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ABSTRACT The explosive growth of massive data generation from Internet of Things in industrial,
agricultural and scientific communities has led to a rapid increase for data analytics in cloud data centers.
The ubiquitous and pervasive demand for near-data processing urges the edge computing paradigm in
recent years. Edge computing is promising for less network backbone bandwidth usage and thus less data
center side processing pressure, as well as enhanced service responsiveness and data privacy protection.
Computation offloading plays a crucial role in edge computing in terms of network packets transmission
and system responsiveness through dynamic task partitioning between cloud data centers and edge servers
and edge devices. In this paper a thorough literature review is conducted to reveal the state-of-the-art of
computation offloading in edge computing. Various aspects of computation offloading, including energy
consumption minimization, Quality of Services guarantee, and Quality of Experiences enhancement are
surveyed. Moreover, resource scheduling approaches, gaming and tradeoffing among system performance
and overheads for computation offloading decision making are also reviewed.

INDEX TERMS Edge computing, computation offloading, task partitioning, game theory, edge-cloud
collaboration.

I. INTRODUCTION
The cloud computing paradigm is a service provisioning
model that provides user access to scalable distributed capa-
bilities including computing, networking, and storage in the
cloud data centers. Cloud service providers (CSPs) provide
flexibility and efficiency for end users by providing services
such as software as a service (SaaS), platform as a service
(PaaS) and infrastructure as a service (IaaS). For example,
service vendors can scale services to fit their needs, customize
applications and access cloud services from anywhere with
an internet connection. Thus cloud-based services are ideal
for businesses with growing or fluctuating internet band-
width demands. Moreover, with cloud computing, enterprise
users can ship applications to market more quickly, without
worrying about underlying infrastructure costs, maintenance,
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disaster recovery, and automatic software updates. To lever-
age the benefits of cloud computing, various deployment
models including private cloud, public cloud, and hybrid
cloud, are key factors for system reliability and scale for
business needs. From its introduction, cloud computing has
changed the way of business of all vertical domains as
well as human being’s daily life dramatically. Furthermore,
enterprise IT investments for cloud-based offerings will be
faster than growth in traditional (non-cloud) IT offerings,
such cloud shift from traditional software orientation making
cloud computing one of the most disruptive forces in IT mar-
kets. Therefore, it’s predicted that cloud service is inevitably
becoming pervasive and ubiquitous in any commercial or per-
sonal market, which is similar with the prevalent dominance
of Internet in nowadays.

Varghese and Buyya [1] review the evolution and advance
of cloud computing from cloudlet, ad hoc cloud, multi-
cloud, heterogeneous cloud micro-cloud, and introduce four
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emerging cloud computing architectures including fog and
mobile edge computing [2], volunteer computing, serverless
computing and software-defined computing. They also dis-
cuss the future impact of cloud computing on IoT (Internet
of Things), big data, and autonomous learning systems and
identify the challenges of developing the next cloud comput-
ing system including security and reliability enhancement,
sustainable cloud infrastructure, and efficient resource man-
agement strategies.

Although cloud computing can provide organizations
dynamic, cloud-based operating models for cost optimiza-
tion and increased competitiveness, it also has some disad-
vantages in many scenarios like industrial IoT, connected
autonomous vehicles (CAVs), smart homes, and smart cities.
For example, cloud computing based processing requires
huge volume of data transportation from end devices and sen-
sors, which consumes large network bandwidth. Moreover,
cloud data center based analysis is not possible for huge data
generated from thousands of millions of end devices due to
the incapability of computing and storage. Therefore, cloud
computing based processing can’t provide prompt respon-
siveness and short latency for big data analytics frommassive
IoT devices. Moreover, in some scenarios where data privacy
and security is the first concern, cloud computing data centers
are not trustful to conduct the data analytics. In contrast, data
privacy preserving requires that the data is processed near its
source, other than in the remote cloud data centers.

Edge computing [3] is emerged as a promising paradigm
that provides capabilities of processing or storing critical
data locally and pushing all received data to a central data
center or cloud storage repository. For example, in IoT use
cases, the edge devices collect data from sensors and process
it there, or send it back to a data center or the cloud for
processing if the local processing power is not enough. To
this end, edge computing paradigm can take some of the load
off the central cloud data centers and migrate the tasks from
cloud computing centers to network edge devices, reducing
or even eliminating the processing workload at the central
location. Similarly, Fog computing mitigates the potential of
IoT services and new resource sharing as a complement of tra-
ditional cloud computing models and the combination of fog-
cloud, and fog-cloud integration provides a foundation for
creating a new highly heterogeneous computing and network
architecture [4], [5].

The demand for scalable real-time data analytics in IoT
scenarios is the main driving force for edge computing.
In edge computing environment, data generation and con-
sumption are concentrated to the edge of the network in
many applications of smart home, smart city, and industrial
internet. In edge computing, computation offloading plays
an important role in latency minimization and Quality of
Services guarantee. Specifically, in order to tradeoff among
system overheads, energy consumption, and system perfor-
mance, tasks may be offloaded to edge devices from the
cloud data centers. Various computation offloading strategies
and approaches [6]–[37] are proposed, including game and

FIGURE 1. The cloud computing model.

cooperation between edge and cloud, heuristic offloading,
etc. In addition, computation offloading oriented optimiza-
tion is also proposed, such as the collaboration between the
edge and the cloud [38]–[41], and energy-efficient computa-
tion offloading and resource allocation [42]–[52].

The reminder of this paper is organized as follows. In
Section 2, we introduce the basic concepts of edge comput-
ing. Then we survey some work on edge-cloud collabora-
tion for computation offloading in section 3. We evaluate
the work on decision making of computation offloading in
section 4. The case studies of computing offloading strategies
are selected and discussed in section 5. In section 6, we
give some review on performance evaluation and simula-
tion of edge computing. Finally, we summarize the paper in
section 7.

II. THE EDGE COMPUTING PARADIGM
A. EDGE COMPUTING ARCHITECTURE
Edge computing is emerging as a new computing model
where the processing to data is close to the date source, i.e.,
the network edge. In this scenario, the network edge can be
places where data storage, computing, or networking services
is performed. With the advances of IoT, 5G communica-
tion, autonomous driving, and smart cities, edge computing
is connecting and bridging the gap between numerous end
devices and the centralized cloud computing data centers.
As edge computing tries to bring application hosting from
centralized data centers down to the network edge, closer
to end users and the data generated by applications, it can
improve content delivery and application user experience by
shortening network transmission path between the end user’s
device and the location where the data they are accessing
is placed. Moreover, in some cases where data privacy and
security is the main concern, edge computing promises to
provide data privacy preservation by keeping data inside the
network edge rather than sending the data to centralized cloud
data centers, which in turn provides lower latency, increase
reliability and improves overall network efficiency.

