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ABSTRACT Graph representation learning (GRL) has recently drawn a lot of attention due to its advantage
in solving various machine learning tasks on graphs/networks, ranging from drug design to recommendation
systems. One typical GRL approach is graph embedding, the purpose of which is to learn a map that
encodes or represents network elements as points in a low-dimensional vector space so that downstream
machine learning methods can be easily implemented. Initially, most graph embedding algorithms learn such
a map independently from subsequent machine learning tasks. Therefore, they have limitations in solving
supervised machine learning tasks on networks. Later, a great deal of graph convolutional networks (GCNs)
have been proposed to learn node representations in an end-to-end manner based on different information
aggregation mechanisms. By treating network structure as a computational layer in a GCN, the associated
information of nodes with higher-order proximity can be aggregated by increasing the number of layers (i.e.,
depth) of the GCN. As a consequence, the computational overhead will increase and the representations will
be projected towards a steady state. To solve this problem, in this paper, we propose a multi-channel graph
convolutional network (MCGCN) that allows higher-order information aggregation by enriching the number
of input channels. Based on the notion of Katz index, our model can further achieve an arbitrary order of
information aggregation without increasing the computational overhead. Comprehensive experiments on
several benchmark networks demonstrate the effectiveness of the proposed architecture by comparing it
with the-state-of-art GRL methods in terms of node classification and computational efficiency.

INDEX TERMS Graph representation learning, graph convolutional networks, information aggregation,
node classification.

I. INTRODUCTION
Networks or graphs are a ubiquitous data structure and
have been extensively employed to capture interactions
(i.e., edges) between individual units (i.e., nodes) of com-
plex systems in biology, neuroscience, engineering, and
social science. Along this line, machine learning tasks on
networks have attracted lots of attention with applications
ranging from drug design to recommendation systems in
social networks [1]–[3]. However, due to the nonlinearity
and high dimensions of network structure, it is difficult to
directly implement classical machine learning methods on
networks. To solve this problem, various graph representation
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learning (GRL) methods have been proposed in recent
years [4]–[6]. One typical GRL method is graph embedding,
the purpose of which is to learn a map that encodes net-
work nodes in a low-dimensional vector space such that
certain structural properties of the network can be pre-
served [7]–[9]. In doing so, the obtained node embed-
dings/representations can then be treated as feature inputs
of downstream machine learning methods to solve specific
network analytic tasks, such as community mining [10], [11],
node classification [12], and link prediction [13]. Neverthe-
less, there are still two shortcomings. First, most existing
graph embedding algorithms focus merely on preserving
structural properties of networks, such as structural proxim-
ity [14], [15], equivalence [16], [17], and identity [18], [19].
They are limited in learning node representations of attributed
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networks, where each node is associated with additional het-
erogeneous information, such as node attributes and labels.
Second, most graph embedding algorithms learn the map
function independently from subsequent machine learning
tasks. In other words, the representations are learned with-
out the supervision of downstream machine learning outputs
(e.g., node labels).

Because unsupervised GRL methods do not leverage label
information in the learning process, they have natural defects
in solving (semi)supervised machine learning tasks on
networks. In the past, to solve the node classification
problem, many community-preserving embedding algo-
rithms have been designed with the assumption that densely
connected nodes tend to have the same label [15]. However,
in reality, it is difficult to determine in advance what struc-
tural properties are related to node labels [17]. The situa-
tion becomes even more complicated for attributed networks.
Therefore, to solve (semi)supervised machine learning tasks
on attributed networks, the primary challenge lies in how to
find a supervised way to learn representations of network
nodes and their associate attributes in an end-to-end manner.

By extending the idea of deep learning on networks, graph
neural networks (GNNs) have been recognized as a useful
framework to tackle supervised network analytic problems
(see detailed surveys [6], [9], [20], [21]). In essence, GNNs
treat the network structure as a computational graph, and
train the whole neural network model in an end-to-end
manner [22]. For example, inspired by convolutional neural
networks in the field of computer vision, a variety of graph
convolutional networks (GCNs) have been proposed in recent
years [23]–[26]. By adopting appropriate message passing
mechanisms in each convolutional layer of a GCN, each
node can aggregate attribute information from its neighboring
nodes in the network. However, as the depth of a GCN
increases, nodes will aggregate information from other nodes
with higher-order proximity. In doing so, node representa-
tions will be projected towards a steady state after several
aggregation steps [27]. As a result, the depth of the existing
GCNs cannot be too large.

In many real-world applications, node labels are relevant to
their structural roles in a network [28]–[30]. Moreover, nodes
with the same/similar structural roles may be far away from
each other in the network [17]. In this case, GCNs with lim-
ited depth cannot aggregate information of nodes with similar
roles but far away from each other. Therefore, it would be
desirable to develop a computationally efficient convolutional
architecture such that information of nodes with higher-order
of proximity can be exploited through appropriate aggrega-
tors while keeping their heterogeneity. In this paper, instead
of increasing the depth of GNNs, we aim to develop a novel
graph convolutional architecture by enriching the information
channels to support arbitrary order of information aggrega-
tion through the network.

