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Abstract—Distributed threat-events are one of the main chal-
lenges facing the networks. Although a lot of research has been
conducted for these issues, the situation has not been significantly
improved. Different from existing victim-centric approaches, in
this work we propose a new network-centric approach for the
detection of distributed threat-events. The distributed network is
treated as a holistic system that consists of spatially interconnect-
ed network elements. Network events are detected by the dynamic
behavior analysis of the distributed networks. We develop a
model consisting of two-layer random fields to describe the time-
varying traffic forwarding behavior of the distributed networks.
The bottom layer describes the interaction and influence of the
network elements under the action of network events. Marko-
vianity is adopted to characterize the spatiotemporal context
of each network element’s behavior patterns. The top layer
describes each network element’s traffic features driven by the
underlying behavior patterns. A Gaussian mixture model is used
to capture the statistical features of the network traffic for each
behavior pattern. We derive algorithms for parameter estimation
and event detection. Numerical experiments using real datasets
and different network scenarios are presented to validate the
proposed approach. Performance-related issues and comparison
with related works are discussed.

Index Terms—Spatiotemporal context, Distributed networks,
Threat-event detection, Markov random field.

I. INTRODUCTION

Distributed threat-events (DTEs) have been one of the major
challenges facing the network. Their main feature is that
massive physical (or virtual) computing and communication
resources are abused for malicious purposes. A DTE manifests
itself in various ways, such as distributed denial of service
(DDoS) attacks [1], virus and worm propagation [2].

Recently, with the rapid improvement of the emerging In-
ternet technologies, e.g., software-defined networking (SDN),
network virtualization (NV), Internet of Things (IoT) and the
5" generation (5G) network, the role of networks is changing.
It is no longer limited to acting as a data-pipe but carrying
more and more functions and services, such as network-based
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data caching [3], virtualized data transmission [4], multi-
homing services [5], and interconnection of heterogeneous
networks [6]. Therefore, besides the specific attack targets,
the hazard of DTEs also seriously threatens the availability
and stability of the infrastructure and various communication
services, such as wide area networks, enterprise networks,
data center networks and social networks. For example, in
the scenario of virtualized network slicing [4], a DTE that
targets at a specific victim and spreads on a physical infras-
tructure or a virtual-layer service network will compromise the
performance of all related network communication services,
which adversely affects the interests of many parties such
as infrastructure operators, virtual network tenants, service
providers, and massive end customers. Therefore, detecting
and resolving DTEs from the perspective of the network-side
has become one of the major challenges for network operators,
which is also the main motivation of this work.

Literature survey shows that in the past two decades a lot
of research has been conducted for detecting various types of
DTEs, e.g., DDoS [7], malware [8], ransomware [9], rumors
and spams [10]. However, most of them focus on the pro-
tection of the specific victims rather than the communication
networks, which makes them follow a victim-centric approach
(VCA) and unsuitable for distributed networks. The main
limitation of these VCAs is that the controllable resources
(including network facilities and available time for analysis
and response) are usually severely squeezed by the ongo-
ing DTE. Due to this reason, collaborative attack detection
(CAD) has received extensive attention, such as correlation
analysis [11], multi-domain filtering [12], interaction of adja-
cent autonomous systems (ASes) [13], and traceback through
routers [14]. These works mitigate the impacts of the above
VCA limitation by adding measurement probes around the
victims, which enables the victims to obtain more information.
From the perspective of their working principle, they are not
network-oriented solutions, because they do not provide a
holistic view and modeling method for the time-varying be-
havior of distributed networks. Moreover, they don’t take full
advantage of the inherent distributed interconnection features
of networks to achieve collaborative early detection.

Motivated by these pioneer works, we propose a new
network-centric approach (NCA) for detecting DTEs from the
perspective of distributed networks. The proposed NCA is
expected to improve the performance of DTE detection from
three aspects: (i) The VCAs can only deal with the threats it
faces, while the NCA can deal with the threats against different
targets, because the network is the only means of spreading
threat events. (ii) The VCAs are difficult to resist large-scale
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threat events due to the limited resources, while the NCA
can use distributed links to mitigate, capture and trace back
the threat events. (iii) Compared with the VCAs, the NCA
can perceive threat events earlier and implement early defense
measures. In this work, we treat the distributed network as
a holistic system that consists of interconnected network ele-
ments (NEs) and acts as a carrier for network events. Because
the propagation of network events is achieved by means of data
transmission (e.g., IP packets) and drives the traffic forwarding
behavior of each NE located on the propagation paths, the
spatiotemporal distribution of a network’s behavior patterns
can be used as the fingerprint for the network event detection.
The key issue is to derive a reasonable model for describing
the time-varying behavior process of the distributed network.
To this end, we adopt the framework of Markov random fields
(MRFs) [15] in this work. The proposed model consists of
two-layer random fields. In the bottom layer, we define a
finite state set to denote the behavior patterns for each NE
under the actions of network events and adopt Markovianity
to characterize the spatial and temporal context of each NE’s
behavior patterns. The spatial context of the behavior patterns
describes the correlation and interaction of the interconnected
NEs, while the temporal context describes the time-varying
process of the same NE’s behavior patterns. The top layer
represents the traffic features observed at each NE driven by
the underlying behavior patterns. We further use a Gaussian
mixture model (GMM) to capture the statistical characteristics
of the network traffic for each underlying behavior pattern.

