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Abstract—Current and future wireless applications strongly
rely on precise real-time localization. A number of applica-
tions, such as smart cities, Internet of Things (IoT), medical
services, automotive industry, underwater exploration, pub-
lic safety, and military systems require reliable and accurate
localization techniques. Generally, the most popular localiza-
tion/positioning system is the global positioning system (GPS).
GPS works well for outdoor environments but fails in indoor and
harsh environments. Therefore, a number of other wireless local
localization techniques are developed based on terrestrial wireless
networks, wireless sensor networks (WSNs), and wireless local
area networks (WLANs). Also, there exist localization techniques
which fuse two or more technologies to find out the location of the
user, also called signal of opportunity-based localization. Most of
the localization techniques require ranging measurements, such
as time of arrival (ToA), time difference of arrival (TDoA), direc-
tion of arrival (DoA), and received signal strength (RSS). There
are also range-free localization techniques which consider the
proximity information and do not require the actual ranging
measurements. Dimensionality reduction techniques are famous
among the range free localization schemes. Multidimensional
scaling (MDS) is one of the dimensionality reduction technique
which has been used extensively in the recent past for wireless
networks localization. In this paper, a comprehensive survey is
presented for MDS and MDS-based localization techniques in
WSNs, IoT, cognitive radio networks, and 5G networks.

Index Terms—Localization, wireless sensor networks, Internet
of Things, dimensionality reduction, multidimensional scaling.

I. INTRODUCTION

ACCURATE, real-time and reliable localization systems
are required for the future generation of wireless com-

munication networks [1]. Localization systems enable a
user to find its location, and make use of the location
for location-based services (LBS) such as monitoring [2],
tracking, and navigating [3], etc. The performance of wire-
less networks is significantly improved with the addition
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of location information for network planning [4], resource
allocation [5], load balancing [6], spatial spectrum sens-
ing [7], and network adaptation [8], etc. Global positioning
systems are also known as global navigation and satellite
systems (GNSS) allow each user to figure out its location glob-
ally. GNSS consists of different positioning systems from dif-
ferent countries such as the global positioning system (GPS),
GALILEO, “Globalnaya navigatsionnaya sputnikovaya sis-
tema” (GLONASS) and BeiDou [9]. GPS and GNSS work
well for outdoor environments, but it fails to localize a user in
an indoor or harsh environment. In comparison to the outdoor
environment, the indoor environment is more challenging and
complex. The various obstacles such as human beings, walls,
equipment’s, ceilings, etc., influence the propagation of sig-
nals, thus leads to multi-path propagation error. In addition
to that, interference is also added to the propagating signal
by noise sources from other wireless networks. Considering
these issues in the indoor environment, the development of
indoor positioning systems is challenging for future wireless
communication systems.

A number of survey articles are presented on the
design and development of indoor positioning systems such
as [10], [11], and [12]. Indoor positioning systems have
been developed by different research centers, companies, and
universities based on various wireless communication tech-
nologies operating on different frequencies such as acoustic
waves, radio frequency (RF), ultra-wideband, infrared, and
visible light. All of the above mentioned indoor positioning
systems are based on a specific ranging technique.

Since the cost and hardware limitation of sensors often
prevent the localization systems from using range-based tech-
niques, range-free localization techniques are developed to
substitute the range-based techniques. Range-free localiza-
tion techniques are dependent on the connectivity information
which is a much cheaper solution than the range-based tech-
niques because these techniques do not require extra hardware
to compute the actual range and rely only on the proxim-
ity information [13], [14]. Range-free schemes are performed
by using the constraint optimization, geometric interpretation,
and area formation techniques [15]. Multidimensional scal-
ing (MDS) is one of the most common network localization
techniques which can work for both range-free and range-
based schemes.

MDS is one of the dimensionality reduction techniques
which converts multidimensional data into lower dimen-
sional space while keeping the essential information. The
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main benefit of using MDS is to get a graphical display
for the given data, such that it is much easier to under-
stand. There exists other dimensionality reduction techniques
like principal component analysis (PCA), factor analysis and
Isomap but MDS is much popular among all these tech-
niques because of its simplicity and many application areas.
MDS analysis finds the spatial map for objects given that the
similarity or dissimilarity information between the objects is
available [16].

In the recent past, MDS is widely used for localization
and mapping of wireless sensor networks (WSNs) and the
Internet of Things (IoT). In [17] a proximity information
based sensor network localization is proposed, where the main
idea is to construct a local configuration of sensor nodes
by using classical MDS (CMDS). The MDS based localiza-
tion algorithms in [17] and [18] are centralized with higher
computational complexity [7]. Semi-centralized (or clustered)
MDS techniques are developed to compute local coordinates
of nodes, which then are refined to find the final position
of the nodes [19], [20]. In [21], [22] and [23] the authors
proposed manifold learning to estimate the sensor nodes posi-
tion in wireless sensor networks. In [24] the authors proposed
Nystrom approximation for the proximity information matrix
in MDS to reduce its size for better localization accuracy in
sensor networks. Distributed MDS based localization algo-
rithm is proposed in [25] with noisy range measurements,
where the authors assume that the distances are corrupted
with independent Gaussian random noise. MDS methods with
different refinement schemes have also been proposed in the
literature to get better localization accuracy for the sensor
nodes in WSNs [26]–[28]. More recently a Euclidean distance
matrix completion method is proposed for MDS in [29], [30]
to find the map of an IoT network. Although the literature
on MDS based network localization techniques is not rich,
it can be well adapted for modern wireless communication
systems such as Internet of Things IoT, 5G networks, and
underwater wireless communication networks. MDS based
network localization can provide efficient data fusion mech-
anisms for IoT networks. Similarly, MDS based location
awareness for 5G networks will provide numerous applica-
tions such as radio resource management, routing, and defining
radio maps. Moreover, MDS based localization for software-
defined networks will enable a centralized map of the whole
network including the different entities of the system which
can be helpful for various networking issues. In short, all of
the modern wireless communication networks require accurate
network localization schemes to provide different applications
which include but not limited to data tagging, location-aware
routing, environment monitoring, and navigation. Therefore,
MDS is one of the famous network localization technique
which can be applied to these networks to provide such
applications.

A. Related Surveys

A quite good number of survey articles have been presented
on the subject of localization systems where the focus of
each survey is either narrow or outdated by the technological

advancement [31]–[38]. For example, the survey in [31] is
only focused on ultrasonic localization techniques, whereas
the works presented in [32]–[34] are outdated for current
technologies although their goals remain unchanged. In [35],
[37] the authors reviewed various technologies for indoor
localization and assessed the performance of each indoor local-
ization technique. However, localization is not discussed in
terms of energy efficiency or any prospective application.
Additionally, the authors did not explore different techniques
to enhance the localization accuracy. In [36] a remarkable sur-
vey is presented on fingerprinting-based localization systems.
Recently, in [38], the authors have presented a survey on
indoor positioning system mainly focusing on the emergency
applications. In [39] the authors have presented different pos-
sible architectures for MDS based localization for WSNs.
However, the paper is focused only on the different vari-
ants of MDS schemes and does not cover all the aspects of
MDS based localization schemes. The aim of this survey is
to present a comprehensive overview of localization systems
to cover both outdoor and indoor localization systems with
the main focus on the development of MDS based localiza-
tion schemes from its inception to its current state for different
applications.

B. Survey Organization

The remainder of this survey article is organized as fol-
lows. In Section II we present a detailed survey on different
outdoor and indoor positioning systems. Section II-C intro-
duces the fundamentals of different ranging techniques. In
Section III, we focus on MDS technique and cover differ-
ent variant of MDS based localization methods. Section IV
covers the literature on different MDS based localization
methods used for various wireless networks. Section V cov-
ers the prospective applications of MDS based localization.
Section VI summarizes the survey paper and conclude the
work.

To summarize the different features of this survey which
differentiate it from the existing works; first, a brief review of
advanced positioning systems for outdoor and indoor environ-
ments is presented. Second, we discuss the different ranging
techniques used by localization systems. Third, technical
details of MDS techniques are covered along with its usage
for localization systems. Fourth, we review different localiza-
tion systems for various wireless networks based on the MDS
method. Finally, we compare the MDS based localization
schemes and present applications of MDS based localization
method.

II. OVERVIEW OF POSITIONING SYSTEMS

AND RANGING TECHNIQUES

In this section, a brief overview of global and local posi-
tioning systems (LPS) is presented. Positioning systems are
broadly categorized into two major categories global position-
ing systems and local positioning systems as shown in Fig. 1.
Moreover, various ranging techniques used for localization
systems are also discussed.
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Fig. 1. Classification of positioning systems.

A. Global Positioning Systems

Global positioning systems are the systems that use satellites
to provide location information to the user. Global posi-
tioning systems allow the users to determine their locations
with the accuracy of a few meters in the outdoor environ-
ment. The global coverage can be achieved with the help of
multiple global positioning systems such as GPS, GLONASS,
GALILEO, and BeiDu.

1) Global Positioning System (GPS): The global position-
ing system (GPS) is one of the most common and successful
positioning systems in outdoor environments, which consists
of 28 operational earth orbiting satellites. A user or an object
with a GPS receiver can localize itself in terms of longitude,
latitude, and altitude with the accuracy of a few meters [40].
Satellites orbit around the earth at the height of 12,000 miles
and accomplish two rotations every 24 hours. The particu-
lar characteristics of the GPS satellites are such that at any
time anywhere on the earth surface at least four satellites are
visible [41]. The concept of GPS based localization requires
precise time and the position of the satellites. Highly stable
atomic clocks are carried by the satellites which are synchro-
nized with the clocks on the ground segment as well as with
each other. Similarly, the locations of satellites are known with
high precision. The GPS receivers clocks are cheap, less stable
and not synchronized with the satellite clock. GPS satellites
continuously broadcast its time and location and the receiver
computes the pseudo-ranges from each visible satellite. The

receiver needs to have at least four satellites visible at the time
of calculating the four unknowns (three location coordinates
and a clock offset).

2) Global Navigation Satellite System (GLONASS): Global
Navigation Satellite System (GLONASS) is a space-based nav-
igational and localization system operated by Russia, which
provides an alternative to the GPS [42]. GLONASS does not
have broad coverage like GPS, yet the coverage and accu-
racy are certainly increased when both GPS and GLONASS
are used together. GLONASS has an accuracy of up to 2
meters. The use of GPS with GLONASS allows users to be
precisely positioned by a league of 55 satellites covering the
globe. Therefore, when a user is in a location where GPS sig-
nals are blocked in an urban area by huge buildings, a user
can be located by GLONASS satellites. A lot of more smart-
phones are being introduced with GPS+GLONASS technology
to provide location-based services. For example, various local-
ization, and tracking products of Wialon use both GPS and
GLONASS signals [43]. Similarly, the integration of GPS
and GLONASS signals are studied in [44] for improved
coverage.

3) GALILEO System: GALILEO is another navigational
and positioning system owned by the European space agency,
delivering an extremely accurate, reliable global positioning
facility under civilian control. GALILEO has inter-operability
with GPS and GLONASS [45]. GALILEO system consists
of 27 active and 3 spare satellites circulating the earth at
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an altitude of 24000 km. GALILEO and GPS have a simi-
lar bandwidth and center frequency band which means that
GALILEO system is smoothly interoperable with GPS and its
signal performance is far better than GPS [46]. The signal
performance enhancement of GALILEO system is due to the
use of novel modulation technique called composite binary off-
set carrier (CBOC) which improves the received power almost
to the double of the C/A coded GPS signals [47]. Also, in
spite of bringing in some more frequency band signals, the
GALILEO system introduces a very little complexity to the
receiver design [48].

4) BeiDou Navigation Satellite System (BDS): BeiDou
Navigation Satellite System (BDS) is a Chinese satellite
navigation system also called COMPASS. It consists of 12
operational satellites including five geosynchronous satellites,
four medium earth orbit satellites, and three inclined geosyn-
chronous orbits satellites [49]. BDS became operational in
China in December 2011 [50], [51] and began services in
December 2012 in the Asia-Pacific region. Last year, 19
more satellites were launched in several orbits providing the
accuracy up to 10 meters globally and up to 5 meters in
the Asia Pacific region. BDS system provides high accuracy
and reliability, support inter-satellite links, and augmentation
systems [52].

B. Local Positioning Systems

LPS provide location information to the user with the help
of base stations or anchors which can generate beacon signals.
The coverage of LPS is limited, and localization is achieved
only within the coverage area of the network. LPS can be cat-
egorized based on different network criteria, here we broadly
classify them by availability of computation, environment, and
medium for transmission.

1) Computation: LPS can be broadly categorized into
distributed and centralized techniques, based on the com-
putation [41]. In distributed positioning systems every
user can determine its location with the help of geo-
graphically distributed anchors. Many distributed position-
ing systems have been presented in the past for WSNs
such as [53] and [54]. Unlike distribute LPS, in central-
ized positioning systems, each user determines its neigh-
borhood information using time of arrival (ToA), angle of
arrival (AoA), time difference of arrival (TDoA), and received
signal strength (RSS). The neighborhood information is col-
lected at a centralized station which finds out the loca-
tion of the user and shares the location information with
the user.

2) Environment: Since every positioning system heav-
ily depends on the environment, different LPS have been
developed for different environments. These LPS can be
divided into three categories based on the environment, i.e.,
outdoor LPS, indoor LPS and underwater LPS.

• Outdoor LPS: Localization in outdoor is usually provided
by GPS with an accuracy of 5 to 10 meters. With the
help of wide area augmentation systems, the accuracy is
improved to the range of 1 to 8 meters. But still this accu-
racy is not sufficient for certain applications, therefore,

NavCom provided a local differential GPS based out-
door positioning system with an accuracy of 1 centimeter.
However, the power constraint and higher cost gener-
ally do not allow the use of GPS receiver for small
sensor devices. Therefore, GPS less outdoor position-
ing was proposed in [55]. In [56] the authors proposed
a low power consumption localization scheme for out-
door positioning by using a power management scheme.
Unfortunately, till date, the academic proposals [57], [58]
as well as the industrial practices [59], [60] for outdoor
LPS have not achieved satisfactory localization accuracy.

• Indoor LPS: In recent years indoor LPS has attracted
great attention due to its commercial and social values,
where the predicted market value for indoor LPS worth
10 billion U.S. dollars by 2020. Indoor environments are
more complex which is characterized by a large num-
ber of obstacles, signal fluctuations, noise, environmental
changes, and non-line of sight communication. Despite
such complexity, accurate indoor LPS are required for
satisfactory indoor LBS. Majority of the research efforts
have been made in the past two decades to develop accu-
rate, low cost, and energy efficient indoor LPS. For more
details on indoor LPS, interested readers are referred
to the survey articles presented on this subject such
as [37], [61], and [62].

