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ABSTRACT Learning-to-rank is an emerging area of research for a wide range of applications. Many
algorithms are devised to tackle the problem of learning-to-rank. However, very few existing algorithms deal
with deep learning. Previous research depicts that deep learning makes significant improvements in a variety
of applications. The proposed model makes use of the deep neural network for learning-to-rank for document
retrieval. It employs a regularization technique particularly suited for the deep neural network to improve the
results significantly. The main aim of regularization is optimizing the weight of neural network, selecting the
relevant features with active neurons at the input layer, and pruning of the network by selecting only active
neurons at hidden layer while learning. Specifically, we use group ¢ regularization in order to induce the
group level sparsity on the network’s connections. Set of outgoing weights from each hidden layer represents
the group here. The sparsity of network is measured by the sparsity ratio and it is compared with learning-to-
rank models, which adopt the embedded method for feature selection. An extensive experimental evaluation
considers the performance of the extended ¢; regularization technique against classical regularization
techniques. The empirical results confirm that sparse group £ regularization is able to achieve competitive
performance while simultaneously making the network compact with less number of input features. The
model is analyzed with respect to evaluating measures, such as prediction accuracy, NDCG@n, MAP, and
Precision on benchmark datasets, which demonstrate improved results over other state-of-the-art methods.

INDEX TERMS Deep neural network, feature selection, information retrieval, learning-to-rank,
regularization.

I. INTRODUCTION

Since the last decade, machine learning has apparently been
used in a wide range of applications, including ranking.
Machine learning framework used for ranking is known as
learning-to-rank. Learning-to-rank framework has first orig-
inated for information retrieval (IR) system yet these days it
is used for wide range of applications like recommendation
system, collaborative filtering, spam detection, bioinformat-
ics, etc. Learning-to-rank framework specifically uses the
supervised machine learning algorithms and discovers the
best order of a list according to their preferences, score or
rank [1]. Learning-to-rank does not look at the absolute
score for each item however it is involved with one item
being ranked above or below the another. Algorithms devised
under learning-to-rank designed with discriminative training
are categorized into three main approaches, e.g. pointwise
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[2]-[5], pairwise [6], [9], [10], [12], [16] and listwise
[11], [13]-[15] approach. These approaches have differ-
ent input space, output space, hypothesis and loss func-
tion. Learning-to-rank provides optimal way for learning
by combining the items associated with features through
discriminative training [20].

In recent trends, number of ranking models are build using
deep neural network. Deep neural network [21] has the ability
of automatic learning by using the available features. It has
achieved great success for many machine learning applica-
tions such as computer vision, natural language processing,
speech recognition, etc. New direction of the neural network
for ranking applications uses deep learning to tackle the
problem of learning-to-rank by using the extracted features
of objects. The concept of deep learning for learning-to-
rank was first proposed by Cherif et al. [22] for preference
learning. This model is based on the SortNet algorithm [12]
using the CmpNN (comparative neural network) model.
Pang et al. [23] proposed DeepRank, a new architecture for
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relevance ranking to the IR. They consider automatically
retrieved features from raw data to learn the model. Song [24]
proposed the ConvRankNet that combines a Siamese con-
volutional neural network encoder and RankNet [9] ranking
model which could be trained in end-to-end fashion. There
are also some other pioneer works like, DSSM [26] and
CDSSM [27] that use the semantic information for document
retrieval. They implement deep neural network model based
on the semantic features of query-document pair and compute
the score based on their cosine-similarity. However, it ignores
relevance ranking between the documents. This issue of rele-
vance ranking is solved by another deep learning architecture
DRMM [28] that considers both ranking criteria and relevance
ranking between the documents.

The above learning-to-rank models make learning feasi-
ble using the deep neural network. It leads to remarkable
accuracies for high dimensional datasets. Deep neural net-
work directly encodes the feature vectors of the retrieved
documents to learn context embedding and use it to improve
the learning-to-rank systems. However, it involves the large
number of weights while learning. The majority of weights
in most deep network are not necessary to its accuracy. The
model can learn on the small percentage of weights without
compromising its accuracy. There are number of methods
proposed to optimize the weights (number of weights). Most
of these either require strong assumptions on the connectiv-
ity or they require multiple, separate training steps. Pruning
method can also be adopted by setting the weights to zero
based on a fixed threshold, and then fine-tuning the remaining
connections with a second training step. Feature selection is
an additional problem in deep learning when considering high
dimensional datasets. The learning model with large number
features may leads to low accuracy, high computational com-
plexity and overfitting.

In deep neural network, feature selection and network
pruning are interrelated problems [39]. The learning model
with high dimensional features generally results in need of
growing the network capacity in terms of number of neurons
and it may add up-to the last hidden layer. In neural network,
input layer is considered as an additional layer, having only
outgoing connection to the first hidden layer. However, it does
not have the incoming connections. Thus, pruning of neurons
from initial layer are same as deleting the corresponding
irrelevant feature from input layer.

Considerable work has been done on feature selection
for learning-to-rank. The number of learning-to-rank mod-
els are proposed with different feature selection methods,
viz. filter method, wrapper method, embedded method. The
filter method is adopted by [29]-[32]. This method is not
based on machine learning algorithms, and use general tech-
niques such as correlation of features for prediction. In the
wrapper method [33], [34], feature space is partitioned into
subsets and then combines these subsets of feature to max-
imize ranking metric. These methods use a trained model
and test the samples in order to derive feature importance
from performances regardless the type of machine learning
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algorithm used. In embedded approach, feature selection pro-
cess integrates with the learning algorithms. These algorithms
are also known as the feature sparse algorithm for feature
selection [35]-[37]. There are very few ranking models that
implement the embedded method for feature selection. In the
proposed model, we aim at improving the performances of
deep neural network based ranking model by reducing num-
ber of feature, having a better understanding of the underlying
distribution and avoid overfitting of network.

Sparse regularized network for learning-to-rank is one
of the embedded method for feature selection. It exploits
correlations among the features to enforce network to be
sparse. At the same time, it also removes feature redundancies
to fully utilize the network capacity [40]. Principal way to
achieve this objective is £ regularization wherein loss func-
tion is optimized with a penalty term obtained by aggregating
absolute value of weights during training [42]. It is an indirect
way to solve the problem of network pruning with feature
selection. Here, low-rank (a low absolute value for weight)
neuron with all its incoming and outgoing connection are
set to zero and it does not participate in further learning.
However, this is a highly sub-optimal solution to an equally
sparse network. Hence, we prefer group level sparsity that
gives more structured level sparsity and keeps smaller num-
ber of neurons per layer. The group level sparsity imposes
sparsity such that all variables within a group are either
simultaneously zero or none. Thus, we achieve our objec-
tives of optimizing weight of neural network and selecting
the active neurons at input layer by using £; regularization
technique.

PAPER CONTRIBUTION
We have adopted deep neural network architecture for
learning-to-rank. Further, network architecture optimizes
with different regularization techniques. We have put more
emphasis on ¢ regularization technique for feature selec-
tion. The main aim of regularization is to induce sparsity
and to avoid overfitting of deep neural network [38]. As an
additional variety, we have adopted group £1 and sparse
group {1 regularization to speed up the learning and improve
result significantly. The sparse group £ is mainly used
to induce sparsity on non-sparse group. The group of fea-
tures can be formed based on all outgoing connections of
the neuron. In this way, optimization of deep neural net-
work is forced to remove the low-rank neurons at learning
time.

In this paper, sparse group €| regularization is used as
a comprehensive tool to impose more substantial network
with subset of most relevant features. The empirical analysis
on the benchmark datasets shows better results with sparse
group weight penalty term. It also gives better performance in
comparison to other baseline algorithms against IR evaluating
measures such as NDCG@n, P@n and MAP. The sparsity
of the network has evaluated in terms of sparsity ratio and
compared with baselines methods which have been published
with respect to feature selection for learning-to-rank.
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In short, the major contribution of paper are as follows:

1) We implement the dense neural network architecture
for application of learning-to-rank. It automatically
selects highly informative features while learning. This
model adopts the embedded method of feature selection
which also avoids overfitting.

2) The listwise approach is considered to build the
learning-to-rank system using the deep neural network.
The ListNet algorithm is followed for implementation.
Regularized network with ListNet, first applies the
gradient on loss function and then it optimizes the
regularization term while performing projection of it to
the solution space.

3) Experimental comparisons and analysis show that the
best results are obtained with the sparse group ¢ regu-
larization where we can obtain comparable accuracies
to £p-regularized and ¢;-regularized networks.

