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Abstract

Pattern mining has emerged as a compelling field of data mining over the years. Literature has bestowed ample endeavors in this
field of research ranging from frequent pattern mining to rare pattern mining. A precise and impartial analysis of the existing
pattern mining techniques has therefore become essential to widen the scope of data analysis using the notion of pattern mining.
This paper is therefore an attempt to provide a comparative scrutiny of the fundamental algorithms in the field of pattern mining
through performance analysis based on several decisive parameters. The paper provides a structural classification of the widely
referenced techniques in four pattern mining categories: frequent, maximal frequent, closed frequent and rare. It provides an
analytical comparison of these techniques based on computational time and memory consumption using benchmark real and
synthetic data sets. The results illustrate that tree based approaches perform exceptionally well over level wise approaches
in case of dense data sets for all the categories. However, for sparse data sets, level wise approaches performed better than
the former ones. This study has been carried out with an aim to analyze the pros and cons of the well known pattern mining
techniques under different categories. Through this empirical study, an endeavor has been made to enable the researchers

identify some fruitful and promising research directions in one of the most remarkable area of research, pattern mining.
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Introduction

Enormous quantity of data generated by organizations,
emphasize on the discovery of valuable and significant infor-
mation that led to the emergence of the field of data mining.
Data mining has established itself as an inspiring area of
database research whose prime concern is to extract hidden
and meaningful information from databases. An imperative
area of data mining research is pattern mining that aims to
identify momentous patterns and correlations existing within
a database. Since its inception, a considerable amount of
research has been carried out in the field of pattern min-
ing targeting different kinds of patterns as well as the issues
and challenges faced during their extraction [10,11,15]. After
establishing itself as a compelling and fruitful research area
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for over a decade, pattern mining demands for an overview
and re-examination of the various techniques developed and
let the researchers identify their pros and cons, in order to
establish it as a cornerstone approach in the field of data
mining.

Pattern mining is the initial phase of association rule
mining that extracts significant patterns and further gen-
erates meaningful association rules from those patterns.
Pattern mining techniques generate different types of patterns
depending upon the requirements of the user. These patterns
and rules serve different applications ranging from fraud
detection, medical diagnosis, web mining to customer trans-
action analysis. A wide range of pattern mining techniques
are available in the literature covering different aspects of
data mining applications. A careful study of all these tech-
niques is therefore a necessary requirement to have complete
grasp of the area of pattern mining.

Even though a large number of theoretical as well as
empirical reviews in the field of pattern mining can be found
in the literature, no initiative has been taken to carry out a
comparative evaluation of the techniques generating different
categories of patterns or itemsets using experimental valida-
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tion. An empirical attempt can be found in [46] that analyzes
only the closed frequent itemset generation algorithms. Few
other attempts illustrate the behavior of only frequent item-
set generation algorithms through experimental evaluation
[20,51]. However, no initiative has been taken to perform an
analytical study on the maximal frequent itemset and rare
itemset generation techniques. This study offers an unbiased
empirical study of the fundamental techniques in the area of
pattern mining, generating different categories of itemsets.
To the best of our knowledge, till now no attempt has been
made to perform an empirical study and experimental evalu-
ation of pattern mining techniques developed under various
constraints using different thresholds and data sets.

The pattern mining algorithms basically attempts to iden-
tify the four main categories of itemsets: frequent, maximal
frequent, closed frequent and rare. This paper attempts to
provide a comparative analysis of all the mainstream algo-
rithms generating different categories of itemsets. The main
purpose of this study is to let the researchers in the field of
pattern mining identify the pros and cons of techniques gen-
erating all the main categories of patterns. To the best of our
knowledge, it is the first attempt to do a comparative study
of different categories of pattern mining techniques together.
The primary aim of this study is to perform a detailed analysis
of the existing techniques widely referenced in the literature,
under the following four themes: (1) frequent itemset gen-
eration, (2) closed frequent itemset generation, (3) maximal
frequent itemset generation and (4) rare itemset generation.
Through this work, an attempt has been made to improve on
the existing studies in the following way:

— evaluation of a large number (19) of widely referenced
pattern mining techniques using different thresholds.

— analysis of the techniques through experimental evalu-
ation on several real and synthetic benchmark data sets
[19].

— comparison of the techniques through graphical analysis
under different scenarios.

The remaining paper is organized as follows: Sect. 2
illustrates the algorithms considered for this experimental
study. Section 3 elicits and discusses the experimental results
obtained for different categories of algorithms. Finally, Sect.
6 summarizes and discusses the findings of this empirical
study.

Algorithms considered for the study

This section illustrates the algorithms that have been con-
sidered for this study. Several mainstream algorithms in the
field of pattern mining have been taken into account for com-
parison and evaluation using different thresholds and data
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sets [19]. Nineteen algorithms encompassing different pat-
tern mining issues have been considered for this study. The
algorithms have been chosen from the studies numerously
referenced in the literature [4,6,18,21-24,26,29,32-34,39,
43,44,49,50]. They can be distinguished depending upon the
type of itemsets generated during itemset generation phase.

Frequent itemset generation

The notion of pattern mining was introduced, considering
the usefulness and applicability of frequent patterns or item-
sets present in the database [8]. Transaction databases usually
contain huge number of distinct single items whose combina-
tion further tends to generate enormous quantity of itemsets
[31]. Devising scalable techniques to handle such large num-
ber of itemsets itself is a challenging task. Thus existing
pattern mining techniques employ several strategies to deal
with this issue. For this study, five primer and most widely
accepted frequent pattern mining techniques have been con-
sidered which are described as follows:

(a) Apriori: To handle the vast quantity of itemsets pro-
duced and to generate only the fruitful frequent itemsets,
[4] introduced a downward closure property called Apri-
ori. According to this property, an itemset can be
considered to be frequent, only if all its proper subsets
are frequent. Their Apriori algorithm adopts a candidate
generation approach in which the frequent 1-itemsets are
initially generated by scanning the database and then pro-
ceeding towards the generation of candidate 2-itemsets
from these frequent 1-itemsets. The same process of fre-
quent itemset and candidate generation continues until
no further frequent n-itemsets can be generated for some
particular item 7. In spite of being the primer and one
of the simplest techniques, levelwise search and huge
number of candidate itemsets produced adds to the
complexity of the algorithm. The performance of the
algorithm is thus affected in terms of execution time and
memory usage due to continuous generation of candidate
itemsets.

(b) FP-Growth: Multiple scanning of the database and
generation of enormous number of candidate itemsets
through pattern matching escalates the computational
cost of Apriori algorithm. [24] in their algorithm man-
aged to overcome the shortcomings faced by the lev-
elwise pattern mining algorithms. Their well-known
algorithm called Frequent Pattern Growth (FP-Growth)
employs a trie-based tree data structure to reduce the
number of database scans and avoid the generation
of candidate itemsets. The algorithm uses divide and
conquer strategy and generates a compressed tree rep-
resentation of the original database using the frequent
items generated during the initial scan of the database.



Complex & Intelligent Systems (2021) 7:589-619

591

()

(d)

(e)

Pattern mining is then performed on the tree represen-
tation of the database by generating conditional pattern
bases. Employing such a strategy enables the frequent
itemsets to be mined using only two scans of the database
and also avoids extravagant steps of pattern matching and
candidate generation. This greatly minimizes the compu-
tational complexity of the algorithm, thus making it the
most widely accepted pattern mining technique. Despite
its eminence and numerous advantages, FP-Growth still
suffers from certain drawbacks, most crucial being the
limitation of memory. It fails miserably when huge num-
ber of frequent itemsets are generated in case of large data
sets and henceforth the tree can no longer be accommo-
dated in main memory.

AprioriTID: The AprioriTID algorithm [4] was devel-
oped as an extension of the primer Apriori algorithm
where the former does not use the database for support
counting of candidate itemsets after the initial pass. The
algorithm uses the encoding of the candidate itemsets
generated in the previous pass. The size of the encoding
tends to get reduced after each pass and becomes much
smaller as compared to the original database that reduces
the mining intricacy to a extent. However, in the initial
passes Apriori performs better than AprioriTID.
ECLAT: [49] developed the Apriori-like Equivalence
Class Transformation (ECLAT) algorithm that employs
adepth-first search strategy for the generation of frequent
itemsets. It is based on the property of set intersection
and is capable of performing sequential as well paral-
lel execution. Unlike Apriori and FP-Growth, ECLAT
operates on vertical data format and generates the TID
set for each item. The intersection of the TID sets of
current n-itemsets is used to find the TID sets of the
next n+/-itemsets. The algorithm avoids rescanning of
the database for support counting of the n+/-itemsets, as
the TID sets of n-itemsets contains the entire information
necessary for calculating their support values. Similar to
Apriori, ECLAT also suffers from the drawback of gen-
erating too many candidate itemsets.

H-Mine: In addition to memory limitation, FP-Growth
suffers from performance bottlenecks in case of sparse
data. Experimental results available in the literature
illustrates that the performance of FP-Growth tends to
deteriorate with the increase in sparseness of data. The
number of frequent items decreases with growing sparse-
ness of data thus reducing the probability of node sharing
among frequent items in the tree. Henceforth, the result-
ing tree becomes very large affecting the performance
of the algorithm in terms of execution time and main
memory. [34] managed to overcome this demerit of FP-
Growth by introducing their technique called H-Mine
that makes use of queues instead of tree data structure.
H-Mine stores the items of the transactions in separate

queues and links transactions having same first item
name using hyper-links. It performs appreciably well
with sparse data set and is more efficient than Apriori
and FP-Growth in terms of space usage and execution
time. However, FP-Growth still overpowers H-Mine in
case of dense data sets.

Numerous other frequent pattern mining techniques have
been developed encompassing different issues associated
with frequent pattern mining [2,30,47]. The issue of can-
didate generation and multiple database scans was resolved
by FP-Growth algorithm. To further improve the FP-Growth
algorithm, several variants of FP-Growth were proposed, the
most efficient being the LP-Tree algorithm [35]. LP-Tree
managed to reduce the tree traversal time with the help of
additional data structures. LP-Tree algorithm was further
enhanced by [38] that uses a top down approach to reduce the
number of level searches and identify the frequent itemsets.
Incremental mining is an important issue in the field of pat-
tern mining as most of the techniques fail to efficiently handle
the incremental data sets. FP-Growth managed to reduce the
number of database scans to two but still could not handle
the issue of incremental mining effectively. [41] modified the
FP-Growth algorithm to generate the frequent itemsets in a
single database scan for efficient incremental and interactive
mining. Their algorithm called CP-Tree perform branch read-
justment to obtain the FP-Tree structure. It however, cannot
maintain the FP-Tree structure at all times and the resultant
FP-Tree is generated only after the user defined criteria is
satisfied. [37] enhanced the CP-Tree algorithm to maintain
the FP-Tree structure at all times and employed two hash
tables to minimize the number of branch comparisons.

Closed frequent itemset generation

An important issue to deal with during frequent pattern
mining is the generation of inexpediently large number of
frequent itemsets. Research on pattern mining identified a
significant solution to solve this issue in the form of closed
frequent itemsets (CFI) that posses the same potential as that
of the large set of frequent itemsets generated. The CFI’s
despite having a smaller magnitude than the larger set of
frequent itemsets, are capable of identifying the explicit fre-
quencies of all the itemsets. The most widely referenced
closed frequent mining techniques considered for this study
are described as follows:

(a) Apriori Close: For the purpose of generating the closed
frequent itemsets, Apriori Close [32] initially generates
a set of generators based on the closure properties of
itemsets employing a levelwise search procedure. The
support counts of all the generators are then obtained to
remove the unwanted generators. The closure of all the
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desirable generators are computed to obtain the set of
CFIs. Apriori Close performs exceptionally well with
dense data set but suffers from performance degradation
while dealing with data set with long patterns at low
support thresholds.

(b) FPClose: [22] proposed another variant of FP-Growth
called FPclose to mine the closed frequent itemsets.
The algorithm makes use of a tree data structure named
Closed Frequent Itemset Tree (CFI-Tree) to store the
CFI’s obtained from the set of frequent itemsets. When-
ever a new frequent itemset is generated, it is compared
with the existing closed frequent itemsets in the CFI-
Tree. A frequent itemset will be considered to be closed,
provided it has no superset in the CFI-Tree with same
support count. FPclose performs efficiently due to the
usage of array based implementation and compact tree
structure. The drawback however is the additional time
spent by the algorithm in checking the closedness of fre-
quent itemsets.

(c) LCM: To generate the frequent closed itemsets, [44]
introduced the Linear Time Closed Itemset Miner (LCM)
algorithm that employs a parent child relationship
between the frequent closed itemsets. The algorithm
builds set enumeration tree for the frequent itemsets and
the closure of these itemsets is obtained by traversal of
the enumeration tree. The algorithm obtains the frequent
closed itemsets in linear computational time.

(d) CHARM: CHARM [50] introduced a novel data struc-
ture called Itemset Tree to examine the itemset space as
well the transaction space. Employing a hybrid search
method by the algorithm, allows faster generation of
CFT’s by avoiding search at several levels of the itemset
tree. The algorithm further uses a hash based technique
to remove the itemsets that do not satisfy the closure
constraints. For efficiency in memory usage and faster
frequency calculations, CHARM employs another data
structure called diffset. It is however, not very efficient
in case of data sets with long patterns

(e) CLOSET: CLOSET [33] algorithm was introduced with
the purpose of developing a scalable technique that is
capable of handling larger data sets. It extends the con-
cept of pattern growth adopted previously by FP-Growth
algorithm. To mine the CFT’s, the algorithm generates a
compressed tree representation of the database, similar
to FP-Tree. Furthermore, it uses a partition based pro-
jection technique to lessen the search space as well as
to achieve scalable pattern mining. CLOSET is faster
and efficient than other CFI generation techniques over
dense data sets. However, in case of sparse data sets, it
still needs improvement.

Scalability and reduction of search space has always been
a crucial issue while mining closed frequent itemsets. [36]
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developed an efficient technique that identifies the closed fre-
quent itemsets using a tree structure. The algorithm is highly
scalable and shows appreciable performance in terms of exe-
cution time. [28] attempted to identify the closed frequent
itemsets using a vertical data structure. Their proposed verti-
cal data structure reduces the storage space to a great extent
and therefore can effectively handle large data sets. Another
issue to deal with in case of closed frequent pattern min-
ing is the generation of closed frequent patterns from data
streams. [25] developed an algorithm to handle the concept
drift problem and identify the closed frequent itemsets from
data streams.

Maximal frequent itemset generation

Extracting the entire set of frequent itemsets is a computa-
tionally challenging as well as extravagant phase of pattern
mining. Studies in the literature illustrate that if a particu-
lar itemset is frequent then its subset must also be frequent.
Such a notion emphasizes that extraction of only the maxi-
mal frequent itemsets (MFI) will be sufficient rather than the
complete set of frequent itemsets, thus minimizing the huge
number of frequent itemsets generated. A frequent itemset
qualifies to become a maximal frequent itemset, only if none
of its superset is frequent. A brief discussion on the algo-
rithms considered for this empirical study is given below:

(a) Max-Miner: In order to generate the long patterns
or more specifically, the maximal frequent itemsets,
[6] developed an extension of Apriori algorithm called
Max-Miner. The algorithm reduces the search space by
removing the candidate itemsets having an infrequent
subset. Max Miner avoids expensive traversal of search
space in a bottom up fashion and employs a look ahead
search for faster identification of MFI’s. However, it
expends multiple database scans while searching for the
long frequent patterns.

(b) MAFIA: MAFIA [18] employs a depth-first search
approach to generate the maximal frequent itemsets. It
obtains the frequency count of the itemsets based on
a bitmap representation. The columns of the vertical
bitmap represent the count of the itemsets. A bitvector
and operation is applied on each bitvectors of individ-
ual items to obtain the bit vector for the entire itemset.
The algorithm prunes the subsets and supersets based on
their frequency counts. MAFIA is able to generate all the
supersets of MFI’s but does not perform well with data
sets that have long average pattern length.

(c) GenMax: GenMax developed by [21] operates on verti-
cal representation of data sets. It adopts the mechanism of
progressive focussing to identify the set of MFI’s. Based
on this technique, the algorithm generates a list of local
maximal frequent itemsets (LMFI). Whenever, a new fre-
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quent itemset is produced, instead of comparing it with
all the previously generated MFI’s, GenMax compares
it with the list of local maximal frequent itemsets. It per-
forms well with data sets having long average transaction
length but demands performance improvement in case of
data sets having long average pattern length.

(d) FPMax: FPMax [23] was developed as an extension
of FP-Growth algorithm to find the MFI’s. It initially
constructs the Maximal Frequent Itemset Tree (MFI-
Tree) to store the MFI’s. Only those frequent itemsets
will be inserted into the MFI-Tree that are subsets of
itemsets already present in the tree. The algorithm gen-
erates the supersets of frequent itemsets and removes the
non-maximal frequent itemsets. FPMax is highly scal-
able and works well with data sets having short average
transaction length. However, it spends a lot of time in
construction of the MFI-Tree.

To reduce the complexity of mining maximal frequent
itemsets and minimize the cost of large execution time and
memory usage, several techniques have been developed. [45]
developed an algorithm that uses an N-List structure to com-
press the data set and mine the top-rank k maximal frequent
patterns. They also proposed a pruning technique in order to
reduce the search space. One of the challenges in the field of
maximal frequent pattern mining is the generation of max-
imal frequent patterns from data streams. [48] developed a
novel technique to identify the maximal frequent patterns
over data streams by imposing some weight constraints. The
algorithm performs a single scan of the database, thus min-
imizing the overhead of extracting the patterns from data
streams. [27] developed a sliding window based technique to
mine the maximal frequent patterns from data streams. The
algorithm employs a strategy to avoid meaningless pattern
generation by pruning the unnecessary operations.

Rare itemset generation

The paradigm of frequent pattern mining have always treated
the rare patterns and itemsets to be of least importance
and thus have always demanded for its removal or elimina-
tion during itemset generation phase. However, extraction
of rare patterns or itemsets have recently gained much
importance considering its manifold applications in several
domains [10]. Substantial quantity of research has already
been performed in the area of rare pattern mining that con-
tributes enormous techniques looking for these previously
unwanted rare itemsets [9,12-14,16,17]. The rare pattern
mining techniques considered for comparative analysis have
been described below.

(a) MS Apriori: The first endeavor towards rare pattern
mining was taken by [29], who attempted to retain some

(b)

(©

(d)

(e)

rare items along with the frequent itemsets during the
phase of itemset generation. They argued that using a
single support threshold alone might not allow the fruit-
ful rare items to be retained. This led them using separate
support threshold for each item called their Minimum
Item Support (MIS) value which is obtained by spec-
ifying an additional parameter B. With the usage of
individual MIS values for the items, the algorithm satis-
fies different support requirements of the users. However,
introduction of an additional user defined parameter
increases the overhead of the algorithm.

Apriori Inverse: Apriori Inverse proposed by [26] uses
inverse downward closure property to obtain a special set
of itemsets called sporadic itemsets. The support value
of sporadic itemsets must be below a maximum support
threshold but higher than a minimum support threshold.
Despite its capability of find the sporadic itemsets faster
than Apriori, Apriori Inverse fails to find the complete
set of rare items.

Apriori Rare: [40] introduced a modification of Apriori
algorithm called Apriori Rare, with a view to gener-
ate both the frequent as well as rare itemsets. However,
instead of generating the entire set of rare items, the algo-
rithm is capable of generating a special class of itemset
called Minimal Rare Itemsets (MRI).

ARIMA: [39] developed Another Rare Itemset Min-
ing Algorithm (ARIMA), targeting the complete set of
rare items. ARIMA employs an Apriori-like levelwise
approach and works as combination of two algorithms
for the generation of rare itemsets. ARIMA uses Apriori
Rare to find out the MRI’s that were initially removed by
Apriori algorithm. The algorithm then proceeds to find
the Mininimal Rare Generators (MRG) from the Fre-
quent Generators (FG) using another algorithm called
MRG-Exp. With the MRT’s as the input ARIMA gener-
ates the complete set of rare itemsets, those having zero
as well as non- zero support. ARIMA however, fails to
be time efficient as it spends a lot of time generating the
MRTI’s and MRG’s.

RP-Tree: Keeping in view the significance of FP-
Growth based approaches, [43] developed the first tree
based algorithm for the extraction of rare itemsets called
Rare Pattern Tree (RP-Tree). The algorithm during its
initial phase obtains the rare items based on its support
count. The next phase is the tree construction phase con-
sidering those transactions that contain at least one rare
item in it. The pattern mining operation is same as that
of FP-Growth by generating conditional pattern bases
and conditional trees. In spite of its efficiency, RP-Tree
is unable to generate the complete set of rare itemsets.
It targets only a special class of rare itemsets called rare
item itemset where in the entire itemset is composed of
only rare items.
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To resolve the issue of different support requirements of
the user, RP-Tree algorithm is later extended by [7] using
multiple support framework by assigning each item their
individual support values. In order to minimize the number
of searches, [42] proposed Rarity algorithm that selects the
longest transaction within the database and performs a top
down search for finding the rare itemsets thus avoiding the
lower layers of the search space containing frequent itemsets.
However, the mining intricacy of the algorithm is increased
with the extraction of large number of candidates and level-
wise search. AfRIM [1] uses the same top down strategy as
Rarity algorithm for finding the rare itemsets. AfRIM initially
searches for the itemset that contains all the items present in
the database. During candidate generation, all the possible
combinations of rare itemset pairs in the previous level are
examined to find the common itemset subsets between them.
The efficiency of the algorithm is highly affected by costly
steps of candidate generation and pruning. A major issue with
rare pattern mining techniques is inefficiency in handling
incremental data sets. Several techniques have been proposed
in the literature taking into account the issue of incremen-
tal rare pattern generation. Borah and Nath [13] developed
an incremental rare pattern mining technique for earthquake
trend analysis and anticipation. The technique could only
handle the case of transaction insertion. Therefore, they fur-
ther extended their approach in [12] to efficiently generate
the rare patterns upon insertion as well as deletion of trans-
actions. A queue data structure based rare pattern mining
approach was proposed in [9] to handle the issue of generat-
ing rare patterns from sparse data set.

Table 1 shows a comparative analysis of the different cate-
gory of algorithms considered for this study. The comparison
has been done based on the strategy or mechanism used, num-
ber of database scans performed, type of itemset generated
by the algorithms as well as their merits ans demerits.

Performance analysis

An extensive comparative analysis has been carried out
on nineteen fundamental algorithms using three real and
three synthetic data sets. Some publicly available Java
implementations of certain standard algorithms like Apriori,
FP-Growth, FPClose, CHARM, GenMax and FPMax have
been used for this study. Rest of the algorithms have been
implemented in Java on a 64-bit machine of 4 GB RAM.
Several benchmark real-life and synthetic data sets have
been used for experimentation. The selected data sets are con-
sidered as benchmark data sets as these data sets are being
widely used by the pattern mining techniques in the literature,
specifically the techniques considered in this study. Table 2
illustrates the characteristics of the data sets used for evaluat-
ing the performance of pattern mining algorithms. The data
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sets are obtained from UCI Machine Learning Repository
[19].

This section discusses the performance of selected pattern
mining algorithms on the benchmark real and synthetic data
sets. For simplicity and more clarity, the figures depicting the
corresponding results were divided into four different cate-
gories. The first category contains five algorithms generating
only the frequent itemsets namely the Apriori, FP-Growth,
Apriori TID, ECLAT and H-Mine. The second category of
algorithms include Apriori Close, FPClose, LCM, CHARM
and CLOSET algorithms generating closed frequent item-
sets. Four algorithms generating maximal frequent itemsets
namely Max-Miner, MAFIA, GenMax and FPMax consti-
tute the third category. The fourth category on the other hand,
includes algorithms like MS Apriori, Apriori Inverse, Apriori
Rare, ARIMA and RP-Tree that generates rare itemsets.

Zoo data set

This section illustrates the performance evaluation of the con-
sidered algorithms on zoo data set. The algorithms under the
four categories have been compared based on their execution
time, memory usage and number of itemsets generated.

Execution time

The execution time invested by the considered algorithms is
illustrated through graphical analysis in Fig. 1. Figure la—d
depicts the execution time analysis of the four categories of
algorithms separately while Fig. 1d highlights the same for
all the algorithms.

(a) First Category: In the first category of algorithms, FP-
Growth outperforms all the other algorithms in terms
of execution time. This is quite obvious since Zoo is a
dense data set and performance of tree based approaches
is best in case of dense data sets. Zoo data set contains a
lot of frequent items due to which FP-Tree achieves good
compression due to the overlapping of common items.
Moreover, due to less database scans, execution time is
greatly reduced in case of FP-Growth.

H-Mine manages to perform better than rest of the algo-
rithms due to the usage of queue data structure for storing
the frequent itemsets. It however fails to outperform FP-
Growth, as the data set is dense where the performance
of tree based approaches have proven to be the best.
ECLAT manages to gain a spot between the levelwise
algorithms Apriori TID and Apriori and pattern growth
approaches FP-Growth and H-Mine. Apriori and Apriori
TID compensates in terms of execution time due to huge
number of candidate generation and multiple database
scans. Apriori TID spends slightly higher execution time
than Apriori due to the inclusion of the item ids along
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Table 2 Data sets used

(b)

(©)

(d)

Data sets Number of transactions Number of items Average transaction size Type

Zoo 101 36 17 Dense
Lymph 148 68 18 Dense
Mushroom 8124 119 23 Dense
Retail 88,162 16,470 10 Sparse
T10I4D100K 100,000 1000 10 Sparse
T40I10D100K 100,000 1000 40 Sparse

with the frequent itemsets. The execution time for all the
algorithms tends to increase with decrease in the mini-
mum support values due to generation of higher number
of frequent itemsets.

Second Category: The performance of the second cat-
egory of algorithms are as follows. FP-Close performs
better than CLOSET for all minimum support values.
Both FP-Close and CLOSET recursively constructs the
FP-Trees for dense data set Zoo. The difference in the
execution times of the algorithms lies in the fact that
FP-Close retains only a part of the extracted CFI’s in
the recursively generated CFI-trees and the subsumption
checking cost is also very less compared to CLOSET.
LCM outperform CHARM at all minimum support val-
ues due to its ability of duplicate detection and usage of
several other optimization strategies. CHARM however
managed to perform better than Apriori Close.

Third Category: Among the third category of algorithms
generating maximal frequent itemsets, the most effective
one is the FPMax algorithm due to its obvious advantage
of projection tree construction. Moreover, Zoo data set
has a short average transaction length (ATL) of 17 and
the average pattern length (APL) of the generated MFI’s
is comparable to ATL. FPMax will generate a small
FP-Tree from this data set effectively generating MFI’s
from the extracted MFI-Tree. GenMax and MAFIA on
the other hand, performs expensive bitvector operations
and set intersections.Thus, FP Max shows better per-
formance than GenMax and MAFIA in such data sets.
Minimal difference can be seen in the execution times
of GenMax and MAFIA. However, both the algorithms
managed to perform better than Max-Miner.

Fourth Category: ARIMA proves to be the most expen-
sive one, in the fourth category of algorithms generating
rare itemsets. This is due to the fact that it spends a lot
of time in the execution of Apriori Rare generating the
MRI’s and MRG-Exp extracting the MRG’s. RP-Tree on
the other hand, spends the least amount of execution time
among all the algorithms due to the generation of only
a subset of rare itemsets. Fixing the Maximum Support
(maxsup) value at 60%, it has been observed that Apriori
Inverse incurs execution time only slightly higher than
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RP-Tree. Using a 8 value of 0.1, MS-Apriori performs
better than ARIMA but proves to be slightly expensive
than Apriori Rare.

Memory Usage

The memory usage of the different categories of algorithms
is depicted in this section. Figure 2a—d, shows a graphical
analysis of the four categories. Figure 2e shows a comparison
of all the algorithms in terms of their memory usage.

(a)

(b)

First Category: Among the algorithms belonging to the
first category, F'P-Growth proved to be the best algorithm
in terms of memory usage. Due to the presence of too
many frequent items in the data set, the size of generated
FP-tree will be very less due to the sharing of common
items. The next best in this catgory is the H-Mine algo-
rithm. Employing queue data structures during frequent
itemset generation gave an added advantage to H-Mine as
queue data structures consume less memory. ECLAT has
been found to be showing an average amount of mem-
ory consumption only slightly higher than FP-Growth
and H-Mine. Apriori TID is the most expensive in this
category followed by Apriori due to the storage of can-
didate itemsets generated during each phase of itemset
generation.

Second Category: AprioriClose consumed the maximum
amount of memory among the other algorithms under
this category. The reason behind this overhead is that
AprioriClose tends to store each extracted Minimal Fre-
quent Generator (FMG) in main memory until it obtains
the entire set. Thus the closure computation for each gen-
erated FMG proves to be expensive. CLOSET managed
to become the best algorithm in terms of memory con-
sumption as it does not retain the set of FMG’s in main
memory. It however performs the closure computation
of FMG’s during support counting, for which it needs to
store the closed itemsets (CI) with supports lower than
the minimum support value in main memory. Since the
number of CI’s in case of sparse data sets is very large,
CLOSET does not perform well in case of sparse data
sets.
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LCM on the other hand, maintained a steady memory
consumption at all support values as it avoids storing
the previously extracted FCI's in main memory. Both
CHARM and FP-Close proved to be a little expensive
in terms of memory consumption at low support val-
ues. This is due to the fact that both the algorithms tend
to store the previously generated FCI’s in main mem-
ory. Even though, FPClose retains only a portion of the
extracted FCI's in CFI tree but storing multiple CFI trees
still requires ample amount of main memory.

(¢) Third Category: FPMax outperformed the rest of the
algorithms under this category. Since the FP-Tree gener-
ated for this data set will be too small due to short ATL
which gives FPMax an advantage over others. GenMax
consumes a slightly higher memory as it needs to retain
the LMFI’s for comparison with the generated MFT’s.
Storing the bit vectors for each itemset generated, made
MAFIA abit expensive than the previous two algorithms.
Max-Miner on the other hand, consumed the maximum
amount of memory among other algorithms.

(d) Fourth Category: In this category, the algorithm con-
suming the maximum amount of memory is ARIMA due
to the storage of the MRI’s and MRG’s obtained from
Apriori Rare and MRG-Exp. The next expensive algo-
rithm in terms of memory consumption is MSApriori.
Storage of the candidate itemsets at each phase of item-
set generation demands more amount of main memory
for this algorithm. Apriori Rare managed to consume
less memory than ARIMA and MS-Apriori due to the
retainment of only the MRI’s. RP-Tree is undoubtedly
the best algorithm in this regard due to the generation of
small FP-Tree in this data set, that too storing only the
rare-item itemsets. With maximum support threshold of
60% and for storing only the sporadic itemsets, Apri-
ori Invserse managed to consume a marginal amount of
main memory slightly higher than RP-Tree.

Itemsets generated

Figure 3 illustrates the different types of itemsets generated
from Zoo data set. The maximum number of itemsets gen-
erated in this data set is that of the frequent itemsets. Zoo
being a highly dense data set has maximum number of fre-
quent itemsets. The next type of itemsets generated are the
rare itemsets followed by the rare-item itemsets. Number of
CFT’s generated have been found to be quite higher than that
of MFI’s. MRI’s and sporadic itemsets make up only a small
portion of the data set.

Lymph

The performance evaluation of the algorithms under different
criterias on Lymph data set is illustrated in this section.

60,000 :

— Rare

50.000 P NIf.\:hnal ‘l"rcqucnt U
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40,000 || --#--

R, Minimal Rare ,*'A
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No. of Itemsets
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10,000 | / |
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Fig.3 Itemsets generated in zoo data set

Execution time

This section contains the performance analysis of the algo-
rithms in terms of execution time. Figure 4a—d compares the
four categories of algorithms separately while Fig. 4e exam-
ines the algorithms altogether through graphical analysis.

(a) First Category: The performance of the first category
of algorithms in terms of execution time are as follows.
The most expensive one under this category has been
found to be Apriori TID with minimally higher execu-
tion time than Apriori. The idea of generating candidates
and storing the identifiers of items escalates the execu-
tion time of Apriori TID making it the most extravagant
algorithm. ECLAT performed better than the previous
two algorithms and managed to present a moderate con-
duct. FP-Growth has again shown the best performance
among all the other algorithms, for Lymph being a dense
data set followed by H-Mine.

(b) Second Category: FPClose surpassed the rest of the algo-
rithms under this category with only a nominal difference
with that of CLOSET. The reduced subsumption check-
ing cost and idea of storing only a fraction of CFI’s
facilitated FPClose to be the best among others. LCM
displayed a consistent performance and CHARM man-
aged a slot just below it. It, however, performed than
Apriori Close.

(c) Third Category: In this category, the performance of
FPMax outperformed the other algorithms. For the same
reasons discussed previously, appreciable performance
can be observed from FPMax. GenMax and MAFIA has
slightly higher execution time due to bitvector operations
and set intersections. Max-Miner again fail to show con-
vincing performance as it spends a lot of time searching
for the long MFI’s.
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Fig. 4 Execution time on lymph data set. a Frequent itemset generation. b Closed frequent itemset generation. ¢ Maximal frequent itemset
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(d) Fourth Category: Under this category, RP-Tree has been
found to spent lesser execution time in comparison to
other algorithms. Reducing the database size and gen-
erating only the rare-item itemsets enabled RP-Tree to
expend minor execution time. Apriori Inverse followed
RP-Tree generating only the sporadic itemsets below
the maximum support threshold. ARIMA generating the
complete set of rare itemsets has been the most expensive
one followed by MSApriori and Apriori Rare. Apriori
Rare generating the MRI’s managed to display a satisfy-
ing performance in terms of execution time.

Memory usage

This section elicits the memory usage of the algorithms. The
memory efficiency of each category of algorithms is shown in
Fig. 5a—d. Figure 5e on the other hand, examines the memory
efficiency of all the algorithms together.

(a) First Category: The algorithm that consumed the lowest
amount of memory under this category is FP-Growth.
Just like the previous data set, Lymph is also a dense data
set that led to the generation of compact and small FP-
Trees resulting in less usage of main memory. H-Mine
consumed a bit more memory than FP-Growth as its per-
formance in case of dense data set is not very appreciable
as that of sparse data set. The levelwise approaches Apri-
ori TID, Apriori and ECLAT expended more memory as
compared to the previous two approaches.

(b) Second Category: CLOSET dominated rest of the algo-
rithms under this category due to similar reasons dis-
cussed in case of Zoo data set. LCM maintained its
consistency of memory consumption in Lymph data set
as well. CHARM and FPClose have been again found to
be consuming more memory at low support values due to
the retainment of FCI’s at every pass. Nonetheless, their
memory consumption have been still lower than that of
Apriori Close as it attempts to store the FMG’s in main
memory before generating the entire FMG set.

(¢) Third Category: Memory consumption by FPMax algo-
rithm is the lowest one among the MFI generating
algorithms due to the construction of small FP-Trees
from a comparatively dense data set. Storage of MFI’s
in main memory by MAFIA and GenMax, increases the
memory overhead for these two algorithms with only a
minimal difference between the two. Max-Miner again
consumed the highest amount of memory among all.

(d) Fourth Category: Despite the fact that ARIMA is the only
algorithm generating the complete set of rare itemsets,
it consumed the highest amount of memory particularly
due to the storage of MRI’s and FG’s in main memory.
MSAprioritoo consumed lot of memory due to the retain-
ment of rare items along with the frequent ones during
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Fig.6 Itemsets generated in lymph data set

itemset generation. RP-Tree has shown the best perfor-
mance among all in Lymph data set as well, followed
by Apriori Inverse with a maximum support threshold
of 60%. Apriori Rare generating the MRI’s performed
better than ARIMA and MSApriori but failed to surpass
RP-Tree and Apriori Inverse.

Itemsets generated

Figure 6 illustrates the number of different itemsets generated
for Lymph data set. The number of different types of itemsets
generated in Lymph data set is lesser than Zoo data set. Rare
itemsets generated from this data set is quite higher than that
of the frequent itemsets. The closed frequent itemsets are the
next in number followed by the MRI’s. On the contrary, only
a limited number of maximal frequent and sporadic itemsets
have been obtained. Figure 6 shows a graphical representa-
tion of the different types of itemsets generated for the Lymph
data set.

Mushroom

This section elicits the performance of the algorithms in terms
of execution time, memory usage and number of itemsets
generated on Mushroom data set.

Execution time

The execution time invested by different categories of algo-
rithms considered in the study is illustrated in this section.
Figure 7a to 7e presents a graphical analysis and comparison
of the execution time expend by the algorithms.

(a) First Category: The same scenario is repeated in this case
like the previous two data sets. FP-Growth still proved to
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be the best algorithm for frequent itemset mining among
others. H-Mine had slightly higher execution time than
FP-Growth since Mushroom is a comparatively denser
data set. Apriori TID and Apriori used the highest exe-
cution time as expected due to multiple database scans
and generation of candidates. ECLAT on the other hand,
managed to perform better than these two algorithms.

(b) Second Category: Inthis category of algorithms, FPClose

surpassed rest of the algorithms at all minimum sup-

port values specifically at low supports. Despite showing
an appreciable performance, CLOSET failed to perform
better than FPClose. Both the algorithms construct pro-
jected FP-Trees for dense data set Mushroom. FPClose
on one hand stores a portion of the FCI’s in the gener-

ated CFI Trees while CLOSET stores all the FCI’s in a

global prefix tree that made the difference in their perfor-

mance. LCM outperformed CHARM due to its efficiency
in duplicate detection. Apriori Close consumed the high-
est amount of execution time as predicted.

Third Category: The third category of algorithms pre-

sented similar type of performances obtained in earlier

data sets. FPMax performed exceptionally well at all
minimum support values. Data set Mushroom has long
average pattern length and a short average transaction
length. Performance of FPMax is appreciable in case of
data sets having short ATL and long APL. GenMax man-
aged to have a decent execution time, slightly higher than

FPMax. MAFIA and Max-Miner still continued to be the

expensive ones in this category of algorithms.

(d) Fourth Category: Performance analysis of the fourth cat-
egory of algorithms illustrates that RP-Tree expends the
lowest amount of execution time among others due to the
generation of only the rare-item itemsets. With a maxsup
of 60%, Apriori Inverse is the next best algorithm under
this category. Apriori Rare utilized a decent amount of
execution time for the generation of the MRI’s. Setting
the B value to 0.1, MS-Apriori completed its execution
before ARIMA. ARIMA despite generating the complete
set of rare itemsets, proved to be the costliest.

(c

~

Memory usage

Memory efficiency of the algorithms and their compara-
tive scrutiny based on memory usage is demonstrated using
graphical analysis from Fig. 8a—e.

(a) First Category: The same outstanding performance of
FP-Growth on dense data sets can be seen in case of
Mushroom data set as well due to smaller size of the
FP-Tree. H-Mine have been found to consume little bit
more memory than FP-Growth. The highest memory
consumption was by Apriori TID followed by Apriori.

(b) Second Category: Due to the same reason discussed for
previous data sets, CLOSET managed to consume the
lowest amount of memory among the second category of
algorithms. CHARM and LCM have been consistent in
their amount of memory consumption as the earlier data
sets. FP-Close on the contrary have shown disappointing
performance due to its tendency of retaining the FCI’s at
every pass. Apriori Close as expected has consumed the
highest amount of memory among all.

(c) Third Category: The size of the FP-Tree generated by
FPMax for Mushroom is very small due to the density of
the data set. As, aresult the memory consumption by this
algorithm is quite less compared to other algorithms of
the same category, the highest being that of Max-Miner.
Due to the storage of MFI’s in main memory, MAFIA
and GenMax consumed higher memory than FPMax.

(d) Fourth Category: RP-Tree algorithm under this category
consumed the lowest amount of memory which is obvi-
ous due to the retainment of only the rare-item itemsets.
Followed by RP-Tree is the Apriori Inverse algorithm
that consumed a reasonable amount of memory upon
setting the maxsup value to 60%. Highest amount of
memory is consumed by ARIMA which is the only
algorithm generating the complete set of rare itemsets.
Apriori Rare and MS-Apriori curtailed the amount of
memory consumed to some extent compared to ARIMA.

Itemsets generated

The number of itemsets generated under the given threshold
for Mushroom data set are quite high in number, the highest
being that of the rare itemsets. The frequent itemsets gener-
ated are slightly less in number than the rare itemsets. The
number of closed frequent and maximal frequent items gen-
erated are very less, almost negligible in comparison to the
rare and frequent itemsets. Figure 9 graphically shows the
number of different types of itemsets generated from Mush-
room data set.

Retail

Detailed analysis based on performance of the algorithms on
Retail data set is provided in this section.

Execution time

The execution time analysis of the algorithms is depicted in
this section using graphical analysis from Fig. 10a—e.

(a) First Category: FP-Growth expend the highest amount
of execution time for the Retail data set. This is obvi-
ous as it is a sparse data set containing lesser number
of frequent items. A higher amount of execution time
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Fig.9 Itemsets generated in mushroom data set

(b)

()

(d)

is invested in the FP-Tree construction and the result-
ing tree is big and bushy as the amount of node sharing
is minimal. H-Mine outperformed all the algorithms
due to its efficient use of tree data structure. Level-
wise approaches like Apriori, Apriori TID and ECLAT
performed better than FP-Growth as lesser number of
frequent patterns and candidates are generated.

Second Category: Array based technique employed by
FP-Close proved to be costlier at lower supports as huge
number of itemsets are generated. CLOSET performed
better than FP-Close due to the usage of top-down
projection tree that requires the traversal of only the
global FP-Tree. The large number of candidates gen-
erated increases the closure computation cost and the
execution time of Apriori Close. This made Apriori Close
the most expensive algorithm in this category. LCM out-
performs all the algorithms under this category and the
performance gap becomes more evident as support value
decreases.

Third Category: Retail is a data set having short ATL
and the MFI’s generated are also very short. The FP-
Tree generated by FP-Max in this case, is very big and
bushy. At high support values, there are only few MFI’s.
FP-Max however, expends a lot of time in the FP-Tree
construction and despite that only few MFI’s are gener-
ated from the FP-Tree. Short ATL of Retail however did
not affect the bit vector operations performed by MAFIA
and GenMax due to which they performed better than
FP-Max.

Fourth Category: ARIMA proved to be costliest among
all for this data set as well. MS-Apriori managed to per-
form better than ARIMA like previous cases. RP-Tree
spent higher execution time for this data set as compared

to other data sets due to the construction of costly FP-
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Trees. Apriori Inverse and Apriori Rare outperformed
others in this category.

Memory usage

Performance evaluation of the algorithms in terms of mem-
ory usage is provided in this section. Figure 11a—e provides a
comparative analysis of the algorithms based on their mem-
ory efficiency.

(a)

(b)

(©)

(d)

First Category: The highest amount of memory under
this category is consumed by the FP-Growth algorithm.
As Retail is a sparse data set, the amount of node sharing
is less due to which large number of nodes are generated
in the FP-Tree. Storage of these nodes in main memory
proved to be costly for FP-Growth in terms of mem-
ory usage. However, the number of frequent patterns and
hence the candidates generated are less that befitted Apri-
oriTID and Apriori. H-Mine is the clear winner in this
case as queue data structures consume less amount of
memory.

Second Category: The performance of FPClose algo-
rithm has been found to be worse among the algorithms
under this category. The retainment of recursively built
FP-Trees and CFI trees resulted in a high amount of
memory consumption. CHARM unexpectedly consumed
the lowest amount of memory. The memory consump-
tion of AprioriClose is due to the retainment of FMG’s in
main memory obtained using off-line closure computa-
tion. Memory consumption remained constant for LCM
while CLOSET consumed slightly higher memory than
Apriori Close.

Third Category: The storage of big and bushy FP-Trees
generated by FPMax resulted in high memory consump-
tion by the algorithm. Max-Miner consumed slightly less
memory than FP-Max. GenMax maintained its consis-
tency in memory consumption and proved to be the best
algorithms under this category. The superiority of Gen-
Max comes from the fact that it maintains only the local
MEFTI’s for comparison rather than the entire set of MFI’s.
MAFIA is the next best algorithm in terms of memory
consumption under this category.

Fourth Category: ARIMA still consumed the highest
amount of memory among the rare itemset generation
algorithms due to the retainment of both frequent and
rare itemsets followed by MSApriori. RP-Tree proved to
be a little costlier this time as compared to its memory
consumption in dense data sets. The reason is same with
that of other pattern mining algorithms. Apriori Rare
consumed less amount of memory this time as compared
to RP-Tree followed by Apriori Inverse.
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Fig. 10 Execution time on retail data set. a Frequent itemset generation. b Closed frequent itemset generation. ¢ Maximal frequent itemset
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Fig. 12 Itemsets generated in retail data set

Itemsets generated

Retail being a sparse data set has lesser number of frequent
itemsets. Thus, as expected the number of rare itemsets gen-
erated is highest for this data set. Minimal rare itemsets are
the next in number followed by closed frequent itemsets.
Only few maximal frequent itemsets and sporadic itemsets
are generated for this data set.

T1014D100K

This section contains performance evaluation of the algo-
rithms on sparse data set, T10I4D100K based upon the
execution time invested, the amount of memory used and
the number of itemsets generated.

Execution time

Execution time spent by the algorithms and the respective
comparative analysis is shown in this section with the help
of graphical analysis from Fig. 13a—e.

(a) First Category: The same trend has been observed for
this category of algorithms like the previous case. H-
Mine maintained its effective performance in case of
sparse data set. FP-Growth still proved to be the most
expensive one among all. Apriori TID and Apriori were
the next in row in terms of performance. ECLAT demon-
strated consistent performance for this data set as well.

(b) Second Category: Apriori Close was the most expensive
algorithm under this category of algorithms unlike the
Retail data set. This is because Apriori Close compares
the support of each k-candidate itemset generated with
the k-1 subsets to find out whether it is an FMG which
increase its computational overhead. FPClose surpris-

ingly performed better than CLOSET due to the usage
of an array based implementation avoiding repeated FP-
Tree traversal during the construction of header tables
for new entries. Among CHARM and LCM, the former
highly outperforms LCM specifically at higher support
values.

(¢) Third Category: The performance of MAFIA and Gen-
Max continued to be consistent for this data set as
well. FPClose once again failed to impress in terms of
performance with Max-Miner spending slightly lower
execution time than FPClose.

(d) Fourth Category: ARIMA has been found to compen-
sate its performance in terms of execution time due
to the retainment of frequent as well as rare itemsets.
MS-Apriori invested slightly lower execution time than
ARIMA. RP-Tree spent higher execution time for this
data set as compared to dense data sets due to the genera-
tion of FP-Trees but displayed feasible execution time as
it generates only the rare-item itemsets. Apriori Inverse
and Apriori Rare demonstrated similar performances
with a slight advantage to the former one.

Memory usage

This section illustrates the memory analysis of the algorithms
considered in the study from Fig. 14a to e.

(a) First Category: H-Mine maintained its appreciable per-
formance for this data set as well. ECLAT was slightly
expensive than H-Mine. FP-Growth, as expected proved
to be extravagant for this sparse data set. AprioriTID and
Apriori were the second and third expensive algorithms
in terms of memory consumption under this category.

(b) Second Category: For this category of algorithms, the
scenario is completely opposite to that in Refail data set.
AprioriClose in this case consumed the highest amount
of memory rather than FPClose. This is because Apri-
oriClose attempts to store each extracted FMG in main
memory prior generating the whole set of FMG’s. On the
other hand, the higher memory consumption of FPClose
comes from the fact that it retains the recursively built
FP-Trees and CFI trees in main memory that are quite
large in case of sparse data sets. CHARM largely outper-
formed the rest of the algorithms under this category.

(¢c) Third Category: FPMax is the most extravagant algo-
rithm under this category as it needs to store all the
FP-Trees and MFI trees generated, in main memory.
Max-Miner stores every candidate itemset generated
due to which its memory consumption considerably
increases. GenMax outperformed the rest of the algo-
rithms due to retainment of only the set of local MFI”’s.

(d) Fourth Category: ARIMA stores the frequent item-
sets and MRG’s which increases its memory overhead.
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Fig. 15 Itemsets generated in T10I4D100K data set

Retaining the FP-Trees in memory proved to be expen-
sive for RP-Tree. The performance of Apriori Rare and
Apriori Inverse remained constant for this data set.

Itemsets generated

Figure 15 illustrates the different types of itemsets generated
in TI0I4D100K data set. As can be observed in the figure, the
highest number of itemsets generated for this data set are the
rare itemsets. The frequent itemsets generated are also very
high in number but slightly than the number of rare itemsets.
The next in number are the minimal rare itemsets followed by
few sporadic, closed frequent and maximal frequent itemsets.

T40110D100K

Analysis of the algorithms based on their performance in data
set T40110D100K 1is given in this section.

Execution time

The amount of time invested by the algorithms in their execu-
tion is illustrated in this section through a graphical analysis
in Fig. 16a—e.

(a) First Category: For this data set, AprioriTID largely out-
performs FP-Growth as the generation of FP-Trees by
FP-Growth expends a lot of time specifically for sparse
data sets. Apriori and ECLAT performed marginally
better than AprioriTID with H-Mine being the most sub-
stantial algorithm under this category.

(b) Second Category: AprioriClose spent the highest amount
of execution time for reasons similar to the previous
data set. The execution time of CLOSET is affected by
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its tendency of preserving all the extracted FCI’s in the
same tree. FPClose under such circumstances performed
marginally better than CLOSET. The performances of
LCM and CHARM have been found to be similar with
slight advantage to CHARM.

(¢) Third Category: Among the third category of algorithms,
the most efficient one is again the GenMax algorithm
since it compares the newly extracted MFI with only
the set of local MFI’s unlike the other levelwise algo-
rithms that performs the comparison with the previously
extracted MFI’s. FPClose in this case is highly affected
by the recursive generation of FP-Trees and MFI trees.
Max-Miner performed slightly better than FPClose fol-
lowed by MAFIA.

(d) Fourth Category: ARIMA due to the generation of MRI’s
and MRG’s proved to be expensive even for this data set.
MS-Apriori too spent a considerable amount of time in
determining and assigning MIS values to the items. Apri-
ori Rare due to the generation of only MRI’s and Apriori
Inverse due to the generation of only sporadic itemsets
for a Maxsup value of 60% performed consistently well
than other rare itemset generation algorithms. RP-Tree
however proved to be a little expensive due to generation
of large and bushy FP-Trees.

Memory usage

Efficiency of the algorithms in terms of memory usage is
depicted in this section with the help of a graphical analysis
from Fig. 17atoe.

(a) First Category: The scenario of memory usage for this
category is similar to the previous data set. FP-Growth
has been again found to be affected by sparseness of
the data set where it is obliged to generate large and
bushy FP-Trees. Attempt to accommodate the huge num-
ber of candidate itemsets generated, proved to be costly
for both AprioriTID and Apriori. However, their perfor-
mance with respect to FP-Growth has been much better
as compared to dense data sets. ECLAT and H-Mine
performed exceptionally well with slight advantage to
H-Mine that outperformed all the algorithms.

(b) Second Category: CHARM prove to be most memory
efficient among the other algorithms. Memory consump-
tion of CLOSET and FPClose tends to increase at lower
minsup values when the number of FCI’s increases. Apri-
oriClose consumed the highest amount of memory in
this category. Memory requirement of LCM however,
remained mostly constant.

(¢) Third Category: The amount of memory expended by
FPMax was considerably higher for this data set. Max-
Miner too consumed a higher amount of memory with
only a minimal difference to that FPMax. MAFIA and
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Fig. 18 Itemsets generated in T40I10D100K data set

GenMax continued to perform well for this data set as
well.

(d) Fourth Category: Apriori Rare and Apriori Inverse were
the most memory efficient in this category of algorithms.
ARIMA consumed the highest amount of memory fol-
lowed by MSApriori. RP-Tree due to the retainment of
only rare-item itemsets in the FP-Tree, performed better
than ARIMA and MSApriori.

Itemsets generated

An illustration of different types of itemsets generated in this
data set is shown in Fig. 18. The scenario is similar to the
previous data set where the number of rare itemsets is quite
large compared to other types of itemsets. Marginal number
of frequent itemsets have been generated followed by the
minimal rare itemsets. On the contrary, only few sporadic,
closed frequent and maximal frequent itemsets have been
produced.

Discussion

We performed the first three set of experiments on dense real
data sets: Zoo, Lymph and Mushroom. The results obtained
were similar for all the three dense data sets. For the first
category of algorithms generating frequent itemsets, the per-
formance of FP-Growth has been found to be the best among
all. Efficiency of the algorithm in terms of execution time
and memory usage is quite impressive in case of dense data
sets. However, for very large data sets, the algorithm may
run out of memory. In such cases, an existing scalable vari-
ant of the algorithm can be employed. Thus for extracting
frequent itemsets from data sets where there is a dense distri-
bution of data, FP-Growth can be preferred. For the second

category, exploiting FPClose for generating closed frequent
itemsets can be a good option considering its exceptional
performance on dense data sets. Even though FPClose out-
performed LCM by a slight difference, it is worth mentioning
that the execution time and memory usage of LCM remained
constant throughout, which is quite appreciable. Among the
algorithms in the third category, FPMax performed well due
to long ATL and short APL of the three dense data sets. How-
ever, FPMax fail to show appreciable performance for data
sets having long ATL and short APL as well as long ATL
and long APL. This is because when length of the transac-
tion is very high, then FPMax spends huge amount of time in
the construction of MFI-Tree and the resulting tree will also
be large and bushy. In such cases, MAFIA and GenMax are
expected to outperform FPMax since the cost of bit-vector
operations and set intersections will be less. For the fourth
category of algorithms, RP-Tree is the best option if the users
are interested only in the rare-item itemsets as it failed to gen-
erate the complete set of rare items. For generating the rare
itemsets, ARIMA even though expensive is preferred as it
is the only algorithm that is capable of generating frequent
itemsets as well as the complete set of rare itemsets.

The next three set of experiments were conducted on one
real and two synthetic sparse data sets: Retail, T1014D 100K
and 740110D100K. H-Mine performed exceptionally well
among the algorithms in the first category for all the three
sparse data sets. H-Mine overcomes the poor performance of
FP-Growth on sparse data sets. For the second category of
algorithms, performances of LCM and CHARM were very
close to each other. LCM proved to be the most efficient one
for Retail data set while CHARM was better than others in
case of the two synthetic data sets. Among the algorithms in
the third category, FPMax failed to perform like in case of
dense data sets. This is because Retail and the other two syn-
thetic data sets have short ATL and a relatively short APL.
FPMax spends a lot of time in the FP-Tree construction even
though only a small number of MFI'’s are generated from the
sparse data sets. Bit-vector operations performed by GenMax
however, remains unaffected by short ATL of these sparse
data sets due to which it performed the best among all the
algorithms. In case of the rare itemset generation algorithms,
Apriori Rare generating only MRI’s and Apriori Inverse gen-
erating only sporadic itemsets, invested the lowest amount
of time. RP-Tree failed to impress in case of sparse data sets
despite generating only a subset of rare itemsets due to the
generation of big and bushy FP-Trees.

The results obtained for all the data sets in the four differ-
ent categories have been summarized in Table 3. The table
elicits the best performing algorithm in terms of execution
time and memory usage in each category of pattern mining
techniques.

From Table 3, it can be observed that among the frequent
pattern mining techniques, FP-Growth proved to be the best
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algorithm in terms of execution time as well as memory usage
for all the dense data sets: Zoo, Lymph and Mushroom. The
performance of FP-Growth in case of sparse data sets is not
very convincing. Its performance in case of sparse data sets
can be enhanced by adopting some mechanism to make the
FP-Tree structure more compact or using any other support-
ing data structure for storing the patterns. For the sparse data
sets: Retail, T10I4D100K and T40I10D100K performance
of H-Mine is the best among all the frequent pattern min-
ing techniques. To improve its performance in case of dense
data sets, it is beneficial to swap its queue data structure
to FP-tree since FP-tree’s compression by common prefix
path sharing and then mining on the compressed structures
will be more efficient compared to the queue data structure.
Among the closed frequent pattern mining techniques, FP-
Close emerged as the best algorithm in terms of execution
time while the performance of CLOSET was identified to be
the best in terms of memory usage for the dense data sets.
Performance of FPClose in terms of memory usage can be
improved if it avoids retaining the FCI’s at every pass. For the
sparse data sets, CHARM was the clear winner in terms of
both execution time and memory usage. Only in case of Retail
data set, performance of LCM was found to be slightly better
than CHARM. Among the maximal frequent pattern mining
techniques, FPMax was the best algorithm in terms of execu-
tion time and memory usage for all the dense data sets while
GenMax emerged as the best algorithm for all the sparse data
sets. RP-Tree proved to be the best algorithm among the rare
pattern mining techniques for dense data sets and Apriori
Rare demonstrated the best performance for sparse data sets
in terms of both execution time and memory usage. Perfor-
mance of RP-Tree can be improved for sparse data sets by
employing additional data structures for pattern storage or by
compressing the size of the tree structure used. Apriori Rare
on the other hand, needs to employ data structures that can
guarantee limited storage space for the patterns generated in
order to handle the dense data sets efficiently.

Threats to validity

In order to gauge the quality of work, it is necessary to con-
sider the threats to validity of the study [5]. This section
discusses the threats to validity of this study. The following
threats to validity of the study need to be considered:

(a) Threshold range: The results of study and the per-
formance of algorithms are completely dependent on
the value of support thresholds used. The range of val-
ues chosen for support thresholds are user defined and
change in values might affect the final results of the study.

(b) Data set reliability: The data sets used in this study
are the ones widely used by the techniques considered
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for experimentation. The results obtained and the behav-
ior of algorithms might vary from one data set to other
depending on the data set characteristics. It might be pos-
sible that the findings may vary for some data sets not
being used in the study.

(c) Limited data sample size: Due to hardware and soft-
ware limitations, the data sets considered are not very
large. Larger data sets could undermine the validity of
the results obtained in this study.

(d) Lack of good descriptive statistics: The results shown
in this study are basically the average of observed results
or average of multiple runs. However, measure of vari-
ation of the observed results, such as their standard
deviation, minmax range or a box-plot, are not presented
as the study is primarily based on experimental evalua-
tion.

(e) Lack of discussion on code instrumentation: The pub-
licly available source code or implementations used in
the experiments may hide specific tweaks or instrumen-
tations to favor certain instances or algorithms, thus
influencing the observed results.

(f) Lack of evaluations for instances of growing size and
complexity: The algorithms considered for evaluation
in this study may have been designed to handle data sets
that may vary in size and complexity. The evaluation of
the algorithms should have been done across a breadth
of problem instances, both varying in size and complex-
ity, to provide an assessment on their limits to handle
different instances.

Conclusion

Through this paper, we attempted to provide a structural and
analytical comparative scrutiny of some of the widely refer-
enced pattern mining techniques for guiding the researchers
in making the most appropriate selection for data analysis
using pattern mining. The prime focus of this comparative
study is to enable the researchers gain an insight into the per-
formance and respective pros and cons of the fundamental
pattern mining techniques through a detailed theoretical and
empirical analysis.

Initially, we provide a structural classification of the pat-
tern mining techniques in four different categories based
upon the type of itemsets generated and a theoretical com-
parison of all these algorithms specifying their merits and
demerits. To gauge the performance of the concerned algo-
rithms, we presented an empirical analysis based on several
decisive parameters. We performed experiments using three
real and three synthetic benchmark data sets. Both dense
and sparse data sets have been considered for analyzing the
behavior of the algorithms under different data characteris-
tics. The performance is analyzed based upon the execution

time invested, amount of memory consumed and the number
of itemsets generated by the algorithms.

None of the algorithm however, can be termed the best
in its category for all data characteristics under different
conditions. The selection of an algorithm in a particular
category depends upon the characteristic of data and the
requirement of user. There are certain challenging issues
faced by the algorithms in each category that affects their
performance. Among the frequent pattern mining techniques,
Apriori, Apriori TID and ECLAT suffers from the drawback
of huge execution time and memory consumption due to their
approach of levelwise search in finding the frequent itemsets.
H-Mine despite being less expensive in terms of execution
time and memory consumption, is only suitable for sparse
data sets. FP-Growth is the winner among all when it comes
to dense data sets, but for large data sets the FP-Tree struc-
ture might not get accommodated in main memory. For the
closed frequent pattern mining techniques, the variant of FP-
Growth, FPClose suffers from the same drawback. Apriori
Close on the other hand, proves to be costly while mining
long patterns. LCM and CLOSET does not work well at
lower support thresholds while CHARM fails to show good
performance at higher support thresholds. Maximal frequent
pattern mining technique Max-Miner suffers from the same
drawback of high execution time and memory consumption
like other levelwise search approaches. FPMax is not suit-
able for large data sets as the generated FP-Tree may not
fit into main memory. MAFIA and GenMax perform expen-
sive bit vector operations due to which they are not suitable
for databases having short itemsets. Among the rare pattern
mining techniques, MS Apriori expends huge execution time
and memory and also requires the identification of an extra
parameter § to identify the rare itemsets. Apriori Inverse and
Apriori Rare can generate only the minimal rare itemsets.
ARIMA despite generating the complete set of rare itemsets,
proves to be costly in terms of execution time and memory
usage. RP-Tree being a tree based approach performed better
than all the algorithms, but cannot generate the complete set
of rare itesmets.

The experimental study indicates that performance of the
algorithms is greatly affected by the characteristics of data
sets used. An in depth study of the data set characteristics
can be an important aspect of research in the field of pattern
mining. To better understand the behavior of algorithms, a
structural characterization of the data sets need to be done
beyond the number of transactions/items, the average trans-
action size or the density. It has been further observed that
average transaction length and average pattern length are
some other factors that have an important impact on algo-
rithm performances. In this regard, an important research
direction would be to perform a detailed analysis of how
and why these factors affect the performances of algorithms.
Finding effective and costless metrics to analyze the perfor-
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mance of algorithms can be another future perspective to
work on.
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