RAP Model—Enabling Cross-Layer ®)
Analysis and Optimization for e
System-on-Chip Resilience

Andreas Herkersdorf, Michael Engel, Michael GlaB, Jorg Henkel,

Veit B. Kleeberger, Johannes M. Kiihn, Peter Marwedel,

Daniel Mueller-Gritschneder, Sani R. Nassif, Semeen Rehman,

Wolfgang Rosenstiel, Ulf Schlichtmann, Muhammad Shafique, Jiirgen Teich,
Norbert Wehn, and Christian Weis

A. Herkersdorf (0<) - D. Mueller-Gritschneder - U. Schlichtmann
Technical University of Munich, Munich, DE, Germany
e-mail: herkersdorf@tum.de

M. Engel

Department of Computer Science, Norwegian University of Science and Technology (NTNU),
Trondheim, Norway

e-mail: michael.engel @ntnu.no

M. GlaB
University of Ulm, Ulm, DE, Germany

J. Henkel
Karlsruhe Institute of Technology (KIT), Karlsruhe, DE, Germany

V. B. Kleeberger
Infineon Technologies AG, Munich, DE, Germany

J. M. Kiihn
Preferred Networks, Inc., Tokyo, JP, Japan

P. Marwedel
Technical University of Dortmund, Dortmund, DE, Germany

S.R. Nassif
Radyalis LLC, Austin, US, United States

S. Rehman - M. Shafique
TU Wien, Vienna, AT, Austria

W. Rosenstiel
University of Tiibingen, Tiibingen, DE, Germany

J. Teich
Friedrich-Alexander-Universitidt Erlangen-Niirnberg (FAU), Erlangen, DE, Germany

N. Wehn - C. Weis
University of Kaiserslautern (TUK), Kaiserslautern, DE, Germany

© The Author(s) 2021
J. Henkel, N. Dutt (eds.), Dependable Embedded Systems, Embedded Systems,
https://doi.org/10.1007/978-3-030-52017-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52017-5_1&domain=pdf
mailto:herkersdorf@tum.de
mailto:michael.engel@ntnu.no
https://doi.org/10.1007/978-3-030-52017-5_1

2 A. Herkersdorf et al.

1 Introduction/Motivation

Conquering System-on-Chip (SoC) architecture and design complexity became
a major, if not the number one, challenge in integrated systems development.
SoC complexity can be expressed in various ways and different dimensions:
Today’s single-digit nanometer feature size CMOS technologies allow for multi-
billion transistor designs with millions of lines of code being executed on dozens
of heterogeneous processing cores. Proving the functional correctness of such
designs according to the SoC specifications is practically infeasible and can only
be achieved probabilistically within tolerable margins. Further consequences of
this ever-increasing hardware/software complexity are: Increasing susceptibility of
application- and system-level software codes to security and safety exposures, as
well as operational variability of nanometer size semiconductor devices because
of environmental or manufacturing variations. The SPP1500 Dependable Embed-
ded Systems Priority Program of the German Research Foundation (DFG) [8]
focused on tackling the latter class of exposures. NBTI (negative-bias temperature
instability) aging, physical electromigration damage and intermittent, radiation
induced bit flips in registers (SEUs (single event upsets)) or memory cells are some
manifestations of CMOS variability. The Variability Expedition program by the
United States National Science Foundation (NSF) [6] is a partner program driven by
the same motivation. There has been and still is a good amount of bi- and multilateral
technical exchange and collaboration between the two national-level initiatives.
Divide and conquer strategies, for example, by hierarchically layering a system
according to established abstraction levels, proved to be an effective approach
for coping with overall system complexity in a level by level manner. Layering
SoCs bottom-up with semiconductor materials and transistor devices, followed by
combinatorial logic, register-transfer, micro-/macro-architecture levels, and runtime
environment middleware, as well as application-level software at the top end of the
hierarchy, is an established methodology used both in industry and academia. The
seven layer Open Systems Interconnection (OSI) model of the International Orga-
nization for Standardization provides a reference framework for communication
network protocols with defined interfaces between the layers. It is another example
of conquering the complexity of the entire communication stack by layering.
Despite these merits and advantages attributed to system layering, a disadvantage
of this approach cannot be overlooked. Layering fosters specialization by focusing
the expertise of a researcher or developer to one specific abstraction level only (or to
one layer plus certain awareness for the neighboring layers at best). Specialization
and even sub-specialization within one abstraction layer became a necessity as the
complexity within one layer raises already huge design challenges. However, the
consequence of layering and specialization for overall system optimization is that
such optimizations are typically constrained by the individual layer boundaries.
Cross-layer optimization strives to pursue a more vertical approach, taking the
perspectives of two or more, adjacent or non-adjacent, abstraction levels for certain
system properties or qualities into account. A holistic approach (considering all
abstraction levels for all system properties) is not realistic because of the overall sys-

RAP Model—Enabling Cross-Layer Analysis and Optimization for System-on-. . . 3

O > 3 5
X S QO .G
S & $
L S S AN <
application O
SW/0S O

O
architecture O O
circuit/gate O

physics p—

Fig. 1 RAP covers probabilistic error modeling and propagation of physics induced variabilities
from circuit/logic up to application level

tem complexity. Nevertheless, for some properties, cross-layer approaches proved
to be effective. Approximate computing, exploiting application-level tolerance
to on-purpose circuit level inaccuracies in arithmetic operations for savings in
silicon area and a lower power dissipation, is a widely adopted example of cross-
layer optimization. Cross-layer approaches have also been suggested as a feasible
technique to enhance reliability of complex systems [21, 26].

A prerequisite for effective cross-layer optimization is the ability to correlate the
causes or events happening at one particular level with the effects or symptoms they
will cause at other abstraction levels. Hierarchical system layering and specializa-
tion implies that subject matters and corresponding terminology are quite different
between levels, especially when the levels of interest are several layers apart. The
objective of the presented Resilience Articulation Point (RAP) model is to provision
probabilistic fault abstraction and error propagation concepts for various forms
of variability induced phenomena [9, 28]. Or, expressed differently, RAP aims to
help annotate how variability related physical faults occurring at the semiconductor
material and device levels (e.g., charge separation in the silicon substrate in response
to a particle impact) can be expressed at higher abstraction levels. Thus, the impact
of the low-level physical faults onto higher level fault tolerance, such as instruction
vulnerability analysis of CPU core microarchitectures, or fault-aware real-time
operating system middleware, can be determined without the higher level experts
needing to be aware of the fault representation and error transformation at the
lower levels. This cross-layer scope and property differentiates RAP from traditional
digital logic fault models, such as stuck-at [18] or the conditional line flip (CLF)
model [35]. These models, originally introduced for logic testing purposes, focus
on the explicit fault stimulation, error propagation and observation within one and
the same abstraction level. Consequently, RAP can be considered as an enabler
for obtaining a cross-layer perspective in system optimization. RAP covers all SoC
hardware/software abstraction levels as depicted in Fig. 1.

4 A. Herkersdorf et al.
2 Resilience Articulation Point (RAP) Basics

In graph theory, an articulation point is a vertex that connects sub-graphs within a
bi-connected graph, and whose removal would result in an increase of the number
of connecting arcs within the graph. Translated into our domain of dependability
challenges in SoCs, spatially and temporally correlated bit flips represent the single
connecting vertex between lower layer fault origins and the upper layer error and
failure models of hardware/software system abstraction (see Fig. 2).

The RAP model is based on three foundational assumptions: First, the hypothesis
that every variability induced fault at the semiconductor material or device level
will manifest with a certain probability as a permanent or transient single- or multi-
bit signal inversion or out-of-specification delay in a signal transition. In short, we
refer to such signal level misbehavior in terms of logic level or timing as a bit flip
error, and model it by a probabilistic, location and time dependent error function
Phrit(x, t). Second, probabilistic error functions Py (x,t), which are specific to a
certain abstraction layer and describe how layer characteristic data entities and
compositional elements are affected by the low-level faults. For example, with what
probability will a certain control interface signal on an on-chip CPU system bus, or a
data word/register variable used by an application task be corrupted in response to a
certain NBTI transistor aging rate. Third, there has to be a library of transformation
functions 77, converting probabilistic error functions Py (x;, t) at abstraction level
L into probabilistic error functions Pr 4 (x2,t + At) atlevel(s) L +i (i > 1) (see
Fig. 3).

