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ABSTRACT Depth-image-based rendering (DIBR) techniques can be used to generate virtual views for free-
viewpoint video application. However, the DIBR algorithms will introduce geometric distortions that mainly
distribute at the disoccluded regions in the synthesized views. It has been demonstrated that conventional 2-D
quality metrics are not suitable for the synthesized views. In this paper, we propose a new quality model for
3-D synthesized images by measuring the block-wise texture similarity and color contrast similarity in
critical areas, and the global gradient magnitude deviation. A critical area detection module is first employed
using a warping method with morphological operation. Then, the critical areas are partitioned into blocks,
which are classified as edge blocks, texture blocks, and smooth blocks by computing discrete cosine
transform coefficient values. Block-wise texture similarity and color contrast similarity in the corresponding
areas are calculated, which are weighted by the size of critical areas. Furthermore, gradient magnitude
deviation is measured to quantify global sharpness. Finally, the two scores are pooled to obtain the overall
quality. The experimental results on the IRCCyN/IVC, IETR, andMCL-3-D DIBR image databases indicate
that our method achieves higher quality prediction accuracy than the state-of-the-art quality metrics.

INDEX TERMS Quality assessment, depth-image-based rendering, 3D synthesized image, view synthesis.

I. INTRODUCTION
In recent years, 3D video applications, such as 3D Television
(3DTV) and Free-viewpoint video (FVV) [1], [2], have
received tremendous attention due to the capabilities for pro-
viding the viewers with deep depth sensation in viewing the
scene from multiple viewpoints. To create dense viewpoints
for scene representation,MultiviewVideo plus Depth (MVD)
format [3] is widely used due to its convenience, which
can synthesize arbitrary viewpoint via Depth-Image-Based
Rendering (DIBR) technique [4]. As explored in [5]–[7],
imperfect texture images or depth maps will affect the gen-
eration of synthesized views. Thus, the perceptual quality of
synthesized views is an important indicator to evaluate the
performance of different MVD-based 3D video generators.

Typical DIBR operation consists of two stages, namely
warping and rendering. In the warping stage, a texture
image is mapped to 3D space based on the corresponding

depth information, and followed by an inverse mapping
from the 3D space to a new virtual view. Some regions
occluded in the original view may become visible in the
virtual view, leading to disoccluded regions. In the render-
ing stage, the disoccluded regions are filled to produce the
final synthesized image. However, due to the imperfect ren-
dering, DIBR algorithms may introduce some new types
of distortions [8] which are quite different from the tradi-
tional distortions, e.g., blur, noise, or compression. Moreover,
the DIBR-synthesized artifacts only occur in disoccluded
regions. Therefore, objective quality assessment metrics are
demanded for predicting the quality of DIBR-synthesized
images.

To date, a number of objective quality assessment approa-
ches [9]–[14] have been proposed for DIBR-synthesized ima-
ges, and several publicly available databases [9], [15], [16]
have been released. Although most of these specifically
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designed metrics for synthesized images perform better than
traditional image quality assessment (IQA) metrics, their
performance still has large room for improvement. Towards
this end, this paper proposes a new quality assessment metric
via measuring local feature similarity and global sharpness.
Based on the visual observations that the human perceives
blur distortions mostly in texture and edge regions, and is
sensitive to color artifacts in homogeneous regions, local
texture and color features are measured from different regions
to investigate howmuch these features in the reference image
are preserved or changed in the synthesized image. The
main contributions of this work are three-folds: 1) We com-
bine local feature similarity and global sharpness for quality
assessment of synthesized images to achieve a more consis-
tent evaluationwith human perception; 2)We employ discrete
cosine transform (DCT) based texture classification method
to partition the critical areas into edge block (ED), texture
block (TE) and smooth block (SM), and evaluate three types
of blocks independently based on their perceptual proper-
ties; 3). We measure the texture similarity by comparing
the number of edge and texture blocks in the reference and
synthesized images weighted by the size of critical areas.

The remainder of this paper is organized as follows.
In Section II, we review the related work, detail our method
in Section III, and finally present the experimental results in
Section IV and the discussion in Section V.