Specifically, in this paper, we focus mainly on how to
develop a graph convolutional architecture to solve the
semi-supervised node classification problem on attributed

networks in an end-to-end manner. The novelty and
contributions of this paper are summarized as follows:

1) We propose a multi-channel graph convolutional net-
work (MCGCN) that allows higher-order of informa-
tion aggregation by enriching the number of input chan-
nels. Based on the notion of Katz index, the proposed
model can further achieve an arbitrary order of infor-
mation aggregation without increasing the computa-
tional overhead.

2) We introduce a shared weight mechanism to assess the
relative importance of different attributes, which are
weighted and aggregated among nodes with a certain
order of proximity.

3) We carry out experiments on several benchmark
datasets to evaluate the performance of the proposed
MCGCN architecture, by comparing with the state-of-
the-art GRL methods in terms of classification accu-
racy and computational efficiency.

The remainder of this paper is organized as follows.
In Section II, we briefly review the related work of this
paper. In Section III, we formulate the semi-supervised node
classification problem on attributed networks. In Section IV,
we present a multi-channel convolutional architecture that
can aggregate information from nodes with arbitrary order
of proximity. In Section V, we carry out experiments to
evaluate the performance of the proposed MCGCN method
by comparing it with several state-of-the-art methods. Finally,
we conclude this work in Section VI.

II. RELATED WORK
In recent years, the graph embedding approach has been
proposed with the purpose of automatically representing,
or encoding network elements into a low-dimensional vec-
tor space by preserving certain network properties [4], [5],
[7], [8]. Generally, existing node embedding methods can be
classified into three categories: factorization-based approach
[14], [31], [32], random walk-based approach [33]–[35], and
deep learning-based approach [16]. The first two categories
focusmainly on encoding network elements by preserving the
structural properties of networks. For example, concerning
community-based embeddings [15], the basic idea is to learn
embeddings of each node such that the inner product between
any two learned vectors approximates certain measures of
structural proximity. Once node embeddings (or representa-
tions) are obtained, they can be treated as feature inputs for
downstream machine learning methods to solve specific net-
work analytic tasks. In doing so, such methods are considered
as an unsupervised graph representation learning approach,
where the representations are learned independently from the
downstream machine learning tasks.

The deep learning-based approach usually learns the
encode/decode functions by involving an end-to-end learning
process [36], [37]. To deal with (semi)supervised machine
learning problems on attributed networks, graph neural
network models have been proposed, where the network
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structure is treated as a computational graph in each layer
of a GNN [6], [20], [21]. By leveraging the information
about nodes labels and attributes, they can achieve much
better performance than hand-engineered network analytic
methods and unsupervised GRL methods [38]. For example,
by adopting the message passing mechanisms, GNNs can
aggregate node/edge attributes from neighboring nodes with
a certain order of proximity in the network. By trainingmodel
parameters or aggregators with the supervision of label infor-
mation, GNNs have the potential to deal with both inductive
and transfer learning tasks on networks.

As a typical GNN approach, graph convolutional networks
are inspired by the powerful convolutional neural networks
in the field of computer vision. Recently, researchers have
proposed a variety of graph convolutional networks (GCNs),
including spectral-based GCNs [24], [39], spatial-based
GCNs [26], [27], [40], and graph attention networks
(GAT) [25]. The differences lie in how the filters are
defined to aggregate the information through the network.
For example, the Chebyshev method defined graph convo-
lutions using a K -degree polynomial of the Laplacian to
avoid the huge computational cost of the Laplacian eigen-
decomposition [39]. Then, the vanilla GCN simplified graph
convolutions with a specified renormalization trick [24].
By extending the vanilla GCN framework, the GraphSAGE
method proposed different aggregator architectures [40].
To reduce the computational complexity, the GraphSAGE
chose to aggregate information from a fixed number of
neighboring nodes, instead of from all neighbors.Meanwhile,
the Monet model presented a generalized CNN architecture,
which aggregated the local information from networked
data [41]. The GAT networks incorporated the well-known
attention mechanism into each layer of the GCN framework
such that the weight of information from different neighbors
can be learned [25]. More recently, the SGC network simpli-
fied the vanilla GCN framework by reducing the number of
non-linear activations and aggregation layers [26].

From a computational perspective, the spectral-based
GCNs, such as the Chebyshev method [39], often have a rel-
ative huge computational complexity due to the computation
of eigendecomposition. To avoid the computational burden,
the spatial-based GCNs have introduced various message
passing mechanisms, where each node can aggregate infor-
mation from its neighbors in the network. Then, the objective
is to learn the weight matrix and/or aggregators through an
end-to-end learning process [26]. However, the drawback
lies in that as the depth of a GCN increases, the learned
representations will be projected towards a steady state [27].
The assumption behind is that neighboring nodes in a network
tend to have similar representations, which instead limits
the depth of GNNs. Paradoxically, if the depth of a GCN
is not large enough, nodes cannot aggregate the informa-
tion of distant nodes. This will limit its implementation on
many real-world applications, for example, classifying nodes
with respect to their structural roles [28]–[30]. To tackle
this problem, it would be desirable to develop novel graph

convolutional architectures that can (i) aggregate information
from nodes with arbitrary order of proximity, and (ii) reflect
the relative importance of information from nodes with dif-
ferent orders of proximity.

III. PROBLEM STATEMENT
In this section, we first introduce some notations and
definitions we will use in the remainder of this work.
Then, we introduce the semi-supervised multi-class node
classification problem on networks.

Let G = {V ,E,A} be a network, where V = {1, · · · ,N }
consists of N interconnected nodes, and E = {eij|i, j ∈ V }
is a set of M edges between the nodes. Moreover, denote
A ∈ RN×N as the adjacency matrix of G, where aij = 1 if
there exists an edge (i, j) ∈ E and aij = 0 otherwise. If G
is an undirected network, A is symmetric, that is, Aij = Aij,
for ∀i, j ∈ V . Further, we denote IN as the N × N identity
matrix, and denote D as the diagonal degree matrix, where
Dii =

∑
j Aij represents the degree of node i.

Suppose that each node i in G is associated with a d-
dimensional feature vector xi ∈ Rd . Then, the attributed
graph can be defined as follows:
Definition 1 (Attributed Graph or Network): AgraphG=

(V ,E,X ) is called an attributed graph, where each node i is
associated with a d-dimensional feature vector xi ∈ Rd . The
entire feature matrix X ∈ RN×d stacks N feature vectors on
top of one another. In other words, we have xi is the ith row
of matrix X .

In this paper, we assume that each node i in an attributed
graph G = (V ,E,X ) belongs to one of C classes, which can
be denoted as a C-dimensional one-hot vector yi ∈ {0, 1}C .
For example, if the label of i is c, the we have yi = [0(1), · · · ,
0(c−1), 1, 0(c+1), · · · , 0(C)]. When stacking the labels yi,
we have a label matrix Y ∈ {0, 1}N×L , where yi is the ith

row of Y . Suppose only a subset of nodes VL ∈ V in a
network have labels YL , and the rest of nodes VU = V\VL are
unlabeled. Formally, the semi-supervised node classification
problem can be defined as follows:
Definition 2 (Semi-Supervised Node Classification on

Networks): Given an attributed graph G = (V ,E,X ) and
the label yj of each node j ∈ VL , the objective of the node
classification problem is to (i) learn a model f such that
f (i;A,X ,VL ,YL)→ yi for ∀i ∈ VL , and (ii) predict the label
of node j ∈ VU with yj = f (j;A,X ,VL ,YL).

In the following, we will propose a graph convolutional
architecture to solve the semi-supervised multi-class node
classification problem on networks.

IV. THE PROPOSED GCN ARCHITECTURE
In this section, we build upon graph convolutional networks
to learn node representations for semi-supervised node clas-
sification in an end-to-end fashion. We first introduce the
message-passing architecture in GCNs. Then, we present our
higher-order GCN architecture that can aggregate any order
of information over the network.
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FIGURE 1. A schematic depiction of the proposed higher-order convolutional architecture for semi-supervised node classification task on
networks. The model takes the feature matrix X as input, each row of which represents the feature vector of a node. Instead of increasing
the number of convolutional layers, the architecture allows higher order of information aggregation by enriching the number of
information channels based on Â, Â2, Â3, and so on. Each node aggregates its information of all channels through a shared weight
mechanism. Finally, a full-connected layer together with the softmax function is used for the multi-class node classification task.

A. A MESSAGE-PASSING MECHANISM
In general, the message-passing architecture can be described
as a multi-layer convolutional network. Here, we follow Kipf
& Welling to introduce the architecture of GCNs in the
context of node classification [24]. Specifically, for the k th

convolutional layer in an l-layer GCN, the message-passing
model is formulated as follows:

Hk =

{
X , if k = 0
σ (ÂHk−1Wk−1), if k ∈ [1, l]

(1)

where H0 = X represents the feature matrix X as the inputs
of the model. Moreover, Hk ∈ RN×dk are the output node
representations (i.e., ‘‘message’’ or ‘‘information’’) of the
k th layer, and subsequently the input node representation of
the (k + 1)th layer. Consequently, the nodal information will
be aggregated through the message-passing model. Here, σ
represents the message propagation function for information
aggregation over the network. There aremany possible imple-
mentations of information aggregators. For example, in [24],
the information is aggregated through a combination of linear
transformations and ReLU activation.

In addition, it is noteworthy that Â is the renormalized
adjacent matrix of the graph. Formally, it is calculated as
follows:

Â = D̃−
1
2 ÃD̃−

1
2

D̃ii =
∑

j
Ãij

Ã = A+ IN (2)

where D̃ is the diagonal degree matrix of Ã. The utilization
of the renormalization trick can constrain the number of
model parameters. In doing so, the model and its variants can

address the overfitting problem and reduce the computational
overhead of GNNs [24], [39].

With this renormalization trick, every node in the graph
can aggregate information from their direct neighbors, also
known as the first-order neighbors, in each forward propaga-
tion layer of aGCN.Accordingly, if wewant to passmessages
to, or aggregate information from nodes with high-order
proximity, one intuitive way is to increase the number of
convolutional layers (i.e., the model depth). Nonetheless, this
may result in the overfitting problem as the introduction of
more learnable parametersW . Kipf &Welling have shown in
their experiments that increasing the model depth will dete-
riorate the performance of downstream learning tasks, even
though the residual connections are used for training between
GCN layers [42]. Therefore, the depth of the vanilla GCN and
its variants usually have less than three convolutional layers.
As a consequence, they cannot aggregate information from
distant nodes in the network.

B. A MULTI-CHANNEL CONVOLUTIONAL LAYER
Instead of increasing the number of convolutional layers,
in this paper, we propose a multi-channel convolutional
architecture by enriching the number of input channels such
that higher-order information can be aggregated. As shown
in Figure 1, the model takes the feature matrix X ∈ RN×d

as input, each row of which represents the feature vector of
a node. Then, node information can be separately aggregated
in different channels. Specifically, the propagation network
in the channel k corresponds to a specific matrix Âk , which
is the k th power of the renormalized adjacency matrix Â. Our
forward model then takes the following form:

H = AGG(ÂXW1, Â2XW2, Â3XW3, · · · ), (3)
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where ÂiXWi represents a high-order GCN channel that cap-
tures the information from ith order neighbors. The operator
AGG aggregates node-wise information from all channels.

In this paper, we use the SUM operator as the aggrega-
tor function. The reasons are twofold: First, the aggregation
scheme in the vanilla GCN can be deemed as a class of
functions over the sets of neighbor nodes [40], [43]. Among
different aggregator functions, such as SUM, MEAN, MAX,
only the SUM operator can capture the full multiset (a gen-
eralized concept of the set) [43]. Consequently, with respect
to the proposed architecture in this paper, the SUM operator
is more powerful than others to distinguish diverse network
structures. Second, the implementation of the SUM operator
can attain a weighted summation over different convolutional
channels, which can magnify the relative important informa-
tion by summation. In doing so, the forward model can be
formulated as follow:

H =
k∑
i=1

(ÂiXWi), (4)

where k represents the total number of channels in the
architecture.

From the above equation, the learnable weight Wi in each
channel can be regarded as a pre-processing operation on
node features [26]. To reduce the number of model param-
eters and avoid overfitting, in this paper, we use a shared
weight matrix WS among different channels. Further, we use
a non-linear function σ to boost the expressive power of
our model. In doing so, the feature aggregation rule can be
rewritten as:

H = σ (
k∑
i=1

[ÂiXWS ]). (5)

Finally, we add a parameter α tomake a flexible adjustment
among different channels:

H = σ [
k∑
i=1

(αÂ)iXWS ]. (6)

It determines the weight decay of a channel as the order
increase. In doing so, the proposed architecture can aggregate
as high as k th order information through a network without
increasing the depth of GCNs. We name such a k-channel
GCN model as ‘‘MCGCN-k’’ for comparison and evalua-
tion in Section V. The detailed forward process is shown
in Algorithm 1.

C. INFORMATION AGGREGATION WITH
ARBITRARY ORDER OF PROXIMITY
Along this line, to aggregate arbitrary order of information
for each node, the number of channels should not less than
the diameter of the network G. However, for large-scale
networks, the diameter will become very large, that is,
k → ∞ in Equation 6. Alternatively, we introduce the Katz

Algorithm 1 The Forward Process of MCGCN-k
Algorithm
Input: The adjacent matrix A, feature matrix X , and

parameter α
Output: The predicted label distribution matrix Y

1 Ã← A+ IN , D̃ii←
∑

j Ãij ;

2 Â← D̃−
1
2 ÃD̃−

1
2 ;

3 A′← αÂ ;
4 if k > 1 then
5 for i ∈ [2, k] do
6 A′← αA(I + A′) ;
7 end
8 end
9 H ← σ (A′XWS ) ;

10 Y ← softmax(HWF ) ;
11 return Y

index as follows:

AKatz =
∞∑
i=1

αiÂi

= (αÂ)+ (α2Â2)+ (α3Â3) · · ·

= αÂ · [ I + (αÂ)+ (α2Â2)+ · · · ]

= αÂ · ( I +
∞∑
i=1

αiÂi)

= αÂ · ( I + AKatz). (7)

As a result, the Katz index can formulated as:

AKatz = αÂ · ( I − αÂ)−1. (8)

Accordingly, the feature aggregation rule becomes to be:

H = σ [αÂ · ( I − αÂ)−1XWS ]. (9)

Notably, the parameter α should be properly set to make sure
the convergence [44]. In doing so, we can aggregate arbitrary
order of information with just one-layer GCN. We name this
model as ‘‘MCGCN-Katz’’. The detailed forward process is
shown in Algorithm 2.

Algorithm 2 The Forward Process of MCGCN-Katz
Algorithm
Input: The adjacent matrix A, the feature matrix X , and

parameter α
Output: The predicted label distribution matrix Y

1 Ã← A+ IN D̃ii←
∑

j Ãij ;

2 Â← D̃−
1
2 ÃD̃−

1
2 ;

3 AKatz← α · Â · ( I − α · Â)−1 ;
4 H ← σ (AKatzXWS ) ;
5 Y ← softmax(HWF ) ;
6 return Y
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D. A FULLY CONNECTED LAYER
Once node features are aggregated through the message-
passing layer, they are treated as input of a fully con-
nected layer for multi-class node classification (see Figure 1).
Formally, the output of the forward propagation model can be
estimated as follows:

Y = softmax([σ (
k∑
i=1

ÂiXWS )] WF ), (10)

where WS ∈ Rd×dh is a learnable input-to-hidden weight
matrix in the convolutional layer, WF ∈ RN×C is a learn-
able hidden-to-output weight matrix in the fully connected
layer, and σ denotes an activation function. Many activation
functions can be adopted by σ , such as the rectified linear
unit (ReLu) and the leaky ReLU (LReLU). While in this
paper, we employ the Exponential Linear Unit (ELU) as the
activation function [45]:

σ (x) = ELU(x) =

{
x, if x ≥ 0
β(ex − 1), if x < 0

(11)

Accordingly, the output of the fully connected layer is
then normalized by a row-wise softmax activation, which can
transform the output into a series of probability for each class:

ŷi = softmax(oi) =
exp(oi)∑
j exp(oj)

, (12)

where oi the output vector of node i after the information
propagation and activation. The estimated label distribution
Y ∈ RN×C stacks N class distribution vectors ŷi on top of
one another.

Concerning the multi-class node classification tasks,
the cross entropy loss is used to train model parameters:

Loss = −
∑
i∈Vtrain

C∑
c=1

yic log ŷic (13)

where Vtrain is the set of labeled nodes used for training,
and C is the number of classes. The yic and ŷic denote the
ground-truth value and the predicted probability of node i
with respect to class c. It is worth noting that node set Vtrain
is different from the labeled set VL because there are some
nodes with known labels used for validation.

E. COMPUTATIONAL COMPLEXITY
For the sumGCN-k model, the computational complexity of
evaluating Equation 6 is O(k × |E| × d), where k is the
number of channels in the convolutional architecture, |E| is
the number of the non-zero elements in the Â, and d is the
dimension of node feature. Generally, we have |E| � N 2

due to the sparsity of real-world networks.Moreover, we have
k � |E| in the proposed model because k is less than
the diameter of the network. For the sumGCN-Katz model,
the computational overhead is relatively high because the
value of the Katz index requires calculating the inverse of a
matrix. Due to the existence of hyperparameter α, the entries

in (αÂ)i will become small as the order increases. Therefore,
an alternative implementation is to take a relatively large k to
attain an approximation of the Katz index, such as αk < 0.1.
In summary, the computational complexity of both models is
linear to the number of edges in the network.

V. EXPERIMENTS
In this section, we first carry out experiments on several
benchmark networks to evaluate the performance of our pro-
posed architecture by comparing it with the state-of-the-art
methods with respect to the semi-supervised node classifi-
cation problem on networks. Then, we conduct experiments
to verify the computational efficiency of our architecture.
Finally, we show how the different settings of hyperparameter
contribute to the performance of our methods in terms of
classification accuracy.

A. DATASETS
To evaluate the advantage of higher-order information aggre-
gation, we conduct experiments on two types of network
datasets that have been wildly used in the field of graph
representation learning. One is the academic paper citation
networks, the other is the air-traffic networks.