Pry1(x2, t + At) =Tp 0o Pr(x1, 1) 6]

Please note, although the existence of such transformation functions is a founda-
tional assumption of the RAP model itself, the individual transformation functions

i CPU stall
_Fallure P
— Data corruption -
Wrong branch
Invalid CPU reg ~” decision
Error
L Bit Flip
Faults Jitter Electromigration
" Crosstalk
Supply noise \
— . K .
Physical /Temperature Coupling (C)
causes Particle strike Manufacturing variation

Fig. 2 Fault, error, and failure representations per abstraction levels

RAP Model—Enabling Cross-Layer Analysis and Optimization for System-on-. . . 5

P .(x,,t+Ar)

=
higher level 9

=

o

[

e & |
Level L Structure,
Design

lower level

Fig. 3 Error transformation function depending on environmental, design, and system state
conditions

TL cannot come from or be a part of RAP. Transformation functions are dependent
on a plurality of environmental, design and structure specific conditions, as well as
implementation choices (€1, Dy, Sp) within the specific abstraction layers that are
only known to the respective expert designer. Note further, the location or entity
xp affected at a higher abstraction level may not be identical to the location xi,
where the error manifested at the lower level. Depending on the type of error, the
architecture of the system in use, and the characteristic of the application running,
the error detection latency At during the root cause analysis for determining the
error source at level L typically represents a challenging debugging problem [17].

3 Related Work

Related approaches to describe the reliability of integrated circuits and systems have
been developed recently.

In safety-critical domains and to ensure reliable systems, standards prescribing
reliability analysis approaches and MTTF (mean time to failure) calculations have
been in existence for many decades (e.g., RTCA/DO-254—Design Assurance
Guidance for Airborne Electronic Hardware, or the Bellcore/Telcordia Predictive
Method, SR-332—Reliability Prediction Procedure for Electronic Equipment, in the
telecom area [33]). These approaches, however, were not developed with automation
in mind, and do not scale well to very complex systems.

The concept of reliability block diagrams (RBDs) has also been used to describe
the reliability of systems [19]. In RBDs, each block models a component of the
considered system. A failure rate is associated to each block. The RBD’s structure
describes how components interact. Components in parallel are redundant, whereas
for serially connected components the failure of any one component causes the
entire system to fail. However, more complex situations are difficult to model

6 A. Herkersdorf et al.

and analyze. Such more complex situations include parametric dependencies (e.g.,
reliability dependent on temperature and/or voltage), redundancy schemes which
can deal with certain failures, but not other (e.g., ECC which, depending on the
code and number of redundant bits, can either deal with the detection and correction
of single-bit failure, or detect, but not correct, multi-bit failures), or state-dependent
reliability characteristics.

In 2012, RIIF (Reliability Information Interchange Format) was presented [4].
RIIF does not introduce fundamentally new reliability modeling and analysis
concepts. Rather, the purpose is to provide a format for describing detailed reliability
information of electronic components as well as the interaction among components.
Parametric reliability information is supported. State-dependent reliability (modeled
by Markov reliability models) is planned to be added. By providing a standardized
format, RIIF intends to support the development of automated approaches for
reliability analysis. It targets to support real-world scenarios in which complex
electronic systems are constructed from legacy components, purchased IP blocks,
and newly developed logic.

RIIF was developed in the context of European projects, driven primarily by the
company IROC Technologies. The original concept was developed mostly within
the MoRV (Modeling Reliability under Variation) project. Extensions from RIIF
to RIIF2 were recently developed in collaboration with the CLERECO (Cross-
Layer Early Reliability Evaluation for the Computing Continuum) project. RIIF is a
machine-readable format which allows the detailed description of reliability aspect
of system components. The failure modes of each component can be described,
depending on parameters of the component. The interconnection of components to a
system can be described. RIIF originally focused only on hardware. RIIF2 has been
proposed to extend the basic concepts of RIIF to also take software considerations
into account [27].

4 Fault Abstraction at Lower Levels

The RAP model proposes modeling the location and time dependent error prob-
ability Ppit(x, ¢) of a digital signal by an error function F with three, likewise,
location and/or time dependent parameters: Environmental and operating conditions
&, design parameters D, and (error) state bits S.

Pbi[(xv t) = -F(gv D’ S) (2)

This generic model has to be adapted to every circuit component and fault
type independently. Environmental conditions &£, such as temperature and supply
voltage fluctuations, heavily affect the functionality of a circuit. Device aging
further influences the electrical properties, concretely the threshold voltage. Other
environmental parameters include clock frequency instability and neutron flux
density.

RAP Model—Enabling Cross-Layer Analysis and Optimization for System-on-. . . 7

System design D implies multiple forms of decisions making. For example, shall
arithmetic adders follow a ripple-carry or carry-look-ahead architecture (enumer-
ative decision)? What technology node to choose (discrete decision)? How much
area should one SRAM cell occupy (continuous decision)? Fixing such design
parameters D allows the designer to make trade-offs between different decisions,
which all influence the error probability of the design in one way or the other.

In order to model the dependence of the error probability on location, circuit
state, and time, it is necessary to include several state variables. These state variables
S lead to a model which is built from conditional probabilities P (b;|b2), where the
error probability of the bit by is dependent on the state of the bit b,. For example,
the failure probability of one SRAM cell depends on the error state of neighboring
SRAM cells due to the probability of multi-bit upset (MBU) [8]. For an 8T SRAM
cell it also depends on the stored value of the SRAM cell as the bit flip probability
of a stored “1” is different from a stored “0.”

Finally, the error function F takes the three parameter sets £, D, and S and
returns the corresponding bit error probability Pp;c. The error function JF is unique
for a specific type of fault and for a specific circuit element. An error function can
either be expressed by a simple analytical formula, or may require a non-closed
form representation, e.g., a timing analysis engine or a circuit simulator.

In the sequel, we show by the example of SRAM memory technology, how the
design of an SRAM cell (circuit structure, supply voltage, and technology node) as
well as different perturbation sources, such as radiating particle strikes, noise and
supply voltage drops, will affect the data bit error probability Py;; of stored data bits.

4.1 SRAM Errors

The SRAM is well known to have high failure rates already in current technologies.
We have chosen two common SRAM architectures, namely the 6-transistor (6T) and
8-transistor (8T) bit cell shown in Fig. 4. For the 6T architecture we have as design
choices the number of fins for the pull-up transistors (PU), the number of fins for the

WL WL
oF ~F
' +pe T pe Ly ==
PG PG P m_‘
BL eNo BLN BL e BLN RBL
6T_(PU:PG:PD) 8T_(PU:(PG:PGR):PD)
(a) (b)

Fig. 4 Circuit schematics for standard 6T (a) and 8T (b) SRAM bit cells

8 A. Herkersdorf et al.

pull-down transistors (PD), and the number of fins for the access transistors (PG).
The resulting architecture choice is then depicted by 67_(PU:PG:PD). For the 8T
architecture we have additionally two transistors for the read access (PGR). Hence,
the corresponding architecture choice is named 8T_(PU:(PG:PGR):PD).

An SRAM cell can fail in many different ways, for example:

* Soft Error/Single Event Upset (SEU) failure: If the critical charge Q,; is low,
the susceptibility to a bit flip caused by radiation is higher.

» Static Voltage Noise Margin (SVNM) failure: An SRAM cell can be flipped
unintentionally when the voltage noise margin is too low (stability).

* Read delay failure: An SRAM cell cannot be read within a specified time.

* Write Trip Voltage (WTV) failure: The voltage swing during a write is not high
enough at the SRAM cell.