ORGANIZATION OF PAPER

This paper is organized as follows: Section II summaries
the problem formulation and different notions of proposed
model. Section III describes the supporting background for
architecture and regularization techniques used to optimize
the learning model. We formulate the optimization problem
in Section IV. It briefly discusses the novel sparse group
£1 weight penalty terms to show the meaning of group in
this context. Section V fully describes about datasets, soft-
ware tools, evaluating measures and experimental set-up.
In Section VI, we first analyze the ability of our approach
to induce sparsity into the learning model. The results are
also compared with other baselines in terms of IR evaluating
measures NDCG@n and MAP. We conclude our paper with
final remarks in Section VII.

Il. BACKGROUND

A. PROBLEM FORMULATION AND NOTATION

We have considered learning-to-rank problem in the con-
text of IR in which ranking of documents associated with
be the total number of queries and D = {dj"}jzl,z___,N be
the total number of documents associated with each query
gi. Furthermore, every query-document pair has a label yj(.')
that represents the relevance judgment of document j towards
query g;. Let L = {l1,1p,...I;} be the set of all possible
degree of labels and k is the finite number of relevance
judgment. There exists order between the relevance judgment
such as {l; > bL > > I} where > represents the
preference relationship between labels of object. In learning-
to-rank model, every query-document pair is categorized by
the feature vector ¥ (g;, d}) € RF where F is total number
of features considered for learning. W = {w;}i=12,.F be
weight of the i corresponding feature. Specifically, learning
algorithms are used to adjust the weights of the features in
each iteration and these weighted features are used to predict
the score for query-document pair. All symbols and notations
used in this paper are explained in Table 1.
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TABLE 1. Notations and definitions.

[ Notations | Explanation
Q= {Qi}:’inzl query set
D = {dj }é\]: 1 document set associated with g ;
m total number of query
N total number of documents associated with query g;
Yj relevance label associated with document dj
L = {l}lf: 1 set of all possible degree of labels
-, = preference relationship between label of objects
I <2 <~ < lg label order
P (q;, d;’. ) feature vector for query document pair
w weight matrix
w weight vector
55 score of document dj
f(z, w) hypothesis ranking function
P(y;) probability distribution for ground truth label
P(f(z;,w)) probability distribution for predicted rank list
IT permuted list of the documents
L(.) loss function
total number of hidden layer
a(.) activation function
b bias
A regularization factor
Gin sparse group at input layer
Sh sparse group at hidden layer
g total number of sparse groups

B. LEARNING TO RANK MODELS

Learning-to-rank model refers the group of machine learn-
ing techniques such as linear regression [2], SVM [6]-[8],
boosting [16]-[18], neural network [9]-[15], genetic pro-
gramming [19] that attempt to perform ranking with using
feature representation of query-document pairs. On com-
paring the performance between these algorithms, it is
proved that listwise approach is a better approach for solv-
ing the ranking problem. Figure 1 depicts the achieve-
ments of listwise approach using neural network methods
over other machine learning methods used for application
of learning-to-rank [43]. The neural network based learn-
ing models are the RankNet [9], LambdaRank [11], List-
Net [13], ListMLE [14], SortNet [12], SoftRank [15], etc.
These algorithms give effective performance on each bench-
mark datasets which is measured in terms of winning num-
ber for different evaluating measures. ListNet [13] algorithm
wins for maximum number of times and gives better perfor-
mance as compared to other state-of-the-arts.

Inspired by the success for various applications, deep
learning has been applied to learning-to-rank, where learn-
ing is performed using effective ranking features. The first
deep learning-to-rank model [22] is build on CmpNN [12].
Further, Wang and Klabjan [46] propose deep neural net-
work model which incorporates different embedding of the
queries and search results using an attention-based mech-
anism. A convolutional neural network architecture for
re-ranking pairs of short text uses the intrinsic feature extrac-
tion technique for optimal representation of a pair and map
them in a similarity function using the supervised learn-
ing [25]. Furthermore, couple of deep model have been pro-
posed for IR which considered the semantic features for a
query-document pair. It includes DSSM [26], CDSSM [27]
and DRMM [28]. DSSM [26] is the deep structured seman-
tic model trained by maximizing the conditional likelihood

VOLUME 7, 2019



A. Rahangdale, S. Raut: DNN Regularization for Feature Selection in Learning-to-Rank

IEEE Access

c @-istMLE
®
8 06
a @-istNet
P4 bdaMART
5 05 g-am fan'%daRank
o ﬁank%gl-grinkal
d
E Ranksvm-sict
Z 04
D
£
g kB
So0 gamdliee
o
3
= 0.2
[
£
5 . .
Z o4 @-inear Regression
25 35
Ideal Winning Number
(@)
c @-istMLE
®
8 0.6
e @-istNet
z #_ambdaRank
5 05 &-ambdaMART
£ @ddank
3 oa ﬁankﬁﬁﬂ el
=0
£
5 kBoost
£ ankBoos
=03 aankﬁm
°
19
2
T 02
E
2 g-inear Regression
0.1
25 35
Ideal Winning Number
(®)

FIGURE 1. Winning Number for baseline learning-to-Rank. Winning
Number is count that gives how many times an algorithm beasts over the
set of data sets. A normalized version of the Winning Number metric is
used to compare algorithms based on a sparse set of evaluation
measurements. (a) Winning Number for NDCG@n. (b) Winning Number
for MAP.

of documents for given query through click-through data.
It implements the word hashing technique to handle the large
vocabularies for large scale web data. CDSSM [27] uses the
convolutional neural network instead of regular deep neural
network to preserve the local order information with respect
to semantic information from the query-document pair. It uses
the max-pooling layer to extract the salient features from
global feature vector. DSSM and CDSSM consider only the
semantic features for IR, however it ignore the importance
of intrinsic relevance ranking. Guo et al. [28] proposed a
new deep learning architecture DRMM. This model shows
the important characteristics of IR such as exact matching
signals, query terms importance, diverse matching require-
ment, etc. Recently, Pang et al. demonstrated a new deep
learning architecture for IR, named as DeepRank [23] to
simulate the human judgment process which is used to get the
local relevance label. The deep neural network is also used to
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optimizing the IR measures [60] which is referred direct opti-
mization of loss function [15], [18]. One of the deep neural
network models performs the ranking using weak supervision
signal like BM25. It trains the ranking model effectively
based on feed-forward neural networks and investigates its
effectiveness on the different learning approaches (pointwise,
pairwise) using different input representations [61]. Recently,
Ai et al. [62] propose to use the inherent feature distributions
of the top results to learn a Deep Listwise Context Model that
helps to fine tune initial ranked list. It employs the recurrent
neural network to sequentially encode the top results using
a feature vector, learn the local context model and use it to
rerank top results.

The primary objective of above deep neural network model
is to apply deep learning to achieve the task of ranking. The
inputs to these models are hand-crafted features provide in
benchmark datasets [52], [53]. The output of these models is
relevance ranking. These models attempt to learn the mapping
from provided features to the relevance level. Thus, it involves
the large number of complex interaction between the features
and difficulty in interpretation for high dimensional features.
On the other hand, large number of weights are involved in
learning even if all are not necessary to the learning accuracy.
It takes a lot of efforts to devise and manage new strategies to
significantly boost the training process for ranking. The deep
learning model with high dimensional learning parameters
reduces the accuracy, leads to overfitting and increase the
computational complexity. Thus, training deep neural net-
works is known to be a difficult task.

Network embedded with the classical regularization tech-
niques such as £, ¢» regularization are mainly used to
reduce the overfitting and reducing the complexity of deep
neural network. The ¢; regularization is also performs the
network pruning, however it not an efficient solution for the
compact network. Thus, we apply strategies that are best
suited for deep neural network to learning-to-rank. The main
objective of this paper is to implement the ranking model
with sparse regularized deep neural network with signif-
icantly less number of feature variables than the original
dense network and obtain the better performance to original
model.

I1l. DEEP LEARNING WITH ListNet

A. ARCHITECTURE

The traditional model for deep learning for the application
of IR considers the dense network where the number of
connections of each node is close to the maximum number of
nodes. Traditional dense architecture for deep neural network
for relevance ranking is demonstrated in Figure 3. The main
objective of this paper is to reduce the density and complexity
of network. The input to these models are feature of object
and output is their relevance ranking. We first implement the
deep neural network architecture for application of learning-
to-rank. Modern neural network consist # number of hid-
den layers, where each hidden layer p € {1,2...H]} has
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FIGURE 2. Demonstration of steps of proposed model using deep neural network for application of learning-to-rank.