II. RELATED WORK
A. QUALITY ASSESSMENT OF 3D SYNTHESIZED IMAGES
Current quality assessment metrics for synthesized images
can be divided into three categories: local quality assessment
only for the disoccluded regions, global quality assessment
for the synthesized images, and quality assessment combin-
ing local and global quality cues.

Only a few local approaches were proposed for 3D synthe-
sized images [9], [17]–[19]. Bosc et al. [9] first calculated
the distance map between reference and synthesized images,
and employed a threshold to extract critical areas. The mean
structural similarity on the critical areas was measured as the
final quality score. Shao et al. [17] proposed a Color and
Sharpness of Edge Distortion (CSED) algorithm, in which
color distortion was measured by calculating the luminance
loss of the disoccluded regions, and the sharpness of edge dis-
tortion wasmeasured by calculating a depth weighted propor-
tion of remaining edge to the original edge. Jung et al. [18]
proposed a Critical Binocular Asymmetry (CBA) metric
designed for characterizing the binocular asymmetry prop-
erty of human eyes. In the method, critical areas were first
detected using the synthesized left-, right- view images and
the corresponding disparity maps. The average SSIM scores
of the critical areas in left- and right- view images were
measured as the overall CBA score. Gu et al. [19] employed
an autoregression prediction model to capture the geomet-
ric distortions, and then an optimized procedure was uti-
lized by taking the saliency map into account. However, the

performances of the local approaches are limited due to only
considering the local distortion areas.

For global approaches, besides traditional 2D qual-
ity metrics [20]–[28], some quality metrics were pro-
posed for 3D synthesized images [12], [29]–[31].
Conze et al. [29] devised a SSIM-based View Synthesis
Quality Assessment (VSQA) metric, which was modulated
with three visibility weighting maps, including textural com-
plexity, orientations and image contrast. Battisti et al. [12]
proposed a 3D Synthesized view Image Quality Metric
(3DSwIM) metric relied on statistical features extracted from
wavelet subbands of 3D synthesized images.Moreover, based
on the assumption that viewers were more sensitive to distor-
tion around human subjects, a skin detector was employed as
an approximate visual attention model. Stankovic et al. [30]
presented an image quality metric, where Morphological
bandpass wavelet transform was first employed to decom-
pose the images and multi-scale wavelet mean squared error
was obtained. The Morphological Wavelet Peak Signal-
to-Noise Ratio (MW-PSNR) score was calculated based
on multi-scale values. In addition, the Reduced version of
MW-PSNR (RMW-PSNR) was presented in [31]. Com-
pared with MW-PSNR, RMW-PSNR only using the wavelet
subbands at higher decomposition scales. The Morpholog-
ical Pyramids Peak Signal-to-Noise Ratio (MP-PSNR) and
Reduced version of MP-PSNR (RMP-PSNR) were also pre-
sented in [31] to compute the quality score. However, since
these methods only analyze global features, the distortions in
the disoccluded regions cannot be well characterized.

Recently, some works have been conducted to combine
the local and global features to produce better evaluation
performance. Li et al. [32] proposed a LOcal Geometric dis-
tortion in disoccluded regions and global Sharpness (LOGS)
index [32], which first measured local geometric distortions
in disoccluded regions, and employed a reblurring-based
strategy to quantify the global sharpness. The overall quality
score was calculated by pooling the scores of both local
disoccluded regions and global sharpness. Yue et al. [33]
designed a similar quality metric, which measured geomet-
ric distortions by calculating the similarity between cen-
ter pixels and its adjacent pixels in disoccluded regions,
and the distance between the distorted image and its
down-sampled version was measured as global sharpness.
Although the two methods have achieved good perfor-
mance, they still have room for improvement in prediction
accuracy.

B. ANALYSIS of DIBR-RELATED DISTORTIONS
The artifacts of a synthesized view mainly locate in disoc-
cluded regions which are not visible in the reference view-
point, but are visible in the synthesized viewpoint. Different
types of artifacts related to the DIBR-synthesized views have
been defined [8]. The typical artifacts around disoccluded
regions can be listed as follows.