We selected these four parameters, namely Q.i;, SVNM, Read delay, and WTV
as resilience key parameters. To quantify the influence of technology scaling (down
to 7 nm) on the resilience of the two SRAM architectures we used extensive Monte-
Carlo simulations and predictive technology models (PTM) [12].

4.1.1 SRAM Errors due to Particle Strikes (Q.ri;)

Bit value changes in high density SRAMs can be induced by energetic particle
strikes, e.g., alpha or neutron particles [34]. The sensitivity of digital ICs to such
particles is rapidly increasing with aggressive technology scaling [12], due to the
correspondingly decreasing parasitic capacitances and operating voltage.

When entering the single-digit fC region for the critical charge, as in current
logic and SRAM devices and illustrated in Fig. 5a, lighter particles such as alpha
and proton particles become dominant (see Fig. 5b). This increases not only error
rates, but also their spread, as the range of lighter particles is much longer compared
to residual nucleus [10].

6
— / .. 6
;\J e S = Proton dominant
o 8 - - - a particle dominant
2y N« 4 Heavy ion domins
g . P L _ eavy ion dominant
& . 25
- =

= - o T 2
-2 o
=2 P a =
@) e wn 0 |

e 1 10 100

05 06 07 08 09 1 Critical Charge [fC]

Supply Voltage [V
pply ge [V] (b)
(@)

Fig. 5 Technology influence on SRAM bit flips: (a) Critical charge dependency on technology
node and supply voltage for 6T SRAM cell, (b) Particle dominance based on critical charge
(adapted from [10])

RAP Model—Enabling Cross-Layer Analysis and Optimization for System-on-. . . 9

These technology-level faults caused by particle strikes now need to be abstracted
into a bit-level fault model, so that they can be used in later system-level resilience
studies. In the following this is shown for the example of neutron particle strikes.
Given a particle flux of ®, the number of neutron strikes k that hit a semiconductor
area A in a time interval T can be modeled by a Poisson distribution:

(d-A-1)
P(N(t) =k) :exp(—dD-A-t)T 3)
These neutrons are uniformly distributed over the considered area, and may only
cause an error if they hit the critical area of one of the memory cells injecting
a charge which is larger than the critical charge of the memory cell. The charge
Qinjected transported by the injected current pulse from the neutron strike follows
an exponential distribution with a technology dependent parameter Qy:

I Oinjected
fo(Qinjected) = 5~ exP (—JQ—> 4

The probability that a cell flips due to this charge can then be derived as

PSEU(Q > QcritlVeellour = Vpp) = / fQ(Q)dQ)]
Ocrit

With increasing integration density, the probability of multi-bit upsets (MBU)
also increases [16]. A comparison of the scaling trend of Q..i; between the 6T
and 8T SRAM bit cell is shown in Fig. 6. The right-hand scale in the plots shows
the 3 sigma deviation of Q.,;; in percent to better highlight the scaling trend.
The 8T-cell has a slightly improved error resilience due to an increased Qi
(approximately 10% higher). However, this comes at the cost of a 25-30% area
increase.

6T 8T

800 35 800 35 -
700 30 3 700 % 30 3
600 % 25 S _ 600 % T a5 =
g 500 % % 20 § E 500 = 20 S
= 400 : % 1s g = 400 % 3
a 300 ey 8 300 15 E
10 ° 10 ©

200 x 200 S
100 5 g 100 5 ¢

0 0 0 0
20 16 14 10 7 20 16 14 10 7
Technology Node [nm] Technology Node [nm]

Fig. 6 Qcrit results for a 6T_(1:1:1) high density (left) and an 8T_(1:(1:1):1) (right) SRAM cell

10 A. Herkersdorf et al.

6T 8T
500 - 100 _ 600 30
() [
400 1 80 3 500 52
P~ > —_— >
£ 300 I Jﬁ o0 & £ % % % % 05
s 2 s300 153
Z 200 40 =2 z s
> 5 3200 10 %5
100 20 & 100 5 &
® ®
0 0 0 0
20 16 14 10 7 20 16 14 10 7
Technology Node [nm] Technology Node [nm]
Fig. 7 SVNM results for a 6T_(1:1:1) and an 8T_(1:(1:1):1) SRAM cell
4.1.2 SRAM Errors due to Noise (SVNM)
The probability of an SRAM error (cell flip) due to noise is given by
o0
Pn()ise_error(vnoise = VSVNM) = / fV,w,-se(V)dV (6)

Vsvnm

The distribution function f, is not directly given as it depends largely on the
detailed architecture and the environment in which the SRAM is integrated. Figure 7
plots the scaling trend for SVNM for both SRAM cell architectures. Due to its much
improved SVNM the 8T_(1:(1:1):1) cell has an advantage over the 6T_(1:1:1) cell.
Not only is the 8T cell approximately 22% better in SVNM than the 6T cell, but it
is also much more robust in terms of 3¢ variability (28% for 8T 7nm compared to
90% for 6T 7 nm).

4.1.3 SRAM Errors Due to Read/Write Failures (Read Delay/WTV)

The probability of SRAM read errors can be expressed by the following equation:

Iread_delay

Pread_error(tread < lread_delay) = f Streaa (D)d1 @)
0

In Fig. 8 the trend of the read delay for the two SRAM cell architectures is shown.
Although the read delay decreases with technology scaling, which theoretically
enables a higher working frequency, its relative 3o variation can be as high as 50%
at the 7 nm node. This compromises its robustness and diminishes possible increases
in frequency.

RAP Model—Enabling Cross-Layer Analysis and Optimization for System-on-. . . 11

6T 8T

35 60 35 60 __
30 50 2 30 50 3
825 2 B 2
- 40 £ = 40 <
20 = 20 <
§ 15 % %0 g i 15 30 g
-} [° [
10 = -%— 0% 99 == %— 0%
o % 102 [% 102
5 =] 5 o}
m (22}

0 0 0 0

20 16 14 10 7 20 16 14 10 7
Technology Node [nm] Technology Node [nm]
Fig. 8 Read delay results for a 6T_(1:1:1) and an 8T_(1:(1:1):1) SRAM cell
6T 8T

600 70 _ 600 60
[[
500 1 60 3 500 50 2
50 2 = T =
S 400 é % s S400 40 ¢
£ 40 5 £ 5
< 300 3 =300 30 @
z [05 2 s
= 200 0B 3200 20 %
& =
100 10 :9’— 100 10 s

0 0 0 0

20 16 14 10 7 20 16 14 10 7
Technology Node [nm] Technology Node [nm]

Fig. 9 WTV results for a 6T_(1:1:1) and an 8T_(1:(1:1):1) SRAM cell

If the actual applied voltage swing V is not sufficient to flip the content of a
SRAM cell, then the data is not written correctly. The probability of such a write
failure is given by

V,\'wing_min

Pyrite_error(Vs < Vswing_min) = / fv,(V)dV ®)
0

Similar to fy, , both distribution functions for #,.,4 and V, depend strongly on the
clock frequency, the transistor dimensions, the voltage supply, and the noise in the
system. Figure 9 plots the scaling trend of WTV for 6T and 8T cells. The results for
6T and 8T cells are similar due to the similar circuit structure of 6T and 8T cells

regarding write procedure.

4.1.4 SRAM Errors due to Supply Voltage Drop

Figure 10 shows the failure probability of a 65 nm SRAM array with 6T cells and 8T
cells for a nominal supply voltage of 1.2 V. When the supply voltage drops below
1.2V the failure probability increases significantly. Obviously, the behavior is differ-
ent for 6T and 8T cells. The overall analysis of the resilience key parameters (Qris,
SVNM, read delay, WTV, and Vpp) shows that the variability increases rapidly as

12 A. Herkersdorf et al.

1E+00 ‘ ‘ ‘ ‘ ‘ —
—6T-Cell
8T-Cell
1E-02 ~ ¢ H
> \\ Soft Errors
B 1E-04 A
3 N\
& ~ 8T improvement \
L 1E-06 -
3 ~~
K i\\\\\\\
1E-08 I~
1E-10

600 700 800 900 1000 1100 1200
Supply Voltage (mV)

Fig. 10 Memory failure probability (65 nm technology) [1]

technology is scaled down. Investigations considering the failure probabilities of
memories (SRAMs, DRAMs) in a system context are described in chapter “Design
of Efficient, Dependable SoCs Based on a Cross-Layer-Reliability Approach with
Emphasis on Wireless Communication as Application and DRAM Memories”.