Output with Predicted Rank List

Hidden Layer 1

FIGURE 3. Dense neural network architecture for learning-to-rank.

decreasing number of neurons in the subsequent hidden lay-
ers. w}; denotes weight vector for the k” node of the /" layer.
For the input layer, value of i is set to 1. The bias (b) is
associated with each layer of the network.

The generic neural network model y = f(x,w) takes
the input vector x € RF and gives output in the form of
the scoring value of the object after propagating through H
hidden layers. At input layer, weight vector w € RF is used as
shorthand for the feature-vector concatenation for adaptable
objects. Each hidden layer takes the input from the previ-
ous hidden layer and generates the output using activation
function:

hp ZU(Zthpfl +bP), (1

where o is properly chosen activation function applied to
the network and W is the weight matrix or (tensor) at each
layer. The learning method follows the major steps of List-
Net algorithm [13] that includes the optimization of cross
entropy loss function using the gradient descent. In this learn-
ing algorithm, network is trained with the stochastic gradi-
ent and determines rank using the probability distribution.
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This ranking model estimates the score based on the number
of feature value associated with each document. This score
is used to predict the rank of the documents for a query g;.
Moreover, loss function is defined using the probability dis-
tribution of predicted rank list and ground truth ranked list.
This probability distribution for a pair of object x; and x; is
given as:

exp(s; — sj)

1+ exp(si — sj) @

Pjj = P(x; > xj) =
where Pj; is the probability of the item x; preferred over the
item x;, s; and s; representing respective scores of objects. The
probability distribution for listwise approach is given as:

N,
P, Xiy. Xiy - i) 1_,,[ (s 3)
i Xy Xiy - X)) = | | s———-
j=1 Zj:l exp(sl:/)

We optimize this loss function for deep neural network by
using regularization techniques. The preferred architecture
for deep neural network for application of learning-to-rank
is illustrated in Figure 2.

For the generic training set on n examples given by
{(x1,y1), (x2, y2), - . . (X, ¥n)}. The network is trained by min-
imizing the loss function defined for learning-to-rank:

N
L(w) = argminw{]% ; L(yi, f(xi, w))}. 4)

The loss function £(.) at every instance is given as:

0
LG f i, w) ==Y Py(MlogPr (M), (5)

i=1

where Py, is the probability distribution with respect to
ground truth whereas Py ) is probability distribution
with respect to predicted rank list I1. From (3) and (4),
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i=1 j=1

q

exp(f (xi,), w)
xlos HZ"’lexp(f(xz,,W)) ©

This neural network employs gradient descendant to perform
optimization:

SL(yi, f (xi, w))

Alw) = T 5w where (7)
w
Ny 5F (. w)
8Ly, f(xi, w)) = _PZPM—:;
j=1
1
I'Vql exp(f (xi, w))

(Sf (xl

x Z exp(f (xi, w)) ®)
j=1

Algorithm 1 shows that network is learned via backprop-
agation to determine the parameter values which optimizes
the loss function. However, this dense network penalizes the
algorithm with large computational cost and the model is
overfitted because of the large number of parameters involved
in learning. Hence, we adopt manifold learning to sparsify
the deep neural network. It helps to reduce the computational
cost and gives better performance. The standard methods used
for regularizing deep neural network are listed in following
subsections.

Algorithm 1 ListNet Using Deep Neural Network

Input: Training Data in the form of a query-docuemnt
pair (x!, y1), (2, y%)...(x", y"), where x
represents feature vector of document and y is
the relevance label.

Output: Deep Neural Network model with w and b.

Initialization:random initialization of weight,

Batchsize = m, learning rate = n, iterations = T;

fori < 1t0 T do

Samples of a mini batch size containing from

(x y ), 1’ o

(y , h) < FeedForwardNetwork (x*, ¥, w, b);

Compute the score s; with respect to output of deep

neural network;

Compute the gradient using (8);

wk = wk — nAw # update weights;

end

B. REGULARIZATION
Regularization in neural network makes a modification in
learning algorithms to reduce the generalization (testing)
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error however to not training error. Basically, it is intended for
linear learning model like linear regression, that permits sim-
ple, clear and convincing regularization methods. With regard
to deep learning, the favored regularization methodology is
based on regularizing estimators. The effective regularizer is
one that gives a profitable trade, reducing error considerably
by not excessively increasing the bias [47]. The optimal loss
using regularization is given by:

L(f(x, W), y) + 2Q(W), ©))

where A is the regularization factor that reveals the relative
contribution of penalty term €2 to optimize the standard objec-
tive loss function corresponding to regularization norms.
In this paper, we note the regularization behavior of different
norms for deep neural network, particularly for the task of
ranking.

In deep neural network, it is advisable to use separate
penalty with different regularization factor A for each layer,
but it may take efforts to search for a correct value of multiple
regularization factor [47]. Thus, it is desirable to use the same
regularization factor at each layer.

The suitable loss function (4) imposes the weight level
regularization and regularization factor. In learning-to-rank,
choice of loss function depends on the different approaches
like pointwise, pairwise and listwise. Generally, regression
based learning-to-rank algorithms use MSE (mean square
error) as loss function, pairwise approach considers cross
entropy or hinge loss whereas listwise approach focuses on
metric based loss function. The classical regularization tech-
niques use for optimizing deep neural network are discussed
below:

1) ¢5-REGULARIZATION

The ¢,-regularization is the most preferred choice in machine
learning due to its ability to simplify the solutions. However,
£y-regularization avoids overfitting by penalizing the squared
magnitude of weight parameters to the loss function. The term
Aw; is added to the original loss function for each weight
vector w; in the neural network architecture. ¢, regularization
is also known as weight decay in neural network [41], because
in a gradient descent approach, it prevents the weight growing
to large value and reduce it by factor proportional to their
magnitude at every iteration. The ¢, regularization penalty
is given is as:

QWP = | W 3. (10)

2) ¢;1-REGULARIZATION
£1 regularization is another option to penalize the size of
model parameters:

m
QW) =lwl=>Iwl. (1)
k=1
This regularization is the sum of absolute values of the indi-

vidual feature added term XA|w| to an objective loss func-
tion. As compared to £> weight decay, £1-norm controls the
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strength of regularization by scaling the penalty 2 using
positive high-parameter A. Moreover, £-regularization has
fascinating property to lead the weight vectors to become
sparse during optimization. It is a powerful technique for
the feature selection in the learning process. Input layer
neurons with £ regularization propagate a sparse subset of
most relevant features and become nearly invariant to the
noisy features. The £ regularizer is particularly developed for
convex loss function however for non-smooth loss function,
£1-regularization is customized to:

Qwe, =) Wi+ B, (12)
k=1

where f is a small scalar factor to obtain a smooth problem.
Sometimes mixture of £; and £, are used for regularization
denoted as elastic penalization [45]. Exclusive sparsity reg-
ularization method (based on ¢; and ¢;) also promotes for
features selection based on their different weights and hence
enforcing them to fit to disjoint sets of features [40].

Built-in property of feature selection is a useful property
of the £;-norm, which the ¢;-norm lacks [48]. This result
of the £1-norm tends to produce sparse values for irrelevant
features. If the model has 100 features and only 20 of them
have non-zero coefficients, then it is effective to remove
the 80 features with zero coefficient. These features are
not useful in predicting the target values and unnecessar-
ily increase computational overhead. The £>-norm produces
only non-sparse coefficients, so it does not owe property
of feature selection. Hence, we consider the £i-norm that
gives more sparsity and helps to reduce features in ranking
benchmarks.

In neural network model, value of weights rarely
become zero. Thus, low-rank weight is known as sparse
weight or sparse value. Sparsity of network connections can
be seen as aggregation of sparsity of weights because it is
equivalent to a fully connected network with zero weights
in most places. Sparsity of connections reduces the compu-
tational cost by explicitly multiplying each input by zero and
adding up all those zeros. This sparsity regularization is often
learned in order to get the important feature at that instance.