Figure 1 gives the cloud computing model, where the data
producers transmit the generated source data to the cloud
while the terminal devices such as servers, personal comput-
ers, mobile phones, and other devices send requests to the
cloud center to obtain data processing results.

Since the cloud computing paradigm is designed for cen-
tralized service provisioning based on the economy of scale,
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FIGURE 2. The edge computing model [57].

it’s not suitable and capable to provide processing capabilities
on numerous decentralized edge devices due to constraints of
backbone network bandwidth and processing power in cloud
data centers.

Moreover, since hundreds of millions of edge devices are
geographically deployed in a distributed manner, and the pro-
cessing to data is also performed on heterogeneous distributed
devices, it’s very important to design new system architecture
suitable for edge computing environments, because the data
volume generated by various applications and devices run-
ning in the edge computing environment is huge and highly
heterogeneous. Figure 2 presents the edge computing model.

With the ever-increasing deployment of various IoT
devices, lots of mobile devices and applications needs
more stringent requirements on service quality and real-
time responsiveness of data processing. Unlike the traditional
cloud computing model, in the edge computing model all
computations and processing are performed at the edge of the
network and it extends computing, networking, and storage
capabilities from the cloud data center to the edge of the
network, to fully exploit the computing power of end edge
devices. Shi et al. [3] presents the challenges of reliability,
isolation, scalability, and differentiation that may be faced
when designing new architectures and operating systems in
edge computing environments and the corresponding solution
through the studying of the edge operating system architec-
ture deployed in smart homes.

In order to adapt to various application scenarios and meet
different service requirements in the cloud computing envi-
ronment, various modified computing models have been pro-
posed. The Fog computing model was proposed and defined
as a highly virtualized computing platform for migrating
cloud computing center tasks to network edge devices. As
shown in Figure 3, fog computing centralizes data storage,
processing, and applications into devices on the network
edge, eliminates the need to save all of the data to the cloud

FIGURE 3. Collaboration between edge and fog computing.

TABLE 1. Existing work on the edge computing paradigm.

data center and adds an intermediate layer between the end
device and the data center.

The intermediate layer consists of fog servers deployed at
the network edge to reduce the communication between cloud
data centers and edge devices and reduce the bandwidth usage
and power consumption of the backbone networks.Moreover,
the cloud-edge collaboration generates high network commu-
nications and service delays while the data privacy and energy
consumption during data transmission are also should be
considered. Shi et al. [53] argue that edge computing and fog
computing have some similarities, but the difference is that
the fog computing focuses on the management of back-end
distributed shared resources, while edge computing empha-
sizes the design and implementation of edge intelligence
in addition to the infrastructure and edge devices, extends
the processing power to the end devices, and the real-time
processing of data is done by devices in the edge network.
We list some research work on the basic concepts of edge
computing, mobile edge computing, and fog computing in
Table 1.

B. RESOURCE ABSTRACTION AND PROGRAMMING
MODEL
In cloud computing environment, users of cloud services can
write and compile code on the target platform and then run it
on the cloud server without prior knowledge of the deployed
infrastructure. However, in the edge computing environment,
the task execution model is different from that in cloud
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computing. The tasks in edge computing can be partitioned
into several subtasks and each subtask can be offloaded to
different edge devices for faster execution. In order to provide
low latency of parallel subtask execution, it’s required that the
task must be partitionable and migratable for data processing
on the edge devices.

Ramírez et al. [4] evaluated the potential benefits of Fog-
to-Cloud (F2C) architecture in dynamic service scenarios,
including service’s response time, power consumption, net-
work bandwidth usage, and the probability of service outage.
Their results show that the combined fog-to-cloud (F2C)
architecture brings significant performance benefits com-
pared to the traditional pure cloud computing based solution.
Masip-Bruin et al. [5] compared two existing hierarchical
resource architecture models, i.e., OpenFog RA and F2C, on
resource continuity and collaborative management, and pro-
posed a distributedmanagement frameworkwhich is effective
to guarantee resource continuitywithin a layered architecture.

In order to maximize the performance of edge computing
based applications, Li et al. [55] designed a lightweight pro-
gramming language, namely, EveryLite. Their experimental
results show that the execution time of EveryLite is lower
77% and 74%, and the memory footprint is 18.9% and 1.4%,
comparing to JerryScript and Lua, respectively.
In the forthcoming era of Internet of Everything (IoE),

edge devices can act as both data producer and consumer,
which makes it possible to process private data close to data
owner. Zhang et al. [56] proposed the Firework programming
model for edge computing, which contains Firework Man-
ager andFirework Node. The Firework model combines geo-
graphically distributed data sources by creating virtual shared
data views, while stakeholders, i.e., the Firework Nodes, pro-
vide end users with a set of predefined functional interfaces
for user access. The interface of the Firework model is a set
of data sets and functions, and the functions are bound to the
data. To this end, the Fireworkmodel makes the data process-
ing closer to the data producer and reduces the response delay.
Moreover, since all data stakeholders in the Firework model
need to register their corresponding data sets and responsive
functions into a data view and the registered data views are
visible to all participants in the same Firework model, any
participants can combine multiple data views to conduct data
analysis in a specific context. The Firework Manager decom-
poses the service request into several subtasks that are sent to
each participant, and then each participant will perform the
corresponding computing task on their local device.

C. CASE STUDIES OF EDGE COMPUTING APPLICATION
Application cases are the most direct and effective way to
verify whether new technologies are valuable, which is also
reliable when it comes to edge computing. Nowadays, edge
computing has been applied in IoT, smart home, intelligent
transportation, and smart city [54]. Chabas et al. [57] identi-
fied 11 industrial fields and more than 100 edge computing
use cases, and argues that these industry applications can
create more than $200 billion in hardware value over the next

five to seven years until 2025. Three popular application cases
are listed as follows:

1) IoT
The wide deployment of IoT devices and the increasing com-
mercial demand for real-time data processing and the high
quality of service of user experiences urge the creation of
edge computing. Since more and more intelligent devices and
sensors are deployed in the IoT environment, data production
and consumption are performed and shifted to the edge of
network gradually, which also needs elaborate computing
technology for real time analytics and pervasive processing.

2) SMART HOME
Home is one of the most important places that each person
spent more time there. Technologies for better quality life and
living conditions have changed human being’s lifestyle and
lift quality. Deploying various sensors at home and sending
collected data to remote cloud data center for processing
introduce high risk of private data leakage, data abuse, and
physical threat to massive local residents. Therefore, the tra-
ditional cloud computing based data processing is not suitable
for smart home applications, and data privacy preservation
enabled edge computing emerges as the perfect alternative to
smart home.

3) SMART CITY
City is the place that consists of many smart homes, which
implies that the edge computing paradigm can be extended
from family level to city level, i.e., the smart city. However,
since a typical city also produces large volume of public ser-
vices related data, even the most advanced cloud data centers
can’t process these data in real time for city-scale interac-
tive analytics due to the lack of capabilities of computing,
storage, and networking. If data processing can be offloaded
to the edge of the network, it can reduce the pressure of
cloud data centers and make it possible for near real time
analytics. Moreover, in a smart city, one of the most important
application scenarios is intelligent transportation. Networked
traffic sensors and cameras provide perfect platform for edge
data processing close to local data source, which makes it
possible to solve traffic problems facing the urban residents,
from traffic conditions alerts to road conditions prediction.

III. EDGE-CLOUD COLLABORATION
Although the traditional cloud computing technology cannot
meet requirements in terms of real-time response, privacy
protection, and less energy consumption, the edge computing
paradigm is not in essence replacing the cloud computing
technology. In contrast, the cloud computing and edge com-
puting are complementary and mutually reinforcing each
other in many scenarios. Moreover, the edge computing and
cloud computing will collaborate in the networked comput-
ing environment including scenarios such as IoT, smart city,
smart home, industrial internet, connected autonomous vehi-
cles, etc. The edge computing technology can fully exploit
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TABLE 2. Existing work on resource allocation in edge computing.

the computing capabilities of the edge devices perform par-
tial or whole computing at the edge devices, and thereby
reducing the computing demand of the cloud data centers
and the transmission bandwidth of core network. The col-
laboration of edge computing and cloud computing provides
more opportunities for pervasive data analytics in IoT and
low latency computing for latency critical applications such
as autonomous driving and industrial networked systems.

Therefore, the edge computing paradigm still needs the
cloud data center’s powerful computing capabilities and mass
storage infrastructure, while the centralized cloud data center
also needs the edge device to process the massive data on
the edge devices for lower latency, privacy protection, and
less energy consumption. In this section, we will elaborate
on the collaboration on three aspects: resource management
and allocation, execution model, and resource partitioning.

A. RESOURCES MANAGEMENT AND ALLOCATION
In decentralized edge computing environment, resource must
be allocated, such as processor, disk, and network bandwidth
for distributed data processing. Since edge devices may have
limited resources including computing, storage, and network-
ing I/O, resource allocation must be performed based on both
existing available resources and performance constraints.
Specifically, resource allocation is performed under multiple
conditions, including resource usage quota, power and energy
consumption budget, and latency.

We list some research work on resource allocation in edge
computing environment in Table 2.

Liu et al. [58] tried to tradeoff between energy consump-
tion, execution delay and offloading cost, and proposed an
optimization strategy for optimizing these three objectives
simultaneously. Their simulation experiments show that the
joint optimization strategy can guarantee better quality of
service.

Since the data arrival pattern and deadline for data
processing vary significantly in different edge computing
scenarios, it is not feasible to formulate general resource
allocation mechanism in edge-cloud collaboration environ-
ment. Liu et al. [64] studied the energy-saving resource man-
agement strategy of asynchronous mobile-edge computation
offloading (MECO) systems. The best data partitioning and
time division policy is derived by analyzing the general arrival
data series, and then the total mobile energy consumption is
minimized by using the block coordinate descent approach.
Some approaches [65]–[70] are proposed to help decide ser-
vice selection in such scenarios to meet the real-time, privacy
preservation and energy consumption minimization for big
data analytics.

Similarly, Wang et al. [59] proposed and developed
the edge node resource management framework, namely,
ENORM. They proposed a new configuration and deployment
mechanism for linking communication between edge nodes
and the cloud data center such that ENORM can provide
offloadedworkloads for edge nodes.Moreover,ENORM inte-
grates low overhead and dynamic auto-extension mechanism
to add or remove resources to manage workloads on edge
nodes effectively. They validated the feasibility of ENORM
through context-sensitive and delay-sensitive online gaming
use cases and the results show that ENORM can reduce
application service latency up to 20% to 80% and reduce the
frequency of data transmission and communication between
edge nodes and the cloud up to 95%.

Currently, the networked systems are increasingly prone
to be heterogeneous in terms of hardware configuration,
software stack, networking media, and application domains.
Specifically, data volume, data producing speed and service
quality are highly diverse in edge-cloud collaboration envi-
ronment. Such heterogeneity poses lots of challenges, such
as how to address the shortage of mobile device resources,
and how to tradeoff between the limited computing power
and energy constraints of mobile nodes. Tan et al. [60]
designed a virtual and fully duplex small scale cellular net-
work framework based on caching heterogeneous services in
edge computing. They proposed a novel resource allocation
scheme that not only considers the caching mechanism, but
also adopts fully duplex communication. Moreover, the pro-
posed scheme also considers user correlation, power control,
caching, computation offloading strategy, and resource allo-
cation at the same time.

In mobile computing environment, energy consumption is
the key concern for resource allocation and computing per-
formancemaximization. Researchers proposed energy saving
approaches for resource allocation of single user and mul-
tiuser mobile edge computing offloading systems (MECO).
However, these existing works focus on the design of com-
plex algorithms rather than the design of optimal resource
allocation strategy.

You et al. [61] investigated the resource allocation of
multi user MECO systems based on time division multiple
access (TDMA) and orthogonal frequency division multiple
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access (OFDMA) and consider cases with infinite or lim-
ited cloud computing capabilities. For TDMA mobile edge
computing offloading systems with infinite cloud computing
capabilities, they propose the resource allocation strategy by
redefining the offloading priority function and modifying the
previous threshold policy and then propose a low complex-
ity sub-optimal resource allocation algorithm based on the
approximate offloading priority. In other hand, for OFDMA
mobile edge computing offloading systems with unlimited
cloud computing capabilities, they solve the resource alloca-
tion problem as a mixed integer optimization problem and the
prioritized TDMA strategy is used to optimize resource allo-
cation, which includes: (1) translating the OFDMA resource
allocation problem into a corresponding part of the TDMA,
(2) determining the initial resource allocation and offloading
data by defining an average offloading priority function, (3)
assigning the sub channels according to the offloading order,
and (4) adjusting the allocation of the offloading data on the
sub channels. Simulation experiments show that this resource
allocation strategy can approach optimal performance. How-
ever, the proposed approach also has some shortcomings in
that they assume that: (1) the processed data can be pro-
cessed separately, (2) each mobile device can perform local
computation and incoming workload offloading at the same
time, and (3) the edge cloud has a complete understanding of
energy consumption in the local computing devices, channel
gain and fairness factors of all users.

Although currently renewable energy is used to power
the mobile edge computing capabilities, the intermittent and
unpredictable nature of renewable energy poses a huge chal-
lenge for high quality computation offloading services. To
solve this problem, Xu and Ren [62] defined this problem
as a Markov decision process and proposed an efficient
online resource-based reinforcement resource management
algorithm, which can reduce system service latency and oper-
ating costs by real-time learning of the best strategies for
dynamic job offloading and edge server provisioning. Unlike
traditional reinforcement learning algorithms, the proposed
online learning algorithm achieves higher learning rate and
runtime performance through decomposition value iteration
and reinforcement learning. The simulation results show that
the system cost of the online learning algorithm ismuch lower
than that of the compared schemes. In addition, the results
also show that the proposed approach can save more power
especially when the network connection is deteriorating.

B. APPLICATION COMPUTATION PARTITIONING
In edge-cloud collaboration, it’s important to decide which
part of the task should be offloaded to the edge devices,
and which part should be offloaded to the cloud data center.
Computation partitioning is the first step before computation
collaboration between edge devices and cloud data centers.
As the computing power of edge devices increases, appli-
cations hosted in the cloud data center can be migrated to
the geographically distributed edge servers and edge nodes.
Application partitioning is to decompose an application into

multiple components based on state information of various
aspects, including resource, power, and response delay of
the edge node, while still preserving the semantics of the
original application at the same time. The existing approaches
include static application partitioning completed during the
compilation procedure and dynamic application partitioning
completed during the real time application execution. Due to
the bandwidth fluctuations in wireless environments, static
application partitioning is not suitable for mobile platforms
with fixed bandwidth, while dynamic program partitioning
will result in high overheads.

Currently, some existing work focus on partitioning
applications from the mobile users’ perspective, which often
optimize individual mobile users to minimize the cost of
execution of time or energy consumption on the device.Wang
and Li [71] proposed a distributed approach that partitions the
application into client side and server side, which are running
on handheld devices and servers, respectively. They also
construct formal analysis of constrained offloading system,
which represents task mapping, data access, and data validity.
Experimental results show that their solution can not only
improve the performance of handheld devices, but also reduce
the overall power consumption.

The traditional resource allocation formulation did not
consider the network bandwidth, and some other existing
work only investigated the two-dimensional resource allo-
cation optimization, but did not provide partition decision.
Yang et al. [63] formulated the joint computing partitioning
and resource allocation problem (JCPRP) for latency sen-
sitive applications in mobile edge cloud computing. They
proposed to combine computational partitioning, edge com-
puting resources and access bandwidth, and divide the
application from the edge server’s perspective rather than
modeling the optimization problem from mobile users. They
also designed a heuristic algorithm for multidimensional
search and adjustment of resource allocation.

The communication latency between edge devices and
cloud data centers is affected by various factors such as
transmission distance and network bandwidth. Liu et al. [64]
proposed a bandwidth-based partitioning scheme to improve
the static partitioning performance and avoid the high cost
of dynamic partitioning. Firstly, the application object rela-
tion Graphs (ORGs) is constructed by the combination of
static analysis and dynamic analysis and a partitioning opti-
mization model will be constructed. The construction of the
weighted ORG is composed of the application partitioning
process and the weighted object relationship graph construc-
tion. They also introduce the execution time and energy con-
sumption of the application partitioning model, and propose
three optimization models, i.e., execution time optimization,
energy optimization, execution time and energy-weighted
optimization. With the execution time and energy opti-
mization partitioning model, they propose the application
boundary partitioning (BBAP) algorithm based on branching
boundary and the greedy application partitioning (MCGAP)
algorithm based on Min-Cut. BBAP is ideal for finding
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the best partitioning solution for small applications, while
MCGAP is a sub-optimal solution for fast, large-scale
applications.

IV. COMPUTATION OFFLOADING
Computation offloading is regarded as an effective way to
guarantee user service quality by offloading the compute-
intensive or latency-sensitive tasks to the edge devices or
nearby edge servers [72].The main purpose of computation
offloading is to reduce the response delay of the service and
improve the service quality. In addition, when the edge node
does not have the processing capability, the computation can
be migrated to the edge server or the cloud data center to
improve the overall performance of the system. In order to
make the computation offloading decision, various aspects
must be considered, such as performance maximization and
energy consumption minimization. There are several ques-
tions that must be answered before computation offloading,
such as:

(1) Can the task be offloaded? The task scheduler must
determine if the task can be offloaded, i.e., what to offload,
partial or total offload?

(2) When to offload the task? The task scheduler must
determine the time slot for offloading under different
constraints.

(3) Where to offload? The question is translated as which
location is the best for offloaded workload execution, accord-
ing to available resources distribution.

(4) Which offload policy will be adopted? That is, what’s
the main objective of the workload offloading, single per-
formance metric maximization, or joint optimization and
tradeoffing amongmultiple objectives? For example, massive
edge devices are heterogeneous in terms of architecture, per-
formance metrics, and power supply modes, which results in
highly heterogeneous energy efficiency distribution among
devices. Moreover, dynamic changes of network bandwidth
and latency between cloud data center and edge equipment
may lead to changes in energy consumption of data transmis-
sion. Therefore, different computation offloading policy leads
to different power consumption. Therefore, a good computa-
tion offloading policy must find the optimal balance between
the overall computation delay, data transmission, and related
performance metrics.

In this section, we will survey the existing work on com-
putation offloading and identify some challenges and future
research directions.

A. WHAT TO OFFLAOD: THE SELECTION OF OFFLOADED
WORKLOAD
The edge computing’s promise for reducing service latency
and network bandwidth usage can’t realize unless the work-
load in cloud data centers can offloaded to edge devices and
edge servers. Therefore, in the edge-cloud co-existing envi-
ronment, original workloads executed at cloud data centers
must be partitioned and some of them must be selected to
run on edge devices and edge servers. Moreover, in some

cases like IoT, local processing power is heterogeneously
distributed across the large number of heterogeneous devices,
and the local computing resources are not enough to run
complex applications. Thus careful selection of offloaded
workload to edge devices can help achieve lower latency and
system performance.

Caching for content data locally is the ordinary solution
for faster content delivery in many applications. Similarly,
caching data from the cloud data centers to local edge devices
or nearby edge servers can also provide lower latency for con-
tent delivery. For example, nowadays’ web server contains
many dynamically generated web pages, and the dynamic
pages dominate network traffic, especially dynamic contents
like music or video streaming.

To improve quality of experiences (QoE), caching content
data close to end users, offloading data processing to the
proxy servers, or caching fragments of dynamic pages and
performing page composition after user’s page access, are
suitable strategies. Yuan et al. [73] proposed not to migrate
the centralized database to the client, and offloading and
caching on the edge server to reduce application latency. In
addition, filtering a large number of server requests into the
web proxies can significantly reduce server side workload.
Chen et al. [74] proposed the network caching mechanism to
utilize the storage capacity of diverse network devices to save
network traffic.

To alleviate the pressure of rapid growth in demand for
caching and computing services, Zhou et al. [75] proposed
a new information centric heterogeneous network framework
for content caching and computing. They investigated the
problem of virtual resources allocation for communication,
computing, and caching and the allocation problem is for-
mulated as a joint optimization problem under constraints of
caching, computation, and system virtualization. To solve this
joint problem, they design a distributed algorithm based on
the multiplier alternating direction method (MADM) which
allows each infrastructure provider to solve its own problems
without exchanging channel state information to reduce com-
putation complexity and traffic overhead.

Lin et al. [76] proposed to update data intensive edge
computing applications in the core database, which allows
the application to be adjusted without sending a copy of the
database to the edge. They also propose a wide-area repli-
cation protocol to provide dynamic content delivery while
leveraging the advantages of edge computing.

Except the content data caching, coarse grained workload
offloading, such as computation and analysis can also be
offloaded, which consist ofmultiple primitive data processing
operations in edge devices. In energy-constrained mobile
platform, computation intensive applications are prone for
performance downgrading. To extend battery life of mobile
system, Kumar and Lu [77] proposed to perform the compu-
tation elsewhere rather than the mobile system itself to save
energy. Specifically, the results show that cloud computing
can save energy for mobile users, but not all applications
are energy efficient. Moreover, mobile cloud computing must
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provide energy savings, as well as data reliability, privacy, and
energy consumption.

Traditional computing offloading requires the transfer
of user-entered data from the edge device to the cloud
data center or edge server prior to computation, which
is known as offline prefetching. However, the offline
prefetching may cause heavy network communication traffic.
Ko et al. [78] proposed a real-time data prefetching archi-
tecture for mobile computing offloading based on task-level
computing prefetching and cloud computing simultaneously.
The proposed approach controls the size of the corresponding
prefetching data to minimize the energy consumption by
dynamically selecting the prefetching task, avoiding exces-
sive data offloading but retaining the advantage of reducing
application execution time and power consumption through
workload prediction. They also proposed an optimal and
suboptimal data prefetching strategy to enable mobile devices
to prefetching offloaded data within a given energy and time
limits by using complex predictions of subsequent states of
the communication channel.

B. WHEN TO OFFLOAD: THE PRECISE TIMING
Computation offloading can leverage the capabilities of com-
puting, storage, networking and energy of edge devices, and
provide lower latency for computation-intensive applications
and services. However, since the network conditions are
dynamically changing during application execution, decision
on workload offloading must determine when the workload
should be offloaded. In other words, the task scheduler must
precisely time the offload opportunity considering all condi-
tions and system status. For example, data caching during
network congestion may improve significantly the system
performance, while transferring large volume data to cloud
data center is possible given that the link to cloud data center
is enough for data communication.

In the previous section, we explored the problem of selec-
tion of offloaded workload, including data caching, data stor-
age and computation and analysis offloading. In this section,
we will discuss the work towards the problem of when to
offload. The question ofwhen to offload can be translated into
the question that at what exact timing slots that the workload
offloading can achieve the best performance gains and min-
imal costs or overheads, including energy consumption and
bandwidth usage. Once upon the computation offloading is
decided, the data and task will be partitioned into fractions.
Due to dynamics of network connection and edge devices’
availability, precise timing for workload offloading is the
key to provide better system performance and less resource
usage.Moreover, execution order of partitioned workload can
also have impact on the system performance. Therefore, sys-
tem monitoring and workload characterization including task
arrival rates and deadlines can help make better offloading
decision.

For example, modern processor are equipped with capa-
bility of dynamic voltage and frequency scaling(DVFS) to
change operating voltage and frequency to save power and

energy according to workload intensity. Therefore, running
applications with different operating voltage and frequency
may have significant impact on application performance. To
leverage the DVFS capability, Wang et al. [79] proposed to
use DVFS in the computation offloading on smart mobile
devices, which enables smart mobile devices to adjust com-
putational speeds based on computation demands dynami-
cally to reduce energy consumption and computation time.
Specifically, they optimize the processor speed, transmission
power, and offload rate on smart mobile devices to minimize
energy consumption and application execution delays. Since
the existing computing offload strategies are not directly
applicable to smart mobile devices that use DVFS techniques,
they proposed a new computation offloading strategy for
single-server and multi-server scenarios.

C. WHERE TO OFFLOAD: THE SCHEDULING OF
OFFLOADED WORKLOADS
The workload offloading can be finally implemented via
scheduling partitioned tasks to targeted edge devices and
edge servers. The selection of targeted edge devices and
edge servers involves the multiple objective optimization
including performance, energy, network bandwidth, and data
privacy protection methodology. For example, an intrinsic
scheduling policy is energy hungry tasks are offloaded to the
cloud servers to save energy, while data intensive tasks are
offloaded to the edge servers to provide lower latency and
less network traffic.

More specifically, offloaded task scheduling should con-
sider the whole system status, including network status, task
requirements, device information, etc. For an instance, if the
network bandwidth is sufficient, cloud servers can be cho-
sen for workload execution, otherwise edge servers or local
devices are target places for workload execution.Moreover, if
the task requires low latency, the edge servers are the perfect
location for task execution.MpOS [80] is one of the offloading
frameworks that perform all operations related to the offload-
ing decision on the mobile device based on decision tree.
The MpOS framework can reduce the energy consumption
of mobile devices by using the proposed adaptive monitoring
method and can reduce the power consumption up to 55%.