5 Architecture Level Analysis and Countermeasures

5.1 Instruction Vulnerability

Due to the wide variety in functionality and implementation of different application
softwares as well as changes in the system and application workload depending
on the application domain and user, a thorough yet sufficiently abstracted quan-
tification of the dependability of individual applications is required. Even though
all application software on a specific system operate on the same hardware, they
use the underlying system differently, and exhibit different susceptibility to errors.
While a significant number of software applications can tolerate certain errors with
a relatively small impact on the quality of the output, others do not tolerate errors
well. These types of errors, as well as errors leading to system crashes, have to be
addressed at the most appropriate system layer in a cost-effective manner. Therefore,
it is important to analyze the effects of errors propagating from the device and
hardware layers to all the way up to the application layer, where they can finally
affect the behavior of the system software or the output of the applications, and,
therefore, become visible to the user. This implies different usage of hardware
components, e.g., in the pipeline, as well as different effects of masking at the
software layers while considering individual application accuracy requirements.

RAP Model—Enabling Cross-Layer Analysis and Optimization for System-on-. . . 13

ABSTRACTION LAYER RELIABILITY MODELS LAYER STATISTICS
o
5 Application
Application = Function Resilience |<— -------- - Workload
TEI Statistics
2
7
)
= Instruction Vulnerability Index;
Compiler @ Instruction Masking Index; = -
Q@ Error Propagation Index
£
5 |
® v
o
System Software E Function and Task (€= a1
(Offline and Online) ¥ Vulnerability Index lmmmmmmmm OS Statistics (power [
= states, DVFS, etc.) |
LY :
2 ! !
© | T
Hardware 2 1
= . lmmmmmmmmm—m——————
(Architecture and 3 Er;lar Pr.opagauon.and [et e Tmcim -
. . w asking Analysis d 5
Microarchitecture) b H 1
o '
LY H 0
5 | H f
= | [5
© ' 5
=) I i |gemmmmmmmmmmm——————— : 1
Devi © Bit Error Probabilities; € u
EVICE s Variability Models et e e —
o Generation of Faults

Fig. 11 Cross-layer reliability modeling and estimation: an instantiation of the RAP model from
the application software’s perspective

These different aspects have to be taken into account in order to accurately quantify
the susceptibility of an application towards errors propagating from the lower layers.

An overview of the different models as well as their respective system layer
is shown in Fig. 11 [30]. A key feature is that the software layer models consider
the lower layer information while being able to provide details at the requested
granularity (e.g., instruction, function, or application). To achieve that, relevant
information from the lower layers has to be propagated to the upper layers for
devising accurate reliability models at the software layer. As the errors originate
from the device layer, a bottom-up approach is selected here. Examples for
important parameters at the hardware layer are fault probabilities (i.e., Pg(c)) of
different processor components (¢ € C), which can be obtained by a gate-level
analysis, as well as spatial and temporal vulnerabilities of different instructions
when passing through different pipeline stages (i.e., I VI;.). At the software layer,
for instance, control and data flow information has to be considered as well as
separation of critical and non-critical instructions. In addition, decisions at the
OS layer (e.g., DVFS levels, mapping decisions) and application characteristics
(e.g., pipeline usage, switching activity determined by data processed) can have
a significant impact on the hardware. Towards that, different models have been
developed on each layer and at different granularity as shown in Fig.11. The
individual models are discussed briefly in the following.

One building block for quantifying the vulnerability of an application is the
Instruction Vulnerability Index (IVI) [22, 24]. It estimates the spatial and temporal

14 A. Herkersdorf et al.

vulnerabilities of different types of instructions when passing through different
microarchitectural components/pipeline stages ¢ € C of a processor. Therefore,
unlike state-of-the-art program level metrics (like the program vulnerability factor:
PVF [32]) that only consider the program state for reliability vulnerability estima-
tion, the IV I considers the probability that an error is observed at the output Pg(c)
of different processor components as well as their area A..

Zvcec IVIi.-A.- Pg(c)
ZVCEC Ac

For this, the vulnerability of an instruction i in a distinct microarchitectural
component ¢ has to be estimated:

VI =

Vic * ,Bc(v)
ZV()EC IBC

The 1V I is itself based on an analysis of the vulnerable bits B.(,) representing
the spatial vulnerability (in conjunction with A.) as well as an analysis of the nor-
malized vulnerable period v;. representing the temporal vulnerability. Both capture
the different residence times of instructions in the microarchitectural components
(i.e., single vs. multi-cycle instructions) as well as the different usage of components
(e.g., adder vs. multiplier) while combining information from the hardware and
software layers for an accurate vulnerability estimation. An example for different
spatial and temporal vulnerabilities is shown in Fig. 12a: Comparing an “add”- with
a “load”-instruction, the “load” additionally uses the data cache/memory component
(thus having a higher spatial vulnerability) and might also incur multiple stall
cycles due to the access to the data cache/memory (thus having a higher temporal
vulnerability).

The IV can further be used for estimating the vulnerabilities of functions
and complete application softwares. An option for a more coarse-grained model
at the function granularity is the Function Vulnerability Index (FVI). It models the

1V =

a)[| [mswcachg \Reg Fuep [Data Cache] b) 0 03100 c) _
< T T l x a
= 0x0025
< e . i ° /
Fetch Decode T ExecuteT Memory Write
— 0x3125 S gl @
InserCachs Rag FIIs }J Data Cache 0XOFOF 0x0004 o o ®

il
| - |\||-->ﬁ hmm— ~
e 5 ® O
Fetch Decode l—‘—‘Executel—rMemury Write v x_ x -

sl 0x0105 OXCEDA 0x0312

BB4

Fig. 12 (a) Temporal and spatial vulnerabilities of different instructions executing in a processor
pipeline; (b) Examples for error propagation and error masking due to data flow; (¢) Example for
error masking due to control flow

RAP Model—Enabling Cross-Layer Analysis and Optimization for System-on-. . . 15

vulnerability of a function as the weighted average of its susceptibility towards
application failures and its susceptibility towards giving an incorrect output. In order
to achieve this, critical instructions (i.e., instructions potentially causing application
failures) and non-critical instructions (i.e., instructions potentially causing incorrect
application outputs) are distinguished.

The quantification of the error probability provided by the IV I is complemented
by capturing the masking properties of an application. The Instruction Error
Masking Index (IMI) [31] estimates the probability that an error at instruction i
is masked until the last instruction of all of its successor instruction paths. At the
software layer, this is mainly determined by two factors: (a) Masking due to control
flow properties, where a control flow decision might lead to an erroneous result
originating from instruction i not being used (see example in Fig. 12¢); (b) Masking
due to data flow properties, which means that a successor instruction might mask an
error originating from i due to its instruction type and/or operand values (e.g., the
“and”-instruction in Fig. 12b). On the microarchitectural layer, further masking
effects may occur due to an error within a microarchitectural component being
blocked from propagating further when passing through different logic elements.

Although masking plays an important role, there are still significant errors which
propagate to the output of a software application. To capture the effects of an
error not being masked and quantify the consequences of its propagation, the Error
Propagation Index (EPI) of an instruction can be used [31]. It quantifies the error
propagation effects at the instruction granularity and provides an estimate of the
extent (e.g., number of program outputs) an error at an instruction can affect the
output of a software application. This is achieved by analyzing the probability that
an error becomes visible at the program output (i.e., its non-masking probability)
by considering all successor instructions of a given instruction i. An example of an
error propagating to multiple instructions is shown in Fig. 12b.

An alternative for estimating the software dependability at the function granular-
ity is the Function Resilience model [23], which provides a probabilistic measure
of the function’s correctness (i.e., its output quality) in the presence of faults. In
order to avoid exposing the software application details (as it is the case for FV), a
black-box model is used for estimating the function resilience. It considers two basic
error types: Incorrect Output of an application software (also known as Silent Data
Corruption) or Application Failure (e.g., hangs, crashes, etc.). Modeling Function
Resilience requires error probabilities for basic block outputs' and employs a
Markov Chain technique; see details in [23].

As timely generation of results plays an important role, for instance, in real-
time systems, it is not only important to consider the functional correctness
(i.e., generating the correct output) of a software application, but also to account
for the timing correctness (i.e., whether the output is provided in time or after the

1One potential method to obtain these error probabilities is through fault-injection experiments in
the underlying hardware during the execution of these basic blocks

16 A. Herkersdorf et al.

’Program‘ ‘Architecture‘ | HW |

Fig. 13 Composition and focus of the different modeling approaches

deadline). This can be captured via the Reliability-Timing Penalty (RTP) model [25].
It is defined as the linear combination of functional reliability and timing reliability:

RTP =o-R+ (1 —a)- -miss_rate

where R is the reliability penalty (which can be any reliability metric at func-
tion granularity like FV I or Function Resilience) and miss_rate represents the
percentage of deadline misses for the software application. Via the parameter o
(0 < a < 1), the importance of the two components can be determined: if « is closer
to 0, the timing reliability aspect is given a higher importance; when « is closer to 1,
the functional reliability aspect is highlighted. The tradeoff formulated by the RT P
is particularly helpful when selecting appropriate mitigation techniques for errors
affecting the functional correctness, but which might have a significant time-wise
overhead.

A summary of the different modeling approaches discussed above is shown in
Fig. 13, where the main factors and corresponding system layers are highlighted.

5.2 Data Vulnerability Analysis and Mitigation

A number of approaches to analyze and mitigate soft errors, such as ones introduced
by memory bit flips or logic errors in an ALU, rely on annotating sections of code as
to their vulnerability to bit flips [2]. These approaches are relatively straightforward
to implement, but regularly fail to capture the context of execution of the annotated
code section. Thus, the worst-case error detection and correction overhead applies
to all executions of, e.g., an annotated function, no matter what the relevance of
the data processed within that function to the execution of the program (stability or
quality of service effects) may be.

The SPP 1500 Program project FEHLER [29], in contrast, bases its analyses
and optimizations on the notion of data vulnerability by performing joint code and
data flow analyses. Here, the foremost goal is to ensure the stability of program

RAP Model—Enabling Cross-Layer Analysis and Optimization for System-on-. . . 17

Ry S N R .
Process®, Tasks Driver o
__.__._._.__._._._._._._._._._.. 5 p....
Data " x ~OpCode~Y = *pagm ¥ _]_1 variables

System SW
Levels

Fig. 14 Horizontal propagation of an error in the RAP model

execution while allowing a system designer to trade the resulting quality of service
of a program for optimizations of different non-functional properties such as real-
time adherence and energy consumption.

However, analyses on the level of single bit-flips are commonly too fine-grained
for consideration in a compiler tool flow. Rather, the level of analysis provided
by FEHLER allows the developer to introduce semantics of error handling above
the level of single bit-flips. In the upper half of the RAP model hourglass [9], this
corresponds to the “data” layer.

The seminal definition of the RAP model provides the notion of a set of bits that
belong to a word of data. This allows the minimum resolution of error annotations
to represent basic C data types such as char or int.> In addition, FEHLER allows
annotations of complex data types implemented as consecutive words in memory,
such as C structures or arrays.

In terms of the RAP model, data flow analyses enable the tracking of the effects
of bit flips in a different dimension. The analyses capture how a hardware-induced
bit error emanating in the lower half of the RAP hourglass propagates to different
data objects on the same layer as an effect of arithmetic, logic, and copy operations
executed by the software. As shown in Fig. 14, a bit error on the data layer can now
propagate horizontally within the model to different memory locations. Thus, with
progressing program execution, a bit flip can eventually affect more than one data
object of an application.

In order to avoid software crashes in the presence of errors, affected data objects
have to be classified according to the worst-case impact an error in a given object
can have on a program’s execution.

Using a bisecting approach, this results in a binary classification of the worst-
case error impact of a data object on a program’s execution. If an error in a data
object could result in an application crash, the related piece of data is to be marked
as critical to the system stability. An example for this could be a pointer variable
which, in case of a bit error, might result in a processor exception when attempting
to dereference that pointer. In turn, all other errors are classified as non-critical,
which implies that we can ensure that a bit flip in one of these will never result in a
system crash.

2Single bit annotations could be realized by either using C bit fields or bit banding memory areas.
However, the use of bit fields is discouraged due to portability issues, whereas bit banding is not
generally available on all kinds of processors and the compiler possesses no knowledge of aliasing
of bit banding areas with regular memory, which would result in more complex data flow analyses.

18 A. Herkersdorf et al.

unreliable int x;
reliable int y;

Listing 1.1 Reliability type qualifiers in FEHLER

In the FEHLER system, this classification is indicated by reliability type
qualifiers, an addition to the C language that allows a programmer to indicate the
worst-case effect of errors on a data object [3]. An example for possible annotations
is shown in Listing 1.1. Here, the classification is implemented as extensions to the
C language in the ICD-C compiler. The reliable type qualifier implies that the
annotated data object is critical to the execution of the program, i.e., a bit flip in
that variable might result in a crash in the worst case, whereas the unreliable
type qualifier tells the compiler that the worst-case impact of a bit flip is less
critical. However, in that case the error can still result in a significant reduction
of a program’s quality of service.

N
' SN
VRN
AN

zZ u

unreliable int u, x;
reliable int y, z;

X =y - (z +u) * 4;

Listing 1.2 Data flow analysis of possible horizontal error propagation and related AST
representation

It is unrealistic to expect that a programmer is able or willing to provide
annotations to each and every data object in a program. Thus, the task of analyzing
the error propagation throughout the control and data flow and, in turn, providing
reliability annotations to unannotated data objects, is left to the compiler.

An example for data propagation analysis is shown in Listing 1.2. Here, data
flow information captured by the static analysis in the abstract syntax tree is used
to propagate reliability type qualifiers to unannotated variables. In addition, this
information is used to check the code for invalid assignments that would propagate
permissible bit errors in unreliable variables to ones declared as reliable.
Here, the unreliable qualifier of variable u propagates to the assignment to the
left-hand side variable x. Since x is also declared unreliable, this code is valid.

RAP Model—Enabling Cross-Layer Analysis and Optimization for System-on-. . . 19

unreliable int u, pos, tmp;
reliable int r, al[10];

u = 10;
r = u; // invalid assignment
pos = 0;
while (pos < r) { // invalid condition
tmp = r / u; // invalid division
al pos++] = tmp; // invalid memory access

}

Listing 1.3 Invalid assignments

Listing 1.3 gives examples for invalid propagation of data from unreliable (i.e.,
possibly affected by a bit flip) to reliable data objects, which are flagged as an error
by the compiler.

However, there are specific data objects for which the compiler is unable to
automatically derive a reliability qualifier for. Specifically, this includes input and
output data, but also possibly data accessed through pointers for which typical static
analyses only provide imprecise results.

The binary classification of data object vulnerability discussed above is effective
when the objective is to avoid application crashes. If the quality of service, e.g.,
measured by the signal-to-noise ratio of a program’s output, is of relevance,
additional analyses are required.