1) Object shifting: A region may be slightly trans-
lated or resized, e.g., object regions may be resized in the
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synthesized image if the depth map is smoothed by Gaussian
filtering preprocessing or encoding. This type of artifact can
be observed in Fig. 1(b), where the shape of the leaf is larger
than that of the reference image. The shape of the vase in the
image is also shifted.

FIGURE 1. Illustrations of the synthesized distortions: (a) Reference
image of (b); (b) Shifting/resizing artifacts; (c) Blurry artifacts;
(d) Reference image of (e); (e) Incorrect rendering of textured areas;
(f) Blocky artifacts.

2) Blurry regions: The distortion is induced by the inpaint-
ing method to fill the disoccluded regions, which is more
noticeable in the boundary of background and foreground.
Blurry regions marked by red, yellow and orange rectangles
around disoccluded regions can be seen in Fig. 1(c).

3) Incorrect rendering: Inpainting methods may fail to
reconstruct complex textured areas. A hole filling approach
based on patch-wise texture synthesis is employed in [34]
to solve this problem, but it may lead to new artifacts
in the synthesized patches, which is obviously observed
in Fig. 1(e).

4) Blocking artifacts: In the process of reconstructing com-
plex textured areas, the use of rectangular patches may also
lead to blocky artifacts in disoccluded regions [34], as shown
in Fig. 1(f).

5) Tiny distortions: Some tiny geometric distortions and
illumination errors are perceptually invisible in the synthe-
sized images, but pixel-wise metrics may penalize these dis-
tortions.

In addition to the above artifacts caused by imperfect ren-
dering, traditional distortions, such as Gaussian blur, white
noise, compression distortion, or transmission error, may be
also included in the texture or depth image, affecting the syn-
thesized image, which can be observed in Fig. 2. Therefore, a
good objective quality metric for synthesized images should
also be robust to these distortions.

FIGURE 2. An example of synthesized distortions: (a) Reference image;
(b) Synthesized image.

C. MOTIVATION OF THIS WORK
Based on the above analysis, although local and global quality
evaluation issues for 3D synthesized images have been stud-
ied in [32] and [33], they still have the following limitations:

1) Due to imperfect DIBR techniques, the DIBR-related
distortions are not restricted to disoccluded regions, but also
appear near or around these regions (defined as critical areas
in our work). Thus, directly evaluating the quality of the
disoccluded regions cannot accurately reflect the degree of
local distortions [33].

2) For a synthesized image, HVS perceives blur distortions
mostly in complex texture and edge regions, while viewers
are more intolerable to color artifacts appearing in homoge-
neous regions. Thus, the distortion in the disoccluded regions
cannot be well characterized by only computing the mean
value of the difference map [32].

To overcome these limitations, we attempt to enlarge dis-
occluded regions to obtain the critical areas, and use DCT
decomposition to classify the blocks of critical areas into ED,
TE and SM blocks. Properties of these blocks are used to
evaluate them independently.

III. PROPOSED METHOD
The framework of the proposedmethod is illustrated in Fig. 3.
The local distortions of a synthesized image are evaluated by
two components: strength and size of critical areas. Specif-
ically, the strength of critical areas is computed by measur-
ing texture similarity and color contrast that use the size of
the critical areas as weight. Meanwhile, gradient magnitude
deviation (GMD) between synthesized and reference images
is computed to quantity global sharpness. The final quality is
a combination of local and globalmeasurements. Some inputs
and outputs used in our method are defined in Table 1.

TABLE 1. Definition of each image.

A. CRITICAL AREA DETECTION
The disoccluded regions in the synthesized image can
be extracted from the unfilled image (i.e., with holes).
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FIGURE 3. Overview of the proposed scheme.