Based on this model, each NE is able to automatically
determine the ongoing network event based on the spatiotem-
poral Markovianity of the behavior patterns, while the network
operator can infer the macroscopic evolution of the ongoing
network event via the spatiotemporal distribution of the NEs’
behavior patterns. Thus, the DTE detection ultimately comes
down to the problems of model learning and behavior pattern
recognition. To solve these problems, we derive the parameter
estimation and event detection algorithms for the proposed
model based on the algorithms of expectation-maximization
(EM) and maximum a posteriori (MAP). We conduct two
experiments using the open real datasets and different dis-
tributed network scenarios to validate the proposed solution.
Performance-related issues and comparison with related works
are discussed. In summary, the main contributions of this paper
are threefold:

e A new NCA is proposed to detect DTEs for distributed
networks. We treat a distributed network as a holistic sys-
tem, and achieve the DTE detection through the dynamic
behavior characteristics of the network.

o A two-layer model is developed to formulize the proposed
NCA based on an MRF-framework. Markovianity is
used to describe the spatial and temporal context of a
distributed network’s time-varying behavior patterns.

o Algorithms for model learning and event detection are de-
rived based on the EM and MAP algorithms. Performance
evaluation results are presented based on two experiments
with real datasets.

The rest of this paper is organized as follows. In Section II,

related works are surveyed. In Section III, we introduce the
proposed scheme. In Section IV, experiments and results are
presented. Some issues related to this work are discussed in
Section V. Finally, Section VI is devoted to the conclusions
and the further work.

II. RELATED WORKS

In this section, we will briefly summarize the existing DTE
detection techniques. Based on the published surveys [10] [16]
[17], we classify the related works into four categories by the
types of their approaches.

The threshold based approaches have been widely used
in industrial applications. The data come from monitoring
systems, while the threshold values are usually pre-defined by
experts. When the measured values exceed the preset threshold
range, it indicates the occurrence of a network event [18]. Yang
et al. [19] proposed a Two-Phase Self-Join (TPSJ) scheme
to evaluate self-join queries for an event detection in sensor
networks. Krishnamachari et al. [20] used a wireless sensor
network (WSN) for detecting an environmental phenomenon
in a distributed manner. The threshold-based approaches can
meet the requirements of simple engineering applications. The
main issue is that they rely too much on prior knowledge and
lack flexibility, as the single static threshold is not suitable
to the complex and varying network environments. Moreover,
these methods can only report the current state of network
events but cannot characterize their dynamic evolution process.
Thus, it is difficult for them to achieve early warning and
response.

Probabilistic reasoning based approaches also have been
used to model and identify the behavior of distributed sce-
narios. In Wen’s work [21], temporal dynamics and spatial
dependence were taken into account to model and identify the
propagation of social network worms. In the work of Karyotis
[22], a stochastic framework was proposed for modeling the
communication network under random attacks. These works
take into account spatial interactions of adjacent nodes but ig-
nore time-varying factors. Moreover, they are more concerned
with the probability that the individuals in the network are
affected, but not the event detection.

Signal processing is another commonly used method. In
Sadreazami’s work [23], the measurements of a sensor network
were modeled by a graph signal whose statistical properties
were utilized for intrusion detection. In Illiano’s work [24],
wavelet transform was proposed to detect the spoofed and
masked events for wireless sensor networks, including mali-
cious data injections and false network events. Jiang et al. [25]
grasped the time and frequency features of the network-wide
traffic based on a transform domain analysis, and utilized the
difference in high frequency features to detect the abnormal
network traffic. The signal processing approaches are always
with high computation complexity. For example, the graph-
signal based algorithm requires an eigenvalue decomposition
on the graph Laplacian. Moreover, because signal models in
different applications and scenarios are very different from
each other, it is not easy to ensure versatility.

Machine learning has recently received wide attention in
various fields. Wu et al. [26] presented a framework for
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Fig. 1: Model

detecting remote access Trojans at the area network borders. A
Naive Bayes classifier is used to detect the anomaly from the
IP flows. Peng et al. [27] proposed a clustering method for an
intrusion detection system based on the mini batch KMeans.
Yang et al. [28] proposed a Gaussian-mixture model-based
detection scheme to mitigate data integrity attacks in a smart
grid, which operates through narrowing the range of normal
data. Li et al. [29] presented a robust multivariate probabilistic
calibration model for network-wide anomaly detection and
localization. They applied the latent variable probability theory
with multivariate ¢-distribution to establish the normal traffic
model, and detected the network anomaly by the Mahalanobis
distance of samples. Recently, we have also noticed that deep
neural networks (NNs) have been widely used in intrusion
detection, such as recurrent neural networks (RNNs) [30],
convolutional neural networks (CNNs) [31] and long short-
term memory (LSTM) [32]. The first limitation of them is
that they are victim-centric rather than network-centric. The
second is that most of the NN-based schemes cannot provide
an reasonable mathematical analysis for the physical processes
of the problems to be solved. Moreover, a lot of labelled data
are required for them, which limits their application in real-
world scenarios.

Overall, although DTE detection has received wide attention
and made some progress, most of them still follow the
victim-centric architecture. The detection methods designed
according to the characteristics of the network-side are still
rare. Machine learning methods based on deep NNs may be a
new direction in the future. However, these technologies are
not yet suitable for the unsupervised scenarios considered in
this work. Moreover, almost every solution is bundled with
a specific application scenario, which leads to the lack of
versatility and flexibility.

III. THE PROPOSED APPROACH

A. Rationale

Different from existing works, here we introduce a new
NCA for DTE detection from the perspective of network-side.
We derive the proposed spatiotemporal behavior model in three
steps and start with a single-point model.

(b) Distributed spatial model.

S)

(c) Spatiotemporal context model.

ing approach.

Figure 1(a) shows a model to describe the working mecha-
nism of an NE!. It consists of four basic elements, including
the entity of an NE (the bottom circle), an ongoing network
event (the gray hexagon inside the bottom circle), the traffic
forwarding behavior patterns (the middle gray ellipse) of the
NE, and the measurable traffic features (the top ellipse), e.g.,
arrival rate. Their relationship is as follows: (i) the NE is a
data forwarding device, and acts as a carrier or container for
the ongoing network event; (ii) the patterns of an NE’s traffic
forwarding behavior are controlled by the current event; (iii)
the external observable traffic features are generated by the un-
derlying pattern of traffic forwarding behavior. In this model,
an NE’s behavior pattern and the event that it encounters are
closely related, and further influence the NE’s external traffic
features. From the perspective of DTE detection, the external
traffic features refer to the observable physical phenomena
and metrics, while both the behavior pattern and the event
represent the unmeasurable (hidden) logical factors that can
only be inferred by the external traffic features. For example,
when a virus propagation event passes through an NE, the
NE will be forced to switch its current forwarding pattern to
another one that meets the requirements for virus propagation
and further causes a large number of port scanning traffic to be
forwarded from this NE. Combined with time series analysis
methods, the single-point model can be used for anomaly
detection, which has been widely adopted by VCAs [26].

However, the main drawback of the single-point model is
that it can only implement the local detection, but cannot
capture the interactivity of the behavior patterns and the spatial
distribution of events. Thus, it is unable to provide the overall
view of the events from the network-side perspective. For this
reason, we extend it to a distributed spatial model shown in
Fig. 1(b) that adopts “spatial field” to describe the spatial
context and interactivity of the interconnected NEs. In physics,
a field is a physical quantity represented by a number or
tensor that has a value for each point in space-time. Here,
we use three fields to build the distributed spatial model. The
bottom is “NE-field” that consists of interconnected NEs. The
solid lines shown in the NE layer of Fig. 1(b) denote the
physical/virtual links connecting the NEs. This layer acts as
the distributed carrier of network events. The middle is “state-

'In this work, we do not distinguish the type of NE. An NE can be
a physical/virtual router, switch, gateway, proxy or any other device that
participates in packet/data forwarding.
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field” that describes the spatial context of the behavior patterns
for the interconnected NEs. The top is “observation-field” that
is composed of the external behavior features of each NE.
Based on this model, we can estimate the spatial distribution of
the behavior patterns for all NEs, and further infer the potential
attributes of the ongoing network event, such as the type and
the purpose.

Because time continuity is a prominent feature in the
evolution of network events, the behavior patterns of an NE
are not only spatially correlated, but also time-dependent,
i.e., the traffic forwarding behavior patterns that an NE has
experienced in the past usually have an important impact on
its behavior in the near future. Therefore, we further extend
the above distributed spatial model to a spatiotemporal context
model shown in Fig. I(c) that describes the time-varying
spatial state field and the observation field2. In this model,
the interconnected gray ellipses denote the spatiotemporal
distribution of the event-related behavior patterns and form
the spatiotemporal state-field (SSF), while the white ellipses
denote the external traffic features emitted by the NEs and
form the spatiotemporal observation-field (SOF). For example,
compared with Fig. 1(b), in Fig. 1(c) two dotted lines are used
to connect NE3’s behavior patterns adopted at t—1, ¢, and t+1,
which describes the temporal context of the traffic forwarding
behavior patterns.

Based on this spatiotemporal behavior model, the network-
centric DTE detection can be attributed to inferring the hidden
SSF via the measurable SOF, which is a typical distributed un-
supervised labeling problem. Unlike the existing victim-centric
anomaly detection, it involves the analysis and inference of
spatiotemporal context.

B. Formulation

According to the above modeling approach, we use an
undirected graph G =< K,£ > to describe the underlying
distributed network, where K = {1,...,K} and £ denote
the sets of NEs and the edges between two adjacent NEs,
respectively. We use v; ; € V to denote the k" NE observed
at the ' time slot, where k € K,t € T = {1,...,T}, and
Vo= {011, VLK Vot s Vks VT, - UK} S
the collection of all v, , for all (¢, k). Let v; = {v1, ..., Ve, Kk }
denote a snapshot or slice of spatial topology of NEs observed
at time ¢. Then, the snapshot sequence of the distribut-
ed network varying with time can be simply expressed as
vi.r = (v1,...,vr). Similarly, let Sy and O denote the
random variables of hidden state and observation of v,
respectively. The lowercase variables s;;, € S and o, € O
denote the instances of S;j and Oy, respectively. S is the
set of all possible states, while O is the collection of all
candidate observations. Let S = {S; x|t € T,k € K} and
O = {Ox|t € T,k € K} respectively denote the random
variables of the entire hidden SSF and SOF, while s € S and
o € O denote the instances of .S and O, respectively. S and O
are the sets of all possible configurations of hidden SSF and
SOF, respectively.

’In order to highlight the spatiotemporal context model, we omitted the
NE-field here.

4

Based on the previous section, network-centric DTE de-
tection can be solved by inferring the hidden SSF via the
measurable SOF, which is equivalent to seeking an optimal §
given o and the parameter set {2 of the model, i.e., seeking an
optimal s that satisfies formula (1)

§ = arg max{Pr[s|o, £2]}. ()
seS

Based on the Bayes theorem, the posterior probability
Pr[s|o, 2] can be calculated by the emission probability
Prfo|s, 2] and the prior probability Pr[s|f2], as shown in
formula (2) where the term Pr[o] is a constant:

Pr[s|o, 2] = Pr[o|s, 2] - Pr[s|2]/Pr[o]. (2)

The conditional probability Pr[o|s, {2] in formula (2) repre-
sents the probability distribution of external behavior features
when the underlying behavior pattern is given. It describes
the relationship between the SOF and hidden SSF. In order
to make the model tractable, we subject the model to the
following constraints: the hidden state (i.e., the underlying
behavior pattern) of a node is affected and determined by the
hidden states of its spatiotemporal neighbors, while a node’s
observation is only controlled by its current hidden state and
is independent of the observations and hidden states of other
nodes. This constraint has been widely adopted by the hidden
Markov models; it has also been proved to be reasonable and
effective for model simplification. Thus, the joint conditional
probability Pr[o|s, 2] can be further calculated by the product
shown in formula (3):

Prfo|s, 2] = HtkPr[Ot’HStvk’m' 3)

Then, the Gaussian mixture model (GMM) is employed
to formulize the local emission probability Pr[o; k|s¢ k. 2]
of formula (3). Here we let a,(r) denote the local emission
probability Pr[o, x|s; x, {2] and calculate it by equation (4):

aq(r) = Pr[Oy 1 = 7Sk = ¢
N

= W g Pr[Os s = 7[Sik = q,0n]
n—=1 “4)

N
_ 1 (r = fin,g)?
- Z Wn,,q exp(— 252 )7
n=1 A /27‘[0-721’(] n,q

where w, 4 > 0, 2521 Wy,q = 1, the subscript n denotes
the n*" Gaussian component. The parameter set is 6, , =
(tn,gs On.q, Wn,q) that includes the means i, 4, the variances
07, and the weights w, 4. 7 € O and ¢ € S are the values
of observation and state, respectively.

For the term of prior probability Pr[s|{2] in formula (2), it
describes the joint probability of all NEs’ behavior patterns
within a given space-time area. To derive the solution for

Pr[s|£2], we first define the local prior probability as:

bek(q) = Pr[Ser = q|Sr0, Vore €V —{ve i}, AL, (5)

where V — {v; 1} is the NEs excluding the v, and ¢ € S.
The b, (q) represents the probability of the state ¢ taken by
the NE v, ;, when the states of the remaining NEs are given. It
essentially describes the spatiotemporal context of each NE’s
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behavior pattern, i.e., the traffic forwarding behavior pattern
of each NE is related to all other NEs due to the network’s
connectivity. Existing research shows that the influence of
nodes decreases with propagation in a network. Based on
this property, in this work we only consider the one-hop
spatiotemporal context and ignore the influence of multi-hop
neighbors. Then the local prior probability b, x(q) is simplified
by formula (6):

be,k(q)

where NtTk and N ', denote the corresponding one-hop tem-
poral and spatial nelghbors of v, respectively. Actually,
formula (6) shows the first-order spatiotemporal Markovianity
of the hidden SSF. Based on the Hammersley-Clifford theorem
[15], the local prior probability b;(q) is equivalent to the
Gibbs distribution that can be calculated by:

be k(q) = exp(—=Uir(q|N)/Zix(N), q € S, (7

where A denotes the parameter set used to describe
the interaction between the neighboring NEs. Z; ,(\) =
> ges €P(—Uik(q)) and Upk(q) are the marginal parti-
tion function and marginal energy function, respectively. The
Uy k(q) is calculated by formula (8):

U, y=¢
i tkE vr NS, T}

t,k?

~ Pr[Si :q|sN§k,sNzk7A],q€S, 6)

Vvt,k(qa ST,K)? (8)

where &, , = 1/(|N7 | + IN7.|) denotes the normalized factor
of node energy used to eliminate the influence of the number
of neighbors in space and time on the calculation of energy
function. |N7,| and |N{,| are the number of spatial and
temporal neighbors of vy, respectively. Here the Potts model
[33] is used to calculate the partition function. Let V; (g, s+ )
denote the potential function of the two neighboring NEs.
Thus, for the second order neighborhood system the potential
function is defined by

Ov (S‘r,n = CI)
B, (srx # )

where 8 denotes the parameter associated with the pairwise
interactions between two NEs.

Directly evaluating the prior probability Pr[s|f2] shown in
formula (2) is prohibitive even for problems of moderate size,
since there are a combinatorial number of NEs in V for a
state set S. To make Pr[s|{2] solvable, we utilize pseudolike-
lihood [34] to replace it approximately. Thus, combining the
formulas (5) and (6), the Pr[s|f2] can be calculated by:

Pr[s|2] ~ H Prist k|Srm: Yore €V — {ve i}, Al
vt,kEV

H Pr[st,k|sNik ’ SNZk ) )‘]

v,k EV

H bt,k(st,k)~

v,k €V

V;t,k(q’sr,m) = { y U € {NgkaNZk}’ 9)

12

(10)

Based on the above derivation, we define the model’s param-
eter set as 2 = {p g, 0n.q, Wnq,B},n € {1,....,N},qg € S.
The behavior pattern inference algorithm and model learning
algorithm will be introduced in the following.

5

Algorithm 1 SSF Inference Algorithm

1: function SSF(o, 2)

2: Initialize : s(%);

3: for all v,,, €V do

4: for all g € S do

5: aq(r) = o0y Wng Pr[Opk = 7|Si 1 = ¢, 00 q];
6: bek(q) = Pr[Sy i = q"SNf,k’st,T,k’)‘];
E §ek(q) = aq(r)bek(q);

8: end for

9: Stk argmax, e s x(q);

10: end for

11: va eV: §t,k < St,ks

12: return S;

13: end function

C. Behavior patterns inference

The essence of behavior patterns inference is to estimate the
underlying SSF given the parameters of the model. It is based
on the MAP criterion and formula (1). Algorithm 1 shows
the pseudocode of our iterative algorithm.

The input is the observations o and parameters of model
£2. The output is the optimal state field 5 to be estimated. In
the initialization process (the 2"? line), s(*) is obtained by
the prior knowledge on SOF and SSF, or by the clustering
methods, e.g., KMeans. For each NE (the grd line), the
algorithm traverses all the potential states (the 4t line), then
the state with the maximum probability is chosen as the
optimal result (the 9¢" line). Note that the probability of
a potential state includes two parts based on formula (2):
the first part shown in the 5" line is the local likelihood
probability a,(r) given by formula (4); the second part shown
in the 6! line is the partial prior probability b; . (g) given by
formula (7). The algorithm estimates the SSF by the iterated
conditional mode (ICM) [15] that maximizes local conditional
probabilities sequentially. This makes the behavioral pattern
inference algorithm independent of the network size and more
flexible.

Since each state represents a specific behavior pattern as-
sociated with the ongoing network event encountered by an
NE, the DTE detection is equivalent to inferring the hidden
SSF. In addition, the SSF also provides a global view of the
network event from the network-side perspective.

D. Model Learning

Similar to most machine learning-based applications, model
learning is required before it is applied. The training data
are the historical observations collected from the distributed
network. Because the SSF is usually unknown/unlabelled, the
model learning has to adopt an unsupervised learning method.
The EM algorithm [35] is a classic method to find maximum
likelihood parameters of a statistical model when the equations
cannot be solved directly. For the above double-layer random
field model, the @ function is defined by

Q([0Y) =

E{InPr|o, 5|42]|0, 2}, (11)
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where 2() and (2 denote the parameter sets obtained in the
[*" iteration and to be estimated in the (I + 1) iteration,
respectively. The learning algorithm consists of two steps for
each iteration:

o The E-step: calculating the Q(£2|2(");
e The M-step: finding the optimal parameter set by
QU+ = arg max, Q(2|021);

o [ =1+1, repeating the above two steps until meeting the

condition of convergence.

A computable form of the ) function is shown in for-
mula (12), where Ty (5", o0 e, w4y and Ty(50+D)
denote the first term and the second term on the right-side of
the third equal sign, respectively. Then, the model’s parameters
can be estimated by maximizing Tl(uggl), Ef;”, Ef;”)
and T, (BU+1)) independently since they are not related.

Q(R|2Y) = E.{InPr[o, s|2]|o, 2V}
= Z Pr[s|o, 2] - In Pro|s, £2] Pr[s|£2]
s€S
N
=>_ D Prldlows, 20 In{}  wn g Prlovkle, 23+
q€S t,k n=1
Z ZPr[CI‘Ot,k, QO] - nPr[S; . = ¢
q€ES t,k
= Tu(uy ;) oY wila D) + To(pUH)
(12)
The parameters 2 = {(, ¢, On.q, Wn,q}, 7 € {1,...., N},q €

S in the term 7; can be estimated by solving the following
differential equations:

I+1 1+1 1+1
8#313[73( ;q ),qu %10( )H 0
I+1 I+1 I+1
S Y o )] = 0 (13)
)’ I41) (141 z+1
sot Ti(na ™ og " wilg ) = 0.

Then, the parameters are calculated by the following for-

mulas:
(1) _ Teptbnma)on
e Zf k “/t k(n,q)
(I4+1)y2 O k 'Yt k( n,q) (0t — #(l+1))
n 14
(om.a )" = P (14
(I+1) — zt k ’Vt k("vq)
" Zt,k Zﬁl 1 'yf k ('"JI)

where 7,5 ,)C(n g) is calculated by formula (15):

Q) ]

pr® [q]ot.k] wﬁf?q Priot k|q,0njg

7n.q) = | !

PrOfous] T 50,1 wiy Prloclg, 03]
15)
In this formula, the Pr") [g|o; 4] is calculated by formula (16):
0 Prlo k|q] - Pr[S, ), = qlsl(\fi s
Prq|oy, o (16)
[Q‘ t k] PI‘( )[Ot,k]

6

Algorithm 2 Model Learning Algorithm

1: function Learning(o)

2: Initialize : | « 0,02 « {u q,a,(fzh
{1, ,N} qE< S} L @ +— 0, Cemv

3: repeat

4. 50« SSF(o0, 20);

5. Update {fin,q,0n.q, Wn.q} based on formula (14);

6: Update {3} based on formula (18);

7.

8

9

B0, n €

I+ 1+1;
0O 4 {finq, Fn.qs g, B} )
LD e 5,3, cnag(onk 20)b (gl 20);
10: until |£ o — (171)| < Ceom
1: 2+ 0O
12: return (2 ; ;
13: end function

M and Y

NP NTx
temporal neighbors of v;,, in the [*" iteration, respectively.
The likelihood Pr(")[o; ;] has the form:

where s denote the states of the spatial and

@

PI‘Otk

sO an

Q‘SNS ) NT

ZPI‘ oklq] - Pr[St B =

qeS

In contrast to most of the MRF-based works that ignore
the state field parameters or directly specify its value through
artificial experience [36], here we estimate the value of 3 via
the learning algorithm without manual intervention:

0

e (T8 = 0.

(18)

It should be noted that there is no close-form solution for
B. Thus, 8 can only be calculated by numerical solutions, e.g.,
Newton’s Method [37] or gradient descent [38].

The pseudocode of the Model Learning Algorithm is shown
in Algorithm 2. The input is the historical observations o
collected from the distributed scenarios, i.e. the training data
of the model. The output is the parameter set (2 of the model.
In the initialization process (the 274 line), the initialization
model parameters 2 can be obtained by the prior knowledge
of SOF and SSE. The state field §) in the [*" iteration
can be inferred according to the training data o and the
1" iteration parameter set (2() via Algorithm 1 (the 4"
line). {fin.q, G q; Wn, q} are updated (the 5" line) based on
formula (14), while {ﬁ} is updated (the 6" line) based on
formula (18). The logarithmic likelihood LY is calculated
for each iteration (the 9** line). If the difference between the
logarithmic likelihoods calculated by two adjacent iterations is
less than the algorithm convergence condition C.,,, then the
iteration is stopped (the 10‘" line) and the parameter set 0
of the model is generated. C,,, in the algorithm denotes the
given convergence condition for the iteration of the algorithm.
To control the iteration process of the algorithm, we let
L = Pr[o|f2] = .5 Prlo, s|£2] denote the overall likelihood
that measures the fitting degree of the model to the training
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Fig. 2: An application instance.

data. Then, the logarithmic likelihood L is defined by
L= ZSES In Prlo, 5|02
~ qus Zt}k In Pr{oy 1, q‘SNf’,n SN s Q]
=D s Dy nlag(0n )b k().

19)

E. An application instance

Figure 2 shows an application instance for the proposed
network-centric DTE detection scheme. The entire system
consists of two parts: the cloud and the distributed network.
The cloud is responsible for the core functions of the proposed
scheme, including data storage, model training/retraining, de-
tection and interaction with NEs. It is loosely coupled with
the application scenario. The distributed network consists of
interconnected NEs, its definition and implementation may
differ in different scenarios. For example, when it is applied
to a packet switching network, an NE can be integrated into
any physical or virtual network relay device via the network
function virtualization (NFV) technologies, e.g., router, switch
and gateway. Similarly, the connection of adjacent NEs can
be a physical or virtual link. When it is applied to a logical
network, such as the social network, an NE is the client
software of the social network installed on the user’s terminal
device. The main function of NEs is the network measurement
and local detection. The following are the details of each
function module:

NE: (i) each NE measures the required data and feeds them
back to the controller; (ii) each NE periodically exchanges the
states with its neighbors; (iii) each NE evaluates its own hidden
state based on the states of its spatiotemporal neighbors.

Controller: (i) it receives the measurement data from the
NEs and forwards them to the database; (ii) it implements
unmanned intelligent management according to the detection
result, e.g., adjusting the working mode of the NEs, resource
rescheduling and starting the emergency measures.

Database: it is responsible for data storage.

Training: (i) it implements the model training based on
Algorithm 2 and historical data; (ii) it dynamically updates the
model’s parameters via periodic re-training or on-line update
algorithms [39].

Detecting: it uses the trained model to detect the DTEs
based on Algorithm 1 and releases the results to the controller.

IV. EXPERIMENT

In this section, we evaluate the performance of the proposed
spatiotemporal context approach (STCA) for the DTE detec-
tion by two independent experiments.

A. General experimental information

Scenarios. The experiment scenarios include a DDoS attack
detection in an IP network and the Short Message Service
(SMS) worm detection in a Social Network (SN). The simu-
lation is designed according to the instance shown in Fig. 2.

Baselines. Because VCAs focus on the single-point pro-
tection rather than distributed networks, we do not compare
with this type of methods in the experiment. The essence of
most existing CAD-based approaches is multi-point monitor-
ing rather than considering the holistic time-varying behavior
of the distributed networks, which allows them to be regarded
as a special case or a simplified version of the proposed
approach, i.e., most of them can be derived by the proposed
approach when it only considers the observation features of
some sampling nodes and ignores the spatiotemporal context.
Thus, we did not compare these methods with ours one by one,
but only used the KMeans algorithm (KMeans) [27] and the
Gaussian mixture models (GMM) [28] as a representative for
the performance comparison. Moreover, considering that the
proposed approach in this work is an unsupervised learning
method, we employ three other unsupervised event detection
schemes for the performance evaluation®. These schemes were
all designed for security detection and published in recent
years, including Birch algorithm (Birch) [40], Ward agglom-
erative hierarchical approach (Ward) [41], and Kernel-based
fuzzy c-means algorithm (KFCM) [42].

Evaluation metrics. We use the Accuracy, Macro-F1 score
and False Positive Rate (FPR) as the evaluation metrics that
are defined by formulas (20), (21) and (22) respectively:

number of correct detections

N _ 20

cecuracy number of detections 7 0
1 N

Macro F1= — Z_fl F1;, (21)

Fp 1 N FPpP 22

R = N Zi:l I, @

where N denotes the number of event-related behavior pat-
terns. The subscript i denotes the i*" pattern. F'1; and FPR;
are calculated by formulas (23) and (24), respectively:

2 - (precision; - recall;)

Fl1; = - i=1,2,..N , (23

(precision; + recall;) ’ 23)

FPR, = Jalsepositives .y o gy
negative;

where precision; and recall; denote the precision and recall
of the " pattern, respectively. Thus, the F'1 score can be
regarded as a weighted average of the precision and recall.

3We do not use deep NN based approaches for performance evaluation
because they are usually only applicable to supervised scenarios rather than
the unsupervised.
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In formula (24), falsepositive; and negative; represent the

(j) Accuracy of scalefree64 DDoS2.

number of false positives and the total number of negatives of
the i*" pattern, respectively.

Simulation execution environment. The simulation is devel-

oped by MATLAB R2015b and run on a general computer
configured with Intel Core i7 CPU at 3.60GHz and 32G
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Fig. 3: Accuracy, Macro-F1 and FPR of the Internet Scenarios.
RAM*.
“The code and data can be found on the github (http-

s://github.com/SYSUNetlab/DET2019) for academic research purposes.
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TABLE I: Performance comparison in the Internet scenario.

?25;“;50) Birch (%) Ward (%) KMeans (%) GMM (%) KFCM (%) STCA (%)
Accuracy 72.69 £ 0.67 76.69 + 5.54 7443 £ 0.27 88.85 £+ 0.35 75.65 £ 0.23 9339 £ 0.45
germany50 ddosl Macro F1 36.8 + 2.35 47.6 + 13.54 42.81 + 0.71 7742 £+ 0.74 4597 + 0.6 87.55 £ 0.9
FPR 24.67 £ 2.7 17.29 + 5.92 18.97 £ 0.26 537 £ 0.16 17.51 £ 0.21 3.58 & 0.21
Accuracy 7238 £ 1.08 7721 £ 223 77.69 £ 0.35 34.82 £ 041 7787 £ 0.19 89.23 £ 0.61
germany50 ddos2 | Macro Fl 36.76 & 3.57 50.84 & 4.61 52.19 & 0.85 66.61 % 0.64 52.55 & 0.45 7735 &£ 1.28
FPR 26.16 %+ 3.29 15.66 + 2.74 14.95 + 0.23 5.82 4 0.14 14.71 £ 0.13 4.11 £ 022
Accuracy 64.86 £ 0.71 30.82 £ 6.59 79.6 £ 0.29 8347 £ 0.22 77.85 £ 0.66 89.08 £ 0.25
scalefree64 ddos! | Macro F1 38.28 & 3.02 69.19 & 9.6 68.52 + 0.51 73.74 £+ 041 66.17 &+ 0.96 89.78 & 0.41
FPR 30.2 + 0.39 14.17 + 6.06 15.51 + 0.22 1146 + 0.1 17.07 + 0.58 6.76 4 0.11
Accuracy 73.04 £ 2.05 8473 £ 53 83.65 £ 0.28 8562 £ 0.26 83.42 £ 0.48 89.16 = 0.33
scalefree64 ddos2 | Macro F1 43.08 + 4.26 63.57 + 8.85 62.76 + 0.51 66.62 + 0.39 62.42 4+ 0.72 78.46 + 1.38
FPR 27.6 + 3.05 12.85 + 6.26 14.59 & 0.27 10.49 + 0.11 14.85 & 0.53 8.96 + 0.14

X
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(c) Time 3.

Fig. 4: Spatiotemporal detection result in a part of germany50 topology (the grey circle, the peach triangle, and the blue
rectangle denote the Statel, State2 and State3, respectively).

B. DDoS attack detection in Internet

Different from the traditional VCAs for DDoS attack detec-
tion, our scheme applies the spatiotemporal context approach
to detect the DDoS attack activities from the view of the
network-side. It needs the data collected from a distributed
network, especially the forwarding logs of the relay devices
like routers and switches. However, as far as we know,
currently no public data sources can meet this requirement. To
make the experiment credible and reproducible, we adopted
a compromised approach in which real network traffic is
replayed in the simulated topologies. The simulation details
are as follows.

Topology. We adopted two topologies in this experiment.
The first one is a real network topology from a German
research network that consists of 50 nodes and 88 links [43].
It is denoted by “germany50” in the following. More real
network topologies can be found from the Internet Topology
Z00°. The second one is generated based on a scale-free model
that is widely considered to be one of the most similar models
to the real Internet [44]. The generated scale-free topology
contains 64 nodes and 125 links. We denote it by “scalefree64”
in the following. In order to replay the real network traffic
in the above topologies, we mount virtual terminals on the
NEs. These terminals are used to replay and receive the traffic.
The forwarding strategy of each NE is based on the shortest
path algorithm. We develop an independent node to implement

Shttp://topology-zoo.org/

the functions of the modules of the cloud shown in Fig. 2,
including the controller, database, (re)training, and detecting.

Traffic. To make the experiment reproducible, all replayed
traffic is from real world data. It consists of two parts:
background traffic and attack traffic. The background traffic
comes from a campus network® and the open traffic archives
of MAWI’. This traffic lasts about three days and shows
significant daily variation characteristics. The attack traffic
comes from the “DDoS Attack 2007” provided by the open
traffic database of CAIDA®. Two types of DDoS attacks are
considered for the experiment: “ddosl” is a direct attack
that attacks the victim’s network bandwidth resource, while
“ddos2” is an SYN flood attack that attacks the victim’s
system resource. Some terminals are randomly selected as
attack nodes that are responsible for the replay of the attack
traffic in addition to the background traffic. Considering all
raw traffic data of both CAIDA and MAWTI are collected from
a single monitoring point instead of the NEs of a distributed
network, we assign the traffic to the terminals based on the
address prefixes of its source and destination addresses, i.e.,
each terminal is bound to a fixed network prefix.

We define three discrete states {Statel, State2, State3}
to denote “normal pattern”, “suspected pattern” and “attack
pattern” for each NE’ behavior pattern, respectively. The
traffic features used for modeling include the entropy of the
destination IP address and the arrival rate of packets per flow

Shttp://www.sysu.edu.cn
Thttp://mawi.wide.ad.jp/mawi/
8http://www.caida.org/home/
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Fig. 5: State distribution of germany50 ddosl.

that have been widely used in the traditional VCAs for DDoS
attack detection [45].

We run each of the algorithms for ten times with ten-fold
cross-validation, i.e., 100 trials for each algorithm. Fig. 3
shows the Accuracy, Macro F1 and FPR of the six schemes
in four scenarios, including germany50 DDoS1, germany50
DDoS2, scalefree64 DDoS1 and scalefree64 DDoS2. The
baseline methods consist of Birch(B), Ward(W), KMean-
s(KM), GMM(G) and KFCM(KF). We use the box plots
to indicate the degree of dispersion (spread), skewness and
median for the metrics. As the figures show, the results of
the proposed STCA are very concentrated for all metrics.
From the perspective of the median, the STCA consistently
and significantly outperforms all baselines in four cases.

Table I includes the average values and the confidence
intervals (i.e. the standard deviation) for Accuracy, Macro F1
and FPR for the five baseline methods. In the four cases,
Accuracy and Macro F1 of the STCA are better than other
algorithms, while the FPR of the STCA is lower than other
algorithms. The gain of the STCA is mainly benefited from the
combination of an NE’s observation and the state information
of its spatiotemporal neighbors. The result is encouraging as
both the performance and the stability of the proposed ap-
proach are better than the others for all metrics and scenarios.

Fig. 4 shows the spatiotemporal detection result of the
STCA in a part of the germany50 topology. The gray circle
denotes the “normal” state that implies the normal working
pattern of the NEs. The peach triangle denotes the “suspected
attack” state, which means the behavior pattern of the NE de-
viates from the normal range, but has not reached a significant
degree of abnormality. Based on the experiments, this type of
state mainly appears near the source of the attack or on the
attack paths. The blue rectangle denotes the “under attack”
state; it usually refers to the NEs close to the victim or the
victim itself. The result shows that the STCA can provide the
macroscopic global perspective of the network during a DDoS
attack, which indicates the states of the NEs along the attack
path or near the victim varying with the development of the
attack event. It is valuable for the early intelligent response
to emergencies, because the temporal and spatial distribution
of the state changes can reveal some key attributes of the
ongoing attack event. For example, the spatial distribution
of the state transitions of the nodes shows the scale and
direction of the attack event. Transition from Statel to State2

10

can indicate the network location of the attack source, while
the transition from State2 to State3 may imply the potential
attack direction and target. Similarly, the time-varying process
of the spatial distribution of the state transitions can be used
to estimate the speed and intensity of the ongoing attack
event. This information can further trigger the management
system to automatically intervene in the forwarding behavior
of the network, including migrating attack targets, modifying
forwarding strategies, trapping attack traffic, etc. Moreover, the
spatiotemporal distribution of state transitions can be used to
further analyze and mine the knowledge of the attack events,
which can be fed back to the management system to improve
the subsequent detection performance.

Fig. 5 shows the relationship between the observation
distribution and the hidden states of the germany50 ddosl.
Other cases are similar and are not shown here due to space
limitation. The left column indicates the probability density
of the information entropy of the destination IP address in
the three states. The right column indicates the probability
density of the arrival rate of packets per flow in the three
states. In normal scenarios, the destination addresses of traffic
are relatively uniform, while the arrival rate fluctuates around
a relatively stable level. Therefore, the distributions of the
entropy and the arrival rate are located at a relatively high
area and a relatively low position, respectively, e.g., Statel.
In the attack scenario, the traffic increases and its destination
addresses become concentrated, which causes the distributions
of the entropy and arrival rate to move to small and large
regions, respectively, e.g., State3. Moreover, in Fig. 5 the
distributions of the states overlap each other, which indicates
that an observation feature falling in the overlapping area
may come from different states. For example, in the normal
scenario (Statel) a news hot spot that suddenly appears on a
server will attract a lot of visits and traffic, which will lead to
a phenomenon similar to an attack scenario (State3). Refining
the definition of the states may help improve the results, but
it cannot eliminate the issue. Therefore, if the model only
depends on the observed features to decide the hidden states,
it may make a wrong decision and lead to a high FPR and low
accuracy, e.g., