
are released when the thread exits. In addition, usually the
active stage is the longest stage in the lifetime of the thread.

Active
\/\/\/‘ .~ Exit

Thread Lifetime

Creative

S931N0STY

000

'@ Request Operation | 1 Release Operation | L

_ — = -

FIGURE 1. A single-thread behavior.

Second, from the perspective of the OS, the dynamic
libraries of Android framework will occupy a large part of
the thread’s memory space. As shown in Fig. 2, the x-axis
represents different apps, and the y-axis shows the ratio of
shared libraries to the entire memory of a thread. Almost all
the apps are written in Java and executed by the Dalvik virtual
machine (vm) as Android provides abundant and powerful
APIs in the app framework layer for designers to develop
applications quickly. Therefore, the thread’s memory behav-
iors have been encapsulated by Dalvik v and the C library.
Intensive interactions between apps, and the framework are
reduced by the bursty traffics created by these encapsula-
tions. However, increasingly, threads are forked in parallel
to execute on multicore mobile edge computing devices.

VOLUME 7, 2019

Z.Zhu et al.: Thread-Oriented Memory Resource Management Framework for Mobile Edge Computing

IEEE Access

Il Shared Library Ratio

90% —

60% —

30%

Shared library memory ratio

0%

ol N N ® el \O “o° O
%‘o"‘e \;\@\0\ ¥ \e\“@‘? @Q\eﬂ W e O
<¢ Ooo‘é RS

FIGURE 2. Shard library memory ratio.

For instance, the browser app forks approximately 30 threads
in half a minute, including 4 http worker threads, a main
thread, and a DNS resolver. Therefore, these memory activ-
ities (requests and releases) are inclined to become more
bursty and lead to more lock contentions. In terms of the
global buddy system, each thread’s frequent check on the
memory management lock until it is accessible is rather time-
consuming. In addition, our previous experiments revealed
that a thread’s waiting time for available memory increases
with the number of cores.

B. THREAD-ORIENTED MEMORY MANAGEMENT LAYER
According to the thread behaviors discussed above, it can be
concluded that external-fragmentation is no longer the crucial
consideration when we design a new memory management
framework for multicore devices. Instead, we should focus
more on the inter- and intra- thread behavior described above.
Thus, in the previous study, we introduced a memory manage-
ment framework called MMBTB. Regrettably, there are sev-
eral flaws that make it hard to adapt to fast-changing mobile
devices, and it cannot meet the multiclass and high-quality
demands of users. As a result, we propose a novel memory
management layer called TOMML, which inherits all the
advantages of MMBTB, such as taking a thread as a service
object and fully exploiting the thread’s behaviors on the
Android platform to guide optimization. Additionally, it can
fundamentally solve the shortcomings of MMBTB due to
the microkernel architecture pattern that it follows. It can
meet the user’s requirements to select plug-ins to accomplish
different optimization goals and has clear boundaries with the
thread and the OS.

The Android architecture as shown above in Fig. 3 can
be subdivided into five layers: Linux kernel, native libraries,
the Android runtime, the framework and the complete app.

Android memory allocation is performed by the Linux
kernel, native layer and framework. The main function of the
Linux kernel is to score all the processes, and then update

VOLUME 7, 2019

APPLICATIONS
[Home J [Contacts] [Phone] [Browser] [Home J
[APPLICATION FRAMEWORK |
[Activity Window Content | View
_ Manager | Manager | | Providers | | System
View Notification [Package] (" Location \‘
System Manager Manager | Manager
(LIBRARIES)
Surface Media .
[Manager J [Fra.mework} [Sy J
OpenGl FreeType
(LINUX KERNEL)

FIGURE 3. Android Architecture.

the score to the kernel, the kernel will complete the real
memory recovery. Since we don’t touch the kernel changes
(this is one of the reasons why TOMML is transparent
to threads), the native layer and framework layer are the
important contents that we need to fully understand. For
the native layer (libraries and Android runtime), there are
two ways to develop Android apps. First, the app can be
developed through the Android Java native interface (JNI).
Which means that the app is developed in Java and exe-
cuted by the Dalvik vm. Second, apps can be accelerated
by the native development kit (NDK); for these apps, they
essentially allocate and release memory with the aid of the C
library’s malloc and free functions. Android’s JNI is imple-
mented based on NDK functions. Therefore, all the thread’s
memory behaviors have been encapsulated by Dalvik vm
and the C library. In other words, TOMML implements the
thread’s memory request and releases with the aid of native
libraries. For the framework layer, Android provides powerful
APIs for the developer to devise apps. As a result, most of
its functions will run with Android framework support. That
means that the Android framework’s dynamic libraries will
occupy one thread’s major memory space and manifest the
thread’s memory behaviors. We need to consider the thread’s
individual behaviors and the relativeness between different
threads by the framework’s dynamic libraries. Meanwhile,
we manage memory by calling the native layer functions
instead of modifying the structure of the algorithm. Thus,
TOMML is completely transparent to threads.

In light of the analysis of the preceding paragraph,
the thread mainly depends on the framework and the
native layer. In this, the framework is used to compose
the threads (e.g., activity manager, resource manager and
content provider), and the native layer provides a memory
management interface. For example, the native layer will
provide the alloc_pages function to meet memory requests
and free_pages to support the release operation. Therefore,
we introduced a novel memory management layer, called
TOMML between the native layer and the framework layer.

45883

IEEE Access

Z. Zhu et al.: Thread-Oriented Memory Resource Management Framework for Mobile Edge Computing

[Thread 1][][Thread_n] [Plug_in]

11 11 11 11
[Plug-in interface]

[T]J:eadimerface] [OS interface]

DATABASE LAYER

Thread database Plug-in database

(TOMMLKERNELLAYER)

FIGURE 4. TOMML in micro-architecture.

TOMML is a novel memory management framework,
which is divided into three layers and six sections as shown
below Fig. 4 in the architecture diagram. The three levels
include the interface layer, the database layer and the kernel
layer, wherein the interface layer is divided into the thread
interface, the OS interface and the plug-in interface. In addi-
tion, the database layer is divided into the thread database and
the plug-in database.

o Thread interface: TOMML takes a thread as the ser-
vice object which is different than the global buddy
system. Therefore, we designed an interface layer for
threads, which is mainly used to collect the thread’s
operating states, such as memory size, memory physical
address range, and process identifier (PID). Particularly,
we introduced two attributes: occupy_list is used to
describe thread’s in-use memory pages, and free_list to
maintain its free memory pages. After the two attributes
are automatically collected, they are saved to the thread
database as shown in Fig. 5.

[Thread 1] [] [Thread n]
ll collect | ll collect | l

[Collect occupy_list] [Collect...] [Collect free_list]

[|
lm I

Thread database

FIGURE 5. Thread interface collect the thread’s operating states.

o OS interface: In the above, we explained that the mem-
ory control methods are provided through the Android
native layer. Consequentlyy, TOMML only needs to
modify the implementation of these methods includ-
ing the alloc_pages and free_pages. Then, there are
four functions that the OS interface can use to man-
age memory as shown in Table 1 which is divided

45884

TABLE 1. OS interface control threads.

OS interface

get_page

release_page
get_page_from_thread
release_page_to_thread

intra-methods:

inter-methods:

into intra- and inter- methods. Intra-methods include
get_page and release_page, while inter-methods include
get_page_from_thread and get_page_to_thread. The
specific effects of the functions will be analyzed later
in the example.

¢ Plug-in interface: This interface uses a microkernel
architecture pattern, which is different from the previ-
ous MMBTRB; it can meet the user’s requirements for
selecting plug-ins to achieve different optimization goals
since it provides a unified communication protocol, and
an interface to read the thread database and manipulate
memory. In fact, it supplies plug-ins with access to the
thread database and the OS interface.

o Thread database: This database saves the information
collected by the thread interface, such as memory size,
memory physical address range, PID, occupy_list and
free_list. Since the information is stored as a key-value
pair, its time complexity is O(1).

o Plug-in database: This database stores the configuration
parameters and operation log of each plug-in.

« Kernel layer: This layer provides the necessary support
for other layers.

There are clear boundaries and dense interactions between
each level of TOMML, as depicted in Figure 6. The gray box
represents the layer name, and the white represents the main
function (MF). First, the thread interface collects the thread’s
feature information and stores it in the thread database. After
that, the plug-in manipulates the optimization methods by
reading the thread information and controls the thread mem-
ory through the OS interface. In addition, users can customize
plug-ins through configuring the plug-in database.

To better understand Fig. 4, we need to discuss a real
example. When a page fault occurs, the Android OS will
call the alloc_pages function to handle the memory request.
Likewise, the OS also provides the free_pages function.
Hence, TOMML only needs to modify the implementa-
tion of these functions as shown in Algorithm 1. In addi-
tion, this process is similar to the function provided by
nature, since this is transparent to the applications, which
means the app does not need to be modified to adapt to
TOMML. In TOMML, each thread has two attributes includ-
ing in-use pages and the free page. Similarly, each thread
has four methods, which can be divided into inter- and intra-
methods. get_page and release_page are used to get/release
resources from/to a thread’s free storage. Correspondingly,
the get_page_from_thread and get_page_to_thread func-
tions get/release resources from/to the other thread’s free
storage.

VOLUME 7, 2019

Z.Zhu et al.: Thread-Oriented Memory Resource Management Framework for Mobile Edge Computing

IEEE Access

-

] \

[OS interface

—

Thread

i
(6) control E

MEF: Call the operation memory

function provided by the
Android native layer

| [OET=a

LGN

Y
+
"\

[Thread interface]

[Plug-in interface]

information of each thread

- ~

‘|
!
ME: collect the feature i
|

MF: Unified plugin interface

3
i (4) decide
i _ Plug-in

-

| Nerm) ey

[Plug-in database]

MEF: save information from
thread interface

parameters and operation log of

Ir
i| MF: Storing the configuration
i| each plug-ins.

T

'~ - -

FIGURE 6. TOMML layer interaction.

Thread A in creative
stage
(1)Borrow from Other
threads
Thread A in active (2Release to
stage
@Get (3Release
PROCEDURE | METHODS
(1)Borrow from get_page_fr
Spare YES @ @)Borrow from | om_thread
03 %
e Borrow] —
lNo from || @Release to release_pag
(5Release to e to_thread
. Acquire NO 3Rel rel a
YES from self @ A \ease_pag
l @)Get get_page
Thread A in exit stage

(5)Release to

FIGURE 7. An instance of a thread.

We present an example to analyze the memory change
process from the perspective of threads as illustrated Fig. 7,
although this is transparent to the thread and all operations
performed by TOMML. When one thread enters the cre-
ate stage, it will attempt to borrow resources from other
threads through inter-methods get_page_from_thread. Then,
its active stage begins, and it will return the resources
at once to ensure other thread’s operation stability by
release_page_to_thread. The only thing to note here is that
the release operations are the most privileged to release
resources to its own free storage by release_page. Corre-
sponding to this stage, the thread will first request the pages
by get page; if it fails, it also has to borrow resources

VOLUME 7, 2019

from other threads by ger_page_from_thread. When it exits,
resources must be released to the other threads by using the
release_page_to_thread. These four methods are the key to
the TOMML and can be used to change the two attributes
(occupy_list and free_list) based on the inter- and intra- thread
behavior. They can also be combined with plug-ins to achieve
different optimization goals. In the next sections, we will
introduce two plug-ins to optimize memory allocation and
save self-refresh power consumption.

1) DEFAULT PLUG-OPTIMIZE MEMORY

ALLOCATION EFFICIENCY

TOMML can speed up memory allocation-efficiency by com-
bining with the corresponding plug-ins. In this plug-in, a new
attribute called page fault frequency (PFF) is created for the
thread, which is a metric to represent the thread’s memory
requirements [11], TOMML organizes a red-black tree based
on the PFF of each thread. In addition, the leftmost node
has the lowest PFF value (maximum free memory) while
the rightmost node has the maximum page faults (minimum
free memories). As shown in Algorithm 2, when one thread
enters the create stage, there are several differences between
the original and the plug-in. TOMML, which has already
loaded the plug-in, will select the leftmost target thread in
PFF while performing the getr_page_from_thread method
operation. Thus, the threads that hold rich free memory have
higher priority to be borrowed from. By the same token,
the release_page_to_thread method will release its rightmost
with extreme memory demands. Thus, the plug-in imple-
ments the optimization goal without any changes. That is
why we call it a plug-in. From this, we can discern that,
since TOMML’s basic structure is a red-black tree, its time
complexity is O(log t)(t is the number of threads).

45885

IEEE Access

Z. Zhu et al.: Thread-Oriented Memory Resource Management Framework for Mobile Edge Computing

Algorithm 1 TOMML Functions

Algorithm 2 TOMML OS Interface Functions

/***************************************
Input: none Output: struct page x*
***************************************/
struct page x alloc_pages () {
thread_database.pid = current_thread_
pid;
switch (thread_database.pid.state) {
case CREATING_STAGE: return
get_page_from_thread();
case ACTIVE_STAGE: {
if (thread_database.pid.free_
list == Null)
return get_page (free_
list);
else
return get_page_from_
thread () ;

}

/***************************************
Input: struct page *page Output: none
***************************************/

void free_pages (page =xpage) {

thread_database.pid = current_thread_
pid;
if (thread_database.pid.state == ACTIVE_
STAGE)

release_page (free_list);
else if (thread_database.pid.state ==
EXITING_STAGE)
release_page_to_thread (page);

2) EXTEND PLUG-REDUCING OPTIMIZE POWER

From previous research on mobile devices power consump-
tion, we know that memory standby power consumption is
very important to total power. There are several ways to
reduce the refresh power. Liu et al. [12] proposed Flikker to
decrease hardware reliability in an application specific man-
ner to reduce power consumption. ESKIMO [13] is similar
to Flikker and adopts a hardware mechanism to save power.
However, these solutions require hardware support and are
not suitable for general situations.

Currently, an increasing number of manufacturers have
produced DRAM and a new feature called partial array
self-refresh (PASR). PASR means that DRAM can be par-
tially refreshed, thus further reducing the self-refresh power.
Using this technique, numerous researches extend unused
DRAM part’s idle time by clustering applications’ data
together. Correspondingly, there are some classic techniques
such as single/dual ended bank PASR and the bank selec-
tive PASR [14]. The most attractive methodology is the

45886

/***************************************
Input: none Output: struct page x*
***************************************/
struct page x get_page_from thread() {
thread_database.pid = seek_min_key_

inrbtree;
get_page_from_thread(thread_

database.pid);
}

/***************************************
Input: struct page xpage Output: none
***************************************/
void release_page_to_thread (page xpage)
{
thread_database.pid = seek_max_key_
inrbtree;
free_page_to_thread(thread_
database.pid);

bank selective methodology since it can be signed as a
self-refreshed bank individual. The plug-in we designed is
based on the PASR and prolongs memory free time by
clustering data together. Similar to the plug-in described
in the previous paragraph, each thread is assigned one
attribute called bank_list which is used to link other
threads to the same bank. In addition, a global list
g_bank_list[0..number_banks] is defined as g_bank_list[i],
which is an entry point to the bank’s first thread’s bank_list.
For example, when a thread uses the borrow/release pages
from/to others, it first calculates the utilization of each
thread and locates the freest/fullest bank number in the
g_bank_list[0..number_banks]. In general, there may be
many threads linked to the same g_bank_list[i] entry. For
this condition, we use the allocation efficiency to ensure the
thread has the minimum/maximum page faults.

IIl. EXPERIMENTAL RESULTS

In this section, we will study the allocation efficiency of
TOMML on the Android platform, and then prove the effec-
tiveness of the plug-in using some intensive experiments that
are introduced to determine whether the plug-in can reduce
the self-refresh power of DRAM.

A. DEFAULT PLUG ON A REAL ANDROID PLATFORM
We used the vmware [15] simulator to run Android-x86
2.3 along with eight popular applications: Youku, Weibo,
Music, Moboplayer, GoogleMaps, Gallery, Fruit Ninja and
Browser. The experimental results are shown in Table 2.
Multicore Memory Lock Competitions: There are three
independent variables in Table 2 including the application
type, number of cores and memory management framework.
The x-axis represents the different applications, and the y-axis

VOLUME 7, 2019

Z.Zhu et al.: Thread-Oriented Memory Resource Management Framework for Mobile Edge Computing

IEEE Access

TABLE 2. Multi corecompetitions.

App

Core Browser | Fruit Ninja | Gallery | GoogleMaps | Moboplayer | Music Weibo | Youku
Org-Dual 0.15 0.12 0.26 0.054 0.055 0.31 0.24 0.10
Org-Quad 0.23 0.27 0.37 0.11 0.17 0.48 0.48 0.24
Org-Eight 0.31 0.30 0.38 0.21 0.18 0.62 0.56 0.32
TOMML-Dual | 0.013 0.0044 0.0038 | 0.21 0.042 0.016 0.031 0.035
TOMML-Quad | 0.013 0.0092 0.073 0.056 0.064 0.0096 | 0.062 0.081
TOMML-Eight | 0.068 0.073 0.10 0.063 0.87 0.011 0.099 0.12

gives the lock competition ratio of the different numbers of
cores under the original and TOMML memory management
frameworks. It is obvious that the waiting time of the original
system lock increases with the number of cores. TOMML
can relief lock competitions under multicore architecture,
and the lock waiting time increases from one to eight cores
within 12% compared with the original system.

Distribution Efficiency: Distribution efficiency means that
the speed from one thread issues memory commands (release
or request) to obtain access to use them. It can be clearly seen
from Table 3 that TOMML’s optimized allocation efficiency
for different applications ranges from 12% to nearly 60%, and
as the number of cores increases, the optimization efficiency
increases. There are several possible reasons for this. First,
TOMML manages memory based on threads rather than the
global buddy system, thus reducing lock competitions. Sec-
ond, the standard buddy system takes O(log m) time where
m is the magnitude of the memory on operating memories,
whereas the time-complexity of the TOMML is O(log n)
where n is the number of threads and generally much smaller
than m. In conclusion, TOMML effectively enhances the
allocation efficiency of the original system.

TABLE 3. Ratio of improving distribution-efficiency for different
multi-core.

Core

App Single-Core | Dual_core | Quad-Core | Eight-Core
Browser 0.425 0.520 0.531 0.541
Fruit Ninja 0.423 0.482 0.547 0.537
Gallery 0.352 0.542 0.573 0.562
GoogleMaps | 0.462 0.558 0.563 0.560
Moboplayer 0.415 0.463 0.533 0.556
Music 0.142 0.223 0.278 0.279
Weibo 0.312 0.472 0.521 0.543
Youku 0.340 0.468 0.536 0.543

B. EXTEND-PLUGIN OPTIMIZE POWER

ON A REAL ANDROID PLATFORM

Modern DDRx consists of a single package of integrated
circuits. In DRAM devices, to effectively balance memory
power and property, modern DRAM chips include linear and
interleaved mapping modes.

o Linear Mapping Schema: In modern DRAM system’s
linear schema, physical address will be mapped to
DRAM address in the order of bank, row, column
and width, which means the bank indices will occupy
DRAM address’s much higher range. In this schema,

VOLUME 7, 2019

an application’s data would be clustered on banks as few
as possible, so the self-refresh power consumption will
be reduced.

« Interleaved Mapping Schema: The physical address will
be mapped to DRAM address in the order of bank, row,
column and width, which differs from linear mapping in
that the order of bank and row is different. For access
beyond the row size, the interleaved map accesses a
different bank, so more bank can be accessed using the
interleaved mapping application. This increases perfor-
mance but more power consumption.

Since most modern DRAM has the PASR function,
the more free areas that are in the memory, the lower the
self-refresh power. That is, memory management should clus-
ter pages into fewer banks to stay idle as long as possible.
Thus, we can consider bank idle time as an important indi-
cator to evaluate TOMML with the extend plug-in clustering
effect. It is possible to quantify the refresh power consump-
tion through bank idle time according to the micron supported
DRAM power calculation method [16]. In this subsection,
we discuss the clustering effects of TOMML’s plugin on
linear and interleaved mapping schemas.

As a control group, we chose the excellent power-aware
memory allocation algorithm [17], shortened as Ascend,
which allocates pages in order of access, filling the
entire memory module before transporting to the next one.
As shown in Fig. 8 (the x-axis is bank number and the y-axis
shows the bank idle time ratio), the operation of the TOMML
and Ascend memory management frameworks under different
numbers of BANKSs and sizes of memory use the bank idle

—&— Boot -Org
—@— Boot -TOMML
—— Boot -Ascned
—y— 512M -Org

4 512M-TOMML
—— 512M -Ascend
—4— 1G-Org

| |- 16 -TommL

| |~@— 1G-Ascned
|

Bank Idle Time Ratio

T
1.2 3 4 5 6 7 8 9 10 M

T T 1
12 13 14 15 16
Bank Number

FIGURE 8. Bank idle time ratio of different allocation scenarios in linear.

45887

IEEE Access

Z. Zhu et al.: Thread-Oriented Memory Resource Management Framework for Mobile Edge Computing

TABLE 4. Improved bank idle time ratio.

Linear Mapping Schema Interleaved Mapping Schema
TOMML_Idleness TOMML_Idleness
Ascend TOMML Ascend TOMML
Ascend_Idleness Ascend_Idleness
Boot -0.04 0.08 66.17 70.67
512M -0.13 0.09 0.25 108.62 125.3 0.15
1G 0.32 04 0.06 108.51 125.3 0.15

time ratio as the benchmark. It can be seen that TOMML has
better clustering effect than Ascend and the original frame-
work, but the Ascend memory management plays a negative
role except in the 1GB allocation scenario because in the
linear mapping mode, the physical addresses will sequentially
correspond to the DRAM address, and then the subsequent
virtual addresses will also be mapped to subsequent banks
to a large extent. Fig. 9(the x-axis is bank number and the
y-axis shows the bank idle time ratio) shows the experiment in
the interlaced mapping mode. After the system boots, the OS
will occupy hundreds of megabytes of memory, so banks one
to eight will be preassigned to the OS due to the interleaved
mapping architecture, resulting in a bank idle time ratio close
to 0. In addition, the interleaved mode will cause different
physical libraries to be switched to achieve continuous virtual
address access, which means that the original partner system
fails to achieve good clustering effectiveness.

1.04

0.9 o

0.8 o

—B— Boot -Org
—@— Boot -TOMML
—— Boot -Ascned
- 512M -Org
—— 512M-TOMML
—p— 512M -Ascend
—4— 16-Org

@ 1G -TOMML
—@— 1G-Ascned

0.7 A4

0.6 o

0.5+

0.4

Bank Idle Time Ratio

034

0.2+

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Bank Number

FIGURE 9. Bank idle time ratio of different allocation scenarios in
interleaved.

From the above experiments, our extend plug-in can
achieve better clustering efficiency in the linear mapping
mode and on interleaved schema than in the control group
Ascend and the original group, as shown in Table 4.

IV. RELATED WORK

Over the past ten years, the memory management of mobile
devices has been studied by many scholars. Especially in
recent years, since the mobile edge computing becoming
increasingly popular, how to improve performance on limited
power mobile devices has been a popular topic in embed-
ded research field [18]—-[24]. Android, as one of the most
popular mobile devices OS, adopts a global buddy system.
It is worth noting that allocation efficiency and external

45888

fragmentation are two major issues. Gerth et al. [5] intro-
duced three methods to the buddy system that decreased
the running time of distribution to constant worst-case time
and deallocated to constant amortized time for the first
two solutions and constant worst-case time for the third
one. Kim et al. [25] presented a proactive anti-fragmentation
approach that groups pages with the same lifetime, and
stores them contiguously in fixed-size contiguous regions.
In addition, Li et al. [26] proposed a global memory frag-
mentation quantification approach that summarizes a mem-
ory block’s access pattern and measures the allocation
time of different order memory blocks dynamically. Other
research and analytical work [6]-[9] also exist. Such as
Abdelwahab et al. [27] propose User-Level Online Offload-
ing Framework (ULOOF), a lightweight and efficient frame-
work for mobile computation offloading, which is equipped
with a decision engine that minimizes remote execution over-
head. Jia et al. [28]-[31] propose a series of new caching
strategies such as Hybrid-LRU, cost aware cache replace-
ment policy (CACRP), and dynamic adaptive replacement
policy (DARP) to improve memory resources management
performance. However, these previous studies ignore thread
behaviors and lack target optimizations. Therefore, lots of
studies [4], [32]-[35] based on app characteristics to improve
the performance of mobile edge computing devices. For
instance, M. Tech [36] found that out of memory (OOM)
killer, activity manager service (AMS), and low memory
killer (LMK) in Android kills some of the apps in low mem-
ory scenarios along with OOM Kkiller, which will go through
the memory loading cycle again and takes approximately
3-5 secs. Yin et al. [37]-[39] improves mobile devices perfor-
mance by discovering potential relationships between users
and apps. Also, other works for the hardware level focus
on task behaviors, such as intra-task dependency [19], [40],
to lead performance optimization.

The previous research [10] we performed differs from oth-
ers since it either optimizes the algorithm’s time-complexity
to improve allocation efficiency, but it does not modify the
structure of the algorithm to manage fragmentation. In this
paper, we optimized the original MMBTB design framework
based on the needs of users, which can meet the user’s
requirements for selecting plug-ins to achieve different opti-
mization goals and has clear boundaries with the threads and
the OS. Unfortunately, these previous similar studies work at
the C shared library level of user-space; thus, they consider
the thread individual behaviors and ignore the relativeness

VOLUME 7, 2019

Z.Zhu et al.: Thread-Oriented Memory Resource Management Framework for Mobile Edge Computing

IEEE Access

between different threads. In addition, they are designed to
optimize a particular objective and cannot meet different
optimization targets. Instead, our goal is to use a microkernel
architecture to optimize MMBTB for high customizability
and fault tolerance.

V. CONCLUSION

In this paper, we introduced a novel memory resource
management framework for edge computing devices, called
TOMML. This work is motivated by the observation that
the previously proposed framework MMBBT is not suitable
for current users, it is hard to integrate different optimiza-
tion strategies, and users cannot change optimization tar-
gets in different scenarios. Therefore, TOMML follows the
microkernel architecture pattern and utilizes all the advan-
tages of MMBTB. Experimental results from real Android
systems demonstrate that our approach can improve allo-
cation efficiency from 12% to 20%. In addition, to show
our framework’s plug-in interface compatibility, we make
plug-in to address DRAM’s self-refresh power issue in edge
computing. Experiments indicate that it can increase bank
idleness by 6%-25% by combining with different mapping
schemas.

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on
mobile edge computing: The communication perspective,” IEEE Commun.
Surveys Tuts., vol. 19, no. 4, pp. 2322-2358, 4th Quart., 2017.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637-646,
Oct. 2016.

[3] G. Khetan,
BSD, windows,
Dec. 2002.

[4] Y. Xiao, Y. Xue, S. Nazarian, and P. Bogdan, ““A load balancing inspired
optimization framework for exascale multicore systems: A complex net-
works approach,” in Proc. 36th Int. Conf. Comput.-Aided Design. Piscat-
away, NJ, USA: IEEE Press, Nov. 2017, pp. 217-224.

[5] G. S. Brodal, E. D. Demaine, and J. I. Munro, “Fast allocation and
deallocation with an improved buddy system,” Acta Inf., vol. 41, nos. 4-5,
pp. 273-291, 2005.

[6] A. G. Bromley, “Memory fragmentation in buddy methods for
dynamic storage allocation,” Acta Inf., vol. 14, no. 2, pp. 107-117,
1980.

[71 S.K.Chowdhury and P. K. Srimani, “Worst case performance of weighted
buddy systems,” Acta Inf., vol. 24, no. 5, pp. 555-564, 1987.

[8] P. W. Purdom, Jr., and S. M. Stigler, ““Statistical properties of the buddy
system,” J. ACM, vol. 17, no. 4, pp. 683-697, 1970.

[9] S. Serewa, “The improvement of the buddy system,” Theor. Appl. Infor-
mat., vol. 18, no. 2, pp. 133-140, 2006.

[10] Z. Zhu et al., “A thread behavior-based memory management framework
on multi-core smartphone,” in Proc. 19th Int. Conf. Eng. Complex Comput.
Syst. (ICECCS), Aug. 2014, pp. 91-97.

[11] R. K. Gupta and K. A. Franklin, “Working set and page fault frequency
paging algorithms: A performance comparison,” IEEE Trans. Comput.,
vol. C-27, no. 8, pp. 706-712, Aug. 1978.

[12] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, ‘‘Flikker: Saving
DRAM refresh-power through critical data partitioning,” ACM SIGPLAN
Notices, vol. 47, no. 4, pp. 213-224,2012.

[13] C. Isen and L. John, “Eskimo-energy savings using semantic knowledge
of inconsequential memory occupancy for DRAM subsystem,” in Proc.
42nd Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Dec. 2009,
pp. 337-346.

[14] T. Brandt, T. Morris, and K. Darroudi, “Analysis of the PASR standard
and its usability in handheld operating systems such as Linux,” Intel, Santa
Clara, CA, USA, Tech. Rep., 2007.

“Comparison of memory management systems of
and linux,” Retrieved May, vol. 22, p. 2010,

VOLUME 7, 2019

[15]
[16]
(17]

(18]

[19]
(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27])

(28]

[29]

(30]

(31]

(32]
(33]

(34]

(35]

(36]

(371

(38]

(391

[40]

M. Rosenblum, “Vmwares virtual platform,” Proc. Hot Chips, vol. 1999,
pp. 185-196, Aug. 1999.

Calculating Memory System Power for DDR3, Micron, Boise, ID, USA,
2007.

D. P. Bovet and M. Cesati, Understanding the Linux Kernel: From I/O Ports
to Process Management. Newton, MA, USA: O’Reilly Media, 2005.

K. Vimal and A. Trivedi, “A memory management scheme for enhancing
performance of applications on android,” in Proc. IEEE Recent Adv. Intell.
Comput. Syst. (RAICS), Dec. 2015, pp. 162-166.

C. Wang et al., “Architecture support for task out-of-order execution in
MPSoCs,” IEEE Trans. Comput., vol. 64, no. 5, pp. 12961310, May 2015.
Y. Wiseman, Advanced Operating Systems and Kernel Applications: Tech-
niques and Technologies. Pennsylvania, PA, USA: IGI Global, 2009.

P. Mach and Z. Becvar, ““Mobile edge computing: A survey on architecture
and computation offloading,” IEEE Commun. Surveys Tuts., vol. 19, no. 3,
pp. 1628-1656, 3rd Quart., 2017.

Y. Xiao, S. Nazarian, and P. Bogdan, ‘‘Prometheus: Processing-in-memory
heterogeneous architecture design from a multi-layer network theoretic
strategy,” in Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE)
Mar. 2018, pp. 1387-1392.

Y. Xue, Z. Qian, G. Wei, P. Bogdan, C.-Y. Tsui, and R. Marculescu,
“An efficient network-on-chip (NoC) based multicore platform for hier-
archical parallel genetic algorithms,” in Proc. 8th IEEE/ACM Int. Symp.
Netw.-on-Chip (NoCS), 2014, pp. 17-24.

Y. Xue, J. Li, S. Nazarian, and P. Bogdan, ‘“‘Fundamental challenges toward
making the iot a reachable reality: A model-centric investigation,” ACM
Trans. Des. Automat. Electron. Syst., vol. 22, no. 3, p. 53, 2017.

S.-H. Kim, S. Kwon, J.-S. Kim, and J. Jeong, ““Controlling physical mem-
ory fragmentation in mobile systems,” ACM SIGPLAN Notices, vol. 50,
no. 11, pp. 1-14, 2016.

Y. Li, D. Liu, J. Zhang, and L. Long, “‘A quantitative approach for memory
fragmentation in mobile systems,” in Proc. Int. Conf. Smart Comput.
Commun. Cham, Switzerland: Springer, 2016, pp. 339-349.

S. Abdelwahab, B. Hamdaoui, M. Guizani, and T. Znati, “Replisom:
Disciplined tiny memory replication for massive IoT devices in LTE edge
cloud,” IEEE Internet Things J., vol. 3, no. 3, pp. 327-338, Jun. 2016.

G. Jia, G. Han, J. Jiang, and L. Liu, “Dynamic adaptive replacement
policy in shared last-level cache of DRAM/PCM hybrid memory for big
data storage” IEEE Trans. Ind. Informat., vol. 13, no. 4, pp. 1951-1960,
Apr. 2017.

G. Jia, G. Han, J. Rodrigues, J. Lloret, and W. Li, “Coordinate memory
deduplication and partition for improving performance in cloud comput-
ing,” IEEE Trans. Cloud Comput., to be published.

G. Jia, G. Han, H. Wang, and F. Wang, “Cost aware cache replacement
policy in shared last-level cache for hybrid memory based fog computing,”
Enterprise Inf. Syst., vol. 12, no. 4, pp. 435-451, 2018.

G. Jia, G. Han, H. Xie, and J. Du, “Hybrid-LRU caching for optimizing
data storage and retrieval in edge computing-based wearable sensors,”
IEEE Internet Things J., to be published.

D. Gay and A. Aiken, Memory Management With Explicit Regions, vol. 33.
New York, NY, USA: ACM, 1998.

D. R. Hanson, “Fast allocation and deallocation of memory based on object
lifetimes,” Softw., Pract. Exper., vol. 20, no. 1, pp. 5-12, 1990.

H. Gao, W. Huang, X. Yang, Y. Duan, and Y. Yin, “Toward service
selection for workflow reconfiguration: An interface-based computing
solution,” Future Gener. Comput. Syst., vol. 87, pp. 298-311, Oct. 2018.
H. Gao, Y. Duan, H. Miao, and Y. Yin, “An approach to data consistency
checking for the dynamic replacement of service process,” IEEE Access,
vol. 5, pp. 11700-11711, 2017.

R. Prodduturi, “Effective handling of low memory scenarios in android
using logs,” M.S. thesis, Indian Inst. Technol.,, New Delhi, India,
2013.

Y. Yin, L. Chen, Y. Xu, and J. Wan, ‘“Location-aware service recommenda-
tion with enhanced probabilistic matrix factorization,” IEEE Access, vol. 6,
pp. 62815-62825, 2018.

Y. Yin, F. Yu, Y. Xu, L. Yu, and J. Mu, “Network location-aware service
recommendation with random walk in cyber-physical systems,” Sensors,
vol. 17, no. 9, p. 2059, 2017.

Y. Yin, Y. Xu, W. Xu, M. Gao, L. Yu, and Y. Pei, “Collaborative service
selection via ensemble learning in mixed mobile network environments,”
Entropy, vol. 19, no. 7, p. 358, 2017.

C. Wang, X. Li, J. Zhang, X. Zhou, and X. Nie, “MP-Tomasulo:
A dependency-aware automatic parallel execution engine for sequential
programs,” ACM Trans. Archit. Code Optim., vol. 10, no. 2, p. 9, 2013.

45889

IEEEACC@SS Z. Zhu et al.: Thread-Oriented Memory Resource Management Framework for Mobile Edge Computing

ZONGWEI ZHU received the M.S. and Ph.D.
degrees in computer science from the Uni-
versity of Science and Technology of China
(USTC), in 2011 and 2014, respectively. From
2014 to 2016, he was a Research Assistant
with the IOT Perception Mine Research Center,
China University of Mining and Technology. From
2016 to 2018, he was a Senior Engineer with
Huawei Company. He is currently a Research
Assistant with the Suzhou Institute, USTC. His
research interests include resource scheduling, memory, power, and oper-
ating systems.

FAN WU received the B.S. degree from the
College of Agricultural Mechanization and Its
Automation, Huazhong Agricultural University,
in 2018. He is currently pursuing the M.S.
degree with the Department of Software Engi-
neering, University of Science and Technology of
China. His current research interests include power
and operating systems, artificial intelligence, and
resource scheduling.

JING CAO received the B.S. degree from the
College of Biomedical Engineering & Instru-
ment Science, Zhejiang University, in 2018. She
is currently pursuing the M.S. degree with the
Department of Software Engineering, University
of Science and Technology of China. Her cur-
rent research interests include power, operat-
ing systems, artificial intelligence, and resource
scheduling.

45890

XI LI is currently a Professor of computer science
and the Executive Dean of the School of Software
Engineering, University of Science and Technol-
ogy of China. There, he directs research programs
in the Embedded System Lab, examining various
aspects of embedded system with the focus on reli-
ability, performance, availability, flexibility, and
energy efficiency. He has led several national key
projects in China and several national 863 projects
and NSFC projects. He is a member of the ACM

and a Senior Member of the CCF.

GANGYONG JIA received the Ph.D. degree from
the Department of Computer Science, University
of Science and Technology of China, Hefei, China,
in 2013. He is currently an Assistant Profes-
sor with the Department of Computer Science,
Hangzhou Dianzi University, China. He has served
as a Reviewer of microprocessors and microsys-
tems. His current research interests include the
IoT, cloud computing, edge computing, power
management, and operating systems.

VOLUME 7, 2019

	INTRODUCTION
	PROPOSED MECHANISMS
	THREAD MEMORY OPERATING BEHAVIOR
	THREAD-ORIENTED MEMORY MANAGEMENT LAYER
	DEFAULT PLUG-OPTIMIZE MEMORY ALLOCATION EFFICIENCY
	EXTEND PLUG-REDUCING OPTIMIZE POWER

	EXPERIMENTAL RESULTS
	DEFAULT PLUG ON A REAL ANDROID PLATFORM
	EXTEND-PLUGIN OPTIMIZE POWER ON A REAL ANDROID PLATFORM

	RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	ZONGWEI ZHU
	FAN WU
	JING CAO
	XI LI
	GANGYONG JIA