Effective offloading decisions are made after the inference
of where offloading will improve system performance or get
maximal gains. The problem is that making such an offload-
ing decision relies on monitoring several parameters periodi-
cally, but these monitoring usually are computation intensive
tasks that can cause additional overheads when running on a
mobile device. To this end, Rego et al. [89] proposed a new
method for defining an offloading strategy using a decision
tree. In their method, all computation intensive operations
related to the offloading decision creation are transferred to
the remote server for execution, while the mobile device only
needs to parse the constructed decision tree previously. They
also proposed an adaptivemonitoring scheme that is unique in
that the mobile cloud computing system monitors the metrics
associated with the offload decision under this scenario only
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and uses this information to make on-demand changes to the
list of metric parameters monitored by the system.

Mobile devices need to measure a number of factors
including resources, latency, security, and privacy when
choosing an edge node or cloud server for workload offload.
Meurisch et al. [81] proposed an approach to make offloading
decisions with knowledge of the disadvantages of the current
service running status on the offloading system in advance
for all current computation offloading methods. Firstly, they
detect and query unknown available targeted offloading des-
tinations, such as nearby edge nodes, cloudlets, or remote
clouds, in an energy efficient manner at runtime to make
better offloading decisions. The principle is to evaluate the
unknown offloading system by offloading the micro tasks
and use the regression model to predict the performance and
cost of offloading larger tasks. Then, the decision support
for computational offloading are conducted. The experimen-
tal results show that the proposed approach can predict the
performance of the unknown offloading platform with an
accuracy of 85.5%.

D. ENERGY AND QOS TRADEOFF BETWEEN
COMPUTATION AND DATA COMMUNICATION
Currently, more and more applications are running on smart
mobile devices, and the user’s quality of experience is the
most important indicator to measure the success of applica-
tions and devices. However, such smart mobile devices at the
edge of the network usually have limited resources including
computing power, storage space and battery capacity, which
makes it difficult to meet the growing needs of mobile users.
In order to provide higher quality services, resources must be
allocated and scheduled according to user requirements and
services level agreements (SLAs). Therefore, delay-sensitive
applications must be prioritized, and computation intensive
applications should get enough computing resources. To this
end, quality of experience (QoE) represents a user’s subjec-
tive perception of the quality of service and performance
of devices, networks, systems and applications. Computa-
tion offloading to the edge servers and then returning the
computation results to the mobile devices can significantly
alleviate the resource demand of the smart mobile device.
In the process of computation offloading, it is necessary
to introduce and implement the requirements of QoS and
QoE, formulate a reasonable task offloading sequence, and
determine the offloading timing of each task.

Moreover, the increasing number of edge nodes and the
pervasive data analysis services on them causes the energy
consumption of both the edge and data centers to increase
significantly. Moreover, high energy consumption can lead
to higher system operating cost and lower system reliability.
Therefore, energy awareness is also the key factor that can
help make more optimal computation offloading decision
[82]–[85]. Saving energy and enhancing processing power
are the benefits of computing offloading to mobile devices,
but communication between mobile devices and edge nodes
and cloud servers can cause certain execution delays, which

can affect application’s performance. Therefore, the balance
between computing and communication is critical for com-
putation offloading. Wang et al. [86] proposed a joint opti-
mization problem that uses computation offloading to reduce
the energy consumption of mobile devices while minimizing
application execution latency. They formulated the problem
as MinED and a 0-1 integer linear programming (ILP) prob-
lem and gave the optimal solution during polynomial time
based on weighted double matching for special cases where
there is sufficient residual energy on the mobile device and
each application requires the same amount of resources.

Deng et al. [87] argued that with the rapid development
of mobile applications and the increase of computational
complexity, user mobility and fault tolerance should also
be considered in the design and implementation of compu-
tation offloading strategies in mobile cloud computing and
service execution process. They proposed a new computa-
tion offloading strategy by using genetic algorithm optimiza-
tion. Similarly, Wang and Li [71] proposed a computation
offloading approach in mobile cloud computing system and a
context-aware offloading algorithm. They presented a general
cost estimation model for cloud resources to estimate task
execution costs, including execution time and energy con-
sumption. Wang’s offloading algorithm can provide offload-
ing decisions and locations at runtime by referring to the
context changes of network status, device information and
the availability of multiple cloud resources. The proposed
offloading approach considers a variety of cloud resources,
such as mobile ad-hoc networks, cloudlets, and public clouds,
to provide adaptive mobile cloud computing services using
the proposed offloading algorithm and cost models. However,
the proposed algorithm doesn’t consider the communication
between different cloud resources, where network communi-
cation may have significant impact on the performance of the
prototype system in terms of device fault tolerance.

To ensure that the edge node storage system efficiently
stores and accesses continuous uninterrupted real-time data,
it has been proposed to deploy high-density, low-power, low-
latency, and high-write nonvolatile storage media like non-
volatile memory (NVMe) at the edge device. In order to
realize the edge programmability of the edge computing and
reduce the power consumption of the code at runtime, power
profiling and accounting support to the system call and run-
time library can help the edge computing operating system
to perform power consumption decomposition and prediction
on the source code level accurately.

V. CASE STUDIES OF COMPUTATION OFFLOADING
The limitation of available remote resources will affect the
scalability of computation offloading. Most of the current
researches on computation offloading only focus on the com-
puting offloading to a single server. However, multisite com-
putation offloading is also promising and feasible for more
energy savings. In this section, we introduce some exist-
ing computation offloading methods in, which are divided
into two main categories, i.e., the gaming and cooperation
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TABLE 3. Some existing work on computation offloading.

between the edge and the cloud, and the heuristics based
offloading. We list some existing work on computation
offloading in Table 3.

A. GAMING AND COOPERATION BETWEEN EDGE AND
THE CLOUD
When considering the computation offloading in edge com-
puting, it is necessary to consider the gaming and cooperation
between the edge and the cloud for task scheduling and
collaboration. For example, if there are multiple edge devices
which are suitable candidates for computation offloading in
a distributed edge computing environment across multiple
administrative domains, different selection of the targeted
edge devices may result in different system performance
and gains. More specifically, if the candidate edge devices

contend to run offloaded workload on themselves, they may
promise different resources and service provisioning.

For example, in connected autonomous vehicle sys-
tems, although the service can be improved by compu-
tation offloading, the mobile edge computing server may
become the performance bottleneck during heavy vehi-
cle traffic. To solve this problem, Zhang et al. [90] pro-
posed a layered cloud-based vehicle edge computing (VEC)
offloading framework that compensates for the shortcom-
ings of the MEC server’s computation resources by sharing
backup servers nearby. They designed a multi-layer optimal
offloading scheme using Stackelberg gaming theory where
the incentive mechanism is introduced into the selection
of the offloading server and the allocation of computing
resources. The VEC server allocates computing resources
to the vehicle through incentives that maximize the utility
of the vehicle and computing server dynamically. They also
proposed a distributed algorithm that can increase the service
provider’s revenue while still meeting the task delay require-
ments in order to obtain an optimal offloading strategy.

For the computation offloading scenarios of multiple
mobile users, Sardellitti et al. [99] investigatedMIMO(multi-
input multi-output) multi-cell systems where multiple mobile
users require that the computing task can be offloaded to the
cloud data centers. They modeled the offloading problem as
the joint optimization of radio resources to minimize overall
energy consumption while meeting delay constraints. In the
case of single user, they proposed approach can find the
global optimal solution in closed form. However, in multi-
user scenarios, an iterative algorithm based on convex opti-
mization is proposed to computing the local optimal solution.
The main idea is to compute the optimal resources allocation
by exchanging information with the wireless access base
station.

Ning et al. [88] proposed a cooperative partial computation
offloading scheme for mobile edge computing enabled IoT.
However, there is a potential for local edge servers that they
may not be willing to participate in computation offloading,
which requires more incentives to stimulate cloud service
operators and edge server owners to participate in computa-
tion offloading. Specifically, when performing computation
offloading, the scheduler need to know how much computa-
tions each local edge server can provide and how much pay-
ment the edge server owner ask for. Liu et al. [91] modeled
the economic interaction between cloud service operators and
edge server owners as a Stackelberg game, which enables
cloud service operators to allocate computation based on the
valuation of edge servers to maximize the benefits of cloud
service operators and edge servers. In real world scenario,
an edge server owner can participate or leave a computation
offloading arbitrarily. They separate the Stackelberg game
into two phases:

(1) The first phase: the cloud service operator provides a
payment profile to motivate the edge server owner to partici-
pate in the computation offloading;
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(2) The second phase, the edge server owner replies to
the payment data based on the amount of computation that
can provide and gives the best payment strategy for cloud
service operators and computing offload strategy for edge
server. They analyze the equilibrium existing in the Stack-
elberg game and prove that there is Nash equilibrium in
the game between the cloud service operator and the edge
server owner. Furthermore, they design two computational
offloading algorithms, a low-latency algorithm for a single-
round Stackelberg game and a low-complexity algorithm for
multiple rounds of Stackelberg games.

However, under the scenario that the local edge server may
participate or withdraw from the computation offloading,
only the computation amount of the edge server and the
computation allocation of cloud server operator’s is given, but
it is not proved whether the edge server joins and exits the
computing task arbitrarily has an impact on the computation
and whether the reward mechanism can guarantee user’s QoS
and QoE.

Regarding computation offloading of competing users on
shared channels, Meskar et al. [92] investigated a group of
mobile users using cloud computing offloading who offload
computing tasks to the cloud server through shared transport
channels to reduce energy consumption on the shared chan-
nel. In their model, time slices are distributed in a round-robin
fashion to mobile users who need computation offloading.
Therefore, offloading tasks have strict constraints on execu-
tion time. They model the system as a competitive game in
which each user attempts to contend for a shared channel
to reduce their energy consumption. The game is proven to
Nash Equilibrium and subject to real-time constraints on task
execution time, user channel bit rate, and shared channel
contention. Specifically, each user can make an offloading
decision based on the information obtained from the central
cloud controller independently, while the central controller
cannot apply the offloading decision to the user directly but
can modify the information obtained by the user to influence
the formulation of the offloading decision.

Moreover, in an edge computing environment with mul-
tiple users contending for shared resources such as network
bandwidth, resource contention will cause serious interfer-
ence and reduce the speed of data transmission. Chen [93]
argued that gaming theory is a suitable for making decen-
tralized and self-organized computation offloading decision,
and the self-organizing function can increase the maintain-
ability of the edge computing system and alleviate the heavy
burden of centralized management of the cloud automati-
cally. Similarly, Chen et al. [101] proposed gaming theory
approach to make computation offloading decision of multi-
ple mobile device users in mobile edge cloud computing in
multi-channel wireless interference environment.

B. HEURISTICS BASED COMPUTATION OFFLOADING
Heuristics based offloading is a common offloading method
in edge computing and it typically contains two parts:

(1) Searching. The searching phase is to search for a set
of best tasks as the initial computation offloading group
according to the offloading requirement;

(2) Adjustment. The adjustment phase is to adjusting the
offloading strategy according to the network bandwidth, the
number of available edge cloud servers, and the maximum
utility ranking result of the system during the computation
offloading process.

However, online heuristics based computation offloading
needs elaborate modeling and design of the heuristics algo-
rithm. Jia et al. [94] proposed an online task offloading
algorithm to minimize the execution time of applications
on mobile devices. They found that for parallel tasks, load
balancing heuristics can be used to offload tasks into the
cloud to maximize parallelism between mobile and cloud.
The rationale of the proposed algorithm is that if a task will
be offloaded, its adjacent tasks may also be offloaded. Since
offloading tasks to the cloud data centers can reduce the
task’s execution time, maximizing parallelism of execution
of offloaded task between clouds and mobile devices can
provide lower latency.

Different from heuristic algorithms that don’t provide the-
oretical performance guarantees, Kao et al. [98] proposed
Hermes, a fully polynomial time approximation scheme, to
tradeoff delays and resources consumption within acceptable
performance constraints. For task assignments that balance
latency and resource consumption, Hermes suggests strate-
gies that outperform greedy heuristic algorithms and reduced
latency up to 16% compared with the heuristic algorithms.

Kuang et al. [97] proposed an agent-based offloading
framework for mobile cloud computing to decrease the
request delay of mobile users, which can alleviate the over-
heads of network communication and reduce the excess
energy consumption caused by invalid transmission requests.
They formulate the problem of maximizing user’s energy
saving under task execution time and bandwidth constraints,
and designed a dynamic programming after filtering (DPAF)
algorithm. And they transform the original offloading prob-
lem to the classic 0-1 Knapsack problem by the filtering pro-
cess on the agent, and adopt dynamic programming algorithm
to find an optimal offloading strategy.

Nowadays smartphones are popular platforms to execute
offloaded computation tasks although there are delays due
to the uploading and downloading of tasks. Lin et al. [95]
proposed an offloading framework, namely, Triple Decision
Makers (TDM) to reduce power consumption and response
time. They presented a customizable cost function for the
conflicting goals of response time and energy consumption,
and a lightweight analysis method to evaluate performance
and energy consumption during the offloading process. The
cost function takes into account the factors such as band-
width, CPU speed, memory bandwidth, etc.

Offloading tasks to a remote or edge cloud can help mobile
devices’ save energy and gain more computing power, but
it also brings additional transmission energy consumption
and latency. Therefore, a good offloading strategy should
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implement partial offloading tasks and be able to weigh the
relationship between offloading advantages and additional
costs. Zhou et al. [96] proposed a context-aware offloading
framework,mCloud. ThemCloud consists of mobile devices,
cloudlets and public cloud services, which provide adaptive
mobile offloading service to improve the performance and
availability of mobile cloud computing services in terms of
better performance and less energy consumption.

Terefe et al. [100] proposed a multi-site offloading strat-
egy for mobile devices. By analyzing the data-intensive and
computation-intensive modules of the application, they use
a mathematical model to simulate the energy consumption
of the multi-site application execution. In order to better
adapt to the changing network bandwidth, they use finite
state discrete time Markov chain to simulate the communi-
cation channel based offloading, and model the multi-sites
offloading decision problem as the shortest path problem on
a directed acyclic graph (DAG) through Markov decision
framework. They designed an energy-efficient multi-site
offloading algorithm to determine the optimal offloading
decision for multi-site program execution through multi-
ple iterations. However, it would be better to extend the
data-intensive and computation-intensive oriented modeling
implementation and verification in real edge computing envi-
ronment.

Mao et al. [102] investigated the mobile edge cloud system
with energy harvesting equipment, and design a dynamic
computation offloading strategy. They used the cost of execu-
tion delay and task failure as a performance metric to evaluate
the offloading strategy, and proposed a dynamic computation
offloading algorithm based on Lyapunov optimization. More-
over, they use DVFS to optimize the computation offloading
and data transmission process. The results show that the
algorithm can achieve the optimal performance by adjusting
the DVFS parameters and can not only reduce the execution
cost effectively, but also reduce the task failure successfully.

Zhang et al. [101] investigated the design of computation
offloading mechanism of mobile edge computing in 5G
heterogeneous networks and proposed a multi-device
energy-saving computation offloading framework, the
energy-efficient computation offloading (EECO), to reduce
the energy consumption of computing tasks during compu-
tation offloading and execution. They tried to reduce the
energy consumption of the system while satisfying the delay
constraints and classify and assign appropriate priority to
mobile devices. They solved the optimization problem under
polynomial complexity by the three-stage energy saving
computation offload scheme.

VI. PERFORMANCE EVALUATION AND SIMULATION
Offloading computation on the mobile edge cloud can avoid
large scale data movement to achieve fast response, con-
trollable service delay, low energy consumption and other
performance characteristics than cloud computing.Moreover,
elaborate performance evaluation of current edge computing
platforms and systems can provide insights and suggestions

to improve the systems in terms of latency, throughput, energy
consumption, and privacy preservation. However, most of the
existing edge computing research works focus on minimizing
latency and energy consumption, while improving and opti-
mization of a single performance index often sacrifices other
performance metrics. Therefore, proper performance charac-
teristics and metrics are lacking in evaluating current edge
computing systems. For example, since the edge network near
the user is often connected with a variety of edge devices,
which makes the edge computing environment more com-
plex and changeable in terms of performance characteristics
than the centralized clouds. Performance indicators, such as
energy consumption, network bandwidth, computing speed,
data security, response delay, and privacy protection, must
be considered to evaluate and understand the various perfor-
mance characteristics of edge computing and its computation
offloading. \

Tao et al. [44] investigated how to make use of the perfor-
mance characteristics of network edge to achieve reasonable
flow splitting scheduling of computing tasks on the premise
of ensuring the performance of mobile edge computing ser-
vices. They formulated the resource, time-delay limited ser-
vice quality assurance and energy saving of mobile devices
as a joint optimization problem, and designed a flow-splitting
algorithm to make computation offloading decisions for each
mobile device by considering energy-consumption and task
completion time.

General and universal evaluation of edge computing sys-
tems can also provide controllable and repeatable exper-
iments. However, it’s very expensive to construct a real
edge computing testbed to in terms of hardware deployment,
application development, user interaction, and network traffic
generation. For example, even for IoT [104]–[106] tested, it
can produce massive data which is difficult to deal with for
cloud computing. To this end, Harshit et al. [107] proposed
a simulator, called iFogSim, to model IoT and Fog environ-
ments and measure the impact of resource management tech-
niques in latency, network congestion, energy consumption,
and cost. However, iFogSimcould be extended in multiple
dimensions in terms of energy consumption and data privacy
preservation.

To evaluate the various performance aspects of edge com-
puting including computation offloading and resource allo-
cation, performance evaluation tools are critical to both
researchers and engineers to design resource management
techniques. However, the research community is lack of such
performance tools or simulator to help researcher to design
better resource allocation and computation offloading algo-
rithms under various constraints.

VII. CONCLUSION
Edge computing is emerging as one of the strategic tech-
nology that will redefine the future computing paradigm for
its promise of lower latency, less bandwidth usage and data
privacy protection. Computation offloading is critical tomake
the promise into reality in various application scenarios, from
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connected autonomous vehicles to smart home. Decision on
computation offloading involves sophisticated resource man-
agement and allocation among multiple parties in the cloud–
edge collaborative environment. In this paper a thorough
research survey is conducted to reveal the state-of-the-art of
computation offloading in edge computing. Various aspects
of computation offloading, including energy consumption
minimization, Quality of Services guarantee, and Quality of
Experiences enhancement are surveyed. Moreover, resource
allocation approaches, gaming theory and heuristics based
computation offloading optimization of system performance
and overheads for computation offloading decision making
are also surveyed. Our work presented in this paper can
help not only the research community but also industrial
practitioner to understand the state-of-the-art of computation
offloading in edge computing to design better systems with
elaborate resource management and computing placement
mechanism.
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