FEHLER has also been applied to an approximate computing system that utilizes
an ALU comprised of probabilistic adders and multipliers [7]. Here, the type
qualifiers discussed before are used to indicate if a given arithmetic operation can
be safely executed on the probabilistic ALU or if a precise result is required, e.g.,
for pointer arithmetics. The impact of different error rates on the output of an H.264
video decoder using FEHLER on probabilistic hardware is shown in Fig. 15. Here,
lowering the supply voltage results in an increased error probability and, in turn, in
more errors in the output, resulting in a reduced QoS as measured by the signal-to-
noise ratio of the decoded video frames.

(b) @ ()

Fig. 15 Effects of different error rated on the QoS of an H.264 video decoder using FEHLER. (a)
Vpop =12V.(b) Vpp =1.1V.(¢) Vpp =1.0V.(d) Vpp =0.9V.(e) Vpp =0.8V

20 A. Herkersdorf et al.
5.3 Dynamic Testing

Architectural countermeasures that prevent errors from surfacing or even only detect
their presence come at non-neglectable costs. Whether a specific cost is acceptable
or not, in turn, depends on many factors, most prominently criticality. The range of
associated costs is also extensive, on one end triple modular redundancy (TMR) or
similar duplication schemes such as duplication with comparison (DWC) or on the
other end of the spectrum time-multiplexed methods such as online dynamic testing
proposed by Gao et al. [5]. In the former examples, the costs directly correlate to the
kind of assurance each technique can provide, i.e., TMR can not only continuously
monitor a given component like DWC, but it can also mask any detected errors.
Using TMR in the right manner, it virtually guarantees the absence of errors, but
also comes at a 50% increase in both area and power consumption when compared
to DWC.

Whether such cost is sensible or not depends on a complex probabilistic tradeoff
with the probability of an error to occur at a specific point in time, and the criticality
of an application, on the other hand, also expressed as a probabilistic term, e.g.,
the maximum tolerable error probability per time, often expressed as failure rate
per time A. While some applications cannot tolerate any errors such as banking
transactions (or so we hope), many embedded applications have surprisingly large
margins such as applications for entertainment or comfort purposes. For such
applications, rather than giving absolute assurances in terms of error detection
and masking (e.g., TMR or DWC), temporal limits with confidence levels are
far more usable and have much higher utility for the engineering of architectural
countermeasures.

Dynamic testing is a probabilistic testing scheme which can exploit such limits
as its primary metric is by definition latency detection, that is the time a given
dynamic testing configuration requires to detect an error with a given probability.
Dynamic testing periodically samples inputs as well as associated outputs of known
algorithms implemented in designated components of a SoC in a time-multiplexed
fashion. Thereby obtained samples are then recomputed online on a component,
the checker core, which is presumed to be more reliable. If the output sample of
the device under test (DUT) does not match the recomputed sample, an error on
the DUT is assumed. This testing method offers many ways to be tuned towards a
specific scenario and to meet particular reliability requirements. By specifying how
often a DUT is checked, how many samples per time window are being checked as
well as how many such DUTs are checked using the same checker core, effort and
the achievable level of assurance can be fine-tuned. Furthermore, depending on the
properties of the checker core, even more ways to tailor dynamic testing towards a
concrete scenario emerge.

In the presented research as demonstrated in [15], specially hardened Dynami-
cally Reconfigurable Processors (DRPs) have been used to implement the checker
functionality (See chapter ‘Increasing Reliability Using Adaptive Cross-Layer
Techniques in DRPs’). DRPs are similar to FPGAs as they are reconfigurable

RAP Model—Enabling Cross-Layer Analysis and Optimization for System-on-. . . 21

error detection
controller

external reconfiguration
controller

ts
BEEEEERER =
BEEEEEREE
AEEEEEEE

shared control unit ‘

Input FIFO

Output FIFO

@8 E)E (EE(E
@ EEE)E(EE(E

Multi-context
mapping

Fig. 16 General DRP structure (left) and temporal application mapping in DRPs (right)

architectures. In terms of functionality, however, they are much closer to many-core
architectures, as they consist of an array of processing elements (PE) (Fig. 16 left)
which operate on word granularity and possess an instruction concept combined
with processor-like cycle-by-cycle internal reconfiguration. Therefore, DRPs do
not only allow applications to be mapped spatially like FPGAs but also offer an
extensive temporal domain to be used for better area utilization using so-called
multi-context application mappings (Fig. 16 right).

For dynamic testing, this means that a DRP as a checker core is more suitable
than, e.g., an embedded field programmable gate array (eFPGA) as conventional
error detection ensures that the hardened DRP itself is checked regularly during
non-checker operation. Furthermore, the high structural regularity also allows
workloads to be shifted around on the PE array, adding additional assurances that if
a DUT checks out faulty on several different PEs, the likelihood of false-positives
decreases. Most importantly, however, it does not need to be dedicated to dynamic
testing, but dynamic testing could be executed alongside regular applications. In
turn, this, of course, also means that checker computations take longer to complete,
reducing the number of samples computed per time window.

While this adaptability makes DRPs and dynamic testing an interesting match,
for this combination to be useful, realistic assumptions about the error probability
P are essential. If we can obtain P through, e.g., the RAP model, there are two
significant advantages. Firstly, P is not constant over the lifetime of a SoC and
knowledge about its distribution can help reduce testing efforts with dynamic
testing. At a less error-prone time, dynamic testing allows for trade-offs such as
increased time to react to errors if the error is unlikely enough to only affect a
small minority of devices. Secondly, for an error with probability P to have any
effect, it needs to be observable, and, thus, for all practical purposes we equate P
and observation probability ¢ which then allows us to use P to fine-tune dynamic
testing to a resource minimum while meeting an upper bound for detection latency.

22 A. Herkersdorf et al.

_

0
5 10 15 20 25 30 35 DL[s]
Ty [Ms]

- 0.4

- 0.2

Fig. 17 Feasibility region for an error to be detected within 2's, with N = 4 running at 100 MHz,
an observable error probability of P = 107, a reconfiguration and setup overhead of 1 ms and
different scaling factors s and time windows 77w

Assume a dynamic testing setup with N = 4 DUTs, a reconfiguration and general
setup overhead of Toy = 1ms and time windows of Trwy = {1,...,40ms},
one round of checking requires between 8 ms and 44 ms for all DUTs. Now let s
denote the scaling factor by which the temporal domain is used to map the checker
functionality, e.g., s = 3 means using a third of the original spatial resources
and, instead, prolonging the time to compute one sample by a factor of three.
Consequently, a scaling factor of s = 3 divides the number of samples checked
within one time window by three.

Now consider Fig. 17 which depicts the feasibility region by time window size
Trw and scaling factor s. The area which is not marked by the red dashes means
that in this region, a reliability goal of a maximum detection latency DL of 2s
can be guaranteed with two-sigma confidence. However, apart from all adaptability,
dynamic testing may be also waived or reduced to a minimum during times of
low error probability (after early deaths in the bath tub curve). Ideally, we would
only start with serious testing once the error probability is high enough to be
concerned and then also only as much that the expected detection latency is within
the prescribed limit. In other words, without detailed knowledge of vulnerability P,
the only possibility is to guess the probabilities and add margins. If, however, P

RAP Model—Enabling Cross-Layer Analysis and Optimization for System-on-. . . 23

can be estimated close enough, dynamic testing using DRPs as checker core offers
a near resource optimal time and probability based technique.

Furthermore, if the characteristics of P and its development over time is
understood well enough, dynamic testing could pose an alternative to DWC or
even TMR for certain applications. The better P can be modeled, the smaller
the margins become that have to be added to give assurances with high enough
confidence. Especially for more compute intensive applications without 100%
availability requirements, dynamic testing could serve as a low-cost alternative.

6 Application-Level Optimization—Autonomous Robot

Autonomous transportation systems are continuously advancing and become
increasingly present in our daily lives [37]. Due to their autonomous nature, for
such systems often safety and reliability are a special concern—especially when
they operate together with humans in the same environment [11]. In [13], we studied
the effect of soft errors in the data cache of a two-wheeled autonomous robot. The
robot acts as a transportation platform for areas with narrow spacing. Due to safety
reasons, the autonomous movement of the robot is limited to a predefined path. A
red line on the ground, which is tracked by a camera mounted on the robot, defines
the path which the robot should follow.

Since we want to study the impact of single event upsets in the data cache, the
whole system memory hierarchy including accurate cache models is included in
the simulation environment. We utilized in this example Instruction Set Simulation
(ISS) to emulate the control SW, which consists of three main tasks: (1) the
extraction of the red line from the camera frames, (2) the computation of orientation
and velocity required to follow the line, and (3) evaluation of the sensor data to
control the left and right motor torques to move the robot autonomously. The last
task has especially hard real-time constraints because the robot must constantly
be balanced. In this setup we used a fault model based on neutron particle strike
induced single event upsets as shown in Sect.4.1.1. Further, to make the fault-
injection experiment feasible we used Mixture Importance Sampling to avoid
simulation of irrelevant scenarios [14].

In this experiment the processor of the robot is modeled in a 45 nm technology
together with a supply voltage of 0.9 V. Further, we assume a technology dependent
parameter O of 4.05 fC and a flux & of 14 Neutrons/cm?/h (New York, Sea Level)
[20, 36]. In our fault injection experiment we start with an unprotected, unhardened
data cache to find the maximal resilience of the application to soft errors.

Figure 18 depicts traces of position, velocity, and orientation of the robot while
it autonomously follows a line for 10s. The injected faults lead to two types of
changed system behavior:

1. strong deviations in orientation and velocity where the robot eventually loses its
balance (crash sites are marked with crosses in the x — —y plane graph).

24 A. Herkersdorf et al.

0 1 2 3 4 5 6 7 8 9 10

x Position [m -1 0 1 2 3 4 5 6 71 8 9 10
Simulated Real-Time [s]

Fig. 18 Robot movement in x — —y plane together with velocity and orientation angle. Dashed
lines indicate crashes by CPU stalls

2. slight deviations, e.g., temporarily reduced velocity or changed orientation,
where the robot still rebalances due to its feed-back control loop and still reaches
its goal at the end of the line.

Further investigations showed, that for the more severe failures in (1) the
simulator always reported a CPU stall. This led finally to the crash of the robot
in the simulation as the balancing control was not executed any longer. Such
failures are much more severe compared to (2). Still, such problems are detectable
on microarchitectural level. In (2), silent data corruption (SDC) in the control
algorithm happens. SDC is a severe problem for an application because it typically
cannot easily be detected. Interestingly for our experiment, the algorithm shows
a very high fault tolerance and often moves the robot back on its original path.
This, possibly, guarantees a safe movement dependent on how narrow the robot’s
movement corridor is specified. The inherent error resilience of the application, thus,
mitigates the SDC effect.

Based on these insights an overall cross-layer design approach for this appli-
cation could look as follows: The severe crashing failures in (1) are handled by
additional protection solution which detects such problems and causes a restart of
the application and hence the balancing control. One typical solution to this problem
is the addition of a watchdog timer to the system or a small monitoring application
to key state variables of the control loop. The silent data corruption in (2) can be
accepted in a certain frequency and limit according to the overall system constraints.
Hence, further system design techniques and resilience actuators can be used to
tune this into the required limits. This is further described in chapter ‘Cross-Layer
Resilience Against Soft Errors: Key Insights’.

A further use case for applying the RAP model to the cross-layer evaluation of
temperature effects in MPSoC systems is presented in chapter *'Thermal Manage-
ment and Communication Virtualization for Reliability Optimization in MPSoCs’.

RAP Model—Enabling Cross-Layer Analysis and Optimization for System-on-. . . 25

References

10.

11.

12.

13.

14.

. Chang, I., Mohapatra, D., Roy, K.: A priority-based 6t/8t hybrid SRAM architecture for

aggressive voltage scaling in video applications. Trans. Circuits Syst. Video Technol. 21(2),
101-112 (2011)

. de Kruijf, M., Nomura, S., Sankaralingam, K.: Relax: an architectural framework for software

recovery of hardware faults. In: Proceedings of the 37th Annual International Symposium on
Computer Architecture (ISCA 10), pp. 497-508. ACM, New York (2010). https://doi.org/10.
1145/1815961.1816026

. Engel, M., Schmoll, F., Heinig, A., Marwedel, P.: Unreliable yet useful—reliability annotations

for data in cyber-physical systems. In: Informatik 2011, Berlin, Germany, p. 334 (2011)

. Evans, A., Nicolaidis, M., Wen, S.J.: Riif—reliability information interchange format. In: IEEE

18th International On-Line Testing Symposium (IOLTS) (2012)

. Gao, M., Chang, H.M., Lisherness, P., Cheng, K.T.: Time-multiplexed online checking. IEEE

Trans. Comput. 60(9), 1300-1312 (2011)

. Gupta, P, Agarwal, Y., Dolecek, L., Dutt, N.D., Gupta, R.K., Kumar, R., Mitra, S., Nicolau, A.,

Rosing, T.S., Srivastava, M.B., Swanson, S., Sylvester, D.: Underdesigned and opportunistic
computing in presence of hardware variability. IEEE Trans. CAD of Integr. Circuits Syst. 32(1),
8-23 (2013). https://doi.org/10.1109/TCAD.2012.2223467

. Heinig, A., Mooney, V.J., Schmoll, F., Marwedel, P., Palem, K., Engel, M.: Classification-

based improvement of application robustness and quality of service in probabilistic computer
systems. In: Proceedings of the 25th International Conference on Architecture of Computing
Systems (ARCS’12), pp. 1-12. Springer, Berlin (2012)

. Henkel, J., Bauer, L., Becker, J., Bringmann, O., Brinkschulte, U., Chakraborty, S., Engel,

M., Ernst, R., Hartig, H., Hedrich, L., Herkersdorf, A., Kapitza, R., Lohmann, D., Marwedel,
P., Platzner, M., Rosenstiel, W., Schlichtmann, U., Spinczyk, O., Tahoori, M.B., Teich, J.,
Wehn, N., Wunderlich, H.: Design and architectures for dependable embedded systems. In:
Proceedings of the 9th International Conference on Hardware/Software Codesign and System
Synthesis, CODES+ISSS 2011, part of ESWeek *11 Seventh Embedded Systems Week, Taipei,
Taiwan, 9-14 October 2011, pp. 69-78 (2011). https://doi.org/10.1145/2039370.2039384

. Herkersdorf, A., et al.: Resilience articulation point (RAP): cross-layer dependability modeling

for nanometer system-on-chip resilience. Microelectron. Reliab. 54(6-7), 1066-1074 (2014).
https://doi.org/10.1016/j.microrel.2013.12.012

Ibe, E., et al.: Spreading diversity in multi-cell neutron-induced upsets with device scaling. In:
IEEE Custom Integrated Circuits Conference (CICC) (2006)

ISO: ISO/PAS 21448: Road vehicles—Safety of the intended functionality. International
Organization for Standardization, Geneva (2019)

Kleeberger, V., Weis, C., Schlichtmann, U., Wehn, N.: Circuit resilience roadmap. In: Circuit
Design for Reliability, pp. 121-143. Springer, Berlin (2015)

Kleeberger, V., et al.: A cross-layer technology-based study of how memory errors impact
system resilience. IEEE Micro. 33(4), 46-55 (2013)

Kleeberger, V., et al.: Technology-aware system failure analysis in the presence of soft errors
by mixture importance sampling. In: IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFTS) (2013)

. Kiihn, J.M., Schweizer, T., Peterson, D., Kuhn, T., Rosenstiel, W., et al.: Testing reliability

techniques for SOCS with fault tolerant CGRA by using live FPGA fault injection. In: 2013
International Conference on Field-Programmable Technology (FPT), pp. 462-465. IEEE, New
York (2013)

. Lee, S., Baeg, S., Reviriego, P.: Memory reliability model for accumulated and clustered soft

errors. IEEE Trans. Nucl. Sci. 58(5), 2483-2492 (2011)

. Lin, D, Hong, T., Li, Y., Fallah, F., Gardner, D.S., Hakim, N., Mitra, S.: Overcoming post-

silicon validation challenges through quick error detection (QED). In: Design, Automation and
Test in Europe (DATE 13), Grenoble, France, 18-22 March 2013, pp. 320-325 (2013). https://
doi.org/10.7873/DATE.2013.077

https://doi.org/10.1145/1815961.1816026
https://doi.org/10.1145/1815961.1816026
https://doi.org/10.1109/TCAD.2012.2223467
https://doi.org/10.1145/2039370.2039384
https://doi.org/10.1016/j.microrel.2013.12.012
https://doi.org/10.7873/DATE.2013.077
https://doi.org/10.7873/DATE.2013.077

26

18.

19.

20.
21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

A. Herkersdorf et al.

Millman, S.D., McCluskey, E.J.: Detecting bridging faults with stuck-at test sets. In: Pro-
ceedings International Test Conference 1988, Washington, D.C., USA, September 1988,
pp. 773-783 (1988). https://doi.org/10.1109/TEST.1988.207864

Modarres, M., Kaminskiy, M., Krivtsov, V.: Reliability Engineering and Risk Analysis: A
Practical Guide. CRC Press, New York (1999)

Mukherjee, S.: Architecture design for soft errors. Morgan Kaufmann, Burlington (2011)
Quinn, H.M., De Hon, A., Carter, N.: CCC visioning study: system-level cross-layer cooper-
ation to achieve predictable systems from unpredictable components. Tech. rep., Los Alamos
National Laboratory (LANL) (2011)

Rehman, S., Kriebel, F., Shafique, M., Henkel, J.: Reliability-driven software transformations
for unreliable hardware. IEEE Trans. CAD Integr. Circuits Syst. 33(11), 1597-1610 (2014).
https://doi.org/10.1109/TCAD.2014.2341894

Rehman, S., Shafique, M., Aceituno, P.V., Kriebel, F.,, Chen, J., Henkel, J.: Leveraging
variable function resilience for selective software reliability on unreliable hardware. In: Design,
Automation and Test in Europe (DATE 13), Grenoble, France, 18-22 March 2013, pp. 1759—
1764 (2013). https://doi.org/10.7873/DATE.2013.354

Rehman, S., Shafique, M., Kriebel, F., Henkel, J.: Reliable software for unreliable hardware:
embedded code generation aiming at reliability. In: Proceedings of the 9th International
Conference on Hardware/Software Codesign and System Synthesis, CODES+ISSS 2011,
part of ESWeek ’11 Seventh Embedded Systems Week, Taipei, Taiwan, 9-14 October 2011.
pp- 237-246 (2011). https://doi.org/10.1145/2039370.2039408

Rehman, S., Toma, A., Kriebel, F., Shafique, M., Chen, J., Henkel, J.: Reliable code generation
and execution on unreliable hardware under joint functional and timing reliability consider-
ations. In: 19th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS 2013), Philadelphia, PA, USA, 9-11 April 2013, pp. 273-282 (2013). https://doi.org/
10.1109/RTAS.2013.6531099

Robinson, W., Alles, M., Bapty, T., Bhuva, B., Black, J., Bonds, A., Massengill, L., Neema,
S., Schrimpf, R., Scott, J.: Soft error considerations for multicore microprocessor design. In:
IEEE International Conference on Integrated Circuit Design and Technology, pp. 1-4. IEEE,
New York (2007)

Savino, A., Di Carlo, S., Vallero, G., Politano, G., Gizopolous, D., Evans, A.: RIIF-2—toward
the next generation reliability information interchange format. In: IEEE 22nd International
On-Line Testing Symposium (IOLTS) (2016)

Schlichtmann, U., et al.: Connecting different worlds—technology abstraction for reliability-
aware design and test. In: Design, Automation & Test in Europe Conference & Exhibition
(DATE 2014), Dresden, Germany, 24-28 March 2014, pp. 1-8 (2014). https://doi.org/10.7873/
DATE.2014.265

Schmoll, F., Heinig, A., Marwedel, P., Engel, M.: Improving the fault resilience of an H.264
decoder using static analysis methods. ACM Trans. Embed. Comput. Syst. 13(1s), 31:1-31:27
(2013). https://doi.org/10.1145/2536747.2536753

Shafique, M., Axer, P., Borchert, C., Chen, J., Chen, K., Débel, B., Ernst, R., Hirtig, H., Heinig,
A., Kapitza, R., Kriebel, F., Lohmann, D., Marwedel, P., Rehman, S., Schmoll, F., Spinczyk,
O.: Multi-layer software reliability for unreliable hardware. it—Inf. Technol. 57(3), 170-180
(2015). https://doi.org/10.1515/itit-2014- 1081

Shafique, M., Rehman, S., Aceituno, P.V., Henkel, J.: Exploiting program-level masking
and error propagation for constrained reliability optimization. In: The 50th Annual Design
Automation Conference 2013 (DAC ’13), Austin, TX, USA, May 29-June 07 2013, pp. 17:1-
17:9 (2013). https://doi.org/10.1145/2463209.2488755

Sridharan, V., Kaeli, D.R.: Eliminating microarchitectural dependency from architectural
vulnerability. In: 15th International Conference on High-Performance Computer Architecture
(HPCA-15 2009), 14-18 February 2009, Raleigh, North Carolina, USA, pp. 117-128 (2009).
https://doi.org/10.1109/HPCA.2009.4798243

TelCordia Technologies: Reliability Prediction Procedure for Electronic Equipment, SR-332
(2016)

https://doi.org/10.1109/TEST.1988.207864
https://doi.org/10.1109/TCAD.2014.2341894
https://doi.org/10.7873/DATE.2013.354
https://doi.org/10.1145/2039370.2039408
https://doi.org/10.1109/RTAS.2013.6531099
https://doi.org/10.1109/RTAS.2013.6531099
https://doi.org/10.7873/DATE.2014.265
https://doi.org/10.7873/DATE.2014.265
https://doi.org/10.1145/2536747.2536753
https://doi.org/10.1515/itit-2014-1081
https://doi.org/10.1145/2463209.2488755
https://doi.org/10.1109/HPCA.2009.4798243

RAP Model—Enabling Cross-Layer Analysis and Optimization for System-on-. . . 27

34. Wirth, G., Vieira, M., Neto, E., Kastensmidt, F.: Generation and propagation of single event
transients in CMOS circuits. In: IEEE Design and Diagnostics of Electronic Circuits and
systems (2006)

35. Wunderlich, H.J., Holst, S.: Generalized fault modeling for logic diagnosis. In: Models in
Hardware Testing—Lecture Notes of the Forum in Honor of Christian Landrault. Springer,
Berlin (2010)

36. Zhang, M., Shanbhag, N.: Soft-error-rate-analysis (sera) methodology. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 25(10), 2140-2155 (2006)

37. Ziegler, J., et al.: Making Bertha drive—an autonomous journey on a historic route. IEEE Intell.
Transp. Syst. Mag. 6(2), 8-20 (2014)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	RAP Model—Enabling Cross-Layer Analysis and Optimization for System-on-Chip Resilience
	1 Introduction/Motivation
	2 Resilience Articulation Point (RAP) Basics
	3 Related Work
	4 Fault Abstraction at Lower Levels
	4.1 SRAM Errors
	4.1.1 SRAM Errors due to Particle Strikes (Qcrit)
	4.1.2 SRAM Errors due to Noise (SVNM)
	4.1.3 SRAM Errors Due to Read/Write Failures (Read Delay/WTV)
	4.1.4 SRAM Errors due to Supply Voltage Drop

	5 Architecture Level Analysis and Countermeasures
	5.1 Instruction Vulnerability
	5.2 Data Vulnerability Analysis and Mitigation
	5.3 Dynamic Testing

	6 Application-Level Optimization—Autonomous Robot
	References