IV. PROPOSED APPROACH OF SPARSITY CONTROL

FOR DEEP NEURAL NETWORK WEIGHTS

Training of deep neural network is inherently challenging due
to multiple hidden layers. The ¢; regularization in (11) and
£, regularization in (10) are best to prevent the overfitting
of the neural network, but they are not efficient solutions
for obtaining compact neural network. This complication
can be aggravated when the whole features are employed as
input pattern. For the compact network, dead units can be
removed only if all its connection have been zeroed out during
training. However, this objective is hard to achieve while min-
imizing the cost function (4). For many local minima, some
weight might be equivalent to its accuracy, corresponding to
more compact and efficient network. Due to the difficulty of
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Group Sparsity at Input Layer
Group Sparsity at Hidden Layer

FIGURE 4. Group sparsity produced for deep neural network. The group is
formed at each layer of deep neural network based on the sparse values.

The group with light blue color represents the sparse group at initial layer
and light green color represents the sparse group at hidden layers. These

sparse groups do not propagate at the subsequent layer.

unstructured sparsity computation, the average percentage of
zero weight is used as measure for group formation and then
group {1 is applied as a structured sparsity regularization.

The concept of group sparsity is considered to explicitly
control the degree of sparsity of the weights for each layer of
the network. This regularization makes the parameters zero
in some groups, while parameters in other groups are all non-
zero. The group sparsity enforces all outgoing weights from
single neuron to be either simultaneously zero or not [50].
In our approach, we not only use group ¢; for network
sparsity, but also introduces the exclusive £1 on each group at
each layer. It claims that this exclusive £; forces each group
to use different inputs, thus the hidden layers will learn on the
more meaningful features.

The group sparse regularization follow the procedure given
by the Yuan and Lin [44] for selecting the grouped variables
for accurate prediction. It is an extension of lasso for feature
selection. In reducing the structured sparsity, weight tensor at
each layer W divided into the different groups. Each group
represents the weight of vector greater than some absolute
value of weight and applies group ¢; to these groups as a
regularization term in the loss function. The group £; forces
some groups of weights all zero, while other groups are all
non-zero, thus the network is regularized to have structured
sparsity. The group £; regularization is given as:

QWP =" IIWP =) [ Iwlei,  (13)
8 8 i

where ¢ € G is a weight group, W? is the weight a
matrix or tensor for group g that is defined on layer p and
wg ; is a weight at index i, for group g. For given weight
tensor at each layer {W(l), we, . W(H)}, this group £
regularization is defined as the solution to:

1
5 LWV FE) 12 +2 3 1 W Il
8

1
=S WLV FE) 124237 3 Iwlgi (14)

8 i
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FIGURE 5. lllustration of effect of each regularization technique. (a) represents the regularization of deep neural network with ¢;; (b) group ¢,
regularization, more compact network obtained by removing group in each layer; (c) sparse-group level sparsity that gives the sparse value within-group

and hence obtained more compact the network as compare to the group ¢;.

where A is tuning parameter. In deep neural network, sparsity
is produced at each layer. Hence, structure sparsity is con-
structed at each layer using sparse group. The corresponding
groups at each layer are as:

o Inputlayer G;,: gi € Gin, Wwherei = 1,2 ...d, represents
a vector of all outgoing connection from the i input
layer neuron of the network. It is the transpose of the
first row of matrix W(D,

o Hidden layer: In this case, individual element of g € G,
represents weight vector of all outgoing connection from
one of the neuron 4y of hidden layer of network. It is
corresponds to the one row transposed of the weight
matrix W®), where k > 1. There are total ZZ{;; groups
corresponding to the neuron of each hidden layer to the
output layer.

We have intentionally ignored the sparse group sparsity at
the bias level. The biases normally require fewer data than
weight to fit accurately. Hence, we penalize only weights
with suitable affine transformation at each layer and biases
remain unregulated. Thus, we have total G = kH:ll Ni
groups corresponding to specific effects on resulting network.
If weight of features of input layer group is zero (or less than
the threshold), the corresponding feature cannot be selected
during prediction. Moreover, if weight of variable in the
hidden layer group is zero, the corresponding neurons can
be removed, thereby achieving thinning of the hidden layer.
In this way, sparse group £ regularization effectively follows
the feature selection procedure. Thus, total number of sparse
groups obtained in model are:

G = Gin UG (15)

The adopted sparse group regularization technique is
demonstrated in Figure 4. It is a sparse network with one input
layer and two hidden layers. Single output node is shown in
dark blue at bottom of figure. Whereas neurons with light
blue background are sparse features at the input layer and
neurons with light green background are group of sparse
weights at hidden layer. Sparse group regularization can be
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deduced by [44]:

Qwe) =Y Vgl ¢ lh, (16)

geg

where |g| represents the group dimension. It is necessary that
each group weighted uniformly.

For a single group (weight matrix with single dimension),
the expression in (16) simplifies to the standard £ regular-
ization. Equation (16) might still be a sub-optimal solution
for pruning of network, because there may be a possibility
of sparsity at the group level even after removing some of
sparse groups. This forces us to consider the following com-
posite sparse group €1 (SGL) penalty i.e sparsity within the
group [51] :

Qw)sGL = QW) ) + Qw)y, . a7

SGL constitutes same properties as of the £; and group
£1 norms i.e convex but non-smooth and non-differentiable.
Nevertheless, SGL outperform standard regularization tech-
niques for the optimal value of regularization factor A.
Figure 5 illustrates the effect of £, group £ and SGL regu-
larization on the network dimensions. In Figure 5(a), all dead
unit are not removed from each layer thus network size is
moderately reduced. In figure 5(b), only non-zero groups (the
non-zero groups represented by grey color) are taking part
in learning thus it reduces network size but not satisfactory.
However, in 5(c) only non-dead units from each layer takes
part in learning and hence sparse group ¢; regularization
effectively reduces the network size. Red, blue and green
boxes in 5(c) represents the active units in their respective
layers which are propagated for learning. The group sparse
regularization force to remove the insignificant neurons from
each layer and speed up the learning process by simplifying
network.

A. NUMERICAL OPTIMIZATION
Regularized network can be achieved using proximal gradient
descent, which is used for optimizing objectives formed as
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a combination of both smooth and non-smooth terms [49].
First, it obtains the intermediate solution by applying gradient
on loss function, £(.), and then it optimizes the regularization
term while performing projection of it to the solution space.

N
1
Aw = argmingy) { N E L, f(xi, w) + )»UQ(W)SGL}
i=1

| X
= argmingy) { N Z L(y, f(xi, w)))
i=1

Q) + AnQ(w)e, } (18)

The combined regularizer can optimize each gradient step,
after updating the variable with the loss based on gradient.
Algorithm 2 describes the proximal gradient algorithm for
optimizing our regularized objective.

Algorithm 2 Stochastic Proximal Gradient With Group
Sparse Regularization

Input: Training Data in the form of a query-document
pair (x!, y1), (2, y%)...(x", y"), where x
represents feature vector of document and y is
the label.

Output: Deep Neural Network model with w and b

Initialization: random initialization of weight,

Batchsize, learning rate 7, iterations 7';

fori < 1t0 T do

Sample a mini batch size containing from (x', y')

(', h) < FeedForwardNetwork (x’, y', w, b) ;

compute the score s; with respect to output of deep

neural network;

compute the gradient for each layer using (8);

compute the loss with regularization (18) ;

wk = wk — nAw # update weights ;

mo.
i=1’

end

V. EXPERIMENTAL FRAMEWORK

In the ensuring sections, the number of computational
experiments are conducted on different benchmark datasets
dedicated to learning-to-rank to analyze the performance of
proposed model. This section gives a full description of the
datasets, software tool, different evaluating measures and
experimental setup. The performance of proposed model is
deeply analyzed and presented in subsequent section.

A. DATASET

In this paper, we focus on learning-to-rank with context
to information retrieval. TERC' (Text Retrieval Confer-
ence) keeps the track of all scope of advancements in the
IR and supports the research within the IR community.
It also provides database required for large-scale evaluation
of different text retrieval techniques. On their TREC web

1 https://trec.nist.gov/data/webmain.html
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track, corresponding benchmark datasets are provided by the
Qin et al. [53] and Liu et al. [52]. These are used to
analyze the performance of state-of-the-arts designed under
learning-to-rank.

LETOR? is the complete package that contains standard
features, relevance judgment, partitioned data for cross vali-
dation and different evaluation tools. We conduct the experi-
ments on these datasets. It includes total 10 datasets. Descrip-
tion and characteristic of all these datasets is summarized
in Table 2. Each dataset is partitioned into five fold cross
validation and every fold consists of the training, testing
and validation sets. We use pyltr python® library to load
data for experimentation. The MSLR-WEB 10K and MSLR-
WEB30K data is normalized using sklearn while LETOR
datasets are already available in normalized form. In normal-
ized data, every feature value is kept in range of [0, 1] with
an affine transformation.