However, using the DIBR algorithm [4], the holes of a syn-
thesized image are removed, and then the image is stretched
to its original size. In this case, it is difficult to accurately
detect the disoccluded regions from the synthesized image,
because geometric displacement between the synthesized and
the unfilled images is existed. To solve this issue, we adopt
SIFT-flow [35] to establish dense correspondences between
two images to overcome the geometric displacement. The
SIFT-flow map between Sr and Ss is obtained by minimizing
the following objective function:

E (w) =
∑
p

min (‖Ss (p)− Sr (p+ w (p))‖ , t)

+

∑
p

η (|µ (p)| + |ν (p)|)

+

∑
p,q∈ε

{min (α |µ (p)− µ (q)|)

+ min (α |ν (p)− ν (q)| , d)} (1)

where w(p) denotes the SIFT flow vector of pixel p, param-
eters t and d denote the thresholds to limit the amount of
maximum error, and η and α are the weights, µ(p) and ν(p)
represent the horizontal and vertical components of the flow
vectorw(p), and q denotes the coordinate of the neighbor set
of p. Using the estimated SIFT flow vectors, the warped ref-
erence image and the warped unfilled image can be obtained,
i.e., Swr (p) = Sr (p+w(p)), Swu(p) = Su(p+w(p)). Fig. 4 (c)
illustrates the warping result.
The disoccluded regions can be extracted by detecting

the pixels without filling in the warped unfilled image. The
obtained regions contain both noticeable distortions andweak
distortions, as shown in Fig. 5(a), which are respectively

FIGURE 4. Example of warping result: (a) Reference image;
(b) Synthesized image; (c) Warped reference image.

FIGURE 5. Example of critical area detection: (a) Detected regions from
synthesized image; (b) Disoccluded regions after removing some isolated
small ‘‘noise’’; (c) Critical areas after morphological operation.

marked by red and yellow rectangles. However, some weak
distortions are too faint to draw human’s attention, called
isolated small ‘‘noise’’, which can be removed if the sizes
are less than p pixels. Here, p is empirically set as 20. Those
with a small area should be merged with the adjacent large
one to share the similar area. Moreover, the distortions in syn-
thesized views are not restricted to the disoccluded regions,
but also appear around these regions. Thus, a rectangle-
based morphological dilation operation is conducted on the
disoccluded regions by applying the minimum rectangles to
cover the disoccluded regions to obtain the final critical areas,
as shown in Fig. 5(c).
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B. DCT-BLOCK PARTITION
DCT coefficients can be classified into direct current (DC)
and alternating current (AC), as shown in Fig. 6. The AC
energy of DCT coefficients, including low frequency (LF),
medium frequency (MF) and high frequency (HF), is an
effective measure of the local texture activity [36], [37].
In this paper, we attempt to employ DCT decomposition to
classify the blocks in local critical areas.

FIGURE 6. DCT block classification.

Specifically, the critical areas of reference and synthesized
images are first divided into 8×8-pixel blocks, each of which
is transformed into 64 coefficients. Then, each DCT block
is assigned a class belonging to ED, TE and SM. Let L, M ,
and H represent the sums of the absolute DCT coefficient
values in the LF, MF and HF bands, respectively, the texture
energy of a block is approximated by:

E = M + H (2)

Since the LF and MF bands reflect edge information,
the values of L/M and (L+M )/H can be used to determine if
there is an edge [36], [37]. Then, C1 and C2 are defined as:

C1 =
(
L̄ + M̄

)
/H̄ , C2 = L̄/M̄ (3)

where L̄, M̄ and H̄ denote the average values of L,M , and H
in a block, respectively. The classification rules for blocks are
further described as follows.
Case A: Since the texture energy of a smooth block is low,

the block is served as a SM if E ≤ ξ1.
Compared with the block with low spatial activities, since

the thresholds for detecting an edge for a block with high
spatial activities needs to be lowered, two sets of ED thresh-
olds are used. Specifically, a block is assigned to ED class if
C1 ≥ v or max{C1, C2} ≥ δ& min{C1, C2} ≥ ε, where v, δ,
and ε are three parameters, δ > ε, denoted by Rule.
Case B: If a block doesn’t meetRule and ξ1 < E ≤ ξ2, it is

assigned to SM class. Otherwise, it is assigned to ED class.
Case C: If a block doesn’t meetRule and ξ2 < E ≤ ξ3, it is

assigned to TE class. Otherwise, it is assigned to ED class.
Case D: E > ξ3. If a block satisfies Rule at δ = kδ1 and

ε = kε1, it is assigned to ED class. Otherwise, it is assigned
to TE class.

TABLE 2. Four cases in block classification.

The above four cases are summarized in Table 2. To verify
the effectiveness of the classification, we test the classifi-
cation rule on four different images, including the original
image, three synthesized images generated using theA6 [38],
A4 [39] and A7 [9] methods respectively. The main distor-
tions of the three synthesized images are incorrect render-
ing of textured areas, blur and information loss, as shown
in Fig. 7. Refer to [36] and [37], the parameters are set as
follows: ξ1 = 125, ξ2 = 290, ξ3 = 900, δ1 = 7, ε1 = 5,
k = 0.1, v = 16. The number of ED, TE and SM are
computed for each image, denoted as NED, NTE and NSM ,
respectively.

FIGURE 7. Example of block statistics: (a) Original image; (b), (c) and (d)
are synthesized images generated using the A6 [38], A4 [39] and A7 [9]
method, respectively. For each image, its number of ED, TE and SM are
listed.

Compared with the original image,NED of the synthesized
image generated using the A6 method is smaller, while NTE
and NSM are bigger. This phenomenon can also be seen
from the results of the incorrect texture synthesis, as shown
in Fig. 7(b). The increasement of NSM and decreasement
of NED and NTE are in accordance with the case that the
main artifact in Fig. 7(c) is blur. Similarly, the unfilled image
in Fig. 7(d) result in dramatic increasement of NED and NTE
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and corresponding decreasement of NSM . Since the number
of 3 classes varies significantly with different distortions,
we may draw the conclusion that the fluctuation of ED and
TE can be utilized to measure the degree of distortions.

C. LOCAL FEATURE SIMILARITY MEASUREMENT
As discussed, this paper uses DCT-based texture classifica-
tion method to extract local features, including block-wise
texture similarity and color contrast similarity in critical
areas. The estimation procedure is shown in Fig. 8. The
images are first converted into the perceptually uniform
CIELab color space [40], where L is the luminance chan-
nel, a and b are two color channels. DCT decomposition
is conducted in the luminance channel. Then, the similarity
comparison and color contrast are computed based on the
classification.

FIGURE 8. Estimation procedure of the Strength block in Fig. 3.

1) BLOCK-WISE TEXTURE SIMILARITY (BS)
BS of complex texture and edge regions reflects the degree
of blur distortions in the synthesized image. To measure
the variation of ED and TE between synthesized and refer-
ence images, the texture similarity of the i-th critical area is
calculated as:

B̂Sk (i) =
Numsk (i)

Numrk (i)
, k ∈ {TE,ED} (4)

where i = 1, . . . ,M , M is the total number of critical areas
in an image, Numsk (i) and Numrk (i) denote the number of
ED or TE in the synthesized and reference image, respec-
tively. As shown in Fig.7, the increasement of NED or NTE
also denotes the degradation of the synthesized image. Thus,
if B̂Sk (i) is larger than 1, the texture similarity can be
revised as:

BSk (i) =


(
B̂Sk (i)

)−1
, ifB̂Sk (i) > 1

B̂Sk (i) , otherwise
(5)

The texture similarity of critical areas is calculated as:

BS =
1
M

∑M
i=1 wi

(
BSTE (i) · BSED (i)

)∑M
i=1 wi

(6)

where wi ∈ (0, 1] is the weight of a critical area determining
based on the size of the area which can be obtained by
calculating the number of pixels in the area. A low BS value
indicates low image quality with heavy distortions in critical
areas.

2) COLOR CONTRAST SIMILARITY (CC)
Besides the blur distortion, color distortion is another impor-
tant factor for image synthesis, which may affect human’s
perception of the scene. Different with the case in complex
texture and edge regions, smooth regions are sensitive to
color distortions [41]. Based on this assumption, according
to the location and size of SM in the luminance channel,
the corresponding regions are detected in the color channel,
written as:

Îk = Ik ⊗ BSM, k ∈ {a, b} (7)

where Ik denotes the color channel, and BSM represents
the location and size of SM in the luminance channel. The
normalized color contrast of the i-th SM is obtained by:

C (i) =
∑

k∈{a,b}

1

2cMk

√
1

N − 1

∑N

j=1

(
ck (i, j)− c̄k

c̄k

)
(8)

where N is the block size. j is the location index of the
block. cMk denotes the maximum color contrast of a or b
for normalization. c̄k is the means of the block. We adopt
normalized mean squared error (NMSE) for the distortion
measure instead of a similarity measure such as:

NMSECC (Cs,Cr |θ1) =
1
T

T∑
i=1

(Cs (i)− Cr (i))2

C2
s (i)+ C2

r (i)+ θ1
(9)

where Cs and Cr denote the color contrast of the synthesized
and reference images, respectively, T is the number of SM
and θ1 is a parameter to avoid unstable results when the
denominator is close to zero. Here, θ1 = 0.000001. The CC
in critical areas can be calculated as:

CC =
1

NMSECC
+ θ2

(10)

where θ2 is a model parameter to avoid unstable results when
the denominator is close to zero. Here, θ2 = 0.001. A low
CC value indicates low image quality with heavy distortions
in critical areas. Then, the quality score of critical areas can
be represented as the product of BS and CC, defined as:

Qlocal = BS · CC (11)

As an example, we illustrate the local quality score for
different synthesized images in Fig. 9, where a higher DMOS
valuemeans the lower image quality. The quality scores of the
synthesized images generated from a same reference image
are in accordance with the subjective measurements. How-
ever, for the two synthesized images with the same DMOSs
generated from different reference images (e.g., 4.129 vs
4.178), the predicted local quality scores are quite incon-
sistent. Thus, another global quality measure is needed to
compensate the inconsistency.
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FIGURE 9. Example of local quality scores vs. DMOS for different DIBR algorithms: (a) Reference
images; (b) Synthesized images from left to right generated using the A7 [9], A6 [38], and A5 [42]
methods, respectively.

D. GLOBAL SHARPNESS ESTIMATION
Although the above texture similarity and color contrast
measurement can effectively capture the local synthesized
errors, it ignores the global sharpness variation, which
can also be perceived by viewers. Thus, we add global
sharpness measurement to the proposed quality metric. The
image gradient is a popular feature in image quality assess-
ment [22], [43], [44]. In the paper, GMD between synthe-
sized and reference images is employed to quantify the global
sharpness. The standard deviation of gradient magnitude is
computed as:

δt =
1
L

∑
(x,y)∈�

[
mt (x, y)− m̄t

]2
mt (x, y) =

√(
∇f tx

)2
+

(
∇f ty

)2
, t ∈ (r, s) (12)

where mt (x, y) denote the gradient magnitude of warped-
reference or synthesized image at location (x, y), which can
be expressed by the root mean square of horizontal gradient fx
and vertical gradient fy. The overall sharpness score of a syn-
thesized image is defined as the distance of standard deviation
between the synthesized and warped reference images:

Qglobal =‖ δs − δr ‖ (13)

E. QUALITY EVALUATION
Local and global features are complementary as they quantify
different aspects of quality degradation. With the quality
score Qlocal of local critical areas and global score Qglobal ,
it is desirable to combine them to produce an overall score.
The following simple pooling strategy is employed to define
the final quality score of a synthesized image:

Q = β · Qlocal + γ · Qglobal (14)

where the parameters β and γ are used to balance the relative
contributions of local critical areas and global GMD. In the
experiment, we empirically set β = 8, γ = 15.

IV. PERFORMANCE EVALUATION
A. BENCHMARK DATABASES
In the experiment, three benchmark DIBR databases, includ-
ing IRCCyN/IVC [9], IETR [16] and MCL-3D [15], are
used for performance evaluation. All these databases con-
tain reference views, the corresponding synthesized views
obtained by different DIBR algorithms and the associated
subjective rating scores. The basic introduction of these
datasets is summarized in Table 3.

TABLE 3. Basic information of the used benchmark databases.

The IRCCyN/IVC database is the first released benchmark
database for synthesized image quality assessment, which
contains 12 reference images and 84 synthesized images
generated using seven DIBR approaches. The Mean Opinion
Score (MOS) is provided for each synthesized image in the
dataset.

IETR database contains 10 reference images and 140 syn-
thesized images generated using seven state-of-the-art
DIBR view synthesis algorithms, including VSRS [45],
Zhu and Li’s [46], Criminisi’s [47], Luo’s [48], HHF [49],
LDI [50] and Ahn and Kim’s [51]. Both interview interpola-
tion and single view based synthesis methods are considered
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TABLE 4. Performance comparison on the IRCCyN/IVC database. The best results are in bold.

in the database. The DMOS is provided for each synthesized
image in the dataset.

MCL-3D database [15] contains 693 stereoscopic image
pairs from 9 image-plus-depth sources. Six image distortions,
including Gaussian blur, additive white noise, down-sampled
blur, JPEG and JPEG-2000 (JP2K) compression and trans-
mission error, are added on the texture/depth image before
rendering. The distortion caused by four different rendering
algorithms was also considered. The MOS is provided for
each synthesized image in the dataset.

B. EXPERIMENTAL PROTOCOLS
Considering the non-linearity of subjective scores, we first
compute the objective prediction scores, and then use the
nonlinear regression to map the scores to subjective ratings
based on a five-parameter logistic function:

sp = µ1

[
1
2
−

1
1+ exp (µ2 (so − µ3))

]
+ µ4so + µ5 (15)

where so is the objective score as input, and µ1, µ2, µ3,
µ4 and µ5 are the parameters to be fitted. To benchmark
the performance of image quality assessment metrics, four
commonly-used performance indicators are used, namely
Pearson Linear Correlation Coefficient (PLCC), Spearman
Rank order Correlation Coefficient (SRCC), Kendall’s Rank
Correlation Coefficient (KRCC) and RMSE. Specifically,
PLCC and RMSE are calculated between the subjective and
objective scores to evaluate the prediction accuracy, while
SRCC and KRCC are employed to measure prediction mono-
tonicity. For a perfect objective model, we have PLCC =
SROCC = KROCC = 1 and RMSE = 0.

C. OVERALL PERFORMANCE
In this section, we evaluate the proposed method on
the IRCCyN/IVC DIBR database and compare it with
16 state-of-the-art approaches, including: 1) the six tradi-
tional 2D quality metrics: PSNR, SSIM [20], FSIM [21],

GSM [22], LTG [23] and ADD-SSIM [24]; 2) the ten
existing DIBR quality metrics: Bosc’s [9], VSQA [29],
MW-PSNR [30], RMW-PSNR [30], MP-PSNR [31],
RMP-PSNR [31], 3DSwIM [12], SIQE [10], DSQM [11]
and LOGS [32]. FromTable 4, we have derived the following
conclusions: 1) traditional 2D image quality metrics are not
effective in evaluating the quality of synthesized images. The
best performance of 2D metric is obtained by ADD-SSIM,
but the PLCC and SRCC are only 0.647 and 0.5611, respec-
tively; 2) most existing DIBR quality metrics perform bet-
ter than traditional 2D quality metrics, e.g., RMP-PSNR,
3DSwIM, DSQM and LOGS. Among these metrics, LOGS
metric produces the best results with PLCC = 0.8256 and
SRCC = 0.7812, respectively. In contrast, our method deliv-
ers the best performance, significantly better than the LOGS
metric.

In Fig.10, we also provide the scatter plots of the pre-
dicted quality scores against the DMOS values for some
representative DIBR objective metrics, e.g., Bosc et al.’s [9],
VSQA [29], MW-PSNR [30], MP-PSNR [31], 3DSwIM
[12], SIQE [10], DSQM [11] and LOGS [32]) on the
IRCCyN/IVC DIBR database. It can be observed that the
proposed model can provide relatively compact distribution
along the diagonal of the scatter plots.

D. EVALUATION ON IETR AND MCL-3D DATABASES
We also present our results on the other two challenging
IETR [16] and MCL-3D [15] databases. Due to the lack
of hole images in the IETR database, inspired by the works
in [9], critical areas are extracted using a self-adaption
threshold. The results in terms of PLCC, SRCC, and RMSE
on the two databases are illustrated in Table 5 and Table 6,
respectively. From the results, we make the following obser-
vations: 1) For the IETR database, the proposed metric out-
performs all competing 2D metrics and DIBR metrics except
for LOGS metric. The reason may be that local measure-
ments of the proposed metric are highly dependent on the
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FIGURE 10. Scatter plots of quality indices designed for view synthesis on IRCCyN/IVC database.

TABLE 5. Performance results on IETR database. The best results are in bold.

accuracy of critical area detection, whereas the database does
not have unfilled images; 2) For the MCL-3D database,
the performance of the proposed metric is only inferior to
PSNR-induced metrics. This is attributable to the fact that
PSNR-induced metrics are effective to measure the global
image artifacts in the MCL-3D database. Although LOGS
and PSNR-induced metrics perform better than the proposed
method in one of the three DIBR databases, both of them
deliver inferior performances in the other two databases.
Therefore, our method has comparatively consistent perfor-
mances over different databases.

E. IMPACT OF EACH QUALITY COMPONENT
In our model, we used three types of features, i.e., local BS
and CC features, and global GMD features, to reveal local and
global feature quality cues. In order to investigate the impor-
tance of each feature, we separately test the performance
using independent feature on the IRCCyN/IVC database.
As shown in Table 7, combining three features achieves
the best performance. Moreover, the scheme only using
BS feature performs better than other scheme only using
CC or GMD feature, because most synthesized-related errors
are occurred in critical areas. Although the performances of
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TABLE 6. Performance comparison on the MCL-3D database. The best results are in bold.

TABLE 7. Performance of different components.

CC are very low, if CC component is omitted, the SRCC is
reduced to 0.7531, which is far less than the performance of
the proposed metric.

F. FURTHER DISCUSSION
Although our method demonstrates higher performance com-
pared with the existing 2D quality metrics and DIBRmetrics,
the following issues still deserve to be considered in the future
work:

1) The preprocessing step with warping methods has pos-
itive and negative effects. It can handle the displacement
between synthesized and reference images, but the warping
method may compensate some geometric distortions in the
critical areas. Therefore, suppressing the negative effect of
warping methods is expected to further improve the perfor-
mance of the proposed method.

2) Critical area detection is a significant step which affects
the accuracy of local quality evaluation. However, the associ-
ated unfilled images are not available in the practical applica-
tion. Thus, an effective method which only uses synthesized
and reference images is demanded for detecting critical areas.

V. CONCLUSION
This paper has presented a quality model for DIBR-
synthesized images based on global and local feature anal-
ysis. The motivation of this work is to explore some known
facts of the human visual system, which first rapidly and
unconsciously produces a global perception and then gradu-
ally focuses on specific local areas for the perception of image
quality, to build a model that is useful for quality evaluation
of DIBR-synthesized images. For this purpose, the proposed
model is dedicated to characterize the quality of a synthe-
sized image from both local and global perspectives. For
local feature analysis, block-wise texture similarity and color

contrast in critical areas are calculated to characterize local
visual information of a synthesized image. For global feature
analysis, the standard deviation of the gradient magnitude
map is employed to analyze the global visual information.
Finally, local and global features are combined to produce the
quality score. Although the proposed method has shown bet-
ter performance than traditional 2D quality metrics and exist-
ing DIBR metrics, it still belongs to a full-reference model
requiring a reference image for comparison. Therefore, future
work may focus on no-reference metrics to provide a more
practical solution for assessing the quality of synthesized
images.
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