
SPECIAL SECTION ON REAL-TIME MACHINE
LEARNING APPLICATIONS IN MOBILE ROBOTICS

Received December 22, 2020, accepted January 6, 2021, date of publication January 8, 2021, date of current version January 20, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3050338

INVITED PAPER

Collision Avoidance in Pedestrian-Rich
Environments With Deep
Reinforcement Learning
MICHAEL EVERETT 1, YU FAN CHEN2, AND JONATHAN P. HOW 1, (Fellow, IEEE)
1Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2Facebook Reality Labs, Redmond, WA 98052, USA

Corresponding author: Michael Everett (mfe@mit.edu)

This work was supported in part by the Ford Motor Company, and in part by the Amazon Web Services.

ABSTRACT Collision avoidance algorithms are essential for safe and efficient robot operation among
pedestrians. This work proposes using deep reinforcement (RL) learning as a framework to model the
complex interactions and cooperation with nearby, decision-making agents, such as pedestrians and other
robots. Existing RL-based works assume homogeneity of agent properties, use specific motion models over
short timescales, or lack a principled method to handle a large, possibly varying number of agents. Therefore,
this work develops an algorithm that learns collision avoidance among a variety of heterogeneous, non-
communicating, dynamic agents without assuming they follow any particular behavior rules. It extends our
previous work by introducing a strategy using Long Short-TermMemory (LSTM) that enables the algorithm
to use observations of an arbitrary number of other agents, instead of a small, fixed number of neighbors.
The proposed algorithm is shown to outperform a classical collision avoidance algorithm, another deep
RL-based algorithm, and scales with the number of agents better (fewer collisions, shorter time to goal)
than our previously published learning-based approach. Analysis of the LSTM provides insights into how
observations of nearby agents affect the hidden state and quantifies the performance impact of various agent
ordering heuristics. The learned policy generalizes to several applications beyond the training scenarios:
formation control (arrangement into letters), demonstrations on a fleet of four multirotors and on a fully
autonomous robotic vehicle capable of traveling at human walking speed among pedestrians.

INDEX TERMS Collision avoidance, deep reinforcement learning, motion planning, multiagent systems,
decentralized execution.

I. INTRODUCTION
A fundamental challenge in autonomous vehicle operation is
to safely negotiate interactions with other dynamic agents in
the environment. For example, it is important for self-driving
cars to take other vehicles’ motion into account, and for deliv-
ery robots to avoid colliding with pedestrians. While there
has been impressive progress in the past decade [1], fully
autonomous navigation remains challenging, particularly in
uncertain, dynamic environments cohabited by other mobile
agents. The challenges arise because the other agents’ intents
and policies (i.e., goals and desired paths) are typically not
known to the planning system, and, furthermore, explicit

The associate editor coordinating the review of this manuscript and

approving it for publication was Aysegul Ucar .

communication of such hidden quantities is often impractical
due to physical limitations. These issues motivate the use of
decentralized collision avoidance algorithms.

Existing work on decentralized collision avoidance can
be classified into cooperative and non-cooperative meth-
ods. Non-cooperative methods first predict the other agents’
motion and then plan a collision-free path for the vehicle
with respect to the other agents’ predicted motion. How-
ever, this can lead to the freezing robot problem [2], where
the vehicle fails to find any feasible path because the other
agents’ predicted paths would occupy a large portion of the
traversable space. Cooperative methods address this issue by
modeling interaction in the planner, such that the vehicle’s
action can influence the other agent’s motion, thereby hav-
ing all agents share the responsibility for avoiding collision.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 10357

https://orcid.org/0000-0001-9377-6745
https://orcid.org/0000-0001-8576-1930
https://orcid.org/0000-0002-5253-3779

M. Everett et al.: Collision Avoidance in Pedestrian-Rich Environments With Deep RL

Cooperative methods include reaction-based methods [3]–[6]
and trajectory-based methods [7]–[9].

This work seeks to combine the best of both types
of cooperative techniques – the computational efficiency
of reaction-based methods and the smooth motion of
trajectory-based methods. To this end, the work presents
the collision avoidance with deep reinforcement learn-
ing (CADRL) algorithm, which tackles the aforementioned
trade-off between computation time and smooth motion by
using reinforcement learning (RL) to offload the expensive
online computation to an offline learning procedure. Specif-
ically, a computationally efficient (i.e., real-time imple-
mentable) interaction rule is developed by learning a policy
that implicitly encodes cooperative behaviors.

Learning the collision avoidance policy for CADRL
presents several challenges. A first key challenge is that
the number of other agents in the environment can vary
between timesteps or experiments, however the typical feed-
forward neural networks used in this domain require a
fixed-dimension input. Our prior work defines a maximum
number of agents that the network can observe, and other
approaches use raw sensor data as the input [10], [11]. This
work instead uses an idea from Natural Language Process-
ing [12], [13] to encode the varying size state of the world
(e.g., positions of other agents) into a fixed-length vector,
using long short-term memory (LSTM) [14] cells at the net-
work input. This enables the algorithm to make decisions
based on an arbitrary number of other agents in the robot’s
vicinity.

A second fundamental challenge is in finding a policy that
makes realistic assumptions about other agents’ belief states,
policies, and intents. This work learns a collision avoidance
policy without assuming that the other agents follow any par-
ticular behavior model and without explicit assumptions on
homogeneity [10] (e.g., agents of the same size and nominal
speed) or specific motion models (e.g., constant velocity)
over short timescales [15], [16].

The main contributions of this work are:
• a new collision avoidance algorithm that greatly outper-
forms prior works as the number of agents in the envi-
ronments is increased: a key factor in that improvement
is to relax the assumptions on the other agents’ behavior
models during training and inference,

• a novel use of LSTM in that it encodes spatial represen-
tations, rather than temporal, to address the challenge
that the number of neighboring agents could be large and
could vary in time,

• simulation results that show significant improvement
in solution quality compared with other recently pub-
lished state-of-the-art methods (such as [5], [10], [16]),
and

• hardware experiments with aerial and ground robots
to demonstrate that the proposed algorithm can be
deployed in real time on robots with real sensors.

Open-source software based on this manuscript includes a
pre-trained collision avoidance policy (as a ROS package)

cadrl_ros,1 the GA3C-CADRL learning algorithm,2

and a simulation/training environment with several imple-
mented policies, gym_collision_avoidance.3 Videos
of the experimental results are posted at https://youtu.be/
Bjx4ZEov0yE.

This work is based on [15]–[17] and extends them as fol-
lows: (i) expanded discussion and example of the limitations
of the prior work, (ii) further explanation of the proposed
algorithm, including pseudo-code, (iii) analysis on the effect
of sequence ordering in LSTM, which addresses a primary
gap in the prior work, (iv) quantifying input gate activa-
tion to provide deeper intuition on why the proposed use
of LSTM works, (v) additional comparisons to model- and
learning-based collision avoidance algorithms, (vi) ablation
study of the proposed algorithm, and (vii) experiments with
formation control and on real multirotors to demonstrate
generalizability of the learned policy.

II. BACKGROUND
A. PROBLEM FORMULATION
The non-communicating, multiagent collision avoidance
problem can be formulated as a sequential decision mak-
ing problem [15], [16]. In an n-agent scenario (N≤n =
{1, 2, . . . , n}), denote the joint world state, sjnt , agent i’s state,
si,t , and agent i’s action, ui,t , ∀i ∈ N≤n. Each agent’s
state vector is composed of an observable and unobserv-
able (hidden) portion, si,t = [soi,t , s

h
i,t]. In the global frame,

observable states are the agent’s position, velocity, and radius,
so = [px , py, vx , vy, r] ∈ R5, and unobservable states are
the goal position, preferred speed, and orientation,4 sh =
[pgx , pgy, vpref , ψ] ∈ R4. The action is a speed and heading
angle, ut = [vt , ψt] ∈ R2. The observable states of all
n − 1 other agents is denoted, S̃oi,t = {s̃

o
j,t : j ∈ N≤n \ i}.

A policy, π :
(
s0:t , S̃o0:t

)
7→ ut , is developed with the

objective of minimizing expected time to goal E[tg] while
avoiding collision with other agents,

argmin
πi

E
[
tg|si, S̃oi , πi

]
(1)

s.t. ||pi,t − p̃j,t ||2 ≥ ri + rj ∀j 6= i,∀t (2)

pi,tg = pi,g ∀i (3)

pi,t = pi,t−1 +1t · πi(si,t−1, S̃oi,t−1) ∀i, (4)

where (2) is the collision avoidance constraint, (3) is the goal
constraint, (4) is the agents’ kinematics, and the expecta-
tion in (1) is with respect to the other agent’s unobservable
states (intents) and policies.

Although it is difficult to solve for the optimal solu-
tion of (1)-(4), this problem formulation can be useful
for understanding the limitations of the existing methods.

1https://github.com/mit-acl/cadrl_ros
2https://github.com/mit-acl/rl_collision_avoidance
3https://github.com/mit-acl/gym-collision-avoidance
4Other agents’ positions and velocities are straightforward to estimate

with a 2D Lidar, unlike human body heading angle

10358 VOLUME 9, 2021

M. Everett et al.: Collision Avoidance in Pedestrian-Rich Environments With Deep RL

In particular, it provides insights into the approxima-
tions/assumptions made by existing works.

B. RELATED WORK
Most approaches to collision avoidance with dynamic
obstacles employ model-predictive control (MPC) [18] in
which a planner selects a minimum cost action sequence,
ui,t:t+T , using a prediction of the future world state,
P(sjnt+1:t+T+1|s

jn
0:t ,ui,t:t+T), conditioned on the world state

history, sjn0:t . While the first actions in the sequence are being
implemented, the subsequent action sequence is updated
by re-planning with the updated world state information
(e.g., from new sensor measurements). The prediction of
future world states is either prescribed using domain knowl-
edge (model-based approaches) or learned from exam-
ples/experiences (learning-based approaches).

1) MODEL-BASED APPROACHES
Early approaches model the world as a static entity,
[vx , vy] = 0, but replan quickly to try to capture
the motion through updated (px , py) measurements [19].
This leads to time-inefficient paths among dynamic obsta-
cles, since the planner’s world model does not anticipate
future changes in the environment due to the obstacles’
motion.

To improve the predictive model, reaction-based methods
use one-step interaction rules based on geometry or physics
to ensure collision avoidance. These methods [4]–[6] often
specify aMarkovian policy, π(sjn0:t) = π (s

jn
t), that optimizes a

one-step cost while satisfying collision avoidance constraints.
For instance, in velocity obstacle approaches [5], [6], an agent
chooses a collision-free velocity that is closest to its preferred
velocity (i.e., directed toward its goal). Given this one-step
nature, reaction-based methods do account for current obsta-
cle motion, but do not anticipate the other agents’ hidden
intents – they instead rely on a fast update rate to react quickly
to the other agents’ changes in motion. Although computa-
tionally efficient given these simplifications, reaction-based
methods are myopic in time, which can sometimes lead to
generating unnatural trajectories [8], [15].
Trajectory-based methods compute plans on a longer

timescale to produce smoother paths but are often compu-
tationally expensive or require knowledge of unobservable
states. A subclass of non-cooperative approaches [20], [21]
propagates the other agents’ dynamics forward in time and
then plans a collision-free path with respect to the other
agents’ predicted paths. However, in crowded environments,
the set of predicted paths could occupy a large portion of the
space, which leads to the freezing robot problem [2]. A key
to resolving this issue is to account for interactions, such that
each agent’s motion can affect one another. Thereby, a sub-
class of cooperative approaches [7]–[9] has been proposed,
which solve (1)-(4) in two steps. First, the other agents’
hidden states (i.e., goals) are inferred from their observed

trajectories, ˆ̃Sht = f (S̃o0:t), where f (·) is a inference function.

Second, a centralized path planning algorithm,π (s0:t , S̃o0:t) =

πcentral(st , S̃ot ,
ˆ̃Sht), is employed to find jointly feasible paths.

By planning/anticipating complete paths, trajectory-based
methods are no longer myopic. However, both the inference
and the planning steps are computationally expensive, and
need to be carried out online at each new observation (sensor
update S̃ot).

2) LEARNING-BASED APPROACHES
Our recent works [15], [16] proposed a third category that
uses a reinforcement learning framework to solve (1)-(4).
As in the reactive-based methods, we make a Markovian
assumption: π (sjn0:t) = π (sjnt). The expensive operation of
modeling the complex interactions is learned in an offline
training step, whereas the learned policy can be queried
quickly online, combining the benefits of both reactive- and
trajectory-based methods. Our prior methods pre-compute a
value function, V (sjn), that estimates the expected time to the
goal from a given configuration, which can be used to select
actions using a one-step lookahead procedure described in
those works. To avoid the lookahead procedure, this work
directly optimizes a policy π (sjn) to select actions to min-
imize the expected time to the goal. The differences from
other learning-based approaches will becomemore clear after
a brief overview of reinforcement learning.

C. REINFORCEMENT LEARNING
RL [22] is a class of machine learning methods for solv-
ing sequential decision making problems with unknown
state-transition dynamics. Typically, a sequential decision
making problem can be formulated as aMarkov decision pro-
cess (MDP), which is defined by a tupleM = 〈S,A,P,R, γ 〉,
where S is the state space, A is the action space, P is the
state-transition model, R is the reward function, and γ is
a discount factor. By detailing each of these elements and
relating to (1)-(4), the following provides a RL formulation
of the n-agent collision avoidance problem.

1) STATE SPACE
The joint world state, sjn, was defined in Section II-A.

2) ACTION SPACE
The choice of action space depends on the vehicle model.
A natural choice of action space for differential drive robots
is a linear and angular speed (which can be converted into
wheel speeds), that is, u = [s, ω]. The action space is either
discretized directly, or represented continuously by a function
of discrete parameters.

3) REWARD FUNCTION
A sparse reward function is specified to award the agent for
reaching its goal (3), and penalize the agent for getting too

VOLUME 9, 2021 10359

M. Everett et al.: Collision Avoidance in Pedestrian-Rich Environments With Deep RL

close or colliding with other agents (2),

R(sjn,u) =

1, if p = pg
−0.1+ dmin/2, if 0 < dmin < 0.2
−0.25, if dmin < 0
0, otherwise,

(5)

where dmin is the distance to the closest other agent. Opti-
mizing the hyperparameters (e.g., -0.25) in Rcol is left for
future work. Note that we use discount γ < 1 to encourage
efficiency instead of a step penalty.

4) STATE TRANSITION MODEL
Aprobabilistic state transitionmodel,P(sjnt+1|s

jn
t ,ut), is deter-

mined by the agents’ kinematics as defined in (4). Since the
other agents’ actions also depend on their policies and hidden
intents (e.g., goals), the system’s state transition model is
unknown.

5) VALUE FUNCTION
One method to find the optimal policy is to first find the
optimal value function,

V ∗(sjn0) = E
[∑T

t=0 γ
t R(sjnt , π∗(s

jn
t))
]
, (6)

where γ ∈ [0, 1) is a discount factor. Many methods exist to
estimate the value function in an offline training process [22].

6) DEEP REINFORCEMENT LEARNING
To estimate the high-dimensional, continuous value function
(and/or associated policy), it is common to approximate with
a deep neural network (DNN) parameterized by weights and
biases, θ , as in [23]. This work’s notation drops the parame-
ters except when possible, e.g., V (s; θ) = V (s).

7) DECISION-MAKING POLICY
A value function of the current state can be implemented as a
policy,

π∗(sjnt+1) = argmax
u

R(st ,u)

+ γ1t·vpref
∫
sjnt+1

P(sjnt , s
jn
t+1|u)V

∗(sjnt+1)ds
jn
t+1. (7)

Our previous works avoid the complexity in explicitly
modeling P(sjnt+1|s

jn
t ,u) by assuming that other agents con-

tinue their current velocities, V̂t , for a duration 1t , meaning
the policy can be extracted from the value function,

ŝjnt+1,u ← [f (st ,1t · u), f (S̃ot ,1t · V̂t)] (8)

πCADRL(s
jn
t) = argmax

u
Rcol(st ,u)

+ γ1t·vpref V (ŝjnt+1,u), (9)

under the simple kinematic model, f .
However, the introduction of parameter 1t leads to a dif-

ficult trade-off. Due to the the approximation of the value
function in a DNN, a sufficiently large 1t is required such

that each propagated ŝjnt+1,u is far enough apart, which ensures
V (ŝjnt+1,u) is not dominated by numerical noise in the network.
The implication of large 1t is that agents are assumed to
follow a constant velocity for a significant amount of time,
which neglects the effects of cooperation/reactions to an
agent’s decisions. As the number of agents in the environment
increases, this constant velocity assumption is less likely to
be valid. Agents do not actually reach their propagated states
because of the multiagent interactions.

The impact of separately querying the value function
and performing collision checking is illustrated in Fig. 1.
In (a), a red agent aims to reach its goal (star), and a pur-
ple agent is traveling at 1 m/s in the −y-direction. Because
CADRL’s value function only encodes time-to-goal informa-
tion, (b) depicts that the DNN appropriately recommends that
the red agent should cut above the purple agent. However,
there is a second term in (9) to convert the value function
into a policy. This second term, the collision cost, Rcol(st ,u),
shown in (c), penalizes actions that move toward the other
agent’s predicted position (dashed circle). This model-based
collision checking procedure requires an assumption about
other agents’ behaviors, which is difficult to define ahead
of time; the prior work assumed a constant-velocity model.
When the value and collision costs are combined to produce
πCADRL(s

jn
t), the resulting objective-maximizing action is for

the red agent to go straight, which will avoid a collision but
be inefficient for both agents. The challenge in defining a
model for other agents’ behaviors was a primary motivation
for learning a value function; even with an accurate value
function, this example demonstrates an additional cause of
inefficient paths: an inaccurate model used in the collision
checking procedure.

In addition to not capturing decision making behavior of
other agents, our experiments suggest that 1t is a crucial
parameter to ensure convergence while training the DNNs
in the previous algorithms. If 1t is set too small or large,
the training does not converge. A value of 1t = 1 sec was
experimentally determined to enable convergence, though
this number does not have much theoretical rationale.

In summary, the challenges of converting a value func-
tion to a policy, choosing the 1t hyperparameter, and our
observation that the learning stability suffered with more
than 4 agents in the environment each motivate the use of a
different RL framework. To address the concerns raised about
1T propagation, this work proposes a new algorithm that
does not project agents forward during policy evaluation, thus
eliminating the need for tuning the 1t hyperparameter.

8) POLICY LEARNING
Therefore, this work considers RL frameworks which gen-
erate a policy that an agent can execute directly, without
any arbitrary assumptions about state transition dynamics.
A recent actor-critic algorithm called A3C [24] uses a single
DNN to approximate both the value (critic) and policy (actor)

10360 VOLUME 9, 2021

M. Everett et al.: Collision Avoidance in Pedestrian-Rich Environments With Deep RL

FIGURE 1. Issue with checking collisions and state-value separately, as in (9). In (a), the red agent’s goal is at the star, and the purple agent’s current
velocity is in the −y-direction. In (b), the CADRL algorithm propagates the other agent forward at its current velocity (dashed purple circle), then
queries the DNN for candidate future states. The best action (green star) is one which cuts above the purple agent, which was learned correctly by the
CADRL V-Learning procedure. However, the constant velocity model of other agents is also used for collision checking, causing penalties of Rcol (st ,u),
shown in (c). CADRL’s policy combines these terms (d), instead choosing to go straight (green star), which is a poor choice that ignores that a
cooperative purple agent likely would adjust its own velocity as well. This fundamental issue of checking collisions and state-values separately is
addressed in this work by learning a policy directly. .

functions, and is trained with two loss terms

fv = (Rt − V (s
jn
t))

2, (10)

fπ = logπ (ut |s
jn
t)(Rt − V (s

jn
t))+ β · H (π (sjnt)), (11)

where (10) trains the network’s value output to match the
future discounted reward estimate, Rt =

∑k−1
i=0 γ

irt+i +
γ kV (sjnt+k), over the next k steps, just as in CADRL. For the
policy output in (11), the first term penalizes actions which
have high probability of occurring (logπ) that lead to a lower
return than predicted by the value function (R − V), and
the second term encourages exploration by penalizing π ’s
entropy with tunable constant β.
In A3C, many threads of an agent interacting with an

environment are simulated in parallel, and a policy is trained
based on an intelligent fusion of all the agents’ experi-
ences. The algorithm was shown to learn a policy that
achieves super-human performance on many video games.
We specifically use GA3C [25], a hybrid GPU/CPU imple-
mentation that efficiently queues training experiences and
action predictions. Our work builds on open-source GA3C
implementations [25], [26].

Other choices for RL policy training algorithms
(e.g., PPO [27], TD3 [28]) are architecturally similar to
A3C. Thus, the challenges mentioned above (varying num-
ber of agents, assumptions about other agents’ behaviors)
would map to future work that considers employing other
RL algorithms or techniques [29] in this domain.

D. RELATED WORKS USING LEARNING
There are several concurrent and subsequent works which use
learning to solve the collision avoidance problem, categorized
as non-RL, RL, and agent-level RL approaches.

Non-RL-based approaches to the collision avoidance prob-
lem include imitation learning, inverse RL, and super-
vised learning of prediction models. Imitation learning
approaches [11] learn a policy that mimics what a human
pedestrian or human teleoperator [30] would do in the same
state but require data from an expert. Inverse RL methods

learn to estimate pedestrians’ cost functions, then use the
cost function to inform robot plans [7], [31], but require
real pedestrian trajectory data. Other approaches learn to
predict pedestrian paths, which improves the world model
used by the planner [32], but decoupling the prediction and
planning steps could lead to the freezing robot problem
(Section II-B1). A key advantage of RL over these methods
is the ability to explore the state space through self-play,
in which experiences generated in a low-fidelity simulation
environment can reduce the need for expensive, real-world
data collection efforts.

Within RL-based approaches, a key difference arises in
the state representation: sensor-level and agent-level. Sensor-
level approaches learn to select actions directly from raw
sensor readings (either 2D laserscans [10] or images [11])
with end-to-end training. This leads to a large state space
(Rw×h×c for a camera with resolution w× h and c channels,
e.g., 480 × 360 × 3 = 5184000), which makes training
challenging. CNNs are often used to extract low-dimensional
features from this giant state space, but training such a
feature extractor in simulation requires an accurate sen-
sor simulation model. The sensor-level approach has the
advantage that both static and dynamic obstacles (including
walls) can be fed into the network with a single frame-
work. In contrast, this work uses interpretable clustering,
tracking, and multi-sensor fusion algorithms to extract an
agent-level state representation from raw sensor readings.
Advantages include a much smaller state space (R9+5(n−1))
enabling faster learning convergence; a sensor-agnostic col-
lision avoidance policy, enabling sensor upgrades without re-
training; and increased introspection into decision making,
so that decisions can be traced back to the sensing, clustering,
tracking, or planning modules.

Within agent-level RL, a key challenge is that of represent-
ing a variable number of nearby agents in the environment at
any timestep. Typical feedforward networks used to represent
the complex decision making policy for collision avoidance
require a pre-determined input size. The sensor-level methods
domaintain a fixed size input (sensor resolution), but have the

VOLUME 9, 2021 10361

M. Everett et al.: Collision Avoidance in Pedestrian-Rich Environments With Deep RL

limitations mentioned above. Instead, our first work trained a
2-agent value network, and proposed a mini-max rule to scale
up to n agents [15]. To account for multiagent interactions
(instead of only pairwise), our next work defines a maximum
number of agents that the network can handle, and pads the
observation space if there are actually fewer agents in the
environment [16]. However, this maximum number of agents
is limited by the increased number of network parameters
(and therefore training time) as more agents’ states are added.
This work uses a recurrent network to convert a sequence of
agent states at a particular timestep into a fixed-size repre-
sentation of the world state; that representation is fed into the
input of a standard feedforward network. Beyond the scope
of collision avoidance, recent work [33] introduced attention
mechanisms, another tool popularized in NLP, as another
method for embedding the variable number of other agents’
states.

There are also differences in the reward functions used
in RL-based collision avoidance approaches. Generally,
the non-zero feedback provided at each timestep by a dense
reward function (e.g., [10]) makes learning easier, but reward
shaping quickly becomes a difficult problem in itself. For
example, balancing multiple objectives (proximity to goal,
proximity to others) can introduce unexpected and undesired
local minima in the reward function. On the other hand,
sparse rewards are easy to specify but require a careful ini-
tialization/exploration procedure to ensure agents will receive
some environment feedback to inform learning updates. This
work mainly uses sparse reward (arrival at goal, collision)
with smooth reward function decay in near-collision states
to encourage a minimum separation distance between agents.
Additional terms in the reward function are shown to reliably
induce higher-level preferences (social norms) in our previ-
ous work [16].

While learning-based methods have many potential
advantages over model-based approaches, learning-based
approaches typically lack the guarantees (e.g., avoiding dead-
lock, zero collisions) desired for safety-critical applications.
A key challenge in establishing guarantees in multiagent
collision avoidance is what to assume about the world
(e.g., policies and dynamics of other agents). Unrealistic or
overly conservative assumptions about the world invalidate
the guarantees or unnecessarily degrade the algorithm’s per-
formance: striking this balance may be possible in some
domains but is particularly challenging in pedestrian-rich
environments. A survey of the active research area of Safe
RL is found in [34].

III. APPROACH
A. GA3C-CADRL
Recall the RL training process seeks to find the optimal
policy, π :

(
st , S̃ot

)
7→ ut , which maps from an agent’s

observation of the environment to a probability distribution
across actions and executes the action with highest probabil-
ity. We use a local coordinate frame (rotation-invariant) as

in [15], [16] and separate the state of the world in two pieces:
information about the agent itself, and everything else in the
world. Information about the agent can be represented in a
small, fixed number of variables. The world, on the other
hand, can be full of any number of other objects or even
completely empty. Specifically, there is one s vector about the
agent itself and one s̃o vector per other agent in the vicinity:

s = [dg, vpref , ψ, r] (12)

s̃o = [p̃x , p̃y, ṽx , ṽy, r̃, d̃a, r̃ + r] , (13)

where dg = ||pg − p||2 is the agent’s distance to goal, and
d̃a = ||p− p̃||2 is the distance to the other agent.

The agent’s action space is composed of a speed and
change in heading angle. It is discretized into 11 actions: with
a speed of vpref there are 6 headings evenly spaced between
±π/6, and for speeds of 1

2vpref and 0 the heading choices
are [−π/6, 0, π/6]. These actions are chosen to mimic real
turning constraints of robotic vehicles.

This multiagent RL problem formulation is solved with
GA3C in a process we call GA3C-CADRL (GPU/CPUAsyn-
chronous Advantage Actor-Critic for Collision Avoidance
with Deep RL). Since experience generation is one of the
time-intensive parts of training, this work extends GA3C
to learn from multiple agents’ experiences each episode.
Training batches are filled with a mix of agents’ experi-
ences ({sjnt , ut , rt } tuples) to encourage policy gradients that
improve the joint expected reward of all agents. Our multi-
agent implementation of GA3C accounts for agents reach-
ing their goals at different times and ignores experiences of
agents running other policies (e.g., non-cooperative agents).

B. HANDLING A VARIABLE NUMBER OF AGENTS
Recall that one key limitation of many learning-based col-
lision avoidance methods is that the feedforward NNs typ-
ically used require a fixed-size input. Convolutional and
max-pooling layers are useful for feature extraction and can
modify the input size but still convert a fixed-size input into
a fixed-size output. Recurrent NNs, where the output is pro-
duced from a combination of a stored cell state and an input,
accept an arbitrary-length sequence to produce a fixed-size
output. Long short-term memory (LSTM) [14] is recurrent
architecture with advantageous properties for training.5

Although LSTMs are often applied to time sequence data
(e.g., pedestrianmotion prediction [35]), this article leverages
their ability to encode a sequence of information that is
not time-dependent (see [36] for a thorough explanation of
LSTM calculations). LSTM is parameterized by its weights,
{Wi,Wf ,Wo}, and biases, {bi, bf , bo}, where {i, f , o} corre-
spond to the input, forget, and output gates. The variable
number of s̃oi vectors is a sequence of inputs that encom-
pass everything the agent knows about the rest of the world.
As depicted in Fig. 2, each LSTM cell has three inputs: the

5In practice, TensorFlow’s LSTM implementation requires a known max-
imum sequence length, but this can be set to something bigger than the
number of agents agents ever expected (e.g., 20)

10362 VOLUME 9, 2021

M. Everett et al.: Collision Avoidance in Pedestrian-Rich Environments With Deep RL

FIGURE 2. LSTM unrolled to show each input. At each decision step,
the agent feeds one observable state vector, s̃o

i , for each nearby agent,
into a LSTM cell sequentially. LSTM cells store the pertinent information
in the hidden states, hi . The final hidden state, hn, encodes the entire
state of the other agents in a fixed-length vector, and is then fed to the
feedforward portion of the network. The order of agents is sorted by
decreasing distance to the ego agent, so that the closest agent has the
most recent effect on hn.

state of agent j at time t , the previous hidden state, and the
previous cell state, which are denoted s̃oj,t , hj,Cj, respectively.
Thus, at each decision step, the agent feeds each s̃oi (observa-
tion of ith other agent’s state) into a LSTM cell sequentially.
That is, the LSTM initially has empty states (h0,C0 set to
zeros) and uses {s̃o1,h0,C0} to generate {h1,C1}, then feeds
{s̃o2,h1,C1} to produce {h2,C2}, and so on. As agents’ states
are fed in, the LSTM ‘‘remembers’’ the pertinent information
in its hidden/cell states, and ‘‘forgets’’ the less important parts
of the input (where the notion of memory is parameterized
by the trainable LSTM weights/biases). After inputting the
final agent’s state, we can interpret the LSTM’s final hidden
state, hn as a fixed-length, encoded state of the world, for
that decision step. The LSTM contains n cells, so the entire
module receives inputs {S̃ot ,ht−1,Ct−1} and produces out-
puts {hn,Cn}, and hn is passed to the next network layer for
decision making.

Given a sufficiently large hidden state vector, there is
enough space to encode a large number of agents’ states
without the LSTM having to forget anything relevant. In the
case of a large number of agent states, to mitigate the impact
of the agent forgetting the early states, the states are fed in
reverse order of distance to the agent, meaning the closest
agents (fed last) should have the biggest effect on the final
hidden state, hn. Because the list of agents needs to be ordered
in some manner, reverse distance is one possible ordering
heuristic – we empirically compare to other possibilities
in Section IV-D.

Another interpretation of the LSTM objective is that it
must learn to combine an observation of a new agent with a
representation of other agents (as opposed to the architectural
objective of producing a fixed-length encoding of a varying
size input). This interpretation provides intuition on how an
LSTM trained in 4-agent scenarios can generalize reasonably
well to cases with 10 agents.

The addition of LSTM to a standard actor-critic network is
visualized in Fig. 3, where the box labeled s is the agent’s own
state, and the group of boxes is the n other agents’ observable
states, s̃oi . After passing the n other agents’ observable states
into the LSTM, the agent’s own state is concatenated with
hn to produce the encoded representation of the joint world

FIGURE 3. Network Architecture. Observable states of nearby agents, s̃o
i ,

are fed sequentially into the LSTM, as unrolled in Fig. 2. The final hidden
state is concatenated with the agent’s own state, s, to form the vector, se.
For any number of agents, se contains the agent’s knowledge of its own
state and the state of the environment. The encoded state is fed into two
fully-connected layers (FC). The outputs are a scalar value function (top,
right) and policy represented as a discrete probability distribution over
actions (bottom, right).

state, se. Then, se is passed to a typical feedforwardDNNwith
2 fully-connected layers (256 hidden units each with ReLU
activation).

The network produces two output types: a scalar state
value (critic) and a policy composed of a probability for each
action in the discrete action space (actor). During training,
the policy and value are used for Equations (10) and (11);
during execution, only the policy is used. During the training
process, the LSTM’s weights are updated to learn how to
represent the variable number of other agents in a fixed-length
h vector. The whole network is trained end-to-end with back-
propagation.

C. TRAINING THE POLICY
The original CADRL and SA-CADRL (Socially Aware
CADRL) algorithms used several clever tricks to enable con-
vergence when training the networks. Specifically, forward
propagation of other agent states for 1t seconds was a crit-
ical component that required tuning, but does not represent
agents’ true behaviors. Other details include separating expe-
riences into successful/unsuccessful sets to focus the training
on cases where the agent could improve. The new GA3C-
CADRL formulation is more general, and does not require
such assumptions or modifications.

The training algorithm is described in Algorithm 1.
In this work, to train the model, the network weights are first
initialized in a supervised learning phase, which converges
in less than five minutes. The initial training is done on
a large, publicly released set of state-action-value tuples,
{sjnt ,ut ,V (s

jn
t ;φCADRL)}, from an existing CADRL solution.

The network loss combines square-error loss on the value
output and softmax cross-entropy loss between the policy
output and the one-hot encoding of the closest discrete action
to the one in D, described in Lines 1-6 of Algorithm 1.

The initialization step is necessary to enable any pos-
sibility of later generating useful RL experiences (non-
initialized agents wander randomly and probabilistically
almost never obtain positive reward). Agents running the

VOLUME 9, 2021 10363

M. Everett et al.: Collision Avoidance in Pedestrian-Rich Environments With Deep RL

Algorithm 1 GA3C-CADRL Training
Input: trajectory training set, D
Output: policy network π (·; θ)

// Initialization
1: for Nepochs do
2: {sot , S̃

o
t , ut ,Vt } ← grabBatch(D)

3: ūt ← closestOneHot(ut)
4: LV = (Vt − V (sot , S̃

o
t ;φ)

2

5: Lπ = softmaxCELogits(ūt , sot , S̃
o
t , θ)

6: π (·; θ),V (·;φ)← trainNNs(Lπ ,LV , θ, φ)
7: end for
// Parallel Environment Threads

8: for all env do
9: S0← randomTestCase()
10: while some agent not done do
11: for all agent, j do
12: sog, S̃

o
g← sensorUpdate()

13: so, S̃o← transform(sog, S̃
o
g)

14: end for
15: {ut,j} ∼ π (sot,j, S̃

o
t,j; θ)∀j

16: for all not done agent, j do
17: if agent not running GA3C-CADRL then
18: ut,j← policy(sot,j, S̃

o
t,j)

19: end if
20: sj,t+1, S̃j,t+1, rj,t ← moveAgent(uj,t)
21: end for
22: for all not done GA3C-CADRL agent, j do
23: rt,j← checkRewards(St+1,ut,j)
24: addToExperienceQueue(sot,j, S̃

o
t,j,ut,j, rt,j)

25: end for
26: end while
27: end for

// Training Thread
28: for Nepisodes do
29: {sot+1, S̃

o
t+1,ut , rt } ← grabBatchFromQueue()

30: θ, φ← trainGA3C(θ, φ, {sot+1, S̃
o
t+1,ut , rt })

31: end for
32: return π

33: return P

initialized GA3C-CADRL policy reach their goals reliably
when there are no interactions with other agents. However,
the policy after this supervised learning process still per-
forms poorly in collision avoidance. This observation con-
trasts with CADRL, in which the initialization step was suf-
ficient to learn a policy that performs comparably to exist-
ing reaction-based methods, due to relatively-low dimension
value function combined with manual propagation of states.
Key reasons behind this contrast are the reduced structure
in the GA3C-CADRL formulation (no forward propagation),
and that the algorithm is now learning both a policy and value
function (as opposed to just a value function), since the policy
has an order of magnitude higher dimensionality than a scalar
value function.

Algorithm 2 GA3C-CADRL Execution
Input: goal position, (gx , gy)
Output: next motor commands, u
1: sog, S̃

o
g← sensorUpdate()

2: so, S̃o← transform(sog, S̃
o
g)

3: sdes, θdes← π (so, S̃o)
4: u← control(sdes, θdes)
5: return u

To improve the solution with RL, parallel simulation
environments produce training experiences, described in
Lines 8-24 of Algorithm 1. Each episode consists of
2-10 agents, with random start and goal positions, run-
ning a random assortment of policies (Non-Cooperative,
Zero Velocity, or the learned GA3C-CADRL policy at
that iteration) (Line 9). Agent parameters vary between
r ∈ [0.2, 0.8]m and vpref ∈ [0.5, 2.0]m/s, chosen to
be near pedestrian values. Agents sense the environment
and transform measurements to their ego frame to produce
the observation vector (Lines 12, 13). Each agent sends its
observation vector to the policy queue and receives an action
sampled from the current iteration of the GA3C-CADRL pol-
icy (Line 15). Agents that are not running the GA3C-CADRL
policy use their own policy to overwrite ut,j (Line 18).
Then, all agents that have not reached a terminal condition
(collision, at goal, timed out), simultaneously move accord-
ing to ut,j (Line 20). After all agents have moved, the envi-
ronment evaluates R(sjn,u) for each agent, and experiences
from GA3C-CADRL agents are sent to the training queue
(Lines 23,24).

In another thread, experiences are popped from the queue
to produce training batches (Line 29). These experience
batches are used to train a single GA3C-CADRL policy
(Line 30) as in [25].

An important benefit of the new framework is that the
policy can be trained on scenarios involving any number of
agents, whereas the maximum number of agents had to be
defined ahead of time with CADRL/SA-CADRL.6 This work
begins the RL phase with 2-4 agents in the environment,
so that the policy learns the idea of collision avoidance in
reasonably simple domains. Upon convergence, a second
RL phase begins with 2-10 agents in the environment.

D. POLICY INFERENCE
Inference of the trained policy for a single timestep is
described in Algorithm 2. As in training, GA3C-CADRL
agents sense the environment, transfer to the ego frame, and
select an action according to the policy (Lines 1-3). Like
many RL algorithms, actions are sampled from the stochastic
policy during training (exploration), but the action with high-
est probability mass is selected during inference (exploita-
tion). A necessary addition for hardware is a low-level

6Experiments suggest this number should be below about 6 for
convergence

10364 VOLUME 9, 2021

M. Everett et al.: Collision Avoidance in Pedestrian-Rich Environments With Deep RL

FIGURE 4. System Architecture. During training, the policy receives state measurements to compute robot commands, and the environment
returns next states and rewards. Collections of (state, action, reward) tuples enable an RL algorithm to update the parameters of the learned
policy. During execution, only the blocks below the upper dashed line run (NN parameters are fixed). The key difference between executing in
simulation vs. the real robot is that the robot’s onboard sensors (lidar, cameras, encoders) estimate the state of the environment (e.g., agents’
positions, velocities).

controller to track the desired speed and heading angle
(Line 4). Note that the value function is not used during
inference; it is only learned to stabilize estimates of the policy
gradients during training.

The architecture of the training and inference steps for the
simulated and real robot system are shown in Fig. 4.

IV. RESULTS
A. COMPUTATIONAL DETAILS
The DNNs in this work were implemented with Tensor-
Flow [37] in Python. Each query of the GA3C-CADRL
network only requires the current state vector, and takes on
average 0.4-0.5ms on a i7-6700K CPU, which is approxi-
mately 20 times faster than before [16]. Note that a GPU is
not required for online inference in real time, and CPU-only
training was faster than hybrid CPU-GPU training on our
hardware.

In total, the RL training converges in about 24 hours
(after 2 · 106 episodes) for the multiagent, LSTM network on
a computer with an i7-6700K CPU with 32 parallel environ-
ment threads. A limiting factor of the training time is the low
learning rate required for stable training. Recall that earlier
approaches [16] took 8 hours to train a 4-agent value network,
but now the network learns both the policy and value function
and without being provided any structure about the other
agents’ behaviors. The larger number of training episodes can
also be attributed to the stark contrast in initial policies upon
starting RL between this and the earlier approach: CADRL
was fine-tuning a decent policy, whereas GA3C-CADRL
learns collision avoidance entirely in the RL phase.

The performance throughout the training procedure is
shown as the ‘‘closest last’’ curve in Fig. 16 (the other
curves are explained in Section IV-D2). The mean ±1σ
rolling reward over 5 training runs is shown. After initializa-
tion, the agents receive on average 0.15 reward per episode.

After RL phase 1 (converges in 1.5 · 106 episodes), they
average 0.90 rolling reward per episode. When RL phase 2
begins, the domain becomes much harder (nmax increases
from 4 to 10), and rolling reward increases until converging
at 0.93 (after a total of 1.9 · 106 episodes). Rolling reward
is computed as the sum of the rewards accumulated in each
episode, averaged across all GA3C-CADRL agents in that
episode, averaged over a window of recent episodes. Rolling
reward is only a measure of success/failure, as it does not
include the discount factor and thus is not indicative of time
efficiency. Because the maximum receivable reward on any
episode is 1, an average reward < 1 implies there are some
collisions (or other penalized behavior) even after conver-
gence. This is expected, as agents sample from their policy
distributions when selecting actions in training, so there is
always a non-zero probability of choosing a sub-optimal
action in training. Later, when executing a trained policy,
agents select the action with highest probability.

Key hyperparameter values include: learning rate
Lr = 2 · 10−5, entropy coefficient β = 1 · 10−4, discount
γ = 0.97, training batch size bs = 100, and we use the
Adam optimizer [38].

B. SIMULATION RESULTS
1) BASELINES
This section compares the proposed GA3C-CADRL algo-
rithm to ORCA [5], SA-CADRL [16], and, where applicable,
DRLMACA [10].

We first briefly summarize the ORCA, SA-CADRL, and
DRLMACA algorithms. In ORCA, agents solve a one-step
optimization problem to make a minimal adjustment to the
desired velocity vector, such that the new velocity does
not collide with other agents in the future (assuming they
travel at a constant velocity). Because the one-step horizon
and constant velocity assumption leads to mypoic planning,

VOLUME 9, 2021 10365

M. Everett et al.: Collision Avoidance in Pedestrian-Rich Environments With Deep RL

FIGURE 5. Scenarios with n ≤ 4 agents. The top row shows agents executing GA3C-CADRL-10-LSTM, and the bottom row shows same scenarios with
agents using SA-CADRL. Circles lighten as time increases, the numbers represent the time at agent’s position, and circle size represents agent radius.
GA3C-CADRL agents are slightly less efficient, as they reach their goals slightly slower than SA-CADRL agents. However, the overall behavior is
similar, and the more general GA3C-CADRL framework generates desirable behavior without many of the assumptions from SA-CADRL.

SA-CADRL improves on that approach by learning a value
function that encodes the time-to-goal from various states.
Thus, the online optimization of SA-CADRL also considers
the long-horizon impact of a local control command, via a
quick lookup (DNN query). Like SA-CADRL, DRLMACA
also uses deep RL, but the inputs to the policy include raw
sensor data (laserscans) to inform collision avoidance, rather
than using agent position, velocity, and radius estimates as in
SA-CADRL and this work.

In our experiments, ORCA agents must inflate agent radii
by 5% to reduce collisions caused by numerical issues. With-
out this inflation, over 50% of experiments with 10 ORCA
agents had a collision. This inflation led to more ORCA
agents getting stuck, which is better than a collision in most
applications. The time horizon parameter in ORCA impacts
the trajectories significantly; it was set to 5 seconds.

Although the original 2-agent CADRL algorithm [15] was
also shown to scale to multiagent scenarios, its minimax
implementation is limited in that it only considers one neigh-
bor at a time as described in [16]. For that reason, this work
focuses on the comparison against SA-CADRL which has
better multiagent properties - the policy used for comparison
is the same one that was used on the robotic hardware in [16].
That particular policy was trained with some noise in the
environment (p = pactual + σ) which led to slightly poorer
performance than the ideally-trained network as reported in
the results of [16], but more acceptable hardware perfor-
mance.

The version of the new GA3C-CADRL policy after
RL phase 2 is denoted GA3C-CADRL-10, as it was trained
in scenarios of up to 10 agents. To create a more fair com-
parison with SA-CADRL which was only trained with up

to 4 agents, let GA3C-CADRL-4 denote the policy after RL
phase 1 (which only involves scenarios of up to 4 agents).
Recall GA3C-CADRL-4 can still be naturally implemented
on n > 4 agent cases, whereas SA-CADRL can only accept
up to 3 nearby agents’ states regardless of n.

2) n ≤ 4 AGENTS: NUMERICAL COMPARISON TO BASELINES
The previous approach (SA-CADRL) is known to perform
well on scenarios involving a few agents (n ≤ 4), as its
trained network can accept up to 3 other agents’ states as
input. Therefore, a first objective is to confirm that the new
algorithm can still perform comparably with small numbers
of agents. This is not a trivial check, as the new algorithm
is not provided with any structure/prior about the world’s
dynamics, so the learning is more difficult.

Trajectories are visualized in Fig. 5: the top row shows sce-
narios with agents running the new policy (GA3C-CADRL-
10-LSTM), and the bottom row shows agents in identical
scenarios but using the old policy (SA-CADRL). The colors
of the circles (agents) lighten as time increases and the circle
size represents agent radius. The trajectories generally look
similar for both algorithms, with SA-CADRL being slightly
more efficient. A rough way to assess efficiency in these
plotted paths is time indicated when the agents reach their
goals.

Although it is easy to pick out interesting pros/cons for
any particular scenario, it is more useful to draw conclusions
after aggregating over a large number of randomly-generated
cases. Thus, we created test sets of 500 random scenarios,
defined by (pstart , pgoal , r , vpref) per agent, for many different
numbers of agents. Each algorithm is evaluated on the same
500 test cases. The comparison metrics are the percent of

10366 VOLUME 9, 2021

M. Everett et al.: Collision Avoidance in Pedestrian-Rich Environments With Deep RL

FIGURE 6. Scenarios with n > 4 agents. In the 3-pair swap Figs. 6a and 6d, GA3C-CADRL agents exhibit interesting multiagent behavior: two
agents form a pair while passing the opposite pair of agents. SA-CADRL agents reach the goal more quickly than GA3C-CADRL agents, but
such multiagent behavior is a result of GA3C-CADRL agents having the capacity to observe all of the other 5 agents each time step. In other
scenarios, GA3C-CADRL agents successfully navigate the 10- and 20-agent circles, whereas some SA-CADRL agents collide (near (−1, −1)
and (0, 0) in Fig. 6e and (0, 0) in Fig. 6f).

cases with a collision, percent of cases where an agent gets
stuck and doesn’t reach the goal, and the remaining cases
where the algorithm was successful, the average extra time to
goal, t̄eg beyond a straight path at vpref . These metrics provide
measures of efficiency and safety.

Aggregated results in Fig. 7 compare a model-based algo-
rithm, ORCA [5], SA-CADRL [16], and several variants of
the new GA3C-CADRL algorithm. With n ≤ 4 agents in
the environment (a), SA-CADRL has the lowest t̄eg , and the
agents rarely fail in these relatively simple scenarios.

3) n ≤ 4 AGENTS: ABLATION STUDY
There are several algorithmic differences between
SA-CADRL and GA3C-CADRL: we compare each ablation
one-by-one. With the same network architecture (pre-defined
number of agents with weights shared (WS) for all agents),
GA3C-CADRL-4-WS-4 loses some performance versus
SA-CADRL, since GA3C-CADRLmust learn the notion of a
collision, whereas SA-CADRL’s constant-velocity collision
checking may be reasonable for small n. Replacing the WS
network head with LSTM improves the performance when
the number of agents is below network capacity, potentially
because the LSTM eliminates the need to pass ‘‘dummy’’
states to fill the network input vector. Lastly, the second
training phase (2-10 agents) improves policy performance
even for small numbers of agents.

Overall, the GA3C-CADRL-10-LSTM variant performs
comparably, though slightly worse, than SA-CADRL for
small numbers of agents, and outperforms the model-based
ORCA algorithm.

4) n > 4 AGENTS: NUMERICAL COMPARISON TO BASELINES
A real robot will likely encounter more than 3 pedestrians at a
time in a busy environment. However, experiments with the
SA-CADRL algorithm suggest that increasing the network
capacity beyond 4 total agents causes convergence issues.
Thus, the approach taken here for SA-CADRL is to supply
only the closest 3 agents’ states in crowded scenarios. The
GA3C-CADRL policy’s convergence is not as sensitive to
the maximum numbers of agents, allowing an evaluation of
whether simply expanding the network input size improves
performance in crowded scenarios. Moreover, the LSTM
variant of GA3C-CADRL relaxes the need to pre-define a
maximum number of agents, as any number of agents can be
fed into the LSTM and the final hidden state can still be taken
as a representation of the world configuration.

Even in n > 4-agent environments, interactions still often
only involve a couple of agents at a time. Some specific cases
where there truly are many-agent interactions are visualized
in Fig. 6. In the 6-agent swap (left), GA3C-CADRL agents
exhibit interesting multiagent behavior: the bottom-left and
middle-left agents form a pair while passing the top-right and

VOLUME 9, 2021 10367

M. Everett et al.: Collision Avoidance in Pedestrian-Rich Environments With Deep RL

FIGURE 7. Numerical comparison on the same 500 random test cases (lower is better). The GA3C-CADRL-10-LSTM network shows comparable
performance to SA-CADRL for small n (a), much better performance for large n (b), and better performance than model-based ORCA for all n. Several
ablations highlight SA-CADRL and GA3C-CADRL differences. With the same architecture (SA-CADRL & GA3C-CADRL-4), the GA3C policy performs better for
large n (b), but worsens performance for small n (a). Adding a second phase of training with up to 10 agents (GA3C-CADRL-10-4) improves performance
for all n tested. Adding additional pre-defined agent capacity to the network (GA3C-CADRL-10-6, GA3C-CADRL-10-8) can degrade performance. The LSTM
(GA3C-CADRL-10-LSTM) adds flexibility in prior knowledge on number of agents, maintaining similar performance to the WS approaches for large n and
recovering comparable performance to SA-CADRL for small n.

middle-right agents. This phenomenon leads to a particularly
long path for bottom-left and top-right agents, but also allows
the top-left and bottom-right agents to not deviate much from
a straight line. In contrast, in SA-CADRL the top-left agent
starts moving right and downward, until the middle-right
agent becomes one of the closest 3 neighbors. The top-left
agent thenmakes an escapemaneuver and passes the top-right
on the outside. In this case, SA-CADRL agents reach the goal
more quickly than GA3C-CADRL agents, but the interesting
multiagent behavior is a result of GA3C-CADRL agents
having the capacity to observe all of the other 5 agents each

time step, rather than SA-CADRL which just uses the nearest
3 neighbors. GA3C-CADRL agents successfully navigate the
10- and 20-agent circles (antipodal swaps), whereas several
SA-CADRL agents get stuck or collide.7

Statistics across 500 random cases of 6, 8, and 10 agents
are shown in Fig. 7b. The performance gain by using
GA3C-CADRL becomes larger as the number of agents

7Note there is not perfect symmetry in these SA-CADRL cases: small
numerical fluctuations affect the choice of the closest agents, leading to
slightly different actions for each agent. And after a collision occurs with
a pair of agents, symmetry will certainly be broken for future time steps.

10368 VOLUME 9, 2021

M. Everett et al.: Collision Avoidance in Pedestrian-Rich Environments With Deep RL

FIGURE 8. Random 20- and 40-agent scenarios. These figures highlight the learned policy’s ability to handle large numbers of agents with a single
LSTM-based representation (GA3C-CADRL-10). All agents reach their goals without collision in (a)-(d).

in the environment increases. For n = 6, 8, 10, GA3C-
CADRL-10-LSTM shows a 3-4x reduction in failed cases
with similar t̄eg compared to SA-CADRL. GA3C-CADRL-
10-LSTM’s percent of success remains above 95% across
any n ≤ 10, whereas SA-CADRL drops to under 80%. It is
worth noting that SA-CADRL agents’ failures are more often
a result of getting stuck rather than colliding with others,
however neither outcomes are desirable. The GA3C-CADRL
variants outperform model-based ORCA for large n as well.
The domain size of n = 10 agent scenarios is set to be larger
(12×12 vs. 8×8m) than cases with smaller n to demonstrate
cases where n is large but the world is not necessarily more
densely populated with agents.

Furthermore, Fig. 8 shows that the learned policy gener-
alizes beyond the 2-10 agent scenarios it was trained on.
In particular, Figs. 8a and 8b show 2 random 20-agent

scenarios and Figs. 8c and 8d show 2 random 40-agent sce-
narios. In addition to the examples shown, across 10 random
trials of 20-agent scenarios, all agents reached their goals
successfully (0 collisions or stuck agents). Across 10 random
trials of 40-agent scenarios, only 4/400 trajectories ended in
collisions, and 1 agent became stuck, with 395/400 agents
reaching their goals successfully.

5) n > 4 AGENTS: ABLATION STUDY
We now discuss the GA3C-CADRL variants. For large n,
GA3C-CADRL-WS-4 strongly outperforms SA-CADRL.
Since the network architectures and number of agents
trained on are the same, the performance difference high-
lights the benefit of the policy-based learning framework.
Particularly for large n, the multiagent interactions cause
SA-CADRL’s constant velocity assumption about other

VOLUME 9, 2021 10369

M. Everett et al.: Collision Avoidance in Pedestrian-Rich Environments With Deep RL

FIGURE 9. GA3C-CADRL and DRLMACA 4-agent trajectories. Both algorithms produce collision-free paths; numbers correspond to the timestamp
agents achieved that position. GA3C-CADRL agents are slightly faster; the bottom-most DRLMACA agent (left) slows down near the start of the
trajectory, leading to a larger time to goal (8.0 vs. 7.1 seconds), whereas the bottom-most GA3C-CADRL agent (right) cuts behind another agent near
its vpref . Similarly, the top-right DRLMACA agent slows down near (−2,0) (overlapping circles), whereas the top-right GA3C-CADRL agent maintains
high speed and reaches the goal faster (7.8 vs. 5.0 seconds). Agents stop moving once within 0.8m of their goal position in these comparisons.

agents (to convert the value function to a policy in (9))
to become unrealistic. Replacing the WS network head
with LSTM (which accepts observations of any number of
agents) causes slight performance improvement for n = 6, 8
(GA3C-CADRL-4-WS-4 vs. GA3C-CADRL-4-LSTM).
Since GA3C-CADRL-4-WS-6,8 never saw n > 4 agents
in training, these are omitted from Fig. 7b (as expected,
their performance is awful). The second training phase (on
up to 10 agents) leads to another big performance impro-
vement (GA3C-CADRL-4-* vs. GA3C-CADRL-10-*).
The additional network capacity of the WS approaches
(GA3C-CADRL-WS-4,6,8) appears to have some small,
in some cases negative, performance impact. That observa-
tion suggests that simply increasing the maximum number of
agents input to the network does not address the core issues
with multiagent collision avoidance. The GA3C-CADRL-
10-LSTM variant performs similarly to GA3C-CADRL-10-
WS-4, while providing a more flexible network architecture
(and better performance for small n, as described earlier).
The ability for GA3C-CADRL to retrain in complex sce-

narios after convergence in simple scenarios, and yield a
significant performance increase, is a key benefit of the new
framework. This result suggests there could be other types of
complexities in the environment (beyond increasing n) that
the general GA3C-CADL framework could also learn about
after being initially trained on simple scenarios.

6) COMPARISON TO OTHER RL APPROACH
Table 1 shows a comparison to another deep RL policy,
DRLMACA [10]. DRLMACA stacks the latest 3 laserscans
as the observation of other agents; other algorithms in the

comparisons use the exact other agent states. DRLMACA
assumes vpref = 1m/s for all agents, so all test cases used
in Table 1 share this setting (vpref is random in Fig. 7, explain-
ing the omission of DRLMACA).

During training, all DRLMACA agents are discs of the
same radius, R, and some reported trajectories from [10]
suggest the policy can generalize to other agent sizes. How-
ever, our experiments with a trained DRLMACA policy [39]
suggest the policy does not generalize to other agent radii,
as the number of collisions increases with agent radius.
In particular, 69% of experiments ended in a collision for
4 agents running DRLMACA with r = 0.5m. Moreover,
a qualitative look at DRLMACA trajectories in Fig. 9 demon-
strates how agents often slow down and stop to wait for
other agents, whereas GA3C-CADRL agents often move out
of other agents’ paths before needing to stop. Even though
the implementation in [39] uses the same hyperparameters,
training scheme, network architecture, and reward function
from the paper, these results are worse than what was reported
in [10].

7) FORMATION CONTROL
Formation control is one application of multiagent robotics
that requires collision avoidance: recent examples include
drone light shows [40], commercial airplane formations [41],
robotic soccer [42], and animations [43]. One possible forma-
tion objective is to assign a team of agents to goal coordinates,
say to spell out letters or make a shape.

Fig. 10 shows 6 agents spelling out the letters in
‘‘CADRL’’. Each agent uses GA3C-CADRL-10-LSTM and
knowledge of other agents’ current positions, velocities, and

10370 VOLUME 9, 2021

M. Everett et al.: Collision Avoidance in Pedestrian-Rich Environments With Deep RL

TABLE 1. Performance of ORCA [5], SA-CADRL [16], DRLMACA [10], and GA3C-CADRL (new) algorithms on the same 100 random test cases, for various
agent radii, with vpref = 1.0 m/s for all agents. For both r = 0.2m and r = 0.5m, GA3C-CADRL outperforms DRLMACA, and DRLMACA performance drops
heavily for r = 0.5m, with 69% collisions in random 4-agent scenarios.

FIGURE 10. 6 agents spelling out ‘‘CADRL’’. Each agent is running the same GA3C-CADRL-10-LSTM policy. A centralized system randomly assigns
agents to goal positions (random to ensure interaction), and each agent selects its action in a decentralized manner, using knowledge of other
agents’ current positions, velocities, and radii. Collision avoidance is an essential aspect of formation control.

radii, to choose a collision-free action toward its own goal
position. All goal coordinates lie within a 6 × 6m region,
and goal coordinates are randomly assigned to agents. Each
agent has a radius of 0.5m and a preferred speed of 1.0m/s.
Agents start in random positions before the first letter, ‘‘C’’,
then move from ‘‘C’’ to ‘‘A’’, etc. Agent trajectories darken as
time increases, and the circles show the final agent positions.
Multiple iterations are animated in the video attachment.

C. HARDWARE EXPERIMENTS
This work implements the policy learned in simulation on two
different hardware platforms to demonstrate the flexibility in
the learned collision avoidance behavior and that the learned

policy enables real-time decision-making. The first platform,
a fleet of 4 multirotors, highlights the transfer of the learned
policy to vehicles with more complicated dynamics than the
unicycle kinematic model used in training. The second plat-
form, a ground robot operating among pedestrians, highlights
the policy’s robustness to both imperfect perception from
low-cost, on-board perception, and to heterogeneity in other
agent policies, as none of the pedestrians follow one of the
policies seen in training.

The hardware experiments were designed to demonstrate
that the new algorithm could be deployed using realistic sen-
sors, vehicle dynamics, and computational resources. Com-
bined with the numerical experiments in Fig. 7 and Table 1,

VOLUME 9, 2021 10371

M. Everett et al.: Collision Avoidance in Pedestrian-Rich Environments With Deep RL

FIGURE 11. Robot hardware. The compact, low-cost (< $1000) sensing
package uses a single 2D Lidar and 3 Intel Realsense R200 cameras. The
total sensor and computation assembly is less than 3 inches tall, leaving
room for cargo.

the hardware experiments provide evidence of an algorithm
that exceeds the state of the art and can be deployed on real
robots.

1) MULTIPLE MULTIROTORS
A fleet of 4 multirotors with on-board velocity and position
controllers resemble the agents in the simulated training envi-
ronment. These experiments consider the case of multirotors
flying within the same plane (roughly 1m above the ground).
Each vehicle’s planner receives statemeasurements of the ego
vehicle (position, velocity, heading angle) and of the other
vehicles (positions, velocities) from a motion capture system

at 200Hz [44]. At each planning step (10Hz), the planners
build a state vector using other agent states, an assumed
agent radius (0.5m), a preferred ego speed (0.5m/s), and
knowledge of their own goal position in global coordinates.
Each vehicle’s planner queries the learned policy and selects
the action with highest probability: a desired heading angle
change and speed. A desired velocity vector with magnitude
equal to the desired speed, and in the direction of the desired
heading angle, is sent to the velocity controller. To smooth the
near-goal behavior, the speed and heading rates decay linearly
with distance to goal within 2m, and agents simply execute
position control on the goal position when within 0.3m of
the goal. Throughout flight, the multirotors also control to
their desired heading angle; this would be necessary with a
forward-facing sensor, but is somewhat extraneous given that
other agents’ state estimates are provided externally.

The experiments included two challenging 4-agent scenar-
ios. In Fig. 12, two pairs of multirotors swap positions in
parallel, much like the third column of Fig. 5. This policy
was not trained to prefer a particular directionality – the
agents demonstrate clockwise/left-handed collision avoid-
ance behavior in the center of the room. In Fig. 13, the 4 vehi-
cles swap positions passing through a common center, like
the fourth column of Fig. 5. Unlike in simulation, where the
agents’ dynamics, observations, and policies (and therefore,
actions) are identical, small variations in vehicle states lead to

FIGURE 12. 4 Multirotors running GA3C-CADRL: 2 parallel pairs. Each vehicle’s on-board controller tracks the desired speed and heading
angle produced by each vehicle’s GA3C-CADRL-10-LSTM policy.

10372 VOLUME 9, 2021

M. Everett et al.: Collision Avoidance in Pedestrian-Rich Environments With Deep RL

FIGURE 13. 4 Multirotors running GA3C-CADRL: 2 orthogonal pairs. The agents form a symmetric ‘‘roundabout’’ pattern in the center of the
room, even though each vehicle has slightly different dynamics and observations of neighbors.

slightly different actions for each agent. However, even with
these small fluctuations, the vehicles still perform ‘‘round-
about’’ behavior in the center.

Further examples of 2-agent swaps, and multiple repeated
trials of the 4-agent scenarios are included in the video attach-
ment.

2) GROUND ROBOT AMONG PEDESTRIANS
A GA3C-CADRL policy implemented on a ground robot
demonstrates the algorithm’s performance among pedes-
trians. We designed a compact, low-cost (< $1000) sens-
ing suite with sensors placed as to not limit the robot’s
cargo-carrying capability (Fig. 11). The sensors are a
2D Lidar (used for localization and obstacle detection),
and 3 Intel Realsense R200 cameras (used for pedestrian
classification and obstacle detection). Pedestrian positions
and velocities are estimated by clustering the 2D Lidar’s
scan [45], and clusters are labeled as pedestrians using a
classifier [46] applied to the cameras’ RGB images [47].
A detailed description of the software architecture is in [48].
Despite not having perfect state knowledge, as was available
in the simulations, the robot is able to avoid collisions using
only on-board sensing.

Snapshots of a particular sequence are shown in Fig. 14:
6 pedestrians move around between the robot’s starting posi-
tion and its goal (large circle) about 6m away. Between the

first two frames, 3 of the pedestrians remain stationary, and
the other 3 move with varying levels of cooperativeness,
but these roles were not assigned and change stochastically
throughout the scenario. The robot successfully navigates to
its goal in the proximity of many heterogeneous agents. Other
examples of safe robot navigation in challenging scenarios
are available in the video attachment.

D. LSTM ANALYSIS
This section provides insights into the design and inner work-
ings of the LSTM module in Fig. 3 in two ways: how agent
states affect the LSTM gates, and how the ordering of agents
affects performance during training.

1) LSTM GATE DYNAMICS
We first analyze the LSTM of the trained GA3C-CADRL-
10-LSTM network, building on [26], using notation
from [36]. The LSTM weights, {Wi,Wf ,Wo}, and biases,
{bi, bf , bo} are updated during the training process and fixed
during inference.

Recall the LSTM has three inputs: the state of agent j at
time t , the previous hidden state, and the previous cell state,
which are denoted s̃oj,t , ht−1, Ct−1, respectively. Of the four
gates in an LSTM, we focus on the input gate here. The input
gate, it ∈ [0, 1]nh , is computed as,

it = σ ([Wi,s, Wi,h, Wi,b]T · [s̃oj,t , ht , bi]), (14)

VOLUME 9, 2021 10373

M. Everett et al.: Collision Avoidance in Pedestrian-Rich Environments With Deep RL

FIGURE 14. Ground robot among pedestrians. The on-board sensors are used to estimate pedestrian positions, velocities, and radii. An on-board
controller tracks the GA3C-CADRL-10-LSTM policy output. The vehicle moves at human walking speed (1.2m/s), nominally.

where Wi = [Wi,h, Wi,s], Wi,b = diag(bi), and nh = 64 is
the hidden state size.

Thus, it = [1]nh when the entire new candidate cell state,
C̃t , should be used to update the cell state, Ct ,

C̃t = tanh([WC,s,WC,h,WC,b]T · [s̃oj,t ,ht−1, bt]) (15)

Ct = ft ∗ Ct−1 + it ∗ C̃t , (16)

where ft is the value of the forget gate, computed analgously
to it . In other words, it with elements near 1 means that
agent j is particularly important in the context of agents
[1, . . . , j− 1], and it will have a large impact on Ct . Contrar-
ily, it with elements near 0means very little of the observation
about agent j will be added to the hidden state and will have
little impact on the downstream decision-making.

Because it is a 64-element vector, we must make some
manipulations to visualize it. First, we separate it into quanti-
ties that measure how much it is affected by each component,
{s̃oj,t ,ht−1, bi}:

ĩt,s = ||it − σ ([Wi,h,Wi,b]T · [ht , bi])||2 (17)

ĩt,h = ||it − σ ([Wi,s,Wi,b]T · [s̃oj,t , bi])||2 (18)

ĩt,b = ||it − σ ([Wi,s,Wi,h]T · [s̃oj,t ,ht])||2 (19)

īt =

it,sit,h
it,b

 = k ·

 ĩt,sĩt,h
ĩt,b

 (20)

k =
||it ||1

ĩt,s + ĩt,h + ĩt,b
, (21)

where the constant, k , normalizes the sum of the three com-
ponents contributing to īt , and scales each by the average of
all elements in it .

An example scenario is shown in Fig. 15. A randomly
generated 7-agent scenario is depicted on the left column,
where the ego agent is at (−12, 0), and its goal is the star
at (0, 0). The 6 other agents in the neighborhood are added to
the LSTM in order of furthest distance to the ego agent, so the
tick marks on the x-axis of the right-hand figures correspond
to each neighboring agent. That is, the agent at (−5, 3) is
furthest from the ego agent, so it is agent j = 0, and the agent
at (−10, 0) is closest and is agent j = 5.
For this scenario, īt (top of the stack of three slices) starts

about 0.3, and goes up and down (though trending slightly
upward) as agents are added. The bottom slice corresponds
to it,s, middle to it,h, and top to it,b.

The top and middle slices are tiny compared to the bot-
tom slice for agent 0. This corresponds to the fact that, for
j = 0, all information about whether that agent is relevant
for decision-making is in s̃o0,0 (bottom), since the hidden and
cell states are initially blank (h−1 = 0). As more agents are
added, the LSTM considers both the hidden state and current
observation to decide how much of the candidate cell state to
pass through – this intuition matches up with the relatively
larger middle slices for subsequent agents.

The importance of the contents of s̃oj,t is demonstrated in
the bottom row of Fig. 15. It considers the same scenario
as the top row, but with the closest agent’s velocity vector

10374 VOLUME 9, 2021

M. Everett et al.: Collision Avoidance in Pedestrian-Rich Environments With Deep RL

FIGURE 15. Gate Dynamics on Single Timestep. In the top row, one agent, near (-12,0), observes 6 neighboring agents. Other agent states are
passed into the LSTM sequentially, starting with the furthest agent, near (-5, 3). The top right plot shows the impact of each LSTM cell input on
the input gate as each agent is added to the LSTM: other agent state (bottom slice), previous hidden state (middle slice), and bias (top slice). The
bottom row shows the same scenario, but the closest agent, near (-10,0), has a velocity vector away from the ego agent. Accordingly, the bottom
right plot’s bottom slice slightly declines from j = 5 to j = 6, but the corresponding slice increases in the top right plot. This suggests the LSTM
has learned to put more emphasis on agents heading toward the ego agent, as they are more relevant for collision avoidance.

pointing away from the ego agent, instead of toward. The
values of īt for all previous agents are unchanged, but the
value of īt is larger when the agent is heading toward the
ego agent. This is seen as an uptick between j = 5 and
j = 6 in the bottom slice of the top-right figure, and a
flat/slightly decreasing segment for the corresponding piece
of the bottom-right figure. This observation agrees with the
intuition that agents heading toward the ego agent should have
a larger impact on the hidden state, and eventually on collision
avoidance decision-making.

This same behavior of increased īt (specifically its) when
the last agent was heading roughly toward the ego agent
was observed in most randomly generated scenarios. Our
software release will include an interactive Jupyter notebook
so researchers can analyze other scenarios of interest, or do
similar analysis on their networks.

2) AGENT ORDERING STRATEGIES
The preceding discussion on LSTM gate dynamics assumed
agents are fed into the LSTM in the order of ‘‘closest last.’’
However, there are many ways of ordering the agents.

Fig. 16 compares the performance throughout the training
process of networks with three different ordering strategies.

‘‘Closest last’’ is sorted in decreasing order of agent distance
to the ego agent, and ‘‘closest first’’ is the reverse of that.
‘‘Time to collision’’ is computed as the minimum time at
the current velocities for two agents to collide and is often
infinite when agents are not heading toward one another. The
secondary ordering criterion of ‘‘closest last’’ was used as a
tiebreaker. In all cases, p̃x (in the ego frame) was used as a
third tiebreaker to preserve symmetry.

The same network architecture, differing only in the LSTM
agent ordering, was trained for 1.5M episodes in 2-4 agent
scenarios (Phase 1) and 0.5M more episodes in 2-10 agent
scenarios (Phase 2). All three strategies yield similar per-
formance over the first 1M training episodes. By the end of
phase 1, the ‘‘closest first’’ strategy performs slightly worse
than the other two, which are roughly overlapping.

At the change in training phase, the ‘‘closest first’’ per-
formance drops substantially, and the ‘‘time to collision’’
curve has a small dip. This suggests that the first training
phase did not produce an LSTM that efficiently combines
previous agent summaries with an additional agent for these
two heuristics. On the other hand, there is no noticeable dip
with the ‘‘closest last’’ strategy. All three strategies converge
to a similar final performance.

VOLUME 9, 2021 10375

M. Everett et al.: Collision Avoidance in Pedestrian-Rich Environments With Deep RL

FIGURE 16. Training performance and LSTM ordering effect on training.
The first phase of training uses random scenarios with 2-4 agents; the
final 500k episodes use random scenarios with 2-10 agents. Three curves
corresponding to three heuristics for ordering the agent sequences all
converge to a similar reward after 2M episodes. The ‘‘closest last’’
ordering has almost no dropoff between phases and achieves the highest
final performance. The ‘‘closest first’’ ordering drops off substantially
between phases, suggesting the ordering scheme has a second-order
effect on training. Curves show the mean ±1σ over 5 training runs per
ordering.

In conclusion, the choice of ordering has a second order
effect on the reward curve during training, and the ‘‘closest
last’’ strategy employed throughout this work was better than
the tested alternatives. This evidence aligns with the intuition
from Section III-B.

V. CONCLUSION
This work presented a collision avoidance algorithm,
GA3C-CADRL, that is trained in simulation with deep
RL without requiring any knowledge of other agents’ dynam-
ics. It also proposed a strategy to enable the algorithm to
select actions based on observations of a large (possibly
varying) number of nearby agents, using LSTM at the net-
work’s input. The new approach was shown to outperform a
classical method, another deep RL-based method, and scales
better than our previous deep RL-based method as the num-
ber of agents in the environment increased. These results
support the use of LSTMs to encode a varying number of
agent states into a fixed-length representation of the world.
Analysis of the trained LSTM provides deeper introspection
into the effect of agent observations on the hidden state
vector, and quantifies the effect of agent ordering heuristics
on performance throughout training. The work provided an
application of the algorithm for formation control, and the
algorithm was implemented on two hardware platforms: a
fleet of 4 fully autonomous multirotors successfully avoided
collisions across multiple scenarios, and a small ground robot
was shown to navigate at humanwalking speed among pedes-
trians. Combined with the numerical comparisons to prior
works, the hardware experiments provide evidence of an
algorithm that exceeds the state of the art and can be deployed
on real robots.

ACKNOWLEDGMENT
Yu Fan Chen was with the Massachusetts Institute of Tech-
nology (MIT), Cambridge, MA 02139, USA.

REFERENCES
[1] R. Kummerle, M. Ruhnke, B. Steder, C. Stachniss, and W. Burgard,

‘‘A navigation system for robots operating in crowded urban envi-
ronments,’’ in Proc. IEEE Int. Conf. Robot. Autom., May 2013,
pp. 3225–3232.

[2] P. Trautman and A. Krause, ‘‘Unfreezing the robot: Navigation in dense,
interacting crowds,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Oct. 2010, pp. 797–803.

[3] J. Snape, J. V. D. Berg, S. J. Guy, and D. Manocha, ‘‘The hybrid recip-
rocal velocity obstacle,’’ IEEE Trans. Robot., vol. 27, no. 4, pp. 696–706,
Aug. 2011.

[4] G. Ferrer, A. Garrell, and A. Sanfeliu, ‘‘Social-aware robot navigation
in urban environments,’’ in Proc. Eur. Conf. Mobile Robots, Sep. 2013,
pp. 331–336.

[5] J. Van den Berg, S. J. Guy, M. Lin, and D. Manocha, ‘‘Reciprocal n-body
collision avoidance,’’ in Robotics Research (Springer Tracts in Advanced
Robotics), no. 70. Berlin, Germany: Springer, 2011, pp. 3–19.

[6] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, and R. Siegwart,
‘‘Optimal reciprocal collision avoidance for multiple non-holonomic
robots,’’ in Distributed Autonomous Robotic Systems. Berlin, Germany:
Springer, 2013, pp. 203–216.

[7] H.Kretzschmar,M. Spies, C. Sprunk, andW.Burgard, ‘‘Socially compliant
mobile robot navigation via inverse reinforcement learning,’’ Int. J. Robot.
Res., vol. 35, pp. 1289–1307, Jan. 2016.

[8] P. Trautman, J. Ma, R. M. Murray, and A. Krause, ‘‘Robot navigation in
dense human crowds: The case for cooperation,’’ in Proc. IEEE Int. Conf.
Robot. Autom., May 2013, pp. 2153–2160.

[9] M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard, ‘‘Feature-
based prediction of trajectories for socially compliant navigation,’’ in
Robotics, Science and Systems, 2012. [Online]. Available: http://www.
roboticsproceedings.org/rss08/p25.html

[10] P. Long, T. Fanl, X. Liao, W. Liu, H. Zhang, and J. Pan, ‘‘Towards
optimally decentralizedmulti-robot collision avoidance via deep reinforce-
ment learning,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2018,
pp. 6252–6259.

[11] L. Tai, G. Paolo, and M. Liu, ‘‘Virtual-to-real deep reinforcement learning:
Continuous control of mobile robots for mapless navigation,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2017, pp. 31–36.

[12] I. Sutskever, O. Vinyals, and Q. V. Le, ‘‘Sequence to sequence learning
with neural networks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2014,
pp. 3104–3112.

[13] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using
RNN encoder-decoder for statistical machine translation,’’ 2014,
arXiv:1406.1078. [Online]. Available: http://arxiv.org/abs/1406.1078

[14] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[15] Y. F. Chen, M. Liu, M. Everett, and J. P. How, ‘‘Decentralized non-
communicating multiagent collision avoidance with deep reinforcement
learning,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2017,
pp. 285–292.

[16] Y. F. Chen, M. Everett, M. Liu, and J. P. How, ‘‘Socially aware motion
planning with deep reinforcement learning,’’ in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Sep. 2017, pp. 1343–1350.

[17] M. Everett, Y. F. Chen, and J. P. How, ‘‘Motion planning among dynamic,
decision-making agents with deep reinforcement learning,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2018, pp. 3052–3059.

[18] J. B. Rawlings, ‘‘Tutorial overview of model predictive control,’’ IEEE
Control Syst., vol. 20, no. 3, pp. 38–52, Jun. 2000.

[19] D. Fox, W. Burgard, and S. Thrun, ‘‘The dynamic window approach to
collision avoidance,’’ IEEE Robot. Autom. Mag., vol. 4, no. 1, pp. 23–33,
Mar. 1997.

[20] M. Phillips and M. Likhachev, ‘‘SIPP: Safe interval path planning
for dynamic environments,’’ in Proc. IEEE Int. Conf. Robot. Autom.,
May 2011, pp. 5628–5635.

[21] G. S. Aoude, B. D. Luders, J. M. Joseph, N. Roy, and J. P. How, ‘‘Proba-
bilistically safe motion planning to avoid dynamic obstacles with uncertain
motion patterns,’’ Auto. Robots, vol. 35, no. 1, pp. 51–76, May 2013.

[22] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015.

10376 VOLUME 9, 2021

M. Everett et al.: Collision Avoidance in Pedestrian-Rich Environments With Deep RL

[24] V.Mnih, A. P. Badia,M.Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, ‘‘Asynchronous methods for deep reinforcement
learning,’’ in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[25] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, and J. Kautz, ‘‘Reinforce-
ment learning thorugh asynchronous advantage actor-critic on a GPU,’’ in
Proc. ICLR, 2017, pp. 1–12.

[26] S. Omidshafiei, D.-K. Kim, J. Pazis, and J. P. How, ‘‘Crossmodal
attentive skill learner,’’ 2017, arXiv:1711.10314. [Online]. Available:
http://arxiv.org/abs/1711.10314

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘‘Prox-
imal policy optimization algorithms,’’ 2017, arXiv:1707.06347. [Online].
Available: http://arxiv.org/abs/1707.06347

[28] S. Fujimoto, H. van Hoof, and D. Meger, ‘‘Addressing function approxi-
mation error in actor-critic methods,’’ 2018, arXiv:1802.09477. [Online].
Available: http://arxiv.org/abs/1802.09477

[29] M.Hessel, J.Modayil, H. VanHasselt, T. Schaul, G. Ostrovski,W. Dabney,
D. Horgan, B. Piot, M. Azar, and D. Silver, ‘‘Rainbow: Combining
improvements in deep reinforcement learning,’’ in Proc. 32nd AAAI Conf.
Artif. Intell., Jan. 2018, pp. 1–14.

[30] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang,
J. Zhao, and K. Zieba, ‘‘End to end learning for self-driving cars,’’ 2016,
arXiv:1604.07316. [Online]. Available: http://arxiv.org/abs/1604.07316

[31] B. Kim and J. Pineau, ‘‘Socially adaptive path planning in human environ-
ments using inverse reinforcement learning,’’ Int. J. Social Robot., vol. 8,
no. 1, pp. 51–66, Jun. 2015.

[32] M. Pfeiffer, U. Schwesinger, H. Sommer, E. Galceran, and R. Siegwart,
‘‘Predicting actions to act predictably: Cooperative partial motion planning
with maximum entropy models,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Oct. 2016, pp. 2096–2101.

[33] B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew,
and I. Mordatch, ‘‘Emergent tool use from multi-agent autocurric-
ula,’’ in Proc. Int. Conf. Learn. Represent., 2020. [Online]. Available:
https://openreview.net/group?id=ICLR.cc/2020/Conference

[34] J. García and F. Fernández, ‘‘A comprehensive survey on safe reinforce-
ment learning,’’ J. Mach. Learn. Res., vol. 16, no. 1, pp. 1437–1480, 2015.

[35] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, ‘‘Social LSTM: Human trajectory prediction in crowded
spaces,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 961–971.

[36] C. Olah, ‘‘Understanding LSTM networks,’’ in COURSERA, Neural Net-
works for Machine Learning, 2015. [Online]. Available: https://colah.
github.io/posts/2015-08-Understanding-LSTMs/

[37] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, and M. Kudlur, ‘‘TensorFlow: A sys-
tem for large-scale machine learning,’’ in Proc. OSDI, vol. 16, 2016,
pp. 265–283.

[38] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-
mization,’’ 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.org/
abs/1412.6980

[39] U. Lau. (2019). Rl-Collision-Avoidance. Accessed: Sep. 10, 2019.
[Online]. Available: https://github.com/Acmece/rl-collision-avoidance

[40] Intel. (2019). Intel Drones Light Up the Sky. Accessed: Sep. 4, 2019.
[Online]. Available: https://www.intel.com/content/www/us/en/
technology-innovation/aerial-technology-light-show.html

[41] Airbus. (2019). Airbus Commercial Aircraft Formation Flight: 50-Year
Anniversary. Accessed: Sep. 4, 2019. [Online]. Available: https://www.
youtube.com/watch?v=JS6w-DXiZpk

[42] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa, ‘‘Robocup:
The robot world cup initiative,’’ in Proc. 1st Int. Conf. Auto. Agents, 1997,
pp. 340–347.

[43] Pixar. (2003). Finding Nemo (School of Fish Scene). Accessed:
Sep. 4, 2019. [Online]. Available: https://www.youtube.com/watch?v=
Le13by2WM70

[44] S. Omidshafiei, A.-A. Agha-Mohammadi, Y. F. Chen, N. K. Üre, J. P. How,
J. L. Vian, and R. Surati, ‘‘MAR-CPS: Measurable augmented reality
for prototyping cyber-physical systems,’’ in Proc. AIAA Infotech Aerosp.,
Jan. 2015, p. 643.

[45] T. Campbell, M. Liu, B. Kulis, J. P. How, and L. Carin, ‘‘Dynamic cluster-
ing via asymptotics of the dependent Dirichlet process mixture,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2013, pp. 449–457.

[46] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, ‘‘SSD: Single shot multibox detector,’’ in Proc. Eur. Conf.
Comput. Vis. Cham, Switzerland: Springer, 2016, pp. 21–37.

[47] J. Miller, A. Hasfura, S.-Y. Liu, and J. P. How, ‘‘Dynamic arrival rate
estimation for campus mobility on demand network graphs,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2016, pp. 2285–2292.

[48] M. Everett, ‘‘Robot designed for socially acceptable navigation,’’M.S. the-
sis, Dept. Mech. Eng., MIT, Cambridge, MA, USA, Jun. 2017.

MICHAEL EVERETT received the S.B., S.M.,
and Ph.D. degrees in mechanical engineering
from MIT, in 2015, 2017, and 2020, respec-
tively. He is currently a Postdoctoral Asso-
ciate with the Department of Aeronautics and
Astronautics, MIT, and conducts research with
the Aerospace Controls Laboratory. His research
interests include fundamental gaps in the connec-
tion of machine learning and real mobile robotics,
with recent emphasis on developing the theory of

safety/robustness of learned modules. He was the author of works that won
the Best Paper Award on Cognitive Robotics at IROS 2019, the Best Student
Paper Award and a Finalist for the Best Paper Award on Cognitive Robotics
at IROS 2017, and a Finalist for the Best Multi-Robot Systems Paper Award
at ICRA 2017. He has been interviewed live on the air by BBC Radio and
his team’s robots were featured by Today Show and the Boston Globe.

YU FAN (STEVEN) CHEN received the B.A.Sc.
degree from the University of Toronto, in 2012,
and the S.M. and Ph.D. degrees in aeronau-
tics and astronautics from MIT, in 2014 and
2017, respectively. He is currently the Research
Scientist of Facebook Reality Labs, formerly
known as Oculus Research. His research inter-
est includes perception and decision-making for
robotics and augmented reality applications. His
current research interest includes self-supervised

learning by aggregating information from multiple views and enforcing
geometric consistency. His earlier works on multi-agent collision avoidance
have won the Best Student Paper Award at IROS 2017 and a Finalist for the
Best Multi-Robot Systems Paper Award at ICRA 2017.

JONATHAN P. HOW (Fellow, IEEE) received
the B.A.Sc. degree in aerospace from the Uni-
versity of Toronto, in 1987, and the S.M. and
Ph.D. degrees in aeronautics and astronautics from
the Massachusetts Institute of Technology (MIT),
in 1990 and 1993, respectively. He then studied
for 1.5 years at MIT as a Postdoctoral Associate.
Prior to joining MIT in 2000, he was an Assistant
Professor with the Department of Aeronautics and
Astronautics, Stanford University. He is currently

the Richard C. Maclaurin Professor of aeronautics and astronautics with
MIT. His research interests include robust planning and learning under
uncertaintywith an emphasis onmultiagent systems. He is a Fellow ofAIAA.
He was elected to the Board of Governors of the IEEE Control System Soci-
ety (CSS) in 2019 and is a member of the IEEE CSS Technical Committee on
Aerospace Control and the Technical Committee on Intelligent Control. He is
also the Director of the Ford-MIT Alliance and was a member of the USAF
Scientific Advisory Board (SAB) from 2014 to 2017. He was the Planning
and Control Lead of the MIT DARPA Urban Challenge Team. His work has
been recognized with multiple awards, including the 2020 AIAA Intelligent
Systems Award. He was the Area Chair of International Joint Conference on
Artificial Intelligence in 2019 and will be the Program Vice-Chair (tutorials)
of the Conference on Decision and Control in 2021. He was the Editor-in-
Chief of IEEE Control Systems Magazine from 2015 to 2019. He is also an
Associate Editor of the Journal of Aerospace Information Systems (AIAA)
and the IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS.

VOLUME 9, 2021 10377