TABLE 2. Learning-to-rank datasets description.

| Dataset | Benchmark | #Queries | Documents | #Relevance | #Features |

TD2003 LETOR2.0 |50 50k 2 44
TD2004 LETOR2.0 |75 75k 2 44
TD2003 LETOR3.0 |50 50k 2 64
TD2004 LETOR3.0 |75 75k 2 64
NP2003 LETOR3.0 |150 150k 2 64
NP2004 LETOR3.0 |75 75k 2 64
HP2003 LETOR3.0 | 150 150k 2 64
HP2004 LETOR3.0 |75 75k 2 64
MQ2007 LETOR4.0 |1692 70k 3 46
MQ2008 LETOR4.0 | 784 15k 3 46
MSLR-WEB30K | Microsoft 31531 3775k 5 136
MSLR-WEB10K | Microsoft 10000 1200k 5 136

B. SOFTWARE TOOLS

In order to implement the deep neural network for learning-
to-rank and conduct a number of experiments, we have
exploited the following libraries:

LASANGE

Lasange framework is built on the top of Theano library [58].
It is light-weight library particularly used to build and train
the neural network. This Python library allows us to define,
optimize, and evaluate mathematical expressions involving
multi-dimensional arrays efficiently.

Tensorflow

TensorFlow [63] is an open-source library mainly used to deal
with deep neural network. It excels at a numerical computing
that are terribly advanced for deep learning.

C. EVALUATING MEASURES

Normalized discounted cumulative gain (NDCG) [54] and
Mean Average Precision (MAP) [55] are the two most pop-
ular evaluating metrics used to measure the performance of

2https ://www.microsoft.com/en-us/research/project/letor-learning-rank-
information-retrieval/

3 https://github.com/jmal27/pyltr
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learning-to-rank model. However, we evaluate performance
of our ranking models using precision@k (P@k), MAP,
NDCG@k and sparsity ratio. The former three evaluating
measures are mainly used to evaluate the performance of
retrieval system while sparsity ratio is used to evaluate the
feature selection method. The detail description of these eval-
uating measures are given below:

MEAN AVERAGE PRECISION

MAP [55] is a standard evaluating measure used for IR.
It is better to use for binary relevance judgment. The mean
average precision is computed using the precision @k (P @k).
The P@k is the fraction of relevant documents at position k
of ranking list associated with query g;.

# relevant documents out of top-k documents

P@k, =
! k

Average P@k is given as:

B Yt P@i
" # total relevant documents for query q

AP,
Thus, MAP value on all queries is given as:

ZnNil P@n x rel(n)
Ny '

MAP =

NORMALIZED DISCOUNTED CUMULATIVE GAIN
NDCG measure is specially designed for non-binary notions
of relevance. It utilizes the explicit rating of the documents in
the list. The DCG@k value at position k is computed as :
k
DCG,@k =)

i=1

pL
logr(1 +10)’

where [; represents the label for i document. DCG@k
gives value greater than k. NDCG @k normalizes the value
DCG@k in range of 0 — 1. Thus, NDCG is computed as:

1
NDCG = -DCG, @k,
Z

n

where Z,, is normalization factor.

SPARSITY RATIO

We promote our research for feature selection and it has
been achieved by using sparsity ratio. The sparsity ratio is
fraction of remaining features in the model after network
regularization. The sparsity ratio is given as:

SR — #remaning feature after learning model
N #total number of features

The features with zero weight are considered as less impor-
tant features for all queries. Thus, total number of features
consider for predicting score of the document could be
smaller than the number of features given in Table 2.

We have analyzed the sparsity ratio obtained by
using different penalty norms and compared them with
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the algorithms, FenchelRank [36], FSMRank [35] and
RankSVM-NC [37], those that specifically follow the pro-
cedure embedded method of feature selection.

D. EXPERIMENTAL SETUP

We begin with evaluate our proposed model with a number
of experiments on LETOR datasets. We use modern deep
neural network architecture which is specified in Table 3.
We run the optimization algorithm for 100 number of epochs
with variable batch size (mini-batch size = number of docu-
ments per query). The performance is analyzed in subsequent
experiments by specifying the number of hidden neurons in
each layer. Experiments have been carried out using neural
networks with a decreasing number of hidden neurons from
one layer to the other.

TABLE 3. Experimental architecture for deep neural network.

| #NH | NI | #NHL

1 No. of Features in | 128
Dataset

2 No. of Features in | 128<-64
Dataset

3 No. of Features in | 128<-64<-64
Dataset

Configuration of the different deep neural network, consisting of 1, 2 and 3 hidden layers, used
for the subsequent experiments. The number of neurons at input layer depends on the number
of features. #NH= Number of hidden layers; #NI= Number of neurons at input layer; # NHL=
number of neuron at each hidden layer.

The weights of the network are initialized using the weight
initialization method given in [57]. Furthermore, network
is trained with the popular ‘Adam’ method for optimiza-
tion [56]. This stochastic gradient optimization has an adap-
tive step size and momentum. In overall experimentation,
‘Adam’ is applied with its default setting defined in [56]. The
default values of parameters of Adam are 1 = 0.9, 82 =
0.009, ¢ = 0.002. With these default values of different
parameters, we initialize learning rate as = (12_,3) Then,
at each iteration learning rate adopts the value automati-
cally. For each case, network is implemented with ‘ReLU’
activation function at each hidden layer with standard one-
hot encoding whereas output layer uses sigmoid activation
function. The value of the regularization factor X is kept fixed
to A = 1073 for every layer. For each dataset, the value of A
is computed using the best NDCG@n, MAP or P@n on the
validation set. The model trained with A is used to predict
output on test set. The results of experiments include average
training accuracy, testing accuracy, sparsity of network and
size of hidden layers. The noted results of experiments on
available datasets are obtained on Intel core i5 — 6200U @
240 GHz with 8GB RAM. For large scale data, GPU is
preferred with CUDA in background.

VI. RESULTS AND DISCUSSION

In this section, we first compare modern regularized network
with dense network without regularization against the IR
evaluating measures. Secondly, we show the effect of the reg-
ularization parameter on the evaluating measures for different
regularization technique. The value of A that leads to the
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FIGURE 6. Comparison of performances (MAP, NDCG@1) on training and testing set for deep neural network with 1, 2, 3 and 4 hidden layers with
and without regularization. (a) Training set. (b) Testing set. (c) Training set. (d) Testing set.

best NDCG @10 on performance of validation set is chosen.
The effect of different regularizations on training accuracy,
testing accuracy and sparsity are briefly presented. Finally,
we confront the sparsity ratio and the performance in terms
of IR measures to demonstrate that group regularizations that
are truly competitive to state-of-the-art approaches.

A. RESULTS

1) EFFECT OF NUMBER OF HIDDEN LAYER

Experiments with increasing number of hidden layers show
that there is almost no impact on the performance. Figure 6
summarizes the performance scores with respect to number
of hidden layers. As per the results shown in Figure 6(a)
and Figure 6(b), no improvements can be found by adding
more hidden layers. The results are even slightly worse.
Moreover, dense network increases the computational com-
plexity of the learning model. This issue is minimized by
adding regularization term (weight penalty) at each layer to
increase the performance and to avoid overfitting of network.
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Figure 6(c) and Figure 6(d) present results of the deep neural
network with regularization parameters.

2) EFFECT OF REGULARIZATION PARAMETER

The deep neural network is optimized with different reg-
ularization techniques primarily reduces the complexity of
network and makes it more simple for learning. We have
observed the performance of learning-to-rank model with
respect to these regularization techniques. It includes £1, ¢7,
group £1, and SGL. The main aim of this preliminary test
is to evaluate optimization of loss function with different
penalties when varying the regularization factor A. With these
regards, each case is run with the different exponential values
of A ranges from [10~> — 1073]. Results of this experiment
are given in Figure 7. There are various key observations
made from this results. To begin with, the overall behavior
has measured in terms of evaluation measure NDCG@n on
three sets (training, testing and validation sets) with respect
to the four penalties. For each case, it is observed that
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FIGURE 7. NDCG@10 score for the training, validation, and test set on a 3-hidden layered deep neural network in function of the
{,-regularization, ¢, -regularization, group ¢, -regularization and sparse group ¢;-regularization with strength parameter 1.
(a) ¢, Regularization. (b) ¢; Regularization. (c) Group ¢; Regularization. (d) Sparse Group ¢; Regularization.

TABLE 4. Comparison for sparsity ratio.

Dataset FenchelRank | FSMRank | L2 L1 Group L1 | Sparse L1
MQ2008 | 0.3 0.42 0.21 0.188 | 0.176 0.19
MQ2007 | 0.58 0.64 0.69 0.228 | 0.38 0.214
HP2004 0.19 0.268 0.34 0.281 | 0.265 0.286
NP2004 0.27 0.37 0.6 0.346 | 0.391 0.344
TD2004 | 0.46 0.67 0.154 | 0.106 | 0.126 0.1047
HP2003 0.27 0.48 0.36 0.339 | 0.211 0.362
NP2003 0.23 0.44 0.6 0.294 | 0.89 0.286
TD2003 0.53 0.76 0.42 0.554 | 0.694 0.373

evaluation measures rapidly converge to the optimal value for
sufficiently small regularization factors A. These results are
basically indistinguishable from 10~3 onward. Figure (7d),
shows that SGL rapidly converges to optimal accuracy for
small regularization factor and gives better results in terms
of evaluating measures. These regularization techniques can
also affect the other performance measures such as train-
ing accuracy, testing accuracy, sparsity, number of active
neurons, MAP, etc.

3) LEARNING ACCURACY WITH SPARSITY

For each fold of dataset, A value that leads to the best NDCG
performance on the validation set is chosen and it is used for
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the prediction in the test set. We use the same regularization
factor for all cases, as it gives the best results in terms of
accuracy and sparsity of the network. In Table 5, we stress our
focus is on comparing the different penalties. Similar results
can be obtained for different choices of network architecture
and regularization factors. Thus, results in terms of test accu-
racy are comparable with negligible loss. However, difference
observed in terms of sparsity. The sparsity leads to thinning
of the network which is performed using the removal of
insignificant connections. During training, all absolute values
of weights under 10™* are considered as sparse or low rank
weight and it is set to zero. SGL neural network regulariza-
tion results in network which is extremely sparse and more
compact as compared to other competitors. Let us consider
the example of LETOR3.0 (HP2003 and TD2003) datasets.
In this case, algorithm removes almost 36% (HP2003)
and 38% (TD2003) features in an average from the input
vector as compared to approximately 33% (HP2003) and
35% (TD2003) features using ¢; regularization. Resulting
network also has large sparse group at each hidden layer
as compared to £ regularization and group ¢; regulariza-
tion. Thus, even though training accuracy of algorithms has
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TABLE 5. Average results on benchmark datasets.

Dataset I2) 01 Group /1 Spasre Group ¢
Training accuracy (%) MQ2008  0.7996 0.8537 0.8728 0.7495
Testing accuracy (%) 0.7978 0.8537 0.8737 0.7455
Number of neurons [64,128,64] [64, 128, 64] [64,128,64] [64,128,64]
Sparsity (%) [0.076,0.0042,0.0485 ] [0.188, 0.01, 0.0537] [0.176, 0.054, 0.0502]  [0.19, 0.01, 0.0529]
Training accuracy (%) MQ2007  0.7125 0.7125 0.7125 0.7125
Testing accuracy (%) 0.7432 0.7432 0.7432 0.7432
Number of neurons [64,128,64] [64,128,64] [64,128,64] [64,128,64]
Sparsity (%) [0.069, 0.005, 0.147] [0.228, 0.254, 0.2006]  [0.08, 0.075, 0.166] [0.214,0.271, 0.1936]
Training accuracy (%) HP2004  0.9988 0.9988 0.9988 0.9988
Testing accuracy (%) 0.995 0.995 0.995 0.991
Number of neurons [64,128,64] [64, 128, 64] [64,128,64] [64,128,64]
Sparsity (%) [0.034, 0.075, 0.126] [0.281, 0.283,0.1717]  [0.065, 0.088, 0.1402]  [0.286, 0.296, 0.1658]
Training accuracy (%) HP2003 0.999 0.999 0.999 0.999
Testing accuracy (%) 0.9991 0.9991 0.9991 0.9991
Number of neurons [64,128,64] [64,128,64] [64,128,64] [64,128,64]
Sparsity (%) [0.036, 0.042, 0.2253] [0.339, 0.371,0.3244]  [0.081, 0.108, 0.2703]  [0.362, 0.379, 0.33]
Training accuracy (%) TD2003  0.9953 0.9953 0.9953 0.9953
Testing accuracy (%) 0.9883 0.9883 0.9883 0.9883
Number of neurons [64,128,64] [64,128,64] [64,128,64] [64,128,64]
Sparsity (%) [0.0042, 0.0067, 0.1632]  [0.354,0.337,0.2121]  [0.094, 0.092, 0.1872]  [0.373,0.317, 0.2169]
Training accuracy (%) TD2004  0.9843 0.9843 0.9843 0.9843
Testing accuracy (%) 0.986 0.986 0.986 0.986
Number of neurons [64,128,64] [64,128,64] [64,128,64] [64,128,64]
Sparsity (%) [0.0154, 0.0096, 0.5317]  [0.106, 0.863, 0.7499]  [0.026, 0.25, 0.7493] [0.1047, 0.933, 0.7941]
Training accuracy (%)  NP2003 0.999 0.999 0.999 0.999
Testing accuracy (%) 0.9987 0.9987 0.9987 0.9987
Number of neurons [64,128,64] [64,128,64] [64,128,64] [64,128,64]
Sparsity (%) [0.06, 0.0104, 0.1611] [0.294, 0.283, 0.2105]  [0.089, 0.125,0.1876]  [0.286, 0.288, 0.2054]
Training accuracy (%)  NP2004 0.9986 0.9986 0.9986 0.9986
Testing accuracy (%) 0.999 0.999 0.999 0.999
Number of neurons [64,128,64] [64,128,64] [64,128,64] [64,128,64]

Sparsity (%)

[0.06, 0.0058, 0.1892]

[0.346, 0.346, 0.2593]

[0.091, 0.104, 0.2158]

[0.344,0.333, 0.2307]

anegligible difference for regularized penalties, much differ-
ence observed in terms of sparsity. We repeat each experiment
at least 100 times in order to get the statistical variation.

EMPIRICAL ANALYSIS ON BENCHMARK DATASETS

1) SPARSITY RATIO

As mentioned in the introduction, feature selection is an
important task for machine learning. Hence, we propose
highly effective learning model that can be learned with
high accuracy and automatic selection of few numbers of
highly relevant features while learning. In deep neural net-
work based ranking model, main aim of regularization is to
sharply reduce the irrelevant features and to make it more
compact. In this section, we compare sparsity (%) (number of
zero weights with respect to total number of features) that are
generated by each technique. If a model has more sparsity (%)
with high training accuracy, model is more robust with less
features. We have analyzed the sparsity ratio obtained for dif-
ferent weight penalties and compared them with algorithms
that are built with an embedded method of feature selection
for application to learning-to-rank.

Table 4 presents the sparsity ratio obtained for dif-
ferent embedded algorithms of feature selection designed
under learning-to-rank. It includes, FSMRank [35], Fenchel-
Rank [36], sparse SVM-NC [37] and ¢3, €1, group €1 and
SGL regularization. Sparsity ratio represents the number of
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features removed. When we consider the sparse values, £
regularization gives more sparse results. As we have dis-
cussed, in the deep neural network, we prefer group level
sparsity (group {1 specifically for weights in hidden layer)
to speed up the network and reduce the learning complexity.
A group with sparse value is not considered in subsequent
layer while learning. However, if any one of the value within
group is not zero then that group will not be considered
as the sparse group. Thus, when we consider sparsity ratio,
the regularization with SGL is more beneficial.

From the survey on embedded methods for feature selec-
tion, it is deduced that the convex learned model selects the
average of half number of features for learning. Whereas
our proposed model with SGL regularization selects up-to
4 — 5 times less feature as compared to the convex regular-
ization used in FenchelRank and FSMRank and 5 — 7 times
less features than sparse SVM-NC. The sparse group
penalty is particularly effective for high dimensional feature
variables.