• Underwater LPS: A number of underwater LPS have
been proposed in the past for underwater acoustic wire-
less communication systems. All of these localization
algorithms consider different parameters of the network
such as network topology, range measurement technique,
energy requirement, and device capabilities. In addition,
the accuracy of localization algorithms also depends on
many other factors which include propagation losses,
number of anchor nodes, the location of anchor nodes,
time synchronization, and scheduling [63]. Thus, many
researchers developed localization schemes which take
into account the above factors for acoustic waves-based
underwater localization. Hence, a few brief surveys are
presented on this subject such as [64] and [65]. However,
the speed of acoustic waves is slow and therefore it leads
to the development of high speed underwater optical
wireless communication (UOWC) systems. In compar-
ison with the acoustic systems, UOWC can support
higher data rates up to several Gbps in clear waters
with little to no scattering. However, UOWC suffers
from low transmission range and require accurate point-
ing between the transmitter and the receiver. To provide
the localization capabilities in UOWC systems, various
localization schemes have recently been developed such
as [66] and [67].

3) Transmission Medium: LPS can also be categorized
based on the transmission medium.

• Radio Frequency (RF) based LPS: The popular
LPS based on RF technology consists of cellular
networks based LPS, wireless local area networks
(WLANs) based LPS and radio frequency identification
(RFID) based LPS.
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– Cellular networks based LPS: LPS based on cellular
networks has been discussed for more than a decade.
Initially, the position of a mobile terminal was deter-
mined using global system for mobile communica-
tion (GSM) [68]. Indeed the techniques discussed
in [69] influenced the standardization of universal
mobile telecommunications system (UMTS). In cel-
lular network based LPS, the location of the mobile
station is determined by the base station by using
the cell geometries. Interested readers are referred
to [70], which is the most recent survey article on
cellular-based LPS.

– WLANs based LPS: WLAN-based LPS are very
popular among other LPS due to its established
infrastructure. In [71] the authors proposed a LPS
which can locate and track the user using the near-
est neighbors technique. The accuracy of this WLAN
based LPS is 2 to 3 meters. There are several other
WLAN based LPS, for the interested readers we refer
to the detailed surveys presented in [33], [72]–[75]
on this subject.

– RFID based LPS: RFID technology is mostly
employed in harsh indoor scenarios such as offices,
hospitals, subways etc. RFID based technology
provides cheap and adaptable identification of a
device or an individual [76]. For supporting indoor
and outdoor localization in real time, WhereNet
is the popular real-time location system (RTLS)
offered by Zebra technology [77] which is based on
RFID tags and differential time of arrival (DToA)
technique.

• Acoustic based LPS: Acoustic waves are also used in
localization systems to locate a node or a user [78]–[83].
It is known that bats use acoustic signals to navigate.
Inspired by this, Active Bat localization system was
developed by AT & T based on acoustic signals, which
provides 3-dimensional localization. Active Bat localiza-
tion system consists of an acoustic system and triangu-
lation approach for localization. The distance between
the transmitter and receiver is measured through ToA
measurements. Some other major acoustic based LPS are
Cricket [81], Sonitor [82], and DOLPHIN [83].

• Optical LPS: Optical LPS are becoming dominant LPS
which covers a wide range of applications. Optical LPS
can further be classified into visible light communications
(VLC) based LPS and infrared-based LPS.

– Visible Light based LPS: The advancement of visi-
ble light technology has led to the development of
visible light based communication (VLC). Based on
the universality and recent research on VLC, LPS
are considered to be an important feature of VLC. A
theoretical accuracy of centimeters has been reported
in [84]–[86] by using VLC for LPS. Recently, a
number of practical LPS such as Luxapose [87],
PIXEL [88], Epsilon [89], and LIPS [90] based on
VLC are proposed. Epsilon was the first visible light
based LPS which can achieve an accuracy of 0.4
to 0.8 meters. Luxapose, LIPS, and PIXEL achieve
an accuracy of 0.1, 0.4, and 0.2 meters respectively.

It should be noted that every LPS based on visible
light strongly depends on the light emitting diode
(LED) technology, types of receivers, and modu-
lation method used. Interested readers are referred
to [91] and [92] where the authors have reviewed a
number of LPS based on VLC.

– Infrared (IR) based LPS: Infrared (IR) based
LPS [93]–[98] are the most common localiza-
tion systems owing to the availability of the IR
technology for numerous gadgets. IR based local-
ization system requires line of sight (LOS) con-
nection between the transmitter and receiver in
the absence of any kind of interference. Some
of commercial IR based localization and track-
ing systems are Firefly [96], OPTOTRAK [97],
and infrared indoor source local positioning system
(IRIS_LPS) [98].

Major issues with optical LPS include multipath reflec-
tions, synchronization, coverage, and privacy. For exam-
ple, optical LPS require line of sight (LoS) links for
range estimation. However, LoS link may not always
be available due to the multi-path effect caused by light
reflections from various surfaces. Similarly, synchroniza-
tion is also a significant issue for time-based ranging in
optical LPS because it is challenging to synchronize all
the transmitters and the receivers. Limited coverage of
the LED transmitters is also of major concern due to
their directive nature, for optical LPS.

C. Fundamental Ranging Schemes

The fundamentals ranging techniques used for range based
localization systems are discussed in this sub-section. All of
the above positioning systems depend on the ranging mea-
surements. Following are the different ranging schemes for
distance estimation.

1) Time of Arrival (ToA) Estimation: ToA is one of the most
widely used ranging techniques for positioning systems. In
ToA based positioning systems, users computes the time delay
of signal propagation to estimate the distance between the
receiver and the transmitter. The main problem with ToA mea-
surements is that the received signal arrives through multipath
with different delay through the channel [99]. LoS signal is
presumed to be available in ToA systems to compute the sig-
nal propagation delay [34]. In ToA systems setup, the anchors
broadcast the beacon signal while the node (or user) com-
putes propagation delay of the received signal from multiple
anchors. The transmitted signal travels with the speed of light
and thus, the distance between node and anchor is estimated
from the propagation delay. The intersection of the circles
from different anchors leads to the region of estimated posi-
tion of a node. But due to different environmental effects,
the signal arrives at the node at multiple paths with different
delays [100]. Therefore, multipath leads to an error in position
estimation, because the circles from different anchors do not
intersect at a single point [34].

2) Time Difference of Arrival (TDoA) Estimation: TDoA
is an enhanced version of ToA technique where a node esti-
mates the distance by receiving two different kinds of signals
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from the same anchor or same type of signal from two dif-
ferent anchors. Cricket system [81] is a good example of
TDoA based indoor localization system which uses ultrasound
signals and RF signals for localization. The time difference
between the two signals is calculated by the receiver and
generates a hyperbola [101]. The point where the hyperbolas
from different anchors intersect yields to the node posi-
tion. In comparison to the ToA measurements, the TDoA
does not require synchronization between the anchors and
the node [102]. But using two different kinds of signals for
localization leads to a higher cost due to the extra hard-
ware required to transmit and receive two different kinds of
signals.

3) Received Signal Strength (RSS) Estimation: Received
signal strength (RSS) measurements are the simplest and
most commonly used technique for distance estimation [103].
The free space path loss model is usually used to estimate
the distance from the measured received power [104]. The
strength of a received signal is decreased due to path loss,
frequency selective fading, and shadowing. The effect of path
loss is to be measured, as it is a deterministic decrease in
power as a function of the distance between the node and
the anchor. Multipath fading, in spite of being problematic,
is deemed advantageous. This fading is produced by either
constructive or destructive addition of time-delayed signals
at various frequencies. Therefore, the correlation between the
estimations is less if the estimations are carried out at dif-
ferent frequencies that are separated beyond the coherence
bandwidth. Furthermore, multiple spread-spectrum wireless
sensors will be employed that will average out frequency
selective fading. Unfavorably, the same technique is not
present to counter shadowing, which is most of the times
introduced by object blockage between the node and the
anchors. The received power Pr (d) at distance d can be
written as [105]

Pr (d) = Pr (d0) − 10η log
d
d0

, (1)

where Pr (d0) represents the power received at reference
distance d0 and η is the path loss exponent.

4) Fingerprinting: Fingerprinting approach is based on the
fact that radio waves emitted from the base stations leave
a unique radio fingerprint at a given location that can be
used for localization [106]. The radio fingerprint is obtained
by creating a database of the average values of RSS from
various anchors at different locations. This requires a train-
ing phase to collect the fingerprints at known locations
which can be used for the localization of the user based
on probabilistic or deterministic positioning techniques, e.g.,
maximum likelihood estimator or k-nearest-neighbor estima-
tor. Presently, most of the indoor localization methods are
based on fingerprint matching technology [107]. Researchers
have employed different methods to make fingerprint match-
ing technology better in all aspects. As compared to other
localization systems, Wi-Fi fingerprint positioning technol-
ogy is cheap and has great precision. Owing to the vast
deployment and use of Wi-Fi all over the world, fingerprint
positioning technology can be used in any indoor environment

where Wi-Fi networks are established, without the installa-
tion of extra hardware. In a complicated indoor scenario,
under harsh conditions, the space-time traits such as angle
and time of arrival can be erroneous, but the signal inten-
sity is relatively stable. Therefore, it makes the accuracy
of fingerprinting-based localization higher than other tech-
niques. Fingerprinting based positioning systems are reviewed
comprehensively in [36], [75], [108].

5) Direction of Arrival (DoA) Technique: DoA ranging
measurements are based on the angle of the received signal
at the receiver [109]. The DoA-based approaches are simpler
than time-based techniques because only two angle measure-
ments are required to estimate the two-dimensional position.
However, obtaining the accurate DoA-based ranges is a chal-
lenging task, especially in NLoS conditions. Moreover, in the
indoor environments where the LoS signal is hard to obtain,
DoA measurements are highly erroneous. DoA based tech-
niques are classified into the following two categories based
on the applications:

• Online DoA: These techniques have lower complex-
ity and are used for applications which require real
time location information. In online DoA method, the
angles are determined from the received signals and by
using geometrical relationship (tri-angulation) between
the anchors’ position and the source position, the location
of the source is estimated.

• Offline DoA: These techniques have high complexity and
can only be used for offline applications. Offline DoA is
similar to the fingerprinting technique, where the DoA
measurements are calculated multiple times and the aver-
age value is designated as the fingerprint. The source
then locates itself by using these fingerprints by using
triangulation.

Online DoA is used in applications where high precision is not
important such as beam-forming and signal detection [110].
Localization applications need accurate DoA estimation, even
if it is not online. In comparison to other ranging techniques,
DoA is more accurate, but consume high power and have
greater complexity [111].

III. MULTIDIMENSIONAL SCALING

BASED LOCALIZATION

This section briefly introduces the basics of MDS and
review a number of MDS based localization techniques for
applications in WSNs-IoT, cognitive radio networks, and 5G
networks.

A. What Is MDS?

MDS is a dimensionality reduction method which converts
a higher dimensional data into a lower dimension. Due to this
dimensionality reduction provided by MDS, it can display the
data graphically which is more meaningful and easy to under-
stand. There is a large number of dimensionality reduction
methods such as factor analysis, principal component analy-
sis, and Isomap. But due to the simplicity and wide range of
applications, MDS is most popular.
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TABLE I
DEVELOPMENT OF MDS

TABLE II
DEVELOPMENT OF LOSS FUNCTION FOR MDS

The input for any MDS based method is a dissim-
ilarity or similarity information among the objects or
points [16], [112], [113]. The MDS method uses this dis-
similarity or similarity information and tries to closely
match it to the Euclidian distance between those objects or
points [114]–[117]. Unlike factor analysis, MDS does not
depend on the assumptions of linearity and normality [118].
The only assumption required for MDS is that the number of
dimensions required should be one less than the number of
points [119].

Since MDS is one of the classical data analysis methods
used in wide range of applications, therefore, rich literature
exists on MDS methods for achieving data visualization and
data analysis [120]–[122]. Results on classical MDS and its
recent variants are briefly discussed in [16], [123]. The MDS
method was originated by Eckart and Young [124], [125],
while the first input metric for MDS was developed by
Torgerson [126]. In [127], [128] the authors established a rela-
tionship between MDS and principal component analysis. The
non-metric MDS was developed by Kruskal in [129] where the
dissimilarity or similarity information relates monotonically to
the Euclidian distances [130]. Table I shows the development
of MDS methods over the years.

Every MDS method can be specified by its loss func-
tion [131] and a number of different loss functions have been
developed for MDS methods. Some of the famous loss func-
tions for MDS are Coombs unfolding model [132], individual
difference model [133], ALSCAL [134], maximum likeli-
hood [135], and optimal scaling [136]. Table II summarizes
different loss models used for MDS methods. The loss func-
tions basically relates the measured values (dissimilarities) to
their Euclidean distances. To elaborate more, consider that the
dissimilarity between any two points i and j is ρij and their
corresponding Euclidean distance is dij , then the squared error
function is represented as

e2
ij =

(
ρij − dij

)2
. (2)

TABLE III
DISSIMILARITY MATRIX

Based on the squared error function, the total error (raw Stress)
for all pair of objects is obtained as

er =
n∑

i=1

n∑

j<i

(
ρij − dij

)2
, (3)

where n is the total number of objects. The major problem
with the above raw stress function is that it is invariant under
coordinate scaling transformation. Hence, normalization tech-
niques are used to address the problem of in-variance. One of
the most proper choice for the normalization is using the dis-
similarity, i.e., ρij . By using ρij as a normalization parameter
yields the well-known loss function for MDS called Kruskal
stress function which is given as

es =

√√
√
√

∑n
i=1

∑n
j<i

(
ρij − dij

)2

∑n
i=1

∑n
j<i ρ2

ij

. (4)

This loss function can be solved by using the well-known
iterative majorization approach called scaling by majorizing
of a complicated function (SMACOF). To further elaborate,
we consider a simple example of various sports classifica-
tion. The range of dissimilarities is set to 1 = very similar,
3 = average similarity, and 5 = non-similar, respectively. We
consider five different sports which include cricket, baseball,
hockey, football, and golf. The dissimilarity matrix between
these sports is given in Table III. Applying classical MDS
to this dissimilarity matrix yields a graphical map (Fig. 2)
of these sports which shows the relationship between these
sports in a two-dimensional space. For example, Fig. 2 shows
graphically that cricket and baseball are similar sports, sim-
ilarly, hockey and football are similar while golf is different
than all the other sports. Note that this MDS map has no real
orientation which means that it can be rotated around its cen-
ter. The main characteristics are the relative positions of each
point.

Traditional MDS methods consider that distances among
objects are symmetric, although this consideration is not
always satisfied. For instance, [137] and [138] explained
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Fig. 2. Example of MDS map for various sports visualization.

the characters of similarity among objects studied with psy-
chological scale and concluded that cognitive similarity is
mostly asymmetric. The motivation behind these asymmetric
MDS methods is to remove the shortcomings of traditional
MDS methods, i.e., in case where similarity or dissimilar-
ity matrices are asymmetric in nature as they are based on
the supposition that similarity or dissimilarity matrices can
be associated with inter-point distances in a given metric
space [126], [129], [139]. Many researchers have extended
the traditional MDS methods by assuming that the similar-
ity or dissimilarity among objects is not a function of only
inter-point distances but is also a function of the quantities
associated with these objects. For instance, the squared dis-
tances are extended by weights in weighted distance model
which was first proposed by [140]. In [141], [142] and [143]
the authors have proposed altered distance models where the
distance between points is established by a few constants asso-
ciated with these points. In [144] and [145] a nonmetric type
of generalized altered distance model is proposed. Smallest
space analysis-2 (SSA-2) is introduced in [139] and [146],
where column and row compatibility is applied on the data
to get two solutions in metric space. Wind model is proposed
in [147], where the asymmetries are explained by the direction
of wind given to mesh point on the arrangement of objects.
In [148] and [149] the authors proposed a model, in which
the asymmetries are analyzed by utilizing the Randers met-
ric, i.e., an asymmetric metric function. In [137] the authors
proposed the feature matching model which explains the sim-
ilarity or dissimilarity among two objects through a linear
combination of the amount of distinctive and common char-
acteristic of the two objects. In [150] and [151] the authors
proposed a model using a generalization of scalar products,
which fits the magnitude of cross and inner (scalar) products
of solution vectors to skew-symmetric and symmetric parts of
the data, respectively. References [152] and [153], split the
asymmetric proximity matrix into two components, i.e., sym-
metric and skew-symmetric components and then deal with
them separately. For symmetric component, traditional MDS

method is used, while for skew-symmetric component canon-
ical decomposition is used. In [154] the authors proposed a
maximum likelihood method for asymmetric proximity matrix,
which expands the work for asymmetrical data [155].

MDS maps the original high dimensional data (m dimen-
sions) in to a lower dimensional data (d dimensions). It
addresses the problem of constructing a configuration between
the n points from n × n matrix D, which is called dis-
tance affinity matrix and it is symmetric, i.e., dii = 0, and
dij > 0, i �= j . MDS finds n data points P = {p i =
{xi , yi}, . . . ,pn = {xn , yn}} from the distance matrix D
in a d dimensional space, such that the estimated distance
d̂ij between pi and pj , matches the Eucleadian distance as
closely as possible. In [156], [157], the loss function for MDS
is considered as

L(P) =
n∑

i=1

n∑

j<i

(
d̂ij − dij

)2
, (5)

which is highly nonlinear. To solve it, the distance affinity
matrix D is first converted to a kernel matrix of inner product
PTP by

PTP = −1
2
HDH , (6)

where H = I − 1
n eeT is called the double centering oper-

ation, I is identity matrix of size n × n, and e is a column
vector of 1’s. The solution of (6) is Y = Λ1/2V T where V
are the eigen-vectors of PTP in d dimensions and Λ are the
d eigenvalues of PTP .

In recent past MDS is widely is used for simultaneous local-
ization and mapping of WSNs and IoT networks. In [17]
a proximity information based sensor network localization
is proposed. The main idea in [17] is to construct a local
configuration of sensor nodes using classical MDS (CMDS).
The analogy between object distances and node distances
in a network is used for the purpose of WSNs-IoT local-
ization. MDS algorithm uses inter-node distances in order
to produce two or three-dimensional representation, which
corresponds to the real nodes deployment. Since nodes are
capable to measure the inter-node distances with respect to
their neighboring nodes, the only problem remains to obtain
the non-neighboring inter-node distances. In MDS method,
these distances are approximated by using Floyd Warshall
shortest path algorithm [158].

Distances between every node in the network are collected
at the central station. The remaining (non-neighboring) dis-
tances are calculated by the central station. The calculation
for 2D network consists of the following steps:

• Compute the shortest path distances between every node
in the network (using either Dijkstra or Floyd algorithm).
These shortest path distances work as an input data for
MDS.

• Classical MDS is applied to the shortest path distance
matrix which results in the spectral decomposition of
input data matrix. The two largest eigenvalues and the
corresponding eigen-vectors form the relative location of
every node in the network (three largest Eigenvalues and
eigen-vectors for 3D localization).
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• Finally, the relative locations are transformed to the abso-
lute global locations by using the anchor nodes. This
transformation includes optimal rotation, translation, and
reflection. This type of transformation is also called rigid
or Euclidean transformation [159].

Based on the computation, MDS based localization methods
have been proposed in the past which can be categorized into
centralized, semi-centralized, and distributed methods.

B. Centralized MDS Based Localization

Assume that there are n nodes in the network and the pair-
wise range measurements between the nodes are noisy, the
centralized MDS based localization consists of the following
steps [123].

• The shortest path distances are estimated between each
pair of all nodes by using shortest path algorithms
(Dijkstra or Floyd Warshall algorithms [158]) to construct
the distance affinity matrix D = {d̂2

ij }ni ,j=1 which can
be written in matrix form as

D =

⎡

⎢
⎣

d̂2
11 · · · d̂2

1n
...

. . .
...

d̂2
n1 · · · d̂2

nn

⎤

⎥
⎦, (7)

where the direct neighborhood distance is d̂ij = dij +εij .

dij =
√

(xi − xj )2 + (yi − yj )2 is the Euclidean dis-
tance between node i and j, εij represents the ranging
error which is modeled as zero-mean Gaussian random
variable with variance dij η

2
ij where η2

ij = μdβij−1
ij , μ is

scalar constant related to the receiver, and βij is the path
loss exponent. As the matrix D is square symmetric with
d̂ii = 0 and d̂ij = d̂ji , therefore, simplifying (7) yields

D =

⎡

⎢
⎣

0 · · · d̂2
1n

...
. . .

...

d̂2
n1 · · · 0

⎤

⎥
⎦. (8)

• The MDS method is applied to the distance affinity
matrix D to minimize the discrepancies between the
actual Euclidean distances and estimated distances. The
normalized loss function or stress function for the MDS
method is defined as

S
(
d̂ij |P

)
=

√
∑

i �=j=1...n

(
d̂ij − dij

)2

∑
i �=j=1...n

(
d̂ij

)2
. (9)

The stress function defined in (9) is nonlinear and non-
convex, therefore to get the close form solution for this
function, the distance affinity matrix D is double centered
by using the double centering operator H = I − 1

n eeT ,
given as

C = −1/2(HDH ), (10)

which is then decomposed by using Eigen value decom-
position given as

C = eλeT , (11)

where e represents the eigen-vectors and λ are the eigen-
values. Finally, the relative two dimensional positions of
the nodes are determined from the two largest eigenvalues
of λ and two largest eigen-vectors in e, i.e.,

P̂ = e2

√
λ2, (12)

Since the position estimates obtained in (12) are not
absolute, it is required to transform these relative posi-
tion estimates into absolute (global) positions. Linear
transformations such as Procrustes analysis, Helmert
transformation, or principal coordinate analysis can be
used to get the global position estimates.

Centralized MDS based localization method was first proposed
by Shang et al. in [17]. The proposed method in [17] is
applicable to both range based and range free conditions. The
benefit of using centralized MDS is that it can work with few
number of anchors with high accuracy. But the problems with
this approach are high computational overhead and large local-
ization error for irregular networks. An ordinal MDS based
centralized localization method is proposed in [18] which
requires only the relationship between the shortest path dis-
tances and the Euclidean distances. Classical centralized MDS
based localization is proposed in [160] for RFID systems.
Centralized RSS based non-metric MDS is used in [161] to
find the location of RFID tags. Small scale WSNs localiza-
tion is investigated in [162], [163] by using centralized MDS
method. A centralized cooperative MDS based localization
method is proposed in [164] for WLANs. Authors in [165]
have investigated the multipath propagation ranging error for
MDS based localization method. In [166] a weighted MDS
is proposed for WSNs localization where the accurate range
measurements are given more weight, and the noisy ranges
are down-weighted. A hybrid ToA and AoA based centralized
MDS method is presented in [167] for WSNs localization.
In [168] a theoretical generalization for centralized MDS based
localization is provided in the presence of few anchors.

C. Semi-Centralized MDS Based Localization

The centralized MDS based localization methods gener-
ally have high computational complexity and large local-
ization error for irregular networks. Therefore, many
researchers were encouraged to develop semi-centralized
(or clustered) MDS methods for WSNs-IoT localiza-
tion [19], [20], [24], [169]–[179]. Semi-centralized MDS
methods are more robust and accurate with low complexity. In
recent past the authors in [180], [181] proposed three dimen-
sional semi-centralized MDS based localization methods for
IoT networks.

In semi-centralized MDS based methods, initially, all the
nodes in the network are divided into clusters. Different clus-
tering algorithms such as k-means clustering, density-based
clustering, or fuzzy clustering can be used for a clustering
purpose. Once the network is clustered, the next step is to
select a cluster head for each cluster by using various cluster
head selection methods such as minimum energy consump-
tion, large number of neighbors etc. Semi-centralized MDS
based localization methods consist of following steps:
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• Construction of Local Distance Affinity Matrix: In this
step, the cluster head of each cluster computes the short-
est path distances for its every member in the cluster and
defines a local distance affinity matrix. The local distance
affinity matrix for cluster i is defined as D i = {d̂2

ij }ci ,j=1,
where c is the total number of nodes in cluster i. D i can
be written in matrix form as

D i =

⎡

⎢
⎣

0 · · · d̂2
1c

...
. . .

...

d̂2
c1 · · · 0

⎤

⎥
⎦, (13)

where i = 1, 2, 3, . . . , c and j = 1, 2, 3, . . . , c are the
number of nodes in cluster i.

• Construction of Local Map for Each Cluster: MDS is
applied to the local distance affinity matrix D i to get
the relative position estimate of each node in cluster i.
Like the centralized MDS, the first step is to double
center the local distance affinity matrix, i.e., C i =
−1/2(H iD iH i ). But the size of the double centered
matrix is c × c instead of n × n. The local double-
centered matrix C i is then decomposed by Eigen value
decomposition as

C i = eλeT , (14)

where e represents the eigen-vectors and λ are the eigen-
values. Finally, the relative two dimensional positions of
the nodes in cluster i are determined from the two largest
eigenvalues of λ and two largest eigen-vectors in e, i.e.,

P̂ i = e2

√
λ2, (15)

• Stitching of the Local Maps: In this step, the cluster heads
communicate with each other to merge their local maps.
The local maps are stitched together with the help of
inter-cluster nodes, where each inter-cluster node belongs
to at least two neighboring clusters. Two neighboring
clusters should have at least three inter-cluster nodes for
stitching [182]. The inter-cluster nodes have different rel-
ative coordinates in each cluster, therefore the position
estimates of nodes in cluster i after stitching are given as

P̂ i = Ai
~Ps + αs , (16)

where Ai is the alignment matrix and αi is the recon-
struction error. For a fixed P̂ i , Ai = P̂ i

~P+
i that

minimizes the reconstruction error ‖αi‖2, where ~P+
i is

the Moore-Penrose inverse of ~P i , therefore

αi = P̂ i

(
I − ~P+

i
~P i

)
. (17)

The total reconstruction error for all the clusters is
given as

c∑

i=1

‖αi‖2 =
c∑

i=1

P̂ i

∥
∥
∥
(
I − ~P+

i
~P i

)∥
∥
∥
2
. (18)

Let S i is a selection matrix which selects the esti-
mated local positions for the nodes in cluster i, such
that the Hadamard product of P̂Ri = P̂ i and
Θi = (I − ~P+

i
~P i ) then

∑
i ‖αi‖2 =

∑ ‖P̂ iS iΘi‖2.

Decomposing RΘΘTRT by Eigen value decomposition
yields

EVD
(
RΘΘTRT

)
= ΛλΛT , (19)

where T is the transpose operator. The global relative
coordinates are extracted from the two largest eigen-
vectors Λ and the corresponding two eigenvalues λ for
two-dimensional localization, i.e.,

P̂ = Λ
√

λ. (20)

As the relative global position estimates obtained by (20)
are not absolute, it is required to transform these rel-
ative position estimates into absolute positions. Linear
transformations such as Procrustes analysis, Helmert
transformation, or principal coordinate analysis can be
used to reach the global absolute position estimates.

D. Distributed MDS Based Localization

Distributed localization methods are required for a
wide range of applications. Therefore, fully distributed
MDS based localization methods have been recently
developed [183]–[185]. In distributed MDS based localiza-
tion methods every node calculates range measurements to its
neighbors and updates its location estimate by minimizing a
local cost function [186]–[189]. The steps involved in common
distributed MDS based localization are similar to centralized
and semi-centralized schemes, but after getting the relative
position estimates, the central station sends the relative posi-
tion estimates to each node, and then each node refine its
own position estimate by using iterative position estimators.
For example in [196] and [28] the authors used the steep-
est descent and Levenberg Marquardt method, respectively, to
refine the MDS based relative position estimations. The update
rule for position estimation in [28] is defined as

P̂
k+1
i = P̂

k
i −

(
JT

k J k + λI
)−1

J k

(
d̂ij − f

(
P̂

k
i

))
,

(21)

where J k is the Jacobian matrix given by

J k =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x̂i−x1√
(x̂i−x1)2−(ŷi−y1)2

ŷi−y1√
(x̂i−x1)2−(ŷi−y1)2

x̂i−x2√
(x̂i−x2)2−(ŷi−y2)2

ŷi−y2√
(x̂i−x2)2−(ŷi−y2)2

...
...

x̂i−xL√
(x̂i−xL)2−(ŷi−yL)2

ŷi−yL√
(x̂i−xL)2−(ŷi−yL)2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(22)

λ is the step length, and f (P̂
k
i ) is the error function given as

f
(
P̂

k
i

)
=

L∑

l=1

(
d̂il −

√
(xi − xl )

2 + (yi − yl )
2
)2

. (23)

L is the total number of anchors and d̂il is the estimated
distance between node i and anchor l.

In addition to the low complexity and better accuracy, dis-
tributed MDS based methods can also support mobility. Since,
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Fig. 3. Uniform topology: a) Centralized MDS, b) Semi-centralized MDS, and c) Distributed MDS.

in centralized MDS techniques, all the ranging information is
collected at the central node which is the bottleneck of the
network. In case of mobility, the network topology changes
which require the minimization of a new global cost func-
tion in real time and therefore, the centralized MDS may
not be a practical solution. However, in distributed MDS a
local cost function is minimized which does not depend on
the global topology of the network and therefore can support
mobility. A number of distributed MDS based localization
have been developed to determine the location of a moving
user/node using different tracking filters. For example, in [190]
the authors used extended Kalman filter and unscented Kalman
filter with MDS to track mobile sensors. A low complexity
majorization function with MDS is used in [191], [192] to
track mobile sensor nodes. Distributed MDS based localization
algorithm is proposed in [25] with noisy range measurements,
where the authors assume that the distances are corrupted
with independent Gaussian random noise. MDS with different
refinement schemes to get better localization accuracy for the
sensor nodes location in WSNs has also been proposed in lit-
erature [26]–[28], [193], [194]. Recently a Euclidean distance
matrix completion method is proposed for MDS in [29], [30]
to find the map of an IoT network. Different heuristic meth-
ods such as particle swarm optimization, simulated annealing,
and genetic algorithms are applied with MDS to determine the
location of mobile nodes [195].

E. Comparison of Various MDS Based Localization Methods

Depending on the application scenario each MDS based
localization method has its own pros and cons. For exam-
ple, if the nodes are distributed irregularly then semi-
centralized methods have better accuracy than the centralized
methods. Also, if the nodes are mobile then distributed
MDS based methods are preferred over centralized or semi-
centralized methods because the distributed methods have
lower complexity and faster convergence. To compare the
centralized, semi-centralized, and distributed MDS based
methods for localization, two different scenarios are consid-
ered. First, 100 nodes are randomly and uniformly distributed
in 100 × 100 m2 square area with four anchors at each cor-
ner of the area. The transmission range of each node is 20 m
and ranging error is 0.01 m. Based on the transmission range,

a multi-hop network setup is established. The single-hop dis-
tance between any two nodes exist if they are within there
communication coverage; otherwise, the multi-hop distances
are calculated. The multi-hop distances are computed using
the well-known shortest path algorithm (Dijkstra). Once all
the pairwise distances are estimated using the Dijkstra algo-
rithm, then classical MDS is used in the centralized technique
to estimate the relative location of each node in the network.
Although these relative locations of the nodes can visualize
the network, the location of the nodes does not have a global
coordinate system. Therefore, with the help of anchors and the
coordinate transformation techniques such as Procrustes analy-
sis, global coordinates of the nodes are determined. In the case
of semi-centralized approach, the network is first clustered into
small sub-networks by using any clustering technique. In this
paper, we consider Fuzzy C-means clustering to divide the
network. Once the network is divided into clusters, classical
MDS is applied locally by the cluster head at each cluster to
get the relative coordinates of each node. These clusters are
then joined together by using patch stitching techniques to get
a complete visual configuration of the nodes. In distributed
techniques, first the relative coordinates of the nodes are esti-
mate using the same steps in centralized and semi-centralized
techniques, and then these locations are sent to each node to
refine their positions.

Fig. 3 shows that the average localization error of central-
ized, semi-centralized, and distributed MDS based methods is
2.21 m, 1.2 m, and 0.15 m, respectively. In these figures, the
black circle, green asterisk, and red stars represent the actual
position of the nodes, estimated position of the nodes, and
position of the anchors respectively. The red line shows the
localization error for each node.

In the second scenario, 100 nodes are distributed irregularly
in 100 × 100 m2 square area. It can be seen in Fig. 4a that
the centralized MDS based methods have large localization
error (i.e., 14.5 m) in such irregular networks while the accu-
racy is improved to 8.4 m and 7 m by using semi-centralized
and distributed MDS based methods respectively (see Fig. 4b
and Fig. 4c). The large localization error for centralized and
semi-centralized methods are because of the irregularity of
the network which causes large shortest path estimation error
while in the distributed case the localization accuracy is com-
paratively better but still its worse than the regular network
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Fig. 4. Non-uniform topology: a) Centralized MDS, b) Semi-centralized MDS, and c) Distributed MDS.

TABLE IV
COMPARISON OF MDS BASED LOCALIZATION METHODS FOR WSNS-IOT

setup because most of the sensor nodes are not able to get
the signals from all of the four anchors. Table IV summarizes
different MDS based localization methods for localization of
WSNs, where the network size is 100 × 100 mmathrm2.
Note that the symbols N, k, and L in Table IV represents
the number of nodes, number of neighbors, and number of
iterations respectively.

IV. MDS BASED LOCALIZATION FOR

VARIOUS NETWORKS

This section presents a summary of the literature on MDS
based localization for various wireless networks such as
WSNs-IoT, cognitive radio networks, and 5G networks.

A. 3D MDS Based Localization for WSNs-IoT

Number of 2D MDS based localization methods for WSNs-
IoTs have been discussed in Section III-B to Section III-D.
There are various MDS-based accurate localization algorithms
proposed for 2D WSNs, but in real-world applications, 3D
localization is often needed for better estimation and accuracy.
Due to the 3D node deployment and complex environmen-
tal factors, the localization algorithms which are effective in
2D environments, have large localization error in the 3D case
and therefore cannot be directly applied [197]. For example,
in 2D WSNs, the location of all the nodes in the network
can be computed with the help of three anchors while in 3D
networks at least 4 anchors are required. Similarly, the 3D
localization technique cannot be directly extended from the
2D solution by just increasing one extra dimension. There
are several problems which can be solved using 2D localiza-
tion but are much more complex when modeled in 3D space.
For example, the distance between any two neighbor nodes in
a 2D network is considered as Euclidian distance; however,

in a 3D environment, the distances are geodesic rather than
Euclidian. Similarly, in 2D networks, the nodes have sufficient
connectivity for a given density; however, for the same density,
the connectivity is low in the 3D environment due to various
obstructions. Hence, localization of WSNs-IoTs in 3D space
is an interesting and challenging task. In [176], [198]–[201]
the authors proposed 3D localization for WSNs based on
MDS. In recent past the authors in [180], [181] proposed
3D semi-centralized MDS based localization methods for IoT
networks.

B. MDS Based Localization for Cognitive Radio Networks

One of the all-time regulated resources for wireless commu-
nication is RF spectrum. From smart-phone users to scanners,
from digital TV receivers to door-openers, every wireless
device requires an RF spectrum. These ever-increasing demand
for RF spectrum leads to deploy the new concept of dynamic
spectrum access [202], [203]. One of the promising technolo-
gies to overcome the problem of spectrum scarcity is cognitive
radio networks (CRNs) [204].

Many spectrum sensing techniques have been extensively
studied in the past decade. Spatial spectrum sensing is one of
the spectrum sensing techniques for unlicensed users to not
interfere the licensed users in the spatial domain. In CRNs,
the localization of primary users (PUs) and secondary users
(SUs) is beneficial in order to create an efficient CRN. Since
PUs are not cooperative with SUs in nature, localization of all
the users, including PUs, for the whole CRN is a challenging
task. In CRNs, localization of PUs and SUs can enhance the
system optimization in following aspects [5]:

• Measurements of the spectrum occupancy are precisely
performed,
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• Localization will also determine the reliability of links
between SUs,

• It will help in determining the angle of arrival/departure
of the signal toward PUs, which allows to use beam-
forming to reduce the interference to the PUs,

• Localization will optimize the CRNs, thus maximizing
the frequency reuse in the space domain,

• An optimal SUs network can be modeled based on the
location information of PUs.

In [205]–[207], authors deployed different localization algo-
rithms for CRNs, where they assume that the distances
between PUs and SUs are available. As in sensor networks, it
is possible to estimate the distances between SUs since they
can communicate with each other. But the distance between
a PU and a SU cannot be estimated in practice due to the
fact that PUs and SUs do not communicate with each other in
CRNs. In [208], [209] the authors propose the use of direc-
tional antennas for locating the PUs in CRNs. Since the PUs
and SUs do not interact, the distances between PUs and SUs
is a challenging task [7]. In [7], [210], [211], MDS based
localization methods for CRNs are proposed where the dis-
tances are estimated using RSS measurements between the
SUs while proximity only (binary) information is considered
between PUs and SUs. In [7] a centralized MDS based method
is proposed to determine the location of PUs and SUs in
CRNs. Since the localization accuracy of centralized MDS
based method suffers when the network topology is irregular,
cluster-based semi-centralized MDS is introduced in [210] to
determine the location of PUs and SUs. The localization accu-
racy also depends on the geometry of anchors in the network.
An analysis shows that the location of anchors has a large
impact on the localization accuracy [212].

C. MDS Based Localization for Future 5G

The fifth generation (5G) wireless networks are promising to
achieve higher data rates, higher bandwidth low transmission
latency. 5G is also considered to be a revolutionary milestone
in wireless communication, which will enable lots of new
applications including connected cars, IoT with billions of sen-
sors and humanoid robots. Currently, the number of devices
connected to the Internet are 6.4 billion, in [213] Gartner
predicted that in 2020 the approximate number of devices con-
nected to the Internet would reach up to 20.8 billion. In order
to support these billions of devices, 5G systems require wide
bandwidth which is available in higher frequencies of the radio
spectrum [214]. A large number of devices will lead to the
deployment of the dense networks in which it is possible to
get better-ranging measurements in terms of localization.

In the past, some localization techniques are developed for
3G and 4G networks, but developing localization techniques
for 5G is still an open issue [215]. LBS are always popular
among the users and it is expected to become an essential
part of the development of 5G technology. In [216], [217]
the authors proposed localization techniques for millimeter
waves in 5G. In [218]–[220] the authors presented localization
schemes for massive multiple input multiple output (MIMO)
systems. DoA technique is investigated for 5G in [221].

Similarly, in [217], [222] the authors used localization based
on RSS. An extended Kalman filter fused with the hybrid
DoA and ToA is used in [223] for 5G localization. A similar
technique is presented in [224] in case of a non-cooperative
transmitter. 5G Network localization with the dense deploy-
ment of users is investigated in [222] using a variant of MDS,
i.e., Isomap. Localization of static IoT networks in 5G is
recently presented in [225] by using centralized MDS.

V. APPLICATIONS OF MDS BASED LOCALIZATION

Recently usage of the location based services and applica-
tions have seen a drastic increase around the globe. Following
are some of the MDS based localization applications.

A. Disaster Management

The seismic data is difficult to analyze and classical mathe-
matical tools impose strong limitations in unveiling the hidden
relationships between earthquakes [226]. MDS based local-
ization is one of the approaches which are useful to get
information regarding earthquakes. The maps generated by
MDS are intuitive to visualize the complex relationships
between seismic events [227], [228]. A cluster is formed by
similar objects which represent spatially distinguished objects.
Earthquake analysis is studied in [227] and [228] by using
the data of more than two million seismic occurrences in
the period of 1904-2012. The relationship of space-time and
space-frequency is used to find the similarity among the
events. The fires caused by different natural factors in forests
every year consume vast vegetation areas [229]. These forest
fires increase the carbon dioxide emission, which contributes
to soil erosion and disturbs the water cycle, thus it has a
direct impact on the economy of a country. The forest fires in
Portugal have been investigated in [229] from 1980-2012 by
using MDS based methods.

B. Security

The security conditions can be greatly improved around the
globe by using localization. The mobility patterns and differ-
ent interaction of users can be helpful to determine possible
threats for security. Similarly, in war zones, a centralized MDS
based localization system is helpful for the military to track
its assets and troops which can increase the success of an
operation [230]. The strategic advantage of localization is that
the soldiers on the ground pay more attention to the operation
and do not worry about the paths for moving forward [231]. In
addition to that, by using centralized MDS localization method
the central command can get the global view of the region and
can design better plans and strategies.

C. Management and Tracking of Assets

Management of assets can be achieved by tracking the
location of assets which will allow the businesses to
perform optimized operations and better inventory manage-
ment. Distributed MDS based localization and tracking meth-
ods can be used to determine the location and track the assets.
Localization and tracking based assets management have been
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extensively studied in the literature [232]–[236]. It is believed
that all of the asset management and tracking methods will
revolutionize with the advent of IoT.

D. Internet of Things

Localization can be of great benefit to IoT networks, for
instance, automated services such as handling devices in an
office based on users’ location. IoT requires the accuracy of
localization in centimeters, therefore, the term used for locat-
ing an entity in IoT network is called microlocation [237].
MDS based localization methods can be of great use in smart
systems such as smart bulidings, smart grids, and smart cities.
MDS based localization for IoT networks is still an open
research area where very few work exists [180], [181], [225].

E. Underwater Exploration

Robust and accurate localization techniques for underwa-
ter sensor networks (USNs) is a necessary but challenging
task due to the harsh aquatic environment. MDS is used
in various works for the localization of underwater sensor
nodes. For example, an MDS based localization scheme was
proposed in [238] where localization of multi-hop UOWSNs
was formulated as an unconstrained optimization problem
and solved using the conjugate gradient technique. Similarly,
MDS-based localization technique was used in [239], [240]
for three-dimensional underwater optical wireless networks
which take into account the outliers in ranging and optimize
the anchor’s location. Moreover, centralized MDS-based tech-
nique was recently used in [66], [241] which also considers
energy harvesting in the underwater environment to improve
the connectivity and localization of the network. All of these
MDS-based localization techniques developed of USNs are
centralized and thus have high complexity. Therefore, semi-
centralized and distributed MDS-based techniques need to be
developed for the USNs.

VI. CONCLUSION

In this paper, we have presented a comprehensive survey
on multidimensional scaling (MDS) technique, MDS based
localization in modern wireless communication networks and
its applications. This survey covers different aspects of local-
izations such as global and local localization systems, ranging
methods used for localization techniques, a brief discussion
of MDS, MDS based localization in cutting-edge technologies
(WSNs-IoT, cognitive radios, and 5G networks), and applica-
tions of MDS based localization. Besides the detailed study on
MDS, the details of different MDS based localization meth-
ods are provided along with their use in prospective wireless
networks. Centralized MDS based methods are suitable for
harsh environments where the localization is carried out at
the central station, but for low complexity and better accu-
racy semi-centralized and distributed MDS based methods are
preferred. Also, the possible applications of MDS based local-
ization are provided while the subject remains open to develop
accurate and practical MDS based localization methods for
current and future wireless networks.
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