1) CITATION NETWORKS
For the citation networks, each node represents a pub-
lished paper and each edge between two nodes indicates
the existence of a citation relationship between them. The
ground-truth class of each node represents the main subject
of this paper. Intuitively, the densely connected modes are
more likely to have the same class. In this case, it is not
necessary to aggregate information from distant nodes. In our
experiments, we adopt the following three citation networks:

1) Cora Network [46]: This dataset contains a selection
of the Cora database which consists of 2,708 papers in
the field of machine learning with 5,229 citation links.
All papers have been classified into 7 classes according
to their main subject, involving Genetic Algorithms,
Neural Networks, Probabilistic Methods, Reinforce-
ment Learning, Rule Learning, and so on. Besides, each
dataset contains a binary Bag-of-Words (BoW) feature
vector, which is extracted from the paper abstract. The
dimension of the feature vector is 1,433.

2) CiteSeer Network [46]: This dataset is a part of the
Citesser database, which consists of 3,327 papers in
the field of machine learning and 4,732 citation links.
The class of each node is also generated based on their
main subject. Totally, there are 6 classes, involving
Agents, Artificial Intelligence, Databases, Information
Retrieval, and so on. The feature vector of each node is
generated using the Bag-of-Words (BoW) method, The
dimension of the feature vector is 3,703.

3) Pubmed Network [47]: The Pubmed dataset consists
of 19,717 scientific publications and 44,338 citation
links from the PubMed database. All papers have been
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TABLE 1. Statistic characteristics of the all datasets used in our experiments.

classified into 3 classes according to the disease type.
Each node in this network is associated with a TF-IDF
weighted word vector built from a dictionary consisting
of 500 unique words.

2) AIR-TRAFFIC NETWORKS
For the air-traffic networks, each node represents a real air-
port and each edge between two nodes indicates the existence
of airlines between them. Node labels of these networks are
generated based on the airport activity, which is measured by
the total number of landings plus takeoffs in 2016. Intuitively,
the class of an airport is related to its structural roles in the
corresponding network. Therefore, nodes that far away from
each other may belong to the same class. In our experiments,
we focus on the following two air-traffic networks:
1) Brazilian air-traffic network [18]: Data was collected

from the National Civil Aviation Agency (ANAC) of
Brazil from January to December 2016, which contains
131 nodes and 1,038 edges. The ground-truth label has
4 classes.

2) European air-traffic network [18]: Data was col-
lected from the Statistical Office of the European
Union (Eurostat) from January to November 2016. The
network has 399 nodes and 5,995 edges. Totally, there
are 4 ground-truth classes.

It is noteworthy that there are no additional node features in
air-traffic networks. Therefore, we treat the identity matrix IN
as the input feature matrix X of our methods.

Finally, the statistic characteristics of all datasets are sum-
marized in Table 1. Based on existing studies [17], [18], [34],
the labels of citation networks are more relevant to struc-
tural proximity among different nodes, while the labels in
air-traffic networks are more relevant to structural equiv-
alence (or roles) of different nodes. To better understand
their differences, we illustrate the Cora citation network and
the European air-traffic network in Figure 2. Nodes with
the same labels are shown in the same color. It can be
observed that nodes with the same color are inclined to
exhibit the community structure in the Cora citation network,
for example, the red nodes in Figure 2(a). On the contrary,
in the European air-traffic network, nodes with the same
color are far apart from each other, such as the yellow nodes
in Figure 2(b). In this case, one goal of our experiments is
to evaluate whether the proposed methods can achieve better
performance on both types of datasets.

B. BASELINE METHODS
Although a large amount of GRL methods have been
designed for graph learning, such as spectral clustering [49],
label propagation (LP) [36], manifold regularization [50],
semi-supervised embedding (SemiEmb) [51], evidence
shows that most of them perform relative poor compared with
the recent advanced GCNmethods. As a result, we omit these
results here.

The detailed descriptions about the baseline methods for
comparison in our experiments are introduced as follows:

1) DeepWalk [33]: This is a classical random walk-based
network embedding method, where the word2vec
model is first introduced to learn node embed-
dings [52], [53].

2) Chebyshev [39]: The Chebyshev GCN defines graph
convolutions using a k-degree polynomial of the Lapla-
cian to approximately estimate the output of Laplacian
eigendecomposition.

3) Planetoid [54]: The Planetoid GCN jointly train node
representations for classification and graph context pre-
diction, which does not depend on the graph Laplacian
regularization.

4) GCN [24]: The vanilla GCN method simplifies the
Chebyshev GCN via a localized first-order approxima-
tion of spectral graph convolutions, i.e., the renormal-
ization trick.

5) GCN-3: For a fair comparison, we add an additional
GCN layer to the vanilla GCN in order to aggregate the
farther information.

6) Monet [41]: This is a kind of Laplacian-based
approach, which designs a unified generalization of
CNN architectures to graph data.

7) GAT [25]: The graph attention network incorporates
the attention mechanism into each layer of the GCN
framework in order to weight the information from
different neighbors.

8) SGC [26]: The simplified GCN simplifies the vanilla
GCN by reducing the number of non-linear activations
and convolutional layers.

C. EXPERIMENTAL SETTINGS
Our experiments were implemented on a single PC with one
NVIDIA RTX 2070 GPU (8Gb of RAM) and one Intel Core
i7 CPU (i7-4771 @ 3.50GHz). Specially, all models in our
implements were coded by Keras based TensorFlow-GPU
version.
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FIGURE 2. An illustration of the Cora citation network and the European air-traffic network with colored labels. Nodes with the same label are
shown in the same color. (a) Nodes with the same label in the Cora citation network are inclined to exhibit the community structure, where densely
connected nodes are more likely to have the same color. (b) Nodes with the same label in the European air-traffic network are inclined to exhibit
similar structure roles, where nodes far apart may have the same color. This figure was produced using Fruchterman-Reingold force-directed
algorithm [48].

Concerning the three citation networks, we use the same
method to split the data sets as in [24], [25], [54]. For each
network, 20 nodes per class were used for training, 500 nodes
were used for validation, and another 1000 nodes were used
for testing. Differently, for each air-traffic network, a quarter
of all nodes were first randomly sampled for training. Then,
another quarter was randomly sampled for validation. While
the rest were used for testing. For comparison, all results were
averaged over 50 experimental runs.

Specifically, the Glorot method [55] was used for model
initialization and the cross-entropy loss was minimized using
the Adam SGD optimizer [56]. During the training period,
the learning rate is fixed at 0.01. Additionally, a maximum
of 200 epochs were set for training and an early stop-
ping strategy was implemented with patience of 30 epochs.
In other words, the training will be interrupted automatically
if the loss does not decrease in several consecutive epochs.
Moreover, the dropout [57] and L2 regularization was applied
to all layers. Finally, hyperparameters of all models were
tuned with grid search by validation data in following ranges:
dropout rate p ∈ [0.1, 0.9] with an interval of 0.1, the L2
regularization term coefficient λ ∈ {1e − 3, 5e − 4, 1e − 4,
5e−5}, the number of first hidden units h ∈ {16, 24, 32, 64},
α ∈ [0.1, 1.0] with an interval of 0.1. For the number of
hidden units in the output layer, we set it equal to the num-
ber of classes. In Table 2, we summarize the value of all
hyperparameters used by our methods.

D. PERFORMANCE COMPARISION
1) CLASSIFICATION ACCURACY
We first evaluate the performance of our methods on three
citation networks. Table 3 summaries the results of classifica-
tion accuracy surveyed from existing studies [25], [26]. It can

TABLE 2. The hyperparameter values used by our methods for
comparison on different networks.

TABLE 3. Classification accuracy of eight baseline methods from
literature.

be observed that the performances of both the Multi-Layer
Perception (MLP) and the DeepWalk methods are worse
than other GCN methods in the three citation networks. The
reason is that the MLP method can only use the node feature
information without taking into consideration the contribu-
tion of network structure. On the other hand, as one kind of
random walk-based network embedding methods, Deepwalk
can only use the structural information of a network, which
ignores the contribution of node features. The other meth-
ods are different variants of GCN methods, which involve
both network structure and node features into an end-to-end
learning process [24]–[26]. Among them, the GCN, GAT, and
SGC methods have better performance than the other three
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TABLE 4. The comparison of classification results on the three citation
networks.

methods. Therefore, in our experiments, we mainly compare
the performance of our methods with the three GCNs.

Table 4 summarized classification accuracy with the
standard deviation of each method implemented following
our experimental settings.1 It can be observed that our
MCGCN-Katz model has the best performance in the Cora
network, which can gain 2.1% improvement compared
with the GCN method. The MCGCN-3 methods can also
achieve higher accuracy than the GCN-3 method. Similarly,
in the Pubmed Network, the MCGCN-Katz method can also
achieve the best performance. As for the Citeseer network,
the performance of our models is slightly worse than the
SGC and GAT methods. However, as stated in [26], SGC
can reduce to a multi-class logistic regression on the network
by removing the non-linear functions and a learnable kernel
compared with the vanilla GCN. Consequently, the gener-
alization ability of SGC is relatively weak. While for the
GATmethod, the computational overhead and memory usage
much higher than our methods due to the usage of the
attention mechanism [25].

Table 5 shows the classification results on the two air-
traffic networks. It can be observed that our MCGCN-Katz
method achieves much better performance than all baseline
methods. The reason is that for the air-traffic networks,
node labels are more relevant to their structural roles on the
network, such as transportation hubs or mediators [17], [18].
In this case, two airports with the same label may be far apart
from each other in the network. Among all these baseline
methods, only the MCGCN-Katz method allows arbitrary
order of information aggregation through the network. As a
result, nodes with the same label are more likely to share their
structural feature.

In summary, evidence has revealed that nodes far apart
from each other may have similar functions in complex
networks [58]. Therefore, it would be essential for GCNs to
enable higher-order information aggregation without increas-
ing the computational overhead. In this paper, the proposed
multi-channel graph convolutional architecture allows infor-
mation aggregation of nodes with arbitrary order of proxim-
ity in a network, where other GCN-based GRL algorithms
cannot leverage in practice. Moreover, the shared weight
mechanism can avoid the overfitting of the proposed

1Codes are available at https://github.com/zhouchunpong/GCN_Keras.

TABLE 5. The comparison of classification results on the two air-traffic
networks.

MCGCN architecture by reducing the complexity of the
model. In doing so, the aggregation of higher-order infor-
mation together with the shared weight mechanism ensures
the efficiency of the proposed MCGCN algorithm in solving
the semi-supervised node classification problem on attributed
networks.

2) COMPUTATIONAL OVERHEAD
We compare the training time of our methods (MCGCN-3
and MCGCN-Katz) with the state-of-the-arts GAT method
on the three citation networks. Specifically, all codes run
on a GPU implementation in TensorFlow with the same
experimental settings and environment (see Section V-C).
We measure the running time from the first epoch to the
last epoch and repeat it 50 times. The average running time
is used for comparison. Figure 3 shows the comparison of
training time between GAT and our methods on the three
citation networks. It can be observed that both MCGCN-Katz
and MCGCN-3 are superior to the GAT method. In the Cora
network, the computational overhead ofMCGCN-Katz is just
31.5% of that of the GAT method. Moreover, the MCGCN-3
method just takes 26.8% of the GAT’s overhead. Similar
results can also be found in the other two networks. While
for the Pubmed network, the GAT method failed to train the
model because it requires more GPU memory. The reasons
are threefold: First, the usage of attention mechanisms in

FIGURE 3. The comparison of training time between GAT and our methods
on the three citation networks. The asterisk (*) indicates out-of-memory.
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the GAT method enlarges the requirements of memory and
computing resources. Second, to stabilize the learning pro-
cess of the attention mechanism, multi-head attention will
be independently implemented, which will aggravate the
computational burden. Third, the output features of the first
layer will be concatenated, which increases the dimension of
hidden layers, as well as the number of learnable parameters.
In summary, with much less computational overhead, our
methods can achieve as good classification accuracy as the
GAT method.

E. PARAMETER SENSITIVITY
In this part, we will study how the different settings
of hyperparameter α can affect the performance of the
semi-supervised nodes classification task. In the proposed
architecture, α is a decay parameter determining the relative
importance of information channels with higher-order
proximity. As α increases, features from higher-order chan-
nels will have a relatively high weight. However, to keep
the Katz-index converging, the value of α cannot increase
infinitely. Figure 4 shows the sensitivity analysis of the
MCGCN-Katz method on the Cora and Citesser networks as
α increases. It can be observed that the best choice of α is
different on different networks. The best performance on the
Cora and Citesser networks is achieved when α = 0.7 and
α = 0.6, respectively. In the future, the value of α can also
be learned automatically during the training stage.

FIGURE 4. The sensitivity analysis of the MCGCN-Katz method on the
Cora and Citesser networks as the hyperparameters α increases.

VI. CONCLUSION
In this paper, we have proposed a multi-channel graph convo-
lutional architecture to tackle the semi-supervised node clas-
sification problem on attributed networks in an end-to-end
manner. Different from existing graph neural networks,
the proposed architecture allows higher-order information
aggregation through the network by increasing the number
of input channels rather than the depth of a GCN (i.e., the
number of layers). Further, based on the notion of Katz index,
we have also introduced a variation of the architecture that

supports arbitrary order of information aggregation without
aggravating the computational overhead. Moreover, we have
introduced a shared weight mechanism to access the relative
importance of different attributes. To evaluate the perfor-
mance of the proposed GCN architecture, we have carried
out experiments on several benchmark networks, including
3 citation networks and 2 air-traffic networks. Through com-
paring with the state-of-the-art GRLmethods, we have shown
that our framework can achieve better performance in terms
of both node classification and computation efficiency. The
proposed multi-channel architecture offers new insight into
investigating the function of long-range week connections in
complex networks.

In the future, the proposed MCGCN architecture can be
extended into following two directions. First, in this paper,
we only considered the information aggregation of nodeswith
higher-order proximity. In the field of complex networks,
evidence has shown that higher-order connectivity patterns
play essential roles in understanding fundamental functions
of complex systems [58]. Therefore, it is worthwhile to
construct input channels of the proposed MCGCN based
on other higher-order structures, such as motifs, graphlets,
Weisfeiler-Lehman isomorphism, and shortest path length.
Second, an appropriate attention mechanism can be involved
to automatically assess the relative importance of informa-
tion channels. In doing so, we can quantify which type of
higher-order structures is more relevant to the machine learn-
ing task on networks. The relationship between higher-order
structures and network functions can further help improve the
interoperability of the GRL architecture.
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