In Table 5, there are differences observed in sparsity pro-
duced among LETOR datasets due to different character-
istic features. All features of HP, NP and TD datasets are
similar however these are not related to similar notions of
retrieval tasks. Hence, the number of relevant features are dif-
ferent for different datasets. The differences in performance
in terms of sparsity ratio for the datasets is not the drawback
of the algorithm, but it is because of specificity of datasets.
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layers neural architecture with and without regularization; (e) training loss with ¢,-regularization;(f) training loss with ¢, -regularization;
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2) TRAINING ACCURACY

We have evaluated deep neural network model on benchmark
datasets described in Table 2. The accuracy of training algo-
rithm is measured in terms of loss occurred while learning.
Model is considered better, if the loss is less. In proposed
model, cross entropy loss function is used as loss function
and our main aim of learning is to optimize this loss. Figure 8
shows the effect on the accuracy of model (in terms of loss)
for dense and sparse network. Figure 8(a), (b) and (c) show
that performance for single layer neural network for the
application of learning-to-rank. Figure 8(b) shows that loss
with dense network is less as compared to single layer archi-
tecture. However, Figure 8(c) shows that loss with regularized
network does not give the consistent performance with certain
properties of network mapping. The method of regularization

to generalize learning mainly uses a network that is just large

enough to provide the adequate fit. The small network does

not have enough power to overfit the data. Thus, a single layer
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regularized network have no effects or adverse effect on loss
function. A more dense network reduces the training loss in
each iteration however might degrade the value of evaluating
measures supported predictions. The increasing number of
layers do not provide satisfactory improvement. On the other
hand, it increases the computational cost in terms of time and
memory. It also gives better accuracy for trained data however
performance is average for test data. Figure 8 presents the
training loss occurred in each epoch while learning.

3) PERFORMANCE IN TERMS OF IR MEASURE

Rather than training and testing accuracy, the learning model
for ranking puts more emphasis on the evaluating measures
used for ranking. Hence, proposed model is analyzed with the
evaluating measures NDCG@n, P@n and MAP. Subsequent
experiments provide results in terms of NDCG@n and MAP
on several benchmark datasets. A distinguishable differ-
ence is observed between MQ2007 and MQ2008. For these
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TABLE 6. NDCG@n value of the sparse regularized deep neural network
for different dataset where n={1,3,5,7,10}.

| Dataset | n=1 | n=3 | n=5 | n=7 | n=10
MQ2007 0.19012 0.38993 | 0.56280 0.76897 0.79975
MQ2008 0.2042 0.4351 0.5902 0.7293 0.8239
TD2003 0.19832 0.21385 | 0.26607 0.32631 0.43621
TD2004 0.08864 0.19058 | 0.324959 | 0.32206 0.31021
NP2003 0.11398 0.24267 | 0.32914 0.40963 0.47682
NP2004 0.08841 0.21999 | 0.32914 0.40963 0.38022
HP2003 0.08682 0.18323 | 0.25064 0.31031 0.38429
HP2004 0.04228 0.18414 | 0.25322 0.30785 0.37345
MSLRWEBIOK | 0.055431 | 0.10569 | 0.143260 | 0.189552 | 0.24104
MSLRWEB30K | 0.05313 0.11366 | 0.15264 0.18526 0.24239

datsets, we have noticed the largest variations for MAP
and NDCG @n. Furthermore, MSLR dataset gives significant
results in terms of performance measures. We have presented
the results for MSLR dataset only for NDCG @n because of
scalability issue.

TABLE 7. Comparison of MAP score between different state-of-the-art
algorithms on MQ2008 and TD2003 datasets.

| Model | MQ2008 | TD2003 |
RankBoost 0.4775 0.2274
RankSVM 0.4946 0.2628
RankNet 0.441 0.1932
Frank 0.4211 0.2031
LambdaRank 0.4996 0.2283
ListNet 0.4431 0.2753
FenchelRank 0.4785 0.2780
FSMRank 0.4771 0.2560
Non-convex Regularization with Sparse SVM | 0.435 0.2670
DNN-LTR with ¢> Reg 0.5002 0.2121
DNN-LTR with ¢1 Reg 0.5142 0.2281
DNN-LTR with Group ¢; Reg 0.5146 0.2132
DNN-LTR with SGL Reg 0.5202 0.2779

We compare the prediction of our proposed frameworks
against those of the other state-of-the-art algorithms, such as
RankBoost [16], RankSVM [6], RankNet [9], FRank [10],
ListNet [13], LambdaRank [11]. Table 7 and Table 8 indi-
cates that the proposed model algorithm gives the best value
for MAP, NDCG@n and P@n respectively, where n =
1,3,5,7 and 10. Proposed algorithm for each case is also
compared with the traditional algorithms of learning-to-rank.
For these evaluating measures, one can notice that some algo-
rithms can not always perform better than other algorithms.
Baseline algorithms tend to provide more or less same results
in terms of NDCG @n, P@n and MAP. We have analyzed our
results on TD2003 and MQ2008 datasets. There is a lot of
difference in terms of performance which can be observed
among the baseline algorithms. It gives significant variation
for LETOR4.0 dataset. Among all traditional algorithms,
LambdaRank and ListNet give the comparable results, thus
we compare our model with it. The FenchelRank, FSMRank
and sparse SVM-NC also show comparable results in terms
of NDCG, Precision and MAP value.

a: NDCG@n ANALYSIS

There is not much difference between the baseline algo-
rithms in terms of NDCG@n. However, our model gives
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significantly distinguishable results for LETOR datasets.
The resultant value for NDCG on benchmarks datasets with
default regularization setting are provided in Table 6. High-
est NDCG@ ]0 value for the proposed model is 0.82 & 04.
Around 30% result is improved for NDCG@ 10 than other
baselines on the LETOR4.0 dataset whereas 3% — 5% on
LETOR3.0. The value with regularized deep neural net-
work produces non-significant and biased results because of
the sparse features. The improvement of deep learning-to-
rank with sparse group regularization against non-regularized
network on LETOR4.0 is (2%). For a number of datasets, reg-
ularized network with £, regularization shows more improve-
ment however it could be biased because of more sparse
features. The computational time for ¢, regularization is also
more than other regularization techniques. The results for
NDCG@k also are compared for six baselines methods and
three feature selection methods of learning-to-rank. The com-
parison results are shown in Table 8. Compared to baseline
algorithms, proposed approach shows the significant ranking
performance gain for MQ2008. The results for TD2003 are
competitive.

b: MAP ANALYSIS

The MAP values give better results for the dataset with
only two relevance judgments. We observe that the proposed
model can lead to some degradation in terms of MAP for most
of the datasets. Like NDCG, the value for MAP is higher
for MQ2007 and MQ2008 in comparison to other datasets.
Furthermore, it narrows down in decreasing manner, less than
1% for half of the datasets. Table 7 gives the comparison
of the MAP values between all the baseline and proposed
architecture.

Among all mentioned baselines, RankSVM-NC provides
higher value of MAP on MQ2008 dataset. Our proxi-
mal approach with deep neural network can lead to the
equivalent result. We observed that a fair improvement
for the MAP value for models using regularization. The
use of SGL regularization leads to (10%) upgradation for
MQ2008 dataset. However, there is significant degradation
observed for TD2003 dataset for dense network. On the other
hand, the regularized network gives the results equivalent
to the best algorithm. Finally, we notice that SGL penalty
provide a good result as non-convex penalties for which MAP
are highest.

B. DISCUSSION

Earlier, we have analyzed the performance of learning-to-
rank models with deep neural network architecture on the
benchmark datasets given in Table 2. It outperforms over
all the traditional models and gives best results in terms of
evaluating measures. The improvement of proposed model
with sparse group regularization against without regulariza-
tion on LETOR4.0 is 2.3% w.r.t. NDCG@10, 3.1% w.r.t.
P@]0and 3.8% w.r.t. MAP. The range of improvements may
varies for different cut-off values. However, it gives the best
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TABLE 8. Benchmark TD2003 and MQ2008: Comparison of the NDCG@n and P@n measures between the different state-of-the-art algorithms.

[ Model [ NDCG@1 [ NDCG@3 [ NDCG@5 [ NDCG@7 [ NDCG@10 [ P@1 [ P@3 [ P@5 [ P@7 [ P@10 \
TD2003
RankBoost 0.2212 0.3184 0.3312 0.349 0.3701 0.1 0.0667 | 0.12 0.21 0.18
RankSVM 0.3123 0.238 0.2119 0.1957 0.2167 0.42 0.34 0.26 0.23 0.21
RankNet 0.3112 0.2354 0.4077 0.3042 0.2929 0.2 0.1667 | 0.22 0.12 0.19
Frank 0.4421 0.37 0.33 0.33 0.34 0.44 0.32 0.23 0.21 0.19
LambdaMART 0.5667 0.5163 0.4378 0.4089 0.4027 0.2 0.233 0.2 0.15 0.13
ListNet 0.4456 0.3704 0.3826 0.3861 0.3945 0.46 0.36 0.29 0.26 0.22
Feature Selection Methods
FSMRank 0.4394 0.4149 0.4013 0.3916 0.3824 0.3757 | 0.3706 | 0.3666 | 0.3634 | 0.3613
FenchelRank 0.4492 0.3908 0.369 0.3703 0.364 0.3549 | 0.3508 | 0.3496 | 0.3435 | 0.3447
Sparse SVM-NC 0.4547 0.5032 0.4794 0.4605 0.452 0.4426 | 0.4385 | 0.427 0.3951 | 0.402
Proposed Model
DNN with ¢1 Reg 0.48 0.4231 0.421 0.4112 0.4126 0.45 0.32 0.31 0.28 0.24
DNN with ¢2 Reg 0.4672 0.3675 0.352 0.34 0.35 0.45 0.35 0.28 0.27 0.24
DNN with Group ¢1 Reg 0.4842 0.3845 0.36 0.36 0.36 0.46 0.36 0.31 0.28 0.24
DNN with Sparse Group ¢; Reg 0.4732 0.4721 0.4612 0.4551 0.430 0.4231 | 0.34 0.31 0.26 0.23
MQ2008
RankBoost 0.4147 0.4486 0.4609 0.4866 0.5017 0.4423 | 0.391 0.3551 | 0.2987 | 0.2662
RankSVM 0.4256 0.447 0.4529 0.4654 0.4794 0.4888 | 0.4394 | 0.4224 | 0.4043 | 0.3856
RankNet 0.288 0.3976 0.4397 0.4653 0.4856 0.391 0.3632 | 0.3372 | 0.2875 | 0.2653
Frank 0.3245 0.4256 0.4635 0.4872 0.392 0.3621 | 0.3372 | 0.2823 | 0.2823 | 0.2666
LambdaMART 0.368 0.4832 0.4559 0.493 0.5322 0.4137 | 0.391 0.3372 | 0.2903 | 0.263
ListNet 0.3148 0.3924 0.4276 0.4659 0.4861 0.3846 | 0.359 0.3423 | 0.283 0.2636
Feature Selection Methods
FSMRank 0.3686 0.4399 0.4791 0.4994 0.4771 0.4602 | 0.4526 | 0.4231 | 0.3879 | 0.3856
Fenchelrank 0.357 0.425 0.456 0.485 0.511 0.44 0.4586 | 0.4126 | 0.3956 | 0.3752
Sparse SVM-NC 0.3712 0.4324 0.4671 0.5001 0.512 0.4401 | 0.46 0.4052 | 0.3721 | 0.3524
Proposed Model
DNN-LTR Without Regularization | 0.1944 0.4143 0.7054 0.7054 0.8064 0.3712 | 0.4295 | 0.4367 | 0.4132 | 0.3561
DNN-LTR with ¢1 Reg 0.2057 0.4358 0.5948 0.7324 0.8097 0.5124 | 0.4521 | 04132 | 04192 | 0.3924
DNN-LTR with ¢ Reg 0.2001 0.4242 0.5929 0.7181 0.8064 0.5056 | 0.441 0.4032 | 0.395 0.3989
DNN-LTR With Group Reg 0.2036 0.3308 0.6009 0.7295 0.82 0.4932 | 0.4423 | 0.4093 | 0.396 0.4
DNN-LTR with SGL Reg 0.2042 0.4351 0.5902 0.7293 0.8239 0.5213 | 0.4555 | 0.4289 | 0.4199 | 0.4045

results over the best method of learning-to-rank (i.e. ListNet)
on MQ2008. The gain of 26.22% w.r.t. NDCG@ 10, 34.83%
w.rt. P@]0 and 14.82% w.r.t MAP is obtained over ListNet.
The less improvement observed for the TD2003 and it is 9.0%
w.r.t. NDCG@10, 4.5% w.rt P@10 and around 1.0% w.r.t.
MAP. On competitive analysis with LambdaRank, it shows
around 54.5% improvements w.r.t. NDCG @ [0, 41.65% w.r.t.
P@ 10 and 39.9% w.r.t. MAP on MQ2008. For TD2003, it is
6.7% for NDCG, 7.6 w.rt. P@k and 2.1% w.r.t. MAP. The
results depict that significant performance can be obtained in
learning-to-rank approach for IR applications with appropri-
ately modeled relevance ranking model provided with deep
neural network. The MSLR is bulky dataset available for
learning-to-rank and particularly used to check the scalability
of learning models. Hence, we have evaluated only NDCG
value for this dataset. There is no competitive analysis done
due to scalability issue.

The ability of our framework is to select few selective
features for their performance prediction. Hence, we have
shown results for considered penalties that are competitive
in order to reduce the number of features used by the learned
model. In deep neural network, regularization technique gen-
erates the sparsity within a network which can be counted by
total number of active neurons. Let us consider the example
for LETOR3.0 which has 64 features (64 neurons) at the
input layer. Our proposed model removes the more than
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30 features in the subsequent layer while £; removes only
20 features. Figure 9 shows, total number of active neurons
in our designed network. In our experiments, there are total
256 neurons available for learning however this number goes
on decreasing in each iteration. The number of neurons is
rapidly decreased with SGL penalty while it is gradually
decreased for ¢ and ¢, penalties.

Moreover, the sparsity generated by each penalty has also
been analyzed against the NDCG score for different regu-
larization strength parameter A. A small value of A leads to
convergence of optimal score. Table 5 shows the regulariza-
tion, specifically £1 and SGL which are highly competitive
network generalization methods both in terms of sparsity and
accuracy of evaluating measures. It selects up-to 4-7 times
fewer features without significant degradation of evaluation
measures.

The SGL penalty is indeed faster to compute than both
£1 and £, penalties when experiments run on CPU whereas
it takes time to compute results on GPU. Since, there is a
need to compute two square root operations per group. This
gap can be reduced by exploring various options for faster
mathematical computations.

There is one more regularization technique available for
optimization of the deep neural network which is called as
‘dropout’ [59]. It is mainly used to simplify the network
during learning. Dropout removes a set of connections with
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3-hidden layer neural network based learning model with a function of
dropout probability p.

random probability p. It is only used to reduce the complexity
of training phase and lower down the complexity while the
entire network needs the prediction accuracy. Thus, it is only
tangentially related to the proposed strategies.
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The dropout technique is investigated on different sized
neural networks. The parameter p is experimented with value
[0.1,0.2,...,0.8]. These are tuned through cross-validation
for each network configuration. The results for dropout are
shown in Figure 10. The performance of dropout regulariza-
tion technique is competitive to the other generalization meth-
ods £ and £, however it prevents the feature co-adaptation
which can be achieved by SGL. Thus, SGL performs better
over the dropout. The reason behind better performance
of sparse group regularization over the classical technique
‘dropout’ is not trivial. Figure 11 provides the explanation
for it. On comparing, it is noticed that the activation value
for the sparse group regularization are more equally scat-
tered than dropout, especially for hidden layer 2 and 3.
The equally diffused activation value shows that neurons are
more robust. Generally, output does not depend on single
dominating neuron. Thus, sparse regularization has resulted
in better performance.

As a conclusion, the proposed framework provides bet-
ter results in terms of quality prediction compared to
state-of-the-arts with selecting a minimum number of fea-
tures. Thus, it is a competitive method for learning-to-rank.
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VIl. CONCLUSION

In this paper, we implement and analyze the performance of
deep neural network architecture for learning-to-rank. The
results greatly indicate thinning of the network by opti-
mizing its weight, selecting only the relevant features from
the input layer and removal of inactive neuron from the
hidden layers. The performance of different regularization
techniques was also analyzed over the benchmark datasets
available for learning-to-rank. Our empirical analysis was
helpful in observing that SGL has superior performance
and gives highly compact networks, making more sparsified
model along with high quality prediction in ranking. On the
other hand, it can be easily implemented with very overhead
as compared to standard ¢; and ¢; regularization. From the
above findings, it is concluded that deep neural network archi-
tecture with suitable regularization technique significantly
improves the result of relevance ranking model.

As a future direction, we would extend our proposed model
for various applications of learning-to-rank like collabora-
tive filtering, recommender system such as e-commerce, and
bioinformatics for drug selection and prioritization.
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