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Abstract
The need for faster wireless connectivity is increasing rapidly in all the sectors of the technologies. Whether it is a patient 
monitoring system, military application, entertainment services, streaming services, or global stock markets, there is a tre-
mendous increase in the need for enhanced wireless telecommunication services. The wireless telecommunication consumers 
rely on bulk data, and massive growth in the number of users has resulted in the spectrum congestion. To avoid such spectrum 
congestion and to satisfy the data hunger of the wireless telecommunication users, the possible solution is Cognitive Radio 
Network (CRN). A CRN, therefore, plays a significant role in the field of wireless communication, and an efficient spectrum 
sensing enhances the effectiveness of the CRN. In this paper, complete research carried out so far in the field of spectrum 
sensing for CRN is discussed. Different soft computing techniques (GA, PSO, ABC, ACO, FFA, FSS, Cuckoo Search, ANN, 
FIS, GFIS) are surveyed in this paper, along with a detailed comparative analysis between conventional and soft computing 
techniques for spectrum sensing. In addition to that, the challenges faced in the implementation of CRN and its requirements 
is also addressed. Different spectrum sensing elements and requirements are presented and road map of spectrum sensing 
with soft computing techniques towards 5G is discussed. Furthermore, the paper also suggests the future prospects, research 
challenges and open issues associated with soft computing techniques for spectrum sensing in CRN.
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Motivational Background

The tremendous demand for wireless applications has lead 
to the enormous growth of wireless communication. The 
existing radio spectrum is a finite natural resource, and it is 
getting jampacked continuously. And with the advancement 
towards 5G, there is a 1000 times increase in the demand of 
the radio spectrum because of the rise in demand of higher 
capacity, higher spectral efficiency and higher connectivity 
[142]. Therefore, the requirement for a robust and flexible 
wireless communication has become more evident. The con-
ventional approach via electromagnetic spectrum licensing 
and re-utilizing it was not manageable. It was rather static 

and caused inefficient use of the available spectrum. This 
raised the need for efficient spectrum utilization, which cre-
ates possibilities for spectrum access dynamically, called 
dynamic spectrum access (DSA). Federal Communication 
Commission (FCC) published a report prepared by the 
Spectrum Policy Task Force (SPTF) [17]. In which specific 
rules and regulations recommended for using the radio spec-
trum more efficiently and improving the existing spectrum 
usage. The report illustrated that the problem of inefficient 
spectrum utilization is more critical than the spectrum scar-
city. From the measurement of 0–6 GHz spectrum utiliza-
tion at Berkeley Wireless Research Center (BWRC) and 
frequency utilization table shown in Fig. 1, it is clear that 
allotted channels are mostly unused, some are partial while 
the others heavily used. The higher frequency regions were 
inadequately utilized and termed as spectrum holes or white 
space.

FCC confirmed about the underutilized spectrum bands. 
Later FCC issued the notice for proposed rule making 
(NPRM) [17], that aimed at making efficient spectrum man-
agement by using cognitive radio (CR) technology.
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In the current scenario, with the evolution of 5G technol-
ogy, there will be demand for cooperation and coordination-
based spectrum access. In the 5G heterogeneous network, to 
improve the spectral efficiency while maintaining the qual-
ity of service of a system, there is the need for an efficient 
dynamic spectrum access technology. There is development 
in the field of millimeter-wave (mmWave) technology, in 
which 5G technology planned to deploy in the millimeter 
wave frequency band (30–300 GHz) and this frequency 
spectrum is abundantly available. But the 5G technology 
used in the mmWave suffers from the drawbacks associ-
ated with the high mmWave frequency bands. As the path 
loss is directly proportional to the square of the frequency, 
so mmWave suffers from high path loss, in addition to that 
is also suffers from high losses due to penetration, attenu-
ation, rain, etc. Due to this, it has a shallow coverage area 
and supports only Line of Sight (LoS) propagation [145]. At 
mmWave frequencies, there is high foliage loss. The power 
requirement for mmWave technology is relatively very high 
[148]. With these disadvantages of mmWave, it is diffi-
cult to establish 5G technology solely based on mmWave 
techniques. The CR, with its cognitive abilities, can pro-
vide more flexibility to 5G technology and can enhance the 
spectrum utilization [138]. Therefore, the CR-enabled wire-
less technology can efficiently utilize the spectrum and thus 
feeds on the bandwidth and data rate hunger of the wireless 
telecommunication service users. In this way, CR technol-
ogy considered one of the critical enablers of 5G as well as 
upcoming 6G technologies.

The important factor that makes a CRN “cognitive” is its 
spectrum awareness or spectrum sensing technique. Spec-
trum sensing performs spectrum hole detection, and these 
spectrum holes utilized to avoid spectrum congestion. There-
fore, spectrum sensing is a vital part of the CR technology 
[10, 13]. In this paper, an effort made to cover all the aspects 
of the spectrum sensing for cognitive radio networks with 
the primary focus on the survey on soft computing tech-
niques employed for efficient spectrum sensing along with 
their pros and cons.

The organization of this entire survey paper is as fol-
lows: “Cognitive Radio: Introduction” gives a brief about 
the cognitive radio network, its attributes, functions, imple-
mentation of soft computing techniques for CRN, design 
challenges. “Introduction to Spectrum Sensing” introduces 
spectrum sensing and provides a summary of research work 
and surveys carried out in the field of spectrum sensing 
involving conventional techniques. “Introduction to Spec-
trum Sensing” also briefs out about the requirements and 
components of spectrum sensing. After forming a base about 
cognitive radio and spectrum sensing, the survey paper 
explains about conventional spectrum sensing techniques, 
and complete classification of all existing spectrum sensing 
techniques in terms of Fig. 8 in “Conventional Spectrum 
Sensing Methodologies”. The section gives a brief about 
all the conventional spectrum sensing techniques. Energy 
detection technique is one of the popular spectrum sens-
ing technique over which soft computing techniques are 
developed [69, 72, 85, 110, 113, 121–124, 127, 128] as its 
least complex. “Conventional Spectrum Sensing Method-
ologies” gives accuracy and complexity analysis between 
existing conventional spectrum sensing techniques, the 
time complexity analysis of the spectrum sensing methods 
is also done in “Complexity Analysis of the Spectrum Sens-
ing Methods”. In “Soft Computing-based Approaches for 
Spectrum Sensing”, different soft computing techniques 
employed for spectrum sensing is surveyed, explained, and 
compared based on the performance metrics. In addition to 
that, research challenges associated with it have briefed out. 
The cognitive radio network is an essential paradigm for 
5G wireless communication, and spectrum sensing being 
the vital part of the cognitive radio network; the road map 
of spectrum sensing towards 5G is detailed in “Road Map 
of Spectrum Sensing Towards 5G” showing how spectrum 
sensing optimization and soft computing techniques plays 
a crucial role in forming the building blocks for efficient 
spectrum sensing-based CRN for 5G. The future scope and 
ventures for the soft-computing-based spectrum sensing 
are mentioned in “Future Scope for the Soft-Computing-
Based Spectrum Sensing”, followed by the future research 
challenges and open issues in “Future Research Challenges 
and Open Issues”. This survey is aimed at explaining all the 
details associated with the cognitive radio network, spec-
trum sensing with prime focus on the soft computing tech-
niques which is having an enormous scope for enhancing 
the efficiency of the spectrum sensing, thus increasing the 
effectiveness of the cognitive radio network employed for 
the wireless communication.

The prime contributions of this survey paper are: 

1.	 Survey works in the area of the spectrum sensing in 
CRN were mainly focused on the pros and cons of asso-
ciated with the conventional spectrum sensing tech-

Fig. 1   Measurement figure and frequency table of 0–6 GHz spectrum 
utilization of BWRC [22]
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nique, along with their brief description [33, 35, 80, 89, 
150]. Through this survey work, attempt is made on the 
complete exploration of the soft computing techniques 
for the spectrum sensing in a CRN. Also, conventional 
spectrum sensing techniques have drawbacks of poor 
and complex performance [33]. To overcome this, soft 
computing techniques are employed for spectrum sens-
ing [71, 101, 103, 148]. Therefore, major motivation of 
this survey work is to provide complete insight into the 
researchers working in the area of implementing cogni-
tive radio network for 5G and 6G with soft computing-
based spectrum sensing.

2.	 Detailed comparative analysis is made between conven-
tional and soft computing techniques for spectrum sens-
ing.

3.	 Comparison is also made among the different soft com-
puting techniques employed for spectrum sensing.

4.	 In addition to that, the challenges faced in the imple-
mentation of CRN and its requirements have also been 
addressed.

5.	 Different spectrum sensing elements and requirements 
are presented.

6.	 Road map of spectrum sensing with soft computing 
techniques towards 5G is discussed.

7.	 Hybrid soft computing techniques for the efficient spec-
trum sensing is proposed for future 5G/6G technologies.

8.	 Based on this survey paper, the reader would get direc-
tion towards soft computing implementation of spectrum 
sensing in CR wireless sensor network/CR-based 5G/6G 
heterogeneous inter operability network and for applica-
tions in body area networks.

9.	 Future research challenges and open issues associated 
with the spectrum sensing are addressed in this paper.

Cognitive Radio: Introduction

In communication engineering for increasing demand of RF 
spectrum and apparent scarcity of the bandwidth caused by 
fixed frequency allocation, CR is a sure solution [17].

The CR technology is wireless communication with 
transceiver and intelligence technique for detecting chan-
nel status like whether its in use or not, after that moving 
into unoccupied ones keeping avoidance with the occupied 
ones [14]. The CR technique helps in utilizing the unused 
frequency spectra while minimizing the interference with 
the other users. A CRN comprises secondary users (SUs) or 
the unlicensed users, which opportunistically access the pri-
mary users (PUs) or the licensed users’ radio spectrum. The 
main challenge for the secondary user is to detect spectrum 
holes within frequency bands, which can only be achieved 
by efficient spectrum sensing. The spectrum holes are nonin-
terfering multidimensional areas within frequency time and 

space. Relevant keywords dealing with CRN are spectrum 
sensing, spectrum handoff [131], rendezvous [140], multi-
casting [118].

Major performance criterion defining cognitive radio 
systems are:

•	 Spectrum hole’s authentication and PU’s detection.
•	 Precise estimation of links in between the nodes.
•	 Frequency control in a speedy and precise manner.
•	 Precise methodology for controlling power with assur-

ance of proper communication between CR nodes with-
out interfering the PU’s transmission.

A detail on CR types, challenges and its elementary parts 
have been discussed in the proceeding sections.

Attributes of CRN

Main attributes of CR are described as:

•	 Cognitive capability: It is defined as the capability of 
CR to sense or capture the information from the radio 
environment of its radio technology. Joseph Mitola via 
basic cognitive cycle explained about cognitive capabil-
ity to observe the Scenario (Spectrum Sensing), adjust 
itself (Spectrum Analysis), design plans, take decisions 
and then perform action (Spectrum Decision). The “Basic 
Cognitive Cycle” in Fig. 2 briefly describe about the 
actions involved in Cognitive capability

•	 Adaptability: It is referred as CR’s ability to alter the 
functions and dynamically program itself according to its 
radio environment(modulation scheme, communication 
protocol, transmitting frequency and power).

Fig. 2   Basic cognitive cycle [13]
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CR Functions

Basic CR involves four major functions as shown in Fig. 3.

•	 Spectrum sensing: Through spectrum sensing a CRN 
firstly estimates the presence of primary user (PU) on a 
particular channel. After that, CRN can share its detec-
tion result with other cognitive radios (CRs) [45]. Main 
aim of the Spectrum sensing is to obtain the spectrum 
status and its activity, for that purpose it periodically 
scans the target frequency band. Basically, a CR trans-
ceiver detects spectrum holes and decides a method to 
access w/o interfering licensed transmission.

•	 Spectrum management: For proper scheduling of spec-
trum, CR performs spectrum management within the 
existing users. Once the spectrum holes being found it is 
then selected by CR. This characteristic of CR is termed 
as spectrum management. Spectrum Management com-
prises of sensing of the spectrum, analyzing it and taking 
a decision on it. Spectrum analysis means characterizing 
separate bands of spectrum, so as to get proper spectrum 
band as per the wants of the user. When CR choose data 
rate and decides transmission bandwidth transmission 
mode, it is then referred to as spectrum decision. CR 
selects a suitable spectrum band which is in accordance 
with spectrum characteristics and user requirements.

•	 Spectrum Sharing: CR allocates vacant spectrum to SU’s 
until the PU don’t has the use of it. This is termed as 
spectrum sharing and it’s an essential feature of CR.

•	 Spectrum mobility: When a PU needs back it’s allotted 
channel, then CR withdraws and hand it over to PU. This 
process is called as spectrum mobility or hand-off [99] 
which lets CR user to alter the operating frequency. And 
during this process, CR transits to another better avail-
able spectrum. CR tries to maintain the requirements for 
smooth communication during this process.

Among above-discussed four functions of CR spectrum 
sensing is extremely vital, because if spectrum sensing is 
not efficient then SU can cause interference to the PU data 
transmission. Thus, affecting the QoS of the PU and that is 
a critical issue. Therefore, if the spectrum sensing is per-
formed efficiently then the rest of the process involved in 
the CRN can be performed effectively.

Implementation of Soft Computing Techniques 
in Cognitive Radio

The core of CR is its capacity to enhance its execution pro-
cess via learning. It is accomplished by the Soft Computing 
techniques related to cognitive radio. The Domain of Soft 
Computing is concerned with the outline and advancement 
of a calculation for empowering CR to learn. This is suited 
for conditions in light of understanding, because, by exam-
ples Soft Computing techniques learn, and by comparisons, 
they act.

The Soft Computing-based Cognitive engine is consid-
ered very vital for CR [46, 78]. And this led to the introduc-
tion of various intelligence algorithms for CR. Few exam-
ples are, Genetic Algorithm-based work was advanced for 
Cognitive Engine (CE) at Virginia Tech. Performance of 
GA-based CE showed that certain changes were imparted 
to transmission parameters which changed to different set-
tings [21, 26]. Some other methods that were applied to 
CE are “Rule Based System” [48], “Case Based Learn-
ing” [57], “Fuzzy Logic” [59] and “Neural Network” [46]. 
The CR learning algorithm based on AI can be called as 
a Radio Environment Map (REM) enabled situation aware 
learning algorithm. REM can be categorized as global and 
local REM, where the former present the CR environment 
as the comprehensive view and latter gives the local view 
of the environment around CR. The network structure is the 
source of global REMs. At the same time, the radio capable 

Fig. 3   CR network cycle



SN Computer Science (2020) 1:352	 Page 5 of 36  352

SN Computer Science

of performing spectrum sensing and monitoring transmis-
sions of CR and Primary Users (PUs) within the range forms 
the Local REM. Diagrammatic description of the AI-based 
CR-learning algorithm by Zhao et al. [34] is shown in Fig. 4 
via which it can be visualized that CE forms the basis of 
CRN. CE is an intelligent system with three fundamental 
processes sense, learn, and optimize the CR network. CR, 
based on its experience, forms the knowledge base and 
makes decisions on the current situation and also predicts 
future behavior. The environmental and operational infor-
mation is represented and stored in CR’s databases. Such 
databases are a kind of representation of REMs. In REMs, 
the database contains information such as spectral regula-
tions, geographical features and the locations and activities 
of radios which are used in characterizing the environment 
of a given geographical area [34].

The CR covers a wide range of opportunities with vari-
ous research works. Therefore, while dealing with CRN, 
one should not only be concerned about its advantages and 
opportunities but also about the issues related to it. In the 
next section, various research and implementation issues 
associated with CRN are dealt with.

Design Challenges for Cognitive Radio

The design hurdles associated with CRN are decisiveness 
(the ability to make quick and proper decisions and strategy 
for proper channel selection), training methodologies to be 
employed, security (protection against malicious users) [61], 
cross-layer design (Designing of networks within CRS is 
itself a difficult task, so the designing of higher layers such 
as MAC, Network layer, Spectrum management within dif-
ferent layers of the network is a humongous challenge) [35, 
37], Geolocation, RF front end challenges (Maintaining high 
adaptability to multiple access methods and multiple modu-
lations, Design should be such that RF Front End should 
have high switching ability and also should be able to com-
municate more than two points at a time), Baseband issues.

Spectrum sensing issues: Considered as the backbone of 
the CRS, spectrum sensing is one of the most critical and 
difficult task carried out by the CR. Major issues associ-
ated with spectrum sensing include accuracy of spectrum 
sensing decision, sensing time, implementation of spec-
trum sensing algorithm along with the consideration of 
noise uncertainty, multi-path fading, and shadowing effect. 
A computational and algorithmic implementation of spec-
trum sensing is a challenge in terms of maintaining precision 
while deciding the occupancy of the spectrum, its sensing 
time, and also concerning the malicious users. Spectrum 

Fig. 4   System flow and frame-
work of REM enabled CRN 
[34]
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sensing computation and algorithm should also consider the 
noise interference, uncertainty due to multi-path fading and 
shadowing effect, and even hidden primary user problems. 
Table 1 gives a brief detail on the design hurdles in CRN 
and Spectrum Sensing .

Introduction to Spectrum Sensing

Spectrum Sensing is a process by which CR periodically 
observes a particular frequency spectrum, intending to rec-
ognize the primary users’ presence or absence. Through 
spectrum sensing, CR can learn, measure, and get aware of 
its environment. Spectrum sensing is one of the two major 
processes involved in CR’s dynamic spectrum access opera-
tion. When a particular frequency band is available (i.e., it is 
not in use by the PU at that specific instant of time in a par-
ticular position), then SU can avail that spectrum. Therefore, 
if a PU is not communicating via all channels, then spectrum 
opportunity can be developed for SU in the channel, which is 

not in use. Spectrum sensing not only means detection of the 
unused spectrum but also involves the determination of spec-
tral resolution of each spectrum hole, estimating the direc-
tion of incoming interfering signals and signal functions. 
Table 2 gives the brief summary on previous survey in the 
field of spectrum sensing. Mostly, CR system co-exist with 
other radio frameworks, utilizing similar channel yet not 
causing any undue interference. While sensing the spectrum 
occupancy, the CRN must undergo following considerations:

•	 Nonstop spectrum detection: It is fundamental for the 
CRN to ceaselessly detect the spectrum occupancy. 
Regularly, a CR framework will use the spectrum on a 
non-obstruction premise to the PU. Appropriately, it is 
essential for the CR framework to constantly detect the 
spectrum in the event that the PU returns.

•	 Monitoring available vacant spectrum: There are pos-
sibilities that PU might be needing back the spectrum 
that being utilized by CR user, in such cases, CR user 
must immediately vacant the spectrum and it must have 

Table 1   Design hurdles in CRN and spectrum sensing

MAC layer issue One of the prime issue associated with CRN is the spectrum management. CRN needs a MAC system 
than efficiently adapt itself to allocate transmission power and spectrum among SUs [35]

Spectrum licensing Improvement is required in spectrum licensing strategy for efficient and flexible spectrum access [33]
Spectrum sensing challenges 1. Measuring techniques to calculate the interference caused to the nearby PUs are yet to be deviced [35]

2. Need for developing spectrum sensing techniques that can coexist with the other operating CRN [35]

Table 2   Summary on spectrum sensing surveys

S.No Year Authors Prime contribution

1 2006 Akyildiz [35] Brief review on cognitive radio technology and xG Network
2 2009 Yucek [61] Surveyed spectrum sensing methodologies, spectrum sensing problems and proposed multidimen-

sional spectrum sensing concepts
3 2009 Zeng [80] Surveyed spectrum sensing methods namely energy detector, cyclostationary detection, matched 

filter detection, robust sensing, Likelihood ratio test, joint space time sensing and Eigen value-
based sensing

4 2010 Akyildiz [89] Addressed the issues of cooperative spectrum sensing in terms of cooperation overheads, method, 
and cooperation gain. Cooperation method is studied with respect to its fundamental elements 
such as sensing techniques, hypothesis testing, control channel and reporting, data channel. Survey 
has been done with following factors under consideration- sensing time, delay, energy efficiency , 
cooperation efficiency, security , mobility and wide band sensing issues

5 2011 Subhedar and Birajdar [94] Spectrum sensing techniques have been surveyed, addressed the challenges and issues in spectrum 
sensing implementation. Comparative analysis of different sensing methodologies has been done

6 2012 Dhope and Simunic [98] Surveyed cluster-based cooperative spectrum sensing and their role in improving the overall perfor-
mance of cooperative spectrum sensing with low computational cost

7 2013 Khan and Nakagawa, [112] Surveyed spectrum sensing techniques for PU detection. Techniques investigated are for cooperative 
spectrum sensing namely fuzzy logic, asynchronous cooperative spectrum sensing, network coding 
and relay diversity

8 2016 Muchandi and Khanai [132] Surveyed spectrum sensing methods and schemes for the CRN and also addressed associated chal-
lenges in it

9 2016 Cichon, [133] Presented novel ideas to implement energy efficient cooperative spectrum sensing algorithm and 
classified various energy efficient cooperative spectrum sensing techniques
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an elective spectrum accessible to which it can switch as 
the need arises.

•	 Monitoring the types of transmission: CR should be able 
to detect the transmission type of PU so as to avoid false 
transmissions and interference.

The stability of the entire system is an important factor to 
be considered before designing a spectrum sensing tech-
nique. As the CR framework moves from one channel to 
another, then there are chances that spectrum occupancy 
will increase, which can reduce the spectrum efficiency and 
also affects the overall cognitive framework. If for a circum-
stance, channels are highly occupied by the PUs, and only a 
few numbers of channels are assigned or are accessible, then 
the first CRN settles at a particular channel. And when it 
recognizes another client, it proceeds to the following chan-
nel. The next channel might also be used by another client, 
so CRN needs to identify the new channel occupancy and it 
proceeds further. This process continues till the last client, 
thereafter it jumps to the first channel, and then the entire 
process is repeated. This situation if happens, then the cogni-
tive radio spectrum detecting calculations must be capable of 
tackling these types of problems and guarantee the utiliza-
tion of the available spectrum in the best possible manner. 
In the CR, spectrum detection is an important computational 
algorithm associated with its entire field. With experience, 
the CR spectrum detecting method gets improved. It will be 
intended to suit the expanding utilization of the spectrum in 
addition to any malevolent attacks that could be introduced 
to CRN.

Requirements of an Efficient Spectrum Sensing

As spectrum sensing is the key factor in a CRN, it is impor-
tant to carry out spectrum sensing efficiently. The Essen-
tial requirements associated with the spectrum sensing are 
depicted through Fig. 5 “The taxonomy of spectrum sensing 
requirements”.

The main challenge for an engineer developing a CR 
framework is to design the spectrum sensing technique meet-
ing the requirements mentioned in Fig. 5. Results obtained 
after detection have a considerable effect on the CR in terms 
of its accuracy. Therefore, spectrum sensing is an important 
issue to be considered while designing a CRN and has pulled 
attention among many researchers.

Components of Cooperative Spectrum Sensing

Components of cooperative spectrum sensing is shown in 
Fig. 6 is been discussed as follows:

•	 Cooperative Model: Here, emphasis is given on how the 
spectrum sensing is carried out by the secondary users. 
Game theory models and parallel fusion model have 
already been developed for obtaining Optimal decision 
performance [65]. These models are based on coopera-
tive gain.

•	 Sensing Techniques involving Energy detection, Com-
pressed sensing and cyclo-stationary feature detection are 
one of the most important element of cooperative spec-
trum sensing. Spectrum sensing is a method of detect-
ing the primary users based on which inference is made 
whether the channel is vacant or occupied. The type of 

Fig. 5   Taxonomy for spectrum 
sensing requirements [139]
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sensing technique selected affects the cognitive radio 
users (CRUs) undergoing cooperative spectrum sens-
ing. For cooperative spectrum analysis, sensing primary 
signals and then sampling and processing of these signals 
plays very important role, because without proper sens-
ing and sampling there might be chances that weak pri-
mary signals goes undetected with respect to the strong 
signals and its a big sensing challenge.

•	 Control and reporting section: It deals with the efficient 
and reliable reporting and sensing data to the Fusion 
Center, Data which is obtained by the cognitive second-
ary users while doing cooperative spectrum sensing. 
This sensing data are also shared with the other cognitive 
users via control channel which is fading, susceptible and 
band limited. This control channel is referred as Common 
Control Channel(CCC) [35, 75] and it is accessed via 
MAC scheme. In cooperative spectrum sensing, perfect 
control channel is impractical but current research shows 
that flawed control channel can be seen as the option for 
influencing cooperative sensing scheme.

Designing of control channel is a tough task because it has 
to consider various aspects such as: 

–	 Recovering quickly to channel flaws.
–	 Robust to primary users.
–	 Bandwidth Efficiency.
–	 Dedicated data reporting.

–	 Dynamic in accordance to Primary User activity.

•	 Hypothesis Testing: To determine the presence of pri-
mary users, statistical tests of survey data are performed 
and it is termed as Hypothesis testing. Individual coop-
erative users perform hypothesis testing to reach a local 
decision,for a cooperative decision hypothesis testing is 
done by FC. In a hypothesis testing for getting an opti-
mum decision, large number of samples are required and 
that makes the process of hypothesis testing difficult.

•	 Data Fusion: Sensing data (reported and shared one) is 
combined to make a cooperative inference, thus process 
of merging is termed as Data Fusion. There are three 
divergent methods via which data fusion is carried out. 
These are mentioned in descending order of their perfor-
mance with respect to control channel and bandwidth:

–	 Soft Decision: Here, all sensing data obtained by 
cognitive user are combined together to get soft deci-
sion.

–	 Optimized soft decision: Here, optimization of all 
local sensing data is performed and only optimized 
data is sent for soft combining.

–	 Hard decision: One bit decision is transmitted by 
cognitive user for Hard Combining.

Fig. 6   Elements of spectrum 
sensing [139]
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•	 User Selection: It helps in optimizing the selection of 
cooperative cognitive user and deciding the absolute 
cooperation range which in turn facilitates in maximizing 
cooperative gain and minimizing cooperative overhead. 
It also help in determining the performance of coopera-
tive spectrum sensing by emphasizing on improving the 
cooperative gain and addressing the overhead issues. In 
a cooperative spectrum sensing, if cognitive user faces 
the problem of correlated shadowing then by selecting 
independent cooperative cognitive users for sensing can 
help in obtaining a better sensing results. This shows that 
user selection is an important factor in implementing an 
efficient cooperative spectrum sensing model.

•	 Knowledge base keeps the record of the previous experi-
ences and information so as to improve the overall spec-
trum sensing. Information stored in the knowledge base 
are the deductive knowledge or the knowledge gained via 
user experience. Knowledge base comprises information 
regarding Primary user and CR user location, Primary 
user activities, signal strength profiles. Performance of 
cooperative spectrum sensing is highly influenced by 
the knowledge of primary user characteristics such as 
transmission power, location and traffic patterns. The 
knowledge base forms the essential part of cooperative 
spectrum sensing system, because if primary user infor-
mation are properly updated in the knowledge base then 
it enables efficient PU detection. Therefore, in this man-
ner, it assists CRN in spectrum detection.

Conventional Spectrum Sensing 
Methodologies

In the literature survey, a number of spectrum sensing 
methodologies have been identified. In this section, some 
of the widely used spectrum sensing techniques have been 

discussed with respect to their characteristics, working, mer-
its and demerits.

Based on the signal detection techniques, spectrum sens-
ing techniques have been broadly classified into four dif-
ferent categories [89]. Figure 7 shows the basic spectrum 
sensing techniques.

First type of classification is named as Coherent and Non 
Coherent detection. In the coherent detection technique 
prior information of primary users is required which is then 
evaluated with respect to the received signal so as detect the 
primary signal coherently, where as in non-coherent detec-
tion, there is no requirement of prior knowledge of primary 
signal for the detection. Second half of the classification is 
based on the bandwidth of the spectrum to be sensed, and its 
classified as narrow band and wide band. Spectrum sensing 
classification can be visualized in Fig. 7.

Existing methodology had drawbacks with respect to 
spectrum sensing which in turn had negative impact on 
overall efficiency of the CR model. Therefore, these basic 
methods were incorporated with some optimization meth-
odologies to increase the spectrum sensing efficiency. Now, 
the classification of spectrum sensing can be made com-
prising of popular traditional methods, some basic methods 
and various optimization methodologies that have been used 
for spectrum sensing. Based on above discussion, a broader 
classification of the works carried out in spectrum sensing 
is depicted in Fig. 8.

For detailed description, each methodology is described 
individually as under: 

	4A.	 Energy detection-based spectrum sensing-Energy 
detection technique, also known as radiometry or peri-
odogram, is a low computational, most commonly used 
technique having fewer implementation complexities 
[22, 27, 32, 73]. Energy detection technique works 
basically by measuring only the received signal, it is 
basically a non-coherent-based detection device. One 

Fig. 7   Basic spectrum sensing 
techniques [35]
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of the drawbacks associated with energy detection 
technique is that it performs poorly in low signal-to-
noise ratio and also the estimation error due to noise 
may degrade detection performance significantly [60]. 
Another challenges associated with the energy detec-
tion are the selection of threshold for detecting primary 
users and inability to differentiate interference from 
primary user and noise [73]. In addition to that energy 
detector’s efficiency lags while detecting the spread 
spectrum signals [22, 33]. Figure 9 depicts the basic 
block diagram of energy detection technique. From 
the figure, it can be seen that its important elements 
consist of first the Power spectral Density estimation, 
secondly Band Pass Filter to select channel, then the 

Integrator and lastly estimating the presence or absence 
of primary user is done based on inferences obtained 
from previous blocks. For better understanding about 
the working of energy detection, consider x(n) as the 
primary signal transmitted through a channel of gain 
h. Then, the received can be written as in Eq. 1 [151]: 

 where w(n) is the Additive white Gaussian 
Noise(AWGN) sample and n represents the sample 
index.For no transmission by primary user x(n) takes 
the value 0. The decision metric for the energy detector 
can be written as in Eq. 2. 

 here N is the size of the observation vector. The band 
occupancy can be known by comparing the decision 
metric M against a fixed threshold: �T . Function y(n) 
follows a binary hypothesis shown in Eq. 3. 

 The probabilities of false alarm ( Pf  ) and detec-
tion ( PD ) can be evaluated as ( Pr(M > 𝜆T |H0) ) and 
( Pr(M > 𝜆T |H1) ), respectively. Since Pf  is the prob-
ability of false alarm which implies that the energy 
detector has done missed detection, though the chan-
nel is vacant its been inferred as busy. Therefore, a 
minimized value of Pf  is preferred to prevent the under 
utilization of transmission opportunities, since Pf  is 
the probability that the system incorrectly decides that 
the considered frequency is occupied when it is actu-
ally not. Where as PD detection probability is desired, 
since it is the probability of detecting signal when it 
is actually present. From the flowchart in Fig. 10, it 
can be seen that first secondary user (SU) collects the 
information with respect to PU, and the energy of the 
signal is estimated. Then, the probability of detection 
and probability of false alarm are computed to ana-
lyze the effect of fading channel on the detection per-
formance. To maximize the probability of detection, 
lowered value of threshold is desired. Final value of 
energy detector is the average or total of all the energy 
detection values from N samples. The major issue 
associated with energy detector is its degraded per-
formance at low SNR values [124], to have improved 
performance a spectrum sensing technique should be 
able to perform in low SNR values as channel condi-
tion deteriorates the PU signal.

(1)y(n) = hx(n) + w(n),

(2)M =

N∑

i=0

|Y(i)|2

(3)
y(n) = w(n) ∶ H0{Signal is Absent}

y(n) = hx(n) + w(n) ∶ H1{Signal is Present }

Fig. 8   Taxonomy of existing spectrum sensing methodologies

Fig. 9   Working model of energy detection [33]
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	4B.	 Cyclostationary-Based Spectrum Sensing: Cyclosta-
tionary is the process where the statistical properties 
vary periodically with time. And the method which 
employs the cyclostationarity attributes of the received 
signal for detecting the primary user transmission is 
termed as cyclostationary feature detection [22, 27, 32, 
73]. Signals which are modulated using sine wave car-
rier or any cyclic prefixes shows periodicity despite the 
data being the stationary random process. The modu-
lated signals are described as cyclostationary because 
their statistics, mean and auto-correlation shows perio-
dicity [22]. Wireless communication signals are mostly 
cyclostationary where as the noise is wide sense sta-
tionary having no correlation, so the cyclostationary of 
the primary signals can be used to detect its presence. 
In this process for detecting the presence of signals 
in a given spectrum, cyclic correlation function is 
used instead of power spectral density. For calculating 
cyclic spectral density function S(f , �) of a received 
signal referred in Eq.(1), following functions depicted 
in Eq. 4 is used [5, 61]: 

 Here, R�
y
(�) shown in Eq. 5 represents cyclic auto-

correlation function (CAF) and � is referred as cyclic 
frequency. Peak value of cyclic spectral density func-
tion is obtained when the cyclic frequency has val-
ues equivalent to that of fundamental frequencies of 
signal x(n). Cyclostationary feature detector can be 
implemented for very low SNR detection using the 

(4)S(f , �) =

∞∑

T=−∞

R�

y
(�)e−j2�f �

(5)R�

y
(t) =E[y(n + �) ∗ y(n − �)ej2��n]

information embedded in the primary user signal 
which does not exist in the noise. This technique is 
robust and performs better than energy detection 
technique. But computational complexity and longer 
observation time adds to its disadvantage. And also 
cyclostationary technique has the difficulty of exploit-
ing cyclostationary feature in weak voice signal [56]. 
Figure 11 shows the basic block diagram of cyclosta-
tionary feature detector and its working sequence is 
explained with the help of flowchart shown in Fig. 12.

	4C.	 Waveform-based sensing: It is applicable to systems 
with known signal patterns. With the knowledge of a 
known pattern, sensing can be performed by correlat-
ing the received signal with a known copy of itself 
[28, 36, 43]. Mathematical model of waveform-based 
sensing can be expressed as shown in Eq. 8 [28]: 

 here: 

 Based on the comparison between the metric value of 
T and a fixed threshold �e , decision is made whether 
PU signal is present or absent. Waveform-based sens-
ing has better reliability and convergence time as 

(6)

T = ℜe

�
N∑
n=1

y(n)x∗(n)

�

T =
N∑
n=1

�x(n)�2 +ℜe

�
N∑
n=1

w(n)x∗(n)

�

(when PU is present)

T = ℜe

�
N∑
n=1

w(n)x∗(n)

�

(when PU is absent)

(7)y(n) = x(n) + w(n)

Fig. 10   Flowchart of energy 
detection technique

Fig. 11   Working model of 
cyclostationary feature detector 
[33, 94]
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compared to energy detector-based sensing [28]. In 
addition to that, the performance of the sensing algo-
rithm increases as the length of the known signal pat-
tern increases [33]. But for to have increased length of 
the known signal, it is required have high sensing time 
which eventually decreases the transmission time and 
thus the overall throughput of the system, moreover 
waveform-based sensing is susceptible to synchroniza-
tion error [33].

	4D.	 Matched Filter: Basic feature of matched filter(MF-
Linear Filter) is to increase the output signal to noise 
ratio for a particular input signal, so it is designed in 
that manner. Matched filter detection is applied when 
secondary user has a priori knowledge of primary user. 
Working principle of matched filter is like correlation. 
It correlates the unknown signal with mirror and time 
shifted version of the reference signal. Equation for the 
matched filter operation can be expressed as in Eq. 6 
[94]: 

 Which is governed by two hypothesis stated in Eq. 7: 

 Here, x(n) is the signal to be detected which is convo-
luted with matched filter’s impulse response h(n) which 
is the equivalent to the reference signal to be detected. 
Basic block diagram of matched filter and its work 
flow is explained in Figs. 13 and 14. Matched filter’s 
impulse response which is matched to the reference 
signal to have the maximum signal to noise ratio. One 
of the advantages of matched filter is that it requires 
less detection time, since it need only O(1/SNR) sam-
ples to meet the required probability of detection [35]. 
Matched filter detection is the best way of detecting 

(8)T =

∞∑

k=−∞

h(n − k)x(k)

(9)
y(t) = w(t) ∶ H0{PU Absent }

y(t) = x(t) + w(t) ∶ H1{PU Present }

Fig. 12   Flowchart of cyclostationary feature detection technique

Fig. 13   Block diagram of matched filter [94]

Fig. 14   Flowchart of matched filter
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in stationary gaussian noise, provided that the infor-
mation of the PU signal is already known to the user. 
But for cognitive user with matched filter detection, it 
is required that it is fully synchronized with the PU, 
which is very difficult to achieve in the cases of low 
SNR [55, 102]. In addition to that to perform coherent 
detection, matched filter requires receiver for all type 
of signals and their corresponding algorithm is to be 
executed resulting in high implementation complexity 
and power consumption [33].

	4E.	 Multi-Taper spectrum sensing: Before the introduction 
of cognitive radio, multi-tapper concept was proposed 
in the year 1982 [94] and multi-taper was first used 
for spectrum estimation in Haykin et al. [29]. An esti-
mate of the periodogram can be referred as the filter 
banks’ output. And the power spectrum estimate’s each 
points correspond to filter’s output. With the help of 
modulation of single prototype filter, the filter bank is 
constructed. Multi tapper spectrum sensing works in a 
similar way but it uses multiple orthogonal prototype 
filter so as to improve the variance of estimated power 
and reduce the leakage [62]. Here, received samples 
are collected in vector form and represented as a set 
of slepian base vectors. By utilizing the feature that 
slepian vectors have maximum energy concentration in 
the band width fc − w and fc + w under finite sample 
size, CR user can easily identify the spectrum oppor-
tunities in given bands. Multi-Tapper is preferred for 
small sample space as it uses multiple prototype filter, 
and with the increase in the number of samples the 
computational complexity also increases [94].

	4F.	 Spectrum sensing based on filter bank technique: 
Farhang-Boroujeny in [47] proposed spectrum sens-
ing based on filter bank technique for a CRN. A pair of 
matched root nyquist filter has been used to implement 

the proposed technique. Filter-based spectrum sensing 
can be considered simplified version of Multi-Tapper-
based spectrum sensing in which for each band there 
is a prototype filter. On comparing Filter bank with 
multi-tapper, it can be inferred that the best prototype 
filter used in multi-tapper has its magnitude response 
comparable to the magnitude response of root nyquist 
filter proposed by Farhang in [47]. In terms of variance 
over frequency band with low-power spectral density, 
Filter bank spectrum sensing has better performance 
than multi-tapper. Filter bank has lower leakage com-
pared to multi-tapper and it also performs better for a 
large number of samples while multi-tapper spectrum 
sensing has better estimation index with small sample 
space. Multi-tapper spectrum sensing is faster than fil-
ter bank spectrum sensing, because smaller window 
size for a particular sampling rate [62].

	4G.	 Covariance-based Spectrum Sensing: Here, PU signal 
is detected based on the diagonal elements of covari-
ance matrix. Diagonal elements take the value 0 in 
the absence of PU signal and its 1 when PU signal 
is present [55]. Basically, covariance-based spectrum 
sensing works on the principle that PU signal at the CR 
user is correlated due to these factors:

•	 Over sampling
•	 Dispersive channels
•	 Using multiple receive antennas

		     CR user utilizes this correlation factor to distin-
guish between PU signal and white noise. Covariance-
based spectrum sensing performance depends on the 
statistics of received PU signal. If PU signal and white 
noise are non distinguishable then covariance method 
fails. A brief about above-discussed method is shown 

Table 3   Accuracy and complexity analysis of the basic spectrum sensing methods

Sensing methods Accuracy 
ratings 
(1–10)

Complex-
ity ratings 
(1–10)

Remarks

Energy detector(ED) 2 2 It is the least complex system but with low accuracy and at low SNRs the Energy 
Detection techniques is not suited to obtain a high detection probability [22]

Energy Detector with proper soft computing techniques, can effectively optimize 
the spectrum sensing parameters and thus, can efficiently predict the PUs [124]

Cyclostationary detector(CSD) 3 4 It is slightly more accurate than energy detector but with higher complexity [69]. 
With Soft Computing techniques the complexity of CSD can be optimized and 
further can improve its performance on detecting the PUs [125]

Filter bank detector 4 6 Accuracy wise its better compared to ED and CSD, but it is more complex with 
respect to the ED and CSD [62]

Multi-tapper 4 7 Same level of accuracy as that of filter bank but its slightly more complex [62]
Covariance method 7 5 High in accuracy with comparable complexity
Matched Filter 8 7 Highly accurate but increased level of complexity, requires priori knowledge of PU 

signal [62]
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in Table 3 which depicts the ratings of the basic spec-
trum sensing techniques with respect to accuracy and 
complexity. The ratings have been done based on the 
surveyed paper. The complexity is analyzed based on 
time complexity of the sensing methods. The time 
complexity associated with the Conventional Energy 
Detector is O((Ns)) , where Ns is the number of energy 
samples sensed [33]. The complexity of cooperative 
spectrum sensing depends on the number of SUs 
within a Fusion Center, Spectrum sensing technique 
employed by the each SUs and the complexity associ-
ated with the evaluation at the fusion center. So the 
complexity associated with the cooperative spectrum 
sensing is higher than the conventional energy detector 
[148]. The Matched filter complexity is analyzed based 
on its requirement of dedicated receiver for every pri-
mary user Dp ∗ Ns , where Dp is the dedicated receiv-
ers for each primary users [22]. The accuracy of each 
sensing methods is evaluated based on the performance 
remarks in [22, 33, 62, 69, 124, 125] for obtaining the 
probability of detection (Pd) and probability of false 
alarm (Pfa) in different SNR conditions. The ED has 
the least accuracy for Pd and Pfa, whereas Matched 
Filter with dedicated PU receiver has the highest accu-
racy level.

4H.	Wavelet-based Spectrum Sensing: Han et al. 2013 [115] 
proposed Wavelet-based energy detection for spectrum 
sensing. The author described about the scheme in 
which wide band signal is fed to the filters and then the 
corresponding output is used to detect the presence of 
PU signal with the help of wavelet based edge detector. 
Proposed scheme is also applicable to multiple CRN 
and it proved beneficial for high compressive ratio and 
sparsity level. Capriglione et al. [126] proposed wavelet-
based spectrum sensing for low SNR scenarios. With the 
help of simulation results, it was shown that proposed 
method performed better than other conventional spec-
trum sensing in low SNR scenarios

4I.	 Belief Propagation: Zhang et al. [90] proposed belief 
propagation-based spectrum sensing to deal with the 
issues of wide band spectrum sensing. Issues such as 
acquisition of spectrum for limited sampling capabil-
ity and method to collaborate secondary users. With 
the proposed technique, authors are able to deal with 
these issues of wideband spectrum sensing via graphical 
model based on probability. The graphical model show-
case the technique for combining secondary users based 
on multi-prior information. And Belief propagation 
infers the occupancy of the spectrum based on statistical 
details. Simulation results showed that proposed method 
can efficiently implement cooperative compressed spec-

trum sensing for low SNR and sampling rate with high 
performance in terms of cooperation among the second-
ary users even in diverse conditions.

4J.	 Multirate SubNyquist Spectrum Detection:MSSD 
known as Multi rate SubNyquist Spectrum Detection 
proposed by Sun et al. 2011 [91] for spectrum sensing 
in CRN. Seeing the significant challenge faced by CRN 
in fading environment author proposed MSSD-based 
method spectrum sensing method for both non fading 
and Rayleigh fading channels. In MSSD, each CRUs 
has a wideband filter, a sampler and an FFT which deter-
mines the energy of the signal in frequency domain, pro-
posed system model also consist of fusion center which 
channelize separate subnyquist sampling rates for CRUs 
and each CRUs performs asynchronous subnyquist sam-
pling followed by FFT. From CRUs, quantized energy 
is transferred to FC. FC fuses the received signal and 
chooses a threshold for testing the binary hypothesis 
and distributes the result to al CRUs. Simulation results 
depicted in the paper has proven that Proposed method 
performed well in fading environment with low com-
plexity level for computation and implementation.

4K.	Interference-Based Detection: In this technique, CRUs 
operate in spectrum underlay similar to ultra wide band 
(UWB). Basic methodology of UWB technique is that 
the system can communicate with high bandwidth over 
large portion of communication spectrum but with a 
condition that it should maintain a very low energy level 
with short range communication. Interference-based 
detection can be classified into two categories as under:

a.	 Interference Temperature-based management: Here, 
basic idea is to fix an upper threshold for interference 
in a particular frequency band for a specific geographic 
location such that the CRUs will not cause any prob-
lematic disruption while using a particular band in that 
specific area. For controlling the interference, Trans-
mission power of the CRUs is regulated depending on 
the location of CRU with respect to primary users [50]. 
Interference measurement at receiver side is the main 
focus of the this method. Similar to UWB technology, 
in this method also the CRUs can co-exist and trans-

Fig. 15   Interference temperature model [63]
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mit parallelly with PUs while keeping the transmitting 
power very low so as not cross interferrence tempera-
ture threshold as set by the system which prohibits any 
harmful interference to PUs by CRUs [94]. Figure 15 
shows the basic model of interference temperature-
based detection. Power limit is one of the disadvantage 
associated with this method, because the CRUs are not 
permitted to transmit data at high power even if the PU 
is completely idle. To constrict the interference caused 
to PUs, CRUs should have their power range confined 
within the threshold power limit. For this, CRUs should 
always keep the track of the location and the equiva-
lent threshold level of permitted transmit power of that 
location, otherwise interference could be caused to PU 
transmissions.

b.	 Primary Receiver-based detection: In this method leak-
age power from the RF Front of primary receiver’s local 
oscillator (LO) is been detected. This type of power 
leakage usually happens when primary receiver receives 
data from primary transmitter. For detecting this power 
leakage, a sensor node low in cost is mounted near to 
a PU’s receiver within the range of communication of 
CRUs. The sensed information is passed on to CRUs 
which make the final decision regarding spectrum occu-
pancy status. In this manner the spectrum detection is 
carried out via this technique.

4L.	Cooperative Spectrum Sensing: Many problems were 
associate with the non-cooperative spectrum sensing 
like noise uncertainty, fading, shadowing and hidden 
terminal problem. As a solution, cooperative spectrum 
sensing is introduced in [22, 25]. Cooperative spec-
trum sensing performs better in terms of detection as 
compared to non-cooperative spectrum sensing since it 
exploits diversity gain provided by associated radios. It 
overcomes loss due to building penetration, it imposes 
high sensitivity requirements inherently limited by 
cost and power requirements, improves agility, reduces 
interference to PU, improved detection probability and 
reduced deduction time. Cooperative spectrum sensing 
working can be described as follows [40]:

•	 Each CR device performs local sensing and make a 
binary decision.

•	 CRUs’ binary decisions are then forwarded to a 
fusion center(common receiver) which can be an 
WLAN access point or a cellular network’s base 
station.

•	 Fusion center then make a cumulative decision based 
on the binary decisions obtained from CRUs. From 
the decision of the fusion center presence or absence 
of the PU in a specific band is inferred.

	    Based on the architecture following classification can 
be made for cooperative spectrum sensing [88, 89]:

a.	 Centralized cooperative spectrum sensing:In this the 
sensing information from CRUs are collected to a cen-
tral unit. Central unit identifies the available spectrum 
and broadcast this information to other CRUs or it can 
directly control CR traffic. Here, CRUs group together to 
form clusters and each cluster have cluster head/central 
unit, which forward the cumulative decision of CRUs to 
a fusion center.Centralized cooperative spectrum sens-
ing is shown in Fig. 16.

b.	 D e c e n t r a l i z e d  c o o p e r a t i v e  s p e c t r u m 
sensing:Decentralized cooperative spectrum sensing is 
further classified into two groups (i)Decentralized Coor-
dinated (ii)Decentralized Uncoordinated [89] as shown 
in Fig. 17.

Fig. 16   Centralized cooperative spectrum sensing [94]

Fig. 17   a Centralized, b Decentralized coordinated, c Decentralized 
uncoordinated [89]
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•	 Decentralized Uncoordinated:In this technique CRU 
detect channel by themselves and if PU is detected then 
the channel is vacated without informing other CRUs of 
the cluster.Because of this Decentralized Uncoordinated 
Technique is more error prone as compared to Coordi-
nated technique. And there is more probability that CRU 
detect that the channel incorrectly and, therefore, causing 
interference to the PU.

•	 Decentralized Coordinated:In this type of cooperative 
spectrum sensing technique, CR clusters do not have a 
cluster head [152]. Cooperation between the CRUs is 
done via gossiping algorithm or clustering schemes in 
which CRUs within the clusters auto coordinate them-
selves [31]. Cooperative spectrum sensing in all turns 
out to be very beneficial, however, there are certain chal-
lenges associated with cooperative spectrum sensing like 
increased overhead traffic, increased power consumption 
due to heavy communications, increased complexity and 
the need for control channels.

	4M.	 Eigen value-Based Spectrum Sensing: Variation in 
autocorrelations of signal and noise is the basic work-
ing principle of eigen value-based spectrum sensing. 
Similar to energy detection technique, eigen value-
based spectrum sensing also do not require priori 
knowledge of primary signal but energy detection 
technique is not handy for correlated signal. Such 
shortcomings of energy detector method is overcome 
by eigenvalue-based spectrum sensing [49, 54]. In 
this method, eigen values of the covariance matrix of 
received signal is estimated for signal detection.

Guimaraes et al. in [108] proposed eigenvalue-based central-
ized cooperative spectrum sensing for detecting OFDMA 
and wideband signal. For binary hypothesis testing, author 
proposed four test statistics which are Generalized likeli-
hood radio test, maximum minimum eigenvalue detection, 
maximum eigenvalue detection and the energy detection 
and made a comparison between eigenvalue fusion, decision 
fusion and sample fusion, the simulation results showed that 
eigenvalue fusion-based detection techniques outperformed 
the other schemes.

Soft Computing‑based Approaches 
for Spectrum Sensing

Spectrum Sensing Optimization

The challenging aspect of spectrum sensing is mainly all 
about accurately detecting the presence and the absence 

of PU in a particular frequency spectrum. This detection 
process is characterized by the probability of detection (the 
measure of accurately detecting the presence of PU) and the 
probability of false alarm (the measure of inaccurately or 
falsely detecting the presence of PU). For an efficient spec-
trum sensing technique, it is required to have high detection 
probability and low false alarm probability. But these two 
terms maintain a trade off governed by the spectrum sens-
ing parameters such as sensing time, detection threshold, 
transmission power, sensing power, and fusion weights. The 
longer span of spectrum sensing, i.e. longer sensing time 
results in high detection probability and low false alarm 
probability. But for the fixed frame length, longer sens-
ing time decreases the transmission time which eventually 
reduces the SUs’ throughput [124]. Therefore, sensing time 
optimization is required to obtain a proper balance between 
sensing time and transmission duration to achieve an effi-
cient CRN. The detection threshold is another important 
criterion to be considered for coherent spectrum sensing. A 
high value of detection threshold results in low false alarm 
probability (preferred), but it also reduces the detection 
probability (non-preferred). Similarly, transmission power 
and sensing power are also required to be optimized for an 
energy-efficient spectrum sensing. Moreover, to have an opt 
decision on the presence and the absence of the PU, it is 
necessary to optimize the fusion weights in case of coop-
erative spectrum sensing [148]. Existing spectrum sensing 
methodologies lags in obtaining the proper trade off between 
spectrum sensing parameters.

Conventional spectrum sensing techniques perform the 
basic operation of sensing but to have the optimized values 
of different sensing parameters; it is necessary to incorporate 
soft computing techniques for spectrum sensing. An optimal 
value of sensing time, detection threshold, and other sens-
ing parameters can result in effective spectrum sensing, thus 
enhancing the performance of a Cognitive Radio Network. 
The soft computing techniques employed for spectrum sens-
ing is discussed as under: 

5A.	Meta-heuristic Approaches: Deterministic nature of 
traditional classical algorithm calls for the need of sto-
chastic algorithm for solving real-time non-linear prob-
lems.Classical algorithms like Newton Raphson which 
uses gradient descent method are well suited for smooth 
unimodal problems, if there is any discontinuity then 
these methods will not work well. That is the reason 
why stochastic algorithm are so preferred as they are 
gradient free which are gradient free and based on func-
tion values only [92]. Stochastic algorithms are classi-
fied as heuristic and Metaheuristic, having subtle dif-
ference. The word heuristic means to learn or discover 
via trial and error process. A good preferable solution 
can achieved via heuristic algorithm in a less number 
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of iteration but its not necessary to get best solution all 
the time. Metaheuristic is an advanced form of heuris-
tic, as its performance is better than simple heuristics. 
Metaheuristic algorithm use tradeoff between randomi-
zation and local search. Since randomization gives bet-
ter solution in global search and local search in local 
area exploitation. Therefore, a better tradeoff between 
randomization and local search can result in global opti-
mization, which can be achieved through Metaheuristic 
algorithm. In the case of spectrum sensing, there should 
be proper tradeoff between various spectrum sensing 
parameters like sensing time and throughput so, opti-
mization plays a key role in spectrum sensing. Figure 18 
shows the frame structure of spectrum sensing which 
shows various aspects to be considered for spectrum 
sensing optimization. There are various Metaheuristic 
algorithms which have been used for spectrum sensing 
optimization in the proceeding section each metaheuris-
tic algorithms that have been used to improve the spec-
trum sensing methodologies have been discussed:

a.	 Genetic Algorithm(GA): Authors in [77] emphasized 
on optimization of collaborative spectrum sensing and 
finding optimum decision fusion for hard and soft com-
bining in a cooperative spectrum sensing scheme. For 
soft combining authors proposed GA-based weighted 
optimization strategy. The proposed scheme comprised 
of SUs and fusion center, detection results from SUs 
combined with weights were transmitted to fusion 
center. GA so employed was used to optimize the 
weighted spectrum sensing results from SUs, to improve 
the overall cooperative spectrum sensing scheme with 
respect to receiver operating characteristics. Based on 
simulation results, it can be inferred that GA-based 
technique for spectrum sensing weight optimization has 
improved the overall sensing performance in terms of 
low value for probability of missed detection. In [127], 

authors proposed Genetic Algorithm(GA) based opti-
mization scheme for frequency hoping CRN performing 
joint out of band spectrum sensing and channel alloca-
tion. Proposed GA-based technique comprises an algo-
rithm dealing with sensing and data transmission utility. 
In GA, the solution of an objective function is repre-
sented by the chromosomes comprising of genes which 
in turn represents a set of parameters for optimization. In 
this paper for the proposed objective function, the chro-
mosome’s structure was made up of sensing gene and 
data gene each with different size and characteristics. 
The proposed GA model consists of K elements each 
representing different hopping channel. N bit binary 
string is associated with each element and the position 
of each bit represents a particular member node. K num-
ber of elements comprises data gene, each having q bits 
indicating power level. Simulation results showed the 
efficacy of the proposed method. Another GA approach 
for cooperative spectrum sensing scheme was proposed 
in [128]. In the proposed approach for the minimiza-
tion of error probabilities and for the identification of 
available spectrum holes, GA-based spectrum sensing is 
employed. The proposed method is then compared with 
Bacterial Foraging Optimization Algorithm(BFOA). 
From the simulation results, it was inferred that pro-
posed method is better option for spectrum sensing as 
compared to conventional BFOA. For the spectrum 
sensing scenario probability of correct detection Pj det 
and probability of false alarm Pf alarm plays the major 
role. With the help of these two functions probability of 
total error can be evaluated as in Eq. 10 [121]. 

P(H0) and P(H1) indicates used and vacant channel 
respectively. GA evaluates the values of the fitness 

(10)Pjerror = P(H0)Pf alarm + P(H1)(1 − Pjdet)

Fig. 18   Spectrum sensing frame 
[125]
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function to each chromosome, where fitness function is 
the Pjerror . Flowchart in Fig. 19 depicts the basic work 
flow of GA.

GA is easy to implement and requires minimum human 
involvement, and supports multiobjective optimization. 
It is inherently parallel and easily distributed. There are 
many ways to speed up and improve a GA based applica-
tion as knowledge about problem domain is gained. In GA 
optimized solution gets better with time. With these noted 
advantages, there are also few drawbacks associates with 
GA, there is no guarantee of finding global maxima, and 
likely of getting stuck with local maxima at the early stage is 
bit high. Need a decent sized population and a lot of genera-
tions to get good results [68]. 

b.	 Swarm Intelligence Algorithm: Swarm Intelligence 
is the computational study of cooperative intelligence 
acting in a group of homogeneous agents in the envi-
ronment, like school of fish, flocks of birds, colonies of 
ants, which they use for searching food, evading prey 
or re-allocating colony [93]. This type of intelligence 
is not centralized, rather distributed through out the 
environment but are self organizing. Using such swarm 
intelligence, various optimization algorithms have been 

developed, Table 4 lists out some of the swarm intelli-
gence-based optimization algorithms.

Swarm intelligence algorithms which is used for spec-
trum sensing optimization is discussed as under:

•	 Ant Colony Optimization(ACO): It is an optimization 
technique which follows the behavior of ants to find the 
shortest path between their food and nest.This technique 
was proposed by Marco Dorigo in 1999 [11]. Ants ini-
tially randomly search and on finding food they return to 
their colony while laying down pheromone trails. A suc-
cessful pheromone trail (trail to food) is continuously for-
tified, pheromone trail is more efficient if the path taken 
by ants towards the food source is shorter so, the time 
taken will be less and eventually lesser time for phero-
mone to evaporate. In this manner, ants successfully find 
the path which is shortest to the food source. ACO is an 
optimization technique which mimics this behavior of 
ants. ACO comprises virtual ants which traces the search 
space representing the solutions of the objective function 
to solve and find the locally productive areas [72]. ACO 
performs parallel search over numerous constructive 
computational models constructed from problem data 
and dynamic memory structure. The dynamic memory 
structure stores information about the quality of the pre-
viously obtained results. The probability of ants moving 
from a node x to another node y depends on two factors 
[23].

Fig. 19   Flowchart genetic algorithm

Table 4   List of swarm intelligence algorithms

Algorithm Author Year

Stochastic diffusion search Bishop 1989 [3]
Particle swarm optimization Kennedy and Eberhart 1995 [8]
Ant colony optimization Dorigo and Decaro 1999 [11]
Self propelled particle Vicsek 2000 [12]
Bacterial Foraging Passino 2002 [15]
Fish swarm algorithm X Li 2003 [19]
Shuffled frog leap algorithm Muzzaffar and Kevin 2003 [18]
Multi swarm optimization Blackwell and Branke 2004 [20]
Glowwarm swarm optimization Krishanand and Ghose 2005 [24]
Artificial Bee colony algorithm Karaboga and Basturk 2007 [39]
River formation dynamics Rubio 2007 [42]
Magnetic optimization algorithm Tayarani 2008 [44]
Gravitational search algorithm Saryazadi 2009 [53]
Firefly algorithm Xin She Yang 2009 [66]
Cuckoo search Xin She Yang 2009 [67]
Bat algorithm Xin She Yang 2010 [74]
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1.	 Particular path’s attractiveness: It is the prior desire of 
the move and is calculated by heuristics approach. Basi-
cally, it is the reciprocal of distance between x and y.

2.	 Pheromone edge’s density: It is the concentration of 
pheromone on the edge trailing from x to y.

When ACO is applied to some problem, then the objective 
function of the problem will be treated as food source of 
ants and all feasible solutions are the paths to the objec-
tive function (food) and the optimal solution is the shortest 
path to the objective function. Authors in [103] proposed 
ant colony system for efficient spectrum assignment to SUs. 
The proposed ant colony algorithm is based on graph color-
ing problem used for allocating spectrum to SUs in CRN. 
The performance of the algorithm is compared with particle 
Swarm Optimization (PSO). Simulation results showed that 
though the performance of ACO is better than PSO but it has 
twice the running time as compared to PSO.

Key benefits associated with ACO is that, it can easily 
adapt to the changes in real time and have positive feedback 
that leads to speedy discovery of optimal solutions. Few 
disadvantages associated with ACO are: Difficulty in ana-
lyzing ACO theoretically, sequences of dependent random 
sequence, uncertainty in the convergence time but guaran-
teed convergence even if the optimization technique takes 
long time [64].

•	 Particle Swarm Optimization: PSO-based spectrum sens-
ing was proposed by Zheng et al. [70], the PSO algorithm 
is proposed for cooperative spectrum sensing where con-
straints were optimized using PSO. Furthermore, the per-
formance comparison was made between the PSO and 
MDC (Modified deflection coefficient)-based method.
The proposed method turned out to be superior because 
of higher detection probability than MDC. Xia et al. [71] 
proposed binary particle swarm optimization (BPSO) for 
cooperative spectrum sensing to find the optimal solu-
tion for the cooperation nodes which in turn improves 
the sensing performance which is proved by the simu-
lation results obtained from this paper. Cai et al. [101] 
proposed a method to obtain nonlinear threshold using 
particle swarm optimized support vector machine(PSO-
SVM) and is compared with linear threshold used in 
traditional energy detection. In this approach, spectrum 
sensing is considered as binary classification problem 
and energy detection as linear classifier.For low signal 
to noise ratio of received signal and small number of 
received signal samples for sensing, the binary classifica-
tion problem becomes linearly inseparable. In such sce-
nario, PSO-SVM proposed in [101] is proven to be much 
better than that of traditional energy detection. Proposed 
method has two distinct modules i.e offline and online. 
In offline decision is made based on false alarm prob-

abilities and in online mode decision function obtained 
in the offline mode is used for the detection of primary 
user. Benefits of this approach is that it does not require 
any prior knowledge of signals and channels. Better than 
traditional energy detection in hostile environment and 
it works well even in low SNR. Mohammed et al. [113] 
proposed PSO-OR algorithm using two threshold energy 
detector for spectrum sensing. The term double threshold 
is used by the authors because here fusion center col-
lects local decision and also the energy values from the 
SUs, PSO optimizes the decisions made by SUs and final 
inference is made based on local decision and the opti-
mized value. Simulation results showed that proposed 
PSO-OR method performed better than equal gain com-
bining-OR(EGC-OR) method. Rashid et al. in [124] pro-
posed PSO-based scheme for the optimization of sensing 
time and throughput for in band local spectrum sensing 
to achieve better trade off between them. Author also 
proposed a fast convergence PSO(FC-PSO) by applying 
distribution-based stopping criteria for detection perfor-
mance, optimization time and secondary user gain and 
made a comparison of the proposed FC-PSO with that 
of conventional PSO, Artificial Immune system (AIS) 
algorithm and Golden section Search (GSS) algorithm. 
Proposed FC-PSO performed better than AIS and GSS 
algorithm in terms of lower computational complexity, 
better trade off between secondary user sensing time 
and overall system throughput. It gave the maximum 
value of throughput with minimum interference to the 
primary user and better convergence time. PSO is basi-
cally based on population and stochastic optimization 
approach which mimics the school of fish or flock of 
birds’ social behavior [16, 86]. Fundamental equations 
that governs the PSO algorithm is the equation indicating 
the position and velocity of the particles at any specific 
instant. And this velocity and position component of the 
particle gets updated at the end of each iteration until the 
algorithm reaches to the optimum condition. Mathemati-
cally, velocity and position of each particle at t + 1 are 
represented as in Eqs. 12 and 13, respectively [16, 86]: 

 here vi,d(t + 1) = Velocity of particle of i for dimen-
sion d at iteration t + 1 xi,d(t + 1) = Position of particle 
i for d dimension at iteration t + 1 w(t) = Inertia weight 
(Maintains tracking of the preceding velocity of each 
particle and impacts it on their current velocity) �p and 
�g = Cognito and social learning factors. Inertia weight 
helps in balancing the tradeoff between exploration 

(11)
vi,d(t + 1) = w(t)vi,d(t) + �prp(t)(pBesti,d − xid(t))

+ �grg(t)(gBestd − xi,d(t))

(12)xi,d(t + 1) = xi,d(t) + vi,d(t)
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and exploitation process of the swarm. Particle veloc-
ity tracks the particle whether its on right flight direc-
tion and it prevents sudden change in the direction of 
the particle [124]. Position of the particle corresponds to 
optimal solutions. �grg(t) = Global best constant weight 
with random factor(measure performance of the parti-
cle). In PSO, mostly when a particle reaches the global 
optimum solution then the rest of the evaluation does not 
have much impact on cumulative new knowledge, so by 
applying a rule to stop evaluation after global optimum 
is reached, the performance of PSO can be improved 
thus resulting in FC-PSO [124]. Accurate algorithm is 
required for in band spectrum sensing for CRN, so that 
it can adapt to dynamic environment. For that purpose, 
distribution-based stopping criterion proposed in [124] 
along with adaptability stops objective function evalua-
tion. The stopping rule differentiates FC-PSO with abso-
lute PSO. Authors in [135] introduced hybrid particle 
swarm optimization-golden section search (PSO-GSS) 
for optimizing weights, decision threshold and sensing 

time for improving the throughput in multiband coopera-
tive spectrum sensing scheme under constrained envi-
ronment of aggregate interference, subband interference 
and subband utilization. With hybridization, authors 
were successful in improving the performance of PSO 
in terms searching ability. With simulation results, the 
proposed method was validated against ABC, GA and 
PSO. With PSO-GSS, the substantial improvement in 
overall throughput was noticed.

Figure 21 shows the basic working of PSO.

•	 Firefly algorithm(FFA) and Fish School search(FSS)): 
Azmat et al. [123] proposed bio inspired technique for 
collaborative spectrum sensing. Proposed method basi-
cally has a center point where the energy measurement 
data of all collaborative cognitive radios are combined 
together to make a final detection decision. Collaborative 
spectrum sensing scheme is better than standalone energy 
detector as its having less overheads [104]. The proposed 
model in [123] used Particle swarm Optimization(PSO), 
FSS, FFA for collaborative spectrum sensing and allo-
cation. Figure 20 shows the basic flowchart of Firefly 
Algorithm. For solving non-linear optimization prob-
lems with noise, FFA has emerged as more powerful 
tool compared to other optimization technique. FFA per-
forms self-improving process in the current space and 
thus improves its own space with respect to its previous 
stages [123]. Under noisy conditions with various local 
optima FFA performs better as compared to PSO while 
evaluating benchmark functions [111]. Before applying 
bio-inspired techniques to CRN, it is important to cor-
relate CRN terms with respect to the parameters of the 
bio inspired technique. Such as, the number of samples 
sensed by CRN is represented by number of particles, 
number of cognitive radios are referred as the dimen-
sions with respect to the position of the mth particle. The 
objective function or the fitness function for CRN, is rep-Fig. 20   Particle swarm optimization working

Fig. 21   Work flow firefly 
algorithm
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resented as the food concentration in bio inspired tech-
niques. The best position of the particle with maximum 
fitness values is the representation of optimal weight vec-
tor in CRN. PSO and FFA are powerful optimization tool 
but they lag a bit in exploration and exploitation trade-
off, in such cases FSS is to be considered which has auto 
regulating capability [87]. FSS-based spectrum sensing 
starts with the initializing the position of each particles 
as wk

m
�a , where a is uniform random variable between [0 

1]. Then, the fitness of each particle PD(w
k
m
) is evaluated 

using the objective function. wk
m
 is updated as in Eq. 11 

[51]: 

 All the particles move individually and the fitness of the 
solution of all the particles are calculated based on the 
weighted average of their movements and the optimal 
results gets summed up to the current particle position. 
Those particles having successful individual movements 
cause more effect on search direction than the other ones.

•	 Artificial Bee Colony Algorithm-ABC: The authors in 
[125] presented an efficient adaptive artificial bee colony 
(EA-ABC) algorithm for cooperative spectrum sensing 
in a CRN. This EA-ABC comprises an adaptive muta-
tion mechanism, guaranteed convergence mechanism and 
optimal tracking. Author compared EA-ABC with that 
of ABC, PSO and modified PSO algorithm and proved 
that EA-ABC can achieve better detection probability as 
compared to other under the same false alarm probabil-
ity. The drawback associated with conventional ABC is 
its searching efficiency and computational time [134]. 
So, the authors in [134], authors implemented modified 
ABC algorithm for joint optimization of weight coeffi-
cients and detection thresholds in a cooperative spectrum 
sensing scheme. The proposed modification in ABC is 
applied by introducing the crossover and mutation so as 
to enhance the diversity and searching potential of con-
ventional ABC. The validation of the proposed scheme 
was carried out by comparing it against the algorithms 
like PSO, GA, ABC and EA-ABC for multi-band coop-
erative spectrum sensing. The proposed algorithm effec-
tively improved the searching efficiency of conventional 
ABC, but the computational time ws compromised. 
Working of basic ABC algorithm is shown in Fig. 22.

•	 Cuckoo Search: In [129], authors discussed about spec-
trum sensing for satellite cognitive system, where cuckoo 
search algorithm was used to enhance the performance of 
spectrum sensing. Cuckoo search algorithm is based on 
the behavior of cuckoo,where each cuckoo lays egg on a 
random host nest [79]. Eggs represent the solution, best 
eggs or solutions goes for the next iteration. Solutions 

(13)wk
m
=

PD(w
k
m
) − PD(w

k−1
m

)

max ||PD(w
k
m
) − PD(w

k−1
m

||

are replaced by performing Levy flights. Levy flights 
and random walk uses the equation x(t+1) = xt + m ∗ Ft , 
where Ft belongs to Levy distribution for Levy flights, s 
is the step size whose value determines how far a random 
solution go for a fixed number of iterations. If value of 
s is too large then the new solution will be waived far 
from the older one and too small value of step size will 
not be having significant impact on search space result-
ing in inefficient searching mechanism. So its important 
to maintain proper value of s. Based on the quality and 
fitness, these solutions are ranked and current best solu-
tion is so obtained. Simulation results obtained from the 
algorithm proposed by author in [129] shows that cuckoo 
search is more efficient than sequential search scheme 
with better probability of detection for fixed step size. 
Table 5 shows the comparative analysis of metaheuristic 
methodologies used for spectrum sensing

5B.	Multi-objective optimization for spectrum sensing: 
From the literature review, it can be inferred that the 
various optimization problems associated with the spec-
trum sensing in CRN have been dealt with by separately 
considering it as the single objective optimization prob-
lem. But for a real-time scenario, it is required for an 
efficient spectrum sensing to consider multiple factors 
simultaneously. Variables governing these factors have 

Fig. 22   Flowchart artificial bee colony algorithm



	 SN Computer Science (2020) 1:352352  Page 22 of 36

SN Computer Science

multiple trade-offs for which single objective optimiza-
tion technique cannot be efficient and the problem calls 
for multi-objective optimization algorithms. In [114] 
and [122] multi-objective optimization problems for 
spectrum sensing have been considered with respect to 
throughput and interference, probability of detection 
and false alarm respectively, authors in [114] employed 
MOCSO for solving multi-objective optimization prob-
lem. Authors in [119] employed multi-objective Genetic 
Algorithm for spectrum sensing with primary aim of 
enhancing the spectrum opportunities while maintain-
ing the sensing overheads within the permissible limits. 
The multi-objective optimization has resulted in better 
approach towards the real-time implementation of CRN 
as compared to single objective optimization techniques 
[114].

5C.	Artificial Intelligence-based approach for Spec-
trum Sensing: After surveying through metaheuristic 
approaches used for spectrum sensing, in this section, 
other prominent soft computing techniques based on 
artificial intelligence used for spectrum sensing are 
dealt. Artificial Neural Network(ANN) is one of the 
powerful soft computing method. A comparative study 
between ANN and metaheuristic approach is discussed 
in Table 6. Artificial Intelligence-based Soft Computing 
techniques used in CRN for spectrum sensing are:

a.	 Artificial Neural Network: Artificial intelligence plays 
a important part in CRN specially in sensing the the 
surrounding environment.It adapts and learn accord-
ing to input and provide the desired output, CRN is one 
such system. Incorporation ANN in CRN maximizes the 
performance with maximum utilization of wireless com-
munication. ANN works similar to human brain and has 
adapting property. It thus can provide solution for non-
linear and probabilistic problems with the application of 
learning techniques of ANN to CR it enables it to learn 
and to work more intelligently.

Like biological cells of human brain ANN also consist 
of numerous interconnected processors called as neurons. 
An ANN is defined by its neuron model, architecture, and 
learning algorithm. Neurons and interconnected links in dif-
ferent layer is referred as architecture. The links connect-
ing the neurons are known as weights and they are adjusted 
while training the network. An ANN develops a specific 
relationship between input and output data(training sets). 
Neuron model receives input processes the information and 
produces the output. Processing the input is done via training 
ANN by some learning algorithm which forms the essential 
and fundamental part of ANN. Weights are adjusted auto-
matically using the gradient of mean square error. If an error 

Table 5   Comparative study of metaheuristic methodologies used for spectrum sensing

Performance evaluation based on literature survey

S.No Parameters Genetic algo-
rithm

Particle swarm 
optimization

Firefly algorithm ACO ABC Cuckoo search

1 Control param-
eters

Generation rate, 
crossover rate, 
mutation rate

Cognitive and 
social factor, 
inertia weight

Attractiveness 
coefficient, 
randomization 
coefficient

Pheromone 
density of the 
edge, attractive-
ness of the edge 
and Pheromone 
evaporation

Maximum cycle 
number, colony 
size

Host nest, random 
cuckoo, Levy 
flight

2 Convergence rate Less More than 
GA,ABC and 
ACO

More than PSO Slow due to 
Pheromone 
evaporation rate

Better than GA, 
less than PSO

Comparable to 
FFA

3 Complexity More Less complex Comparable to 
ABC

More Less than GA and 
PSO

Less complex

4 Convergence 
speed

Less in large 
space

Better than GA Better than PSO Better than GA 
but less than 
PSO

Less than PSO, 
Better than 
ACO

Comparable to 
FFA

5 Flexibility Flexible More than GA Similar to PSO Better than GA Less than PSO Flexible compared 
to ACO, ABC 
but less than 
PSO

6 No. of function 
evaluation

More Less than ABC, 
ACO

Comparable to 
PSO

More, but less 
than GA

Better than ABC Similar to FFA

7 Standard devia-
tion

Larger deviation 
from the best 
solution

Less deviation 
from the best 
solution

Better than PSO Better than GA 
but less than 
PSO

Approaches 
optimum better 
than PSO

Better than PSO 
less than ABC
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is found then that error signal is feed again into the lower 
layer of ANN. ANN structure basically consist of three lay-
ers-incoming neuron layer in which incoming signals are 
received, hidden neuron layer and output neuron layer. Neu-
ron is the basic unit of computation in a neural network. It 
receives input from other nodes or from external source and 
computes the output. Each input has associated weight(w), 
which is assigned on the basis of its relative importance to 
other inputs and a bias(b). The node applies the function to 
the weighted sum of inputs as shown in Fig. 23.

ANN-based Spectrum Sensing: Tang et al. [73] pro-
posed a spectrum sensing method using ANN under low 
SNR condition. SU performs ANN-based sensing of pri-
mary user and collects information about the occupancy of 
channel by primary user. For the proposed model, neurons 
have 4 input,one is energy of the signal and remaining 3 are 
the cyclic spectrum values. During the training weights and 
threshold of each neurons are updated at each iteration. For 
low values of SNR, additive white gaussian noise is added to 
primary user’s signal. Proposed approach resulted in better 
detection performance even for low values of SNR and its 
anti-interference ability was boosted by incorporating the 
beneficial points of energy detection and cyclostationary 
method.

In Zhang et al. [100] ANN for cooperative spectrum sens-
ing is proposed. Author considered a fusion center to find 
the probability of weights. Secondary user sense for primary 
user and accumulates the information which is then sent 
to fusion center(FC). FC finds the probability of weights, 
which acts as the input for ANN. A spectrum sensing model 
is proposed consisting of 3 suppositions which are:

•	 Spectrum sensing of individual SU
•	 Communication between FC and SU
•	 Third one is the fusion scheme

While undergoing training phase FC transmits the reference 
which is sensed by SUs and they make local decision, based 
on the difference between reference signal and local deci-
sion, Back propagation-based ANN is trained. These local Ta
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Fig. 23   Mathematical model of neuron [149]
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signals sensed by SUs are weighted and then transmitted 
to FC, where based on weighting function FC makes final 
decision and broadcast the signal and also transmits to SUs 
for further ANN training. Because of the FC, this method is 
termed as centralized cooperative spectrum sensing scheme. 
Proposed model in [100] resulted that it can forecast the pre-
cise detection probability at the end of training and FC can 
obtain outstanding performance on judgment (satisfactory 
detection and false alarm probability) as compared to the 
conventional spectrum sensing techniques.

Papoola and Van Olst in [107] proposed ANN-based 
modulation classifier for spectrum sensing. The Authors 
implemented proposed algorithm on GNU Radio and Uni-
versal Software Radio Peripheral 2 (USRP 2) for developing 
CRE. The proposed algorithm has better performance than 
Energy Detector techniques. 

b.	 Fuzzy Inference System(FIS): Pradhan et al. [114] pro-
posed multi-objective cat swarm optimization for solv-
ing two clashing objective functions i.e probability of 
detection and probability of false alarm. Authors then 
employed the strategy of Fuzzy Logic, to determine the 
feasible solution among the set of nondominated solu-
tions. For a multi-objective optimization problem, a 
multi-objective algorithm is used to obtain a set of opti-
mal solutions termed as pareto optimal. Finding out the 
most appropriate solution among the pareto optimal set 
is a tedious work. With FIS authors in [114] were suc-
cessful in finding out the compromise solution among 
the optimal solution set. The FIS works by assigning the 
fuzzy variable to the solutions based on their contribu-
tion towards each objective function. The values of these 
membership functions of FIS is calculated as discussed 
in [114]. The solutions with the maximum value for the 
membership function can be termed as the most appro-
priate optimal solution.

c.	 Genetic Fuzzy Inference System(GFIS): GFIS is a 
combinatorial algorithm of GA and Fuzzy Inference 
System(FIS). FIS controls the system parameters and 
thus controls the operation,where as GA is used for 
improving the performance of FIS. In fuzzy logic theory, 
variables are not constrained to only two values(True or 
False) [1, 6], rather it assume any value between the two 
extremities of variables defining a problem statemnet 
[2]. FIS considers these fuzzy variables as an input and 
with the application of IF-THEN rules, it generates an 
inference [7]. Genetic Algorithm is an evolutionary-
based optimization technique capable of solving prob-
lems having large solution space. GFIS for spectrum 
sensing:Mohamedou et al. [97] proposed a scheduling-
based spectrum sensing which uses FIS to optimize the 
sensing parameter. But because of the static nature of 
FIS scheduler, Genetic Algorithm is used to make FIS 

scheduler able to evolve and adapt the new environment. 
In addition to that, heuristic-based scheduling algorithm 
is proposed by the author to provide supporting mecha-
nism for GFIS-based scheduler. Here, author consid-
ered access point-based coordination in wireless LAN, 
Access point synchronizes the timing with respect to 
the other stations and dispense information regardless 
of activities of primary user. Proposed system model 
in [97] assumes that the participating stations of the 
network hears the access point transmissions and that 
is important for synchronizing the operation within the 
stations. Based on the presence or the absence of PU, 
Channel in the spectrum can have two states busy or 
idle, respectively. In the proposed model, author has 
made an assumptions that the period length of idle state 
and busy state has been exponentially distributed so that 
proposed model can be considered as a realistic assump-
tion for high dynamic systems like mobile telecommu-
nication. Scheduling algorithm so proposed has two lev-
els; higher level (Genetic architecture) and lower level 
genetic fuzzy scheduler producing scheduling decision. 
In general, architecture channels are mapped as elements 
of eligibility test. Scheduler picks the channel the larg-
est eligibility value. Eligibility values are updated by 
scheduler after every sensing. The lower level genetic 
fuzzy scheduler calculates the eligibility values. Apart 
from GFIS a supporting algorithm is also used to gener-
ate scheduling in faster and simplex manner. Proposed 
model in [97] with GFIS is slower than FIS, but FIS 
being static and considering a dynamic environment 
then GFIS technique along with supporting technique 
(based on heuristic approach) gave a better scheduler.

Brief Summary on Spectrum Sensing Methods

In this subsection, under the section Spectrum Sens-
ing Methodologies, brief survey on methodologies used 
for spectrum sensing in CRN is done and represented via 
Table 7 and continued in Table 8.

Performance Analysis of Spectrum Sensing 
Optimization Methodology

Based on the system criteria for efficient spectrum sensing 
like Probability of Detection, Probability of False Alarm, 
Probability of missed detection, Optimized sensing time 
for proper trade off, Optimization method’s convergence 
time, Complexity and their convergence rate, performance 
of spectrum sensing optimization methodologies is evalu-
ated in terms of Throughput, Delay, BER, Energy Con-
sumption, Energy Efficiency. Performance ratings have 
been given on the basis of literature survey so done and it is 
illustrated in Table 9. The performance rating is done based 
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on the performance remarks in [22, 33, 62, 69, 73, 97, 114, 
123–125, 148] for obtaining the probability of detection (Pd) 
and probability of false alarm (Pfa) in different SNR condi-
tions resulting different performance values of opportunistic 
throughput, delay, BER and energy efficiency. Each perfor-
mance metrics have been discussed below:

⧫ Throughput: Measurement of definite amount of user 
data/information transmitted per unit of time. Throughput 
can also be defined as number of bits per second success-
fully delivered over the medium. Average throughput can be 
calculated as total number of bits received at the destination 
divided by total simulation time, it is basically measured in 
kilo bits per second(Kbps). There should always be a better 
tradeoff between sensing time and throughput. An efficient 
optimization technique with better system criteria would 
eventually result in increased throughput.

The opportunistic throughput involved in the CRN can 
be written as [148]:

here,

(14)
CT =

4∑
r=1

cr

CT = Tpp
off (1 − qf )(B − Bs) × log2(1 + �h�2 Gt(B−Bs)

Go(B−Bs)
)

s(n) − PU Signal

w(n) − Noise Signal

h − Channel Gain

�2
s
− Signal Variance

�2
w
− Noise Variance

pon − Probability of busy channel

poff − Probability of idle channel

qd − Probability of detection by Energy Detector

qf − Probability of detection by Energy Detector

Tp − Frame Period

Bs − SUSpectrum Sensing Bandwidth

(B − Bs) − SU Transmission Bandwidth

Gt − Power Spectral Density of the SU signal

Go − Power Spectral Density of the Noise

Qt,max −Maximum Transmission Power

⧫ Delay: It is the average transit time for packets to travel 
from source to destination. End-to-end delay depends on 
propagation rate of data in a particular communication 
medium (satellite or terrestrial), distance, the number and 
type of network elements (design, processing, switching, and 
buffering capabilities), routing schemes (dynamic, static, 
queuing, and forwarding mechanisms), bit error rate in trans-
mission (hence the number of lost or re-transmitted packets).

Considering Rn as the time instant at which nth packet 
arrives at a network, and Gn be the time instant at which nth 
packet departs from the network. Then, the end-to-end delay 
can be mathematically modeled as [156]:

Table 7   Brief note on spectrum sensing methods

S. No Reference Spectrum sensing methodology Advantages Disadvantages

1 [22] Matched filter Matched Filter—maximizes received SNR, 
so its a better way of detecting signals. 
With its Coherency property matched filter 
method is capable of achieving high pro-
cessing gain in a small time period since 
it need only O(1/SNR) samples to obtain 
desired detection probability constraint

Matched Filter—Dedicated receiver is 
required by cognitive radio for each 
primary user

Energy Detection (ED) Energy Detector- Non Coherent, Less com-
plex, easy to implement

Energy detector-Setting a threshold value, 
and it does not have any special technique 
to recognize difference in between modu-
lated signals, noise and interference

2 [69] Energy Detection Energy Detector-Least Complex Energy Detector-Least Accurate
Cyclostationary Detection Cyclostationary-Complexity less than 

Matched Filter,Accuracy greater than ED
Cyclostationary-More complex than ED, 

Accuracy less than Matched filter
Matched filter Matched filter-Highly Accurate Matched filter-Highest level of complexity

3 [30] ED-based Network Cooperation If large number of samples are used in for 
sensing then an energy detector is capable 
of obtaining proper value of Probability of 
detection and false alarm probability.

Poor performance in low SNR, Increased 
Sensing Time, Difficult to set the thresh-
old

Applicable to all signal type Large effect on estimation error because of 
limited sensing time, number of samples 
is a function of SNR
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⧫ Bit Error Rate(BER): The bit error rate or bit error ratio 
is the number of bit errors divided by the total number of 
transferred bits during a studied time interval.

BER = Bit with Errors/Total Number of Bits
The bit error probability �e is the expectation value of the 

BER as shown in Eq. 16

where erf is the error function.
Eb is the energy per bit.
No is the noise power spectral density (noise power in a 

1 Hz bandwidth)
Eb (energy per bit) can be determined by dividing the 

carrier power by the bit rate.Its unit is joule. No is in power 
(joules per second) per Hz. Eb⟋No is a dimensionless 
numerical ratio.

⧫ Energy Consumption: Cumulative energy used by CR 
user for sensing channels and transmitting data, its unit is 
Joules.

⧫ Energy Efficiency: With most of the research work 
focused on increasing the spectrum sensing efficiency so 
as to increase the overall throughput. As compared to other 
communication devices, Cognitive Radio devices requires 

(15)D(n) = Gn − Rn

(16)�e =
1

2
(1 − erf )

√
Eb

/
No

additional energy because it performs periodic sensing. 
The accuracy of sensing result also effect the energy con-
sumption. To increase the accuracy of sensing transmission 
time decreases and it eventually decreases overall through-
put. Therefore, probable solution is cooperative spectrum 
sensing which increases the accuracy without decreasing 
overall throughput, but it will cause an additional energy 
consumption due to extra sensing time and delay. And also 
extra energy consumption by Cooperative spectrum sensing 
for reporting the result to the fusion center [120]. Therefore, 
dedicated research work is required with focus on increasing 
the energy efficiency of CR devices, which are mostly bat-
tery powered [146]. Energy efficiency for Cognitive Radio 
system in general can be represented as the ratio of Through-
put and the total power consumed which includes transmis-
sion power, sensing power consumed and the circuitry power 
[146, 155].

Research Challenges Associated with Cooperative 
Spectrum Sensing

Challenges associated with cooperative spectrum sensing is 
discussed as under:- 

⧫	� Cooperation overhead modeling: Cooperative gain is the 
main aim of most of the cooperative sensing models. 

Table 9   Performance metric evaluation of spectrum sensing methodologies

*(Based on the performance of optimization methodology performance metric is rated between 1 to 10)
(Higher rating value indicates better performance in the particular metric)
**Higher the rating in Energy consumption and Delay,Lower the performance

S.No Spectrum sensing methodology System Performance 
(Rating 1–10)*

Performance metrics evaluation (Ratings 1–10)*

ThroughPut **Delay BER **Energy con-
sumption

Energy 
effi-
ciency

1 Energy Detector 4 5 4 4 5 4
Cyclostationary Detector 6 6 3 6 5 5
Matched Filter 7 7 6 8 6 5
Filter Bank Detector 6 7 7 7 5 6
Multi-tapper 6 6 5 5 5 6
Co-Variance Detector 5 5 4 4 5 4

2 Genetic Algorithm 5 6 5 5 6 5
Particle Swarm Optimization 7 8 8 8 7 7
Fire Fly Algorithm 8 8 8 7 7 7
Ant Colony Optimization 6 6 7 7 6 6
Artificial Bee Colony Algorithm 7 7 6 7 8 8
Cuckoo Search Algorithm 7 7 6 7 8 7
Simulated Annealing 6 6 6 7 6 7

3 FIS 7 8 8 7 7 7
GFIS 7 7 7 7 6 6
ANN 8 8 6 8 6 7
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But considering cooperative overhead and its proper 
modeling is also an important aspect of cooperative 
spectrum sensing. Because proper modeling of coop-
erative overhead can help in knowing the achievable 
cooperative gain for realistic scenario.

⧫	� Compressed Sensing: Traditional sensing techniques 
like energy detection and cyclostationary detection 
senses one sample at a time and is sampled at nyquist 
rate by ADC (Analog to Digital Converter). Such tech-
niques senses one band at a time and for sensing multi-
ple frequency bands CRUs based on theses techniques 
require multiple RF front ends. Therefore, for wideband 
sensing such approaches can lead to long sensing time, 
higher computational complexity which inturn leads 
to higher cost. Compressed sensing proposed in [38] 
can perform sampling of wideband signal at subnyquist 
rate preferred by ADC. But compressed sensing has few 
research challenges such as Near Far Problem in which 
weak PU signal with less number of samples and with 
strong near by signal can lead to improper detection 
of PU signal in a wideband spectrum. Another issue 
associated with compressed sensing is its implemen-
tation. Since compressed sensing is based on random 
sampling for which it requires new ADC structure with 
non uniform timing and pseudo random clock generator 
as discussed in [38]. Implementing complex clocking 
system for random sampling in compressed sensing is 
an issue.

⧫	� Reliability and dynamic allocation of control channel: 
Common control channel is an integral part of coop-
erative spectrum sensing, common control channel 
is basically used by CRUs for sending local sensing 
information to the Fusion Center and sharing infor-
mation among CRUs. Important aspects required for 
establishing a reliable control channel are Bandwidth, 
Reliability, and Security. Issue associated with control 
channel is in designing control channel which is able 
to withstand the impairments of channel, sturdy to PU 
activity, bandwidth efficient. Control channel should be 
able to perform dynamic allocation in accordance to 
PU activity,channel availability and network topology 
which is a tedious task for common control channel.

⧫	� Knowledge base modeling: Knowledge base plays an 
important role for efficient spectrum sensing, it keeps 
the track of PUs and carries information like PU’s loca-
tion, transmitting power and traffic pattern. For coop-
erative spectrum sensing, knowledge base has two key 
roles.

 

(a)	 With the help of available information and knowledge 
about PU, increase the probability of detection.

(b)	 With its learning experience obtain the spectrum infor-
mation. Since the knowledge base carries information 
about PUs so security of this information is a big con-
cern. A knowledge base should maintain a parallel 
knowledge stream that is able to differentiate between 
CRUs and malicious user.

⧫	� Energy efficiency: As compared to other communication 
devices, Cognitive Radio devices requires additional 
energy, because it performs periodic sensing [153]. The 
accuracy of sensing result also effect the energy con-
sumption. To increase the accuracy of sensing transmis-
sion time decreases and it eventually decreases overall 
throughput. Therefore, probable solution is cooperative 
spectrum sensing which increases the accuracy with-
out decreasing overall throughput, but it will cause an 
additional energy consumption due to extra sensing 
time and delay. And also extra energy consumption by 
Cooperative spectrum sensing for reporting the result to 
the fusion center. Therefore, dedicated research work is 
required with focus on increasing the energy efficiency 
of CR devices, which are all battery powered. Energy 
efficiency plays a crucial when using CR network as a 
sensor network as discussed by authors in [95] where 
energy efficiency scheme is devised for spectrum sens-
ing in distributed mode for CR based sensor networks. 
In application front like patient monitoring system CR-
based sensor networks plays an important role [96], 
therefore, energy efficiency optimization is extremely 
crucial for CR-based sensor networks.

⧫	� Sensing efficiency: Sensing scheduling and conver-
gence rate is important aspects which contribute to 
sensing efficiency. Time is a constraint here so sens-
ing should be properly scheduled to sense the channel 
in a given time. It should also consider how the CRUs 
should cooperate to access the multiple channel without 
degrading sensing efficiency. Fast and fine sensing and 
scheduling narrow band and wideband sensing are also 
to be considered for efficient sensing. Converging to a 
common decision is an important criteria for coopera-
tive spectrum sensing.Proper scheme should be devised 
such that CRUs’ decision should be well analyzed and 
also fast converging.

⧫	� Sensing and Throughput tradeoff: Major param-
eters that define spectrum sensing are probability of 
detection,probability of false alarm, probability of 
missed detection and throughput. It is desirable to have 
high values of probability of detection and throughput, 
low values of probability of false alarm,probability of 
missed detection. As the sensing time increases, high 
value of probability of detection and low values of prob-
ability of false alarm, probability of missed detection is 
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achievable but throughput also reduces and vice-versa 
takes place as the sensing time decreases. So a proper 
optimization of sensing time is required to have an effi-
cient tradeoff between these parameters of spectrum 
sensing.

Road Map of Spectrum Sensing Towards 5G

Spectrum sensing is going to play an important role towards 
the implementation of 5G technology. Figure 24 depicts the 
road map of spectrum sensing towards 5G technology. The 
conventional spectrum sensing methodologies have been 
improved using optimization techniques, different soft 
computing techniques have been surveyed via this paper. 
Efficient spectrum sensing will be an important asset for 
5G technology. Spectrum slicing which going to be the part 
of network slicing in 5G technology, is basically allocating 
dedicated resources, infrastructure and services to a spe-
cific applications such as mobile broadband slice, health care 
slice, internet of Things slice [136, 137]. Advanced spec-
trum sensing would be enabling the aspects of 5G technol-
ogy. Spatial spectrum sensing considering space, time and 
frequency helps in better detection of spectrum holes [109]. 
And further deep learning and game theory implementation 
of spectrum sensing will enhance the efficiency of spectrum 
sensing, making it more intelligent CRN [141]. The road 
map shows that how spectrum sensing optimization and soft 
computing techniques plays a crucial role in forming the 
building blocks for efficient spectrum sensing based CRN for 
5G. The importance of soft computation for 5G technology 
is further supported by the proceeding discussion in “Chal-
lenges and Future Directions Towards 6G Technology”.

Challenges and Future Directions Towards 6G 
Technology

As the wireless telecommunication technology advance 
towards 6G, it is necessary that a CRN should not only 
adapt to environment but also should have ability to adapt 
its hardware [157]. The existing CRN’s spectrum sharing is 
opportunistic and 6G calls for artificial intelligence and soft 
computing enabled features for CRN [157]. The 6G-based 
CRN requires deep neural network trained physical layer 
transmission and reception.

Recent Spectrum Sensing Methods

In this section, the development in the spectrum sensing with 
respect to the current scenario is discussed.

In [147], authors developed spectrum sensing method for 
OFDM (Orthogonal Frequency Division Multiplexing) sig-
nal via employing Mean Ambiguity Function. For detecting 
the continuous time baseband OFDM signal transmitted by 
PU (denoted as x(t)), discrete Mean Ambiguity Function is 
developed as:

where p,  l are discrete time delay and frequency delay, 
respectively. C is the auto correlation function of the PU 
signal samples.

Authors in [158] developed log-likelihood-ratio-test 
based energy detector for the PU signal detection in multi-
user MIMO system. The log-likelihood-ratio-test for the nth 
SU at dth observation to detect the PU signal is given as:

(17)A ≜

M−1∑

m=0

C[m,m − p]e−j
2�

M
lm,

Fig. 24   Road map for spectrum 
sensing towards 5G
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here, p(y(k)) is probability density function at the nth SU for 
the received PU signal under the hypothesis H1,H0.

The game theory-based multi-channel cooperative spec-
trum sensing is developed in [159] which focused on spec-
trum allotment via game theory approach. In [160], com-
pressive spectrum sensing via complementary matrices is 
employed for PU detection. The Golay-paired Hadamard 
matrices is the complimentary sensing matrices used for the 
spectrum sensing. The � is a N × N Golay-paired Hadamard 
matrice, then for the lth SU of the ith set the compressed 
measurements is denoted by:

here, xil is the received signal. The proposed method is tested 
for AWGN, Rayleigh, multi-path fading.

Complexity Analysis of the Spectrum 
Sensing Methods

The big O notation for the different spectrum sensing tech-
nique has been analyzed as shown below [148]: 

a.	 Conventional Energy Detector: O((Ns)) , where Ns is the 
number of energy samples sensed.

b.	 Cooperative Spectrum Sensing: The complexity of coop-
erative spectrum sensing depends on the number of SUs 
within a Fusion Center, Spectrum sensing technique 
employed by the each SUs and the complexity associ-
ated with the evaluation at the fusion center. Therefore, 
the complexity associated with the cooperative spectrum 
sensing is higher than the conventional energy detector.

c.	 PSO-GSA-based Spectrum Sensing: Complex-
ity of PSO-GSA+Complexity of Energy Detector, 
O((N

s
)) + (O(m × n∕2) + O(m2))(O(mutation) + O(crossover))

d.	 PSO-based  Spec t r um Sens ing :  Complex-
ity of PSO+Complexity of Energy Detector, 
O((Ns)) + O(m × n)

e.	 ABC-based Spectrum Sensing: Complexity of 
ABC+Complexity of Energy Detector, O((Ns)) + O(n5)

f.	 Fire Fly Algorithm-based Spectrum Sensing: 
O((Ns)) + O(N ∗ maxit ∗ log(N)) where maxit is maxi-
mum number of iterations.

g.	 Ant Colony Optimization-based Spectrum Sensing: 
O((Ns)) + O(g(n)) , g(n) is the polynomial function of 
size n.

h.	 ANN : O((Ns)) + O(z6 , where z is the number of hidden 
layer neurons.

(18)T(y(k)) =
p(y(k),H1)

p(y(k),H0)

(19)yil = �xil

Future Scope for the Soft‑Computing‑Based 
Spectrum Sensing

From the previous section, it is observed that for an efficient 
spectrum sensing, it is required to have optimized value of 
energy efficiency, sensing efficiency, power efficiency. With 
the optimized value of sensing time, detection threshold, and 
power, the proper tradeoff between sensing, and throughput, 
and power and throughput can be achieved. Therefore, an 
efficient optimization technique plays a pivotal role in having 
an efficient spectrum sensing technique, which in turn is very 
crucial in modeling an effective CRN. In this section, dif-
ferent training and optimization techniques are dealt which 
have been used for various modeling and optimization-based 
problems. These techniques could be further modified and 
possibly be proposed for CRN to improve overall spectrum 
sensing efficiency. Two major promising techniques have 
been reviewed as under:

Hybridized Artificial Neural Network

Traditional ANN techniques are trained using back propaga-
tion algorithm based on gradient descent which is a popular 
technique because of its simplicity and ease of implementa-
tion. But few drawbacks are associated with gradient descent 
method like getting stucked to local optimum values [9] 
and it takes long time to converge to an optimum value [4]. 
Because of which there was need to focus on training mecha-
nism of ANN. Researchers felt that swarm intelligence tech-
nique is the one good option. Training ANN with the help of 
evolutionary algorithm and swarm intelligence technique is 
termed as Hybridized ANN.

Evolutionary algorithms have been used for training 
ANN, its a meta-heuristic optimization technique. Evolu-
tionary algorithm is based on biological evolution, Genetic 
Algorithm is one popular example of evolutionary algo-
rithm. ANN-GA (Artificial Neural Network-Genetic Algo-
rithm) was proposed by Ganatra et  al. [84] and author 
inferred from the simulation results so obtained that the 
ANN-GA technique has significantly improved the result as 
compared to ANN-BP (Back propagation) in terms of con-
vergence speed and local optima. ANN can also be trained 
using swarm intelligence technique [41]. PSO which is one 
of the popular swarm intelligence technique have been used 
to train ANN for some of the optimization problems such 
as load classification [58], crop identification [83], Results 
obtained in [58, 76, 82, 83] shows that PSO trained ANN has 
an upper edge as compared to conventional ANN. Farshid-
pour and Keynia in [105] proposed ABC trained ANN and 
proved from the simulation results the superiority of ANN-
ABC over back propagation trained ANN. Firefly trained 
ANN was discussed by Nandy et al. [106], results showed 
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that the proposed method has better convergence speed than 
ANN-BP.

Hybrid Metaheuristic Approach

Metaheuristic-based approaches such as PSO, ABC, FFA, 
etc are powerful optimization technique as discussed in (sec-
tion IV-(N)), still it has drawbacks in terms convergence 
speed, local optimum, etc. One metaheuristic approach may 
be good in one thing and another approach may be good 
in another. Combining meta-heuristic technique based on 
test function, so that their pros can get add-on results in 
hybrid metaheuristic which in most of the cases have proved 
to be performing better than their conventional counter-
parts. Csebfalvi et al. [52] proposed a hybrid metaheuristic 
method, combination of ACO, GA and local search(LS) 
strategy named as ANGEL. In the proposed method, ACO 
and GA combinely perform the initial search of optimum 
solution, once the solution is obtained then the LS method 
is used to obtain a better solution. Results of test examples 
used for simulation showed that ANGEL method is more 
efficient than the gradient-based and traditional population-
based method for solving constrained and unconstrained 
optimization problem. Shankar et  al. [130] proposed 
hybrid Harmonic Search Algorithm and PSO(HSA-PSO) 
for energy-efficient selection of cluster heads. Results so 
obtained showed the superiority of proposed method over 
conventional metaheuristic approaches. Kaur and Mahajan 
[143] proposed hybrid ACOPSO based energy-efficient 
clustering protocol. Authors proposed an ACOPSO-GSTEB-
based routing technique to enroute shortest path between 
cluster heads and sink. Proposed technique was compared 
with existing GSTEB (General Self-Organized Tree-based 
Energy Balance) routing protocol. Performance metrics in 
terms of stability period, network lifetime, residual energy 
and throughput were evaluated for 100 sensor nodes. Simula-
tion results showed that the proposed method outperformed 
the conventional GSTEB for different performance metrics. 
Apart from that, proposed method was energy efficient too.

Hybrid metaheuristic approach have also been imple-
mented for weight optimization in CRN. Das et al. [117] pro-
posed multi-objective hybrid technique comprising invasive 
weed optimization and PSO termed as IWA/PSO for obtain-
ing the optimal value of global decision and CRUs’ weight 
coefficient vector. Simulation results showed the efficacy of 
the proposed method as compared to nondominated sorting 
genetic algorithm (NSGA-II), multiobjective particle swarm 
optimization (MOPSO) and nondominated sorting invasive 
weed optimization (NSIWO) with respect to nondominated 
solution and detection accuracy.

Future Research Challenges and Open Issues

In this section, different issues and research challenges asso-
ciated with developing efficient soft computing techniques 
in CRN are addressed.

To the best of our knowledge, no neural network-based 
prediction scheme is implied for spectrum sharing. The 
major reason is the challenges associated with the efficient 
prediction of SU activities in time, frequency, and space 
domain [144]. In a heterogeneous network, it is a challeng-
ing task to predict the uncertainty associated with the SU 
services request and communication.

It can be observed from this survey paper, that most of the 
soft computing approach for spectrum sensing is predicting 
or optimizing the channel state for the immediate next time 
slot. It would be challenging for a soft-computing technique 
to be able to optimize or predict channel state for a long-
term basis, as there would be more chances of erroneous 
prediction.

One of the major issues associated with soft-computing 
techniques is to find the optimal algorithm for optimization. 
Based on the concept of “No Free Lunch” [79], different 
algorithms have varying performances based on the objec-
tive function. Therefore, it would be a challenge for the soft-
computing technical engineers to find the optimal algorithm 
for a specific problem in spectrum sensing.

For a spectrum sensing technique, it is crucial to have 
high detection probability with low interference and low 
false alarm probability. With soft computing techniques, the 
performance of the conventional spectrum sensing increases, 
but the time complexity also increases. The increased com-
putation complexity has a negative impact on the energy effi-
ciency of the CRN [33, 82]. The CRN is a battery powered 
device, and energy efficiency becomes an essential aspect of 
being considered while incorporating soft-computing tech-
niques for spectrum sensing [148, 154].

Conclusion

Radio spectrum is an extremely important asset in the field 
of wireless communication, and it has been a point of con-
vergence for innovative research work throughout the most 
recent years. The cognitive radio, which is one of the endeav-
ors to use the accessible spectrum more efficiently through 
opportunistic spectrum use, has turned into an energizing 
and promising idea. One of the vital components of cogni-
tive radio is to detect the accessible vacant spectrum and it 
is performed by spectrum sensing process. In this paper, the 
spectrum availability and detecting ideas are rethought by 
considering diverse spectrum sensing techniques. Various 
aspects of the soft computing scheme for spectrum sensing 
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are explained in detail. Apart from that, different critical 
issues associated with spectrum sensing and the design of 
cognitive radio networks are highlighted. The new under-
standing of spectrum sensing gives rise to new openings 
and also the challenges associated with it. To tackle these 
contemporary issues, hybridized meta heuristic and artificial 
intelligence-based schemes that could be implemented for 
spectrum sensing have been proposed which can give an 
upper edge for spectrum detection and thus enhancing the 
performance of the cognitive radio network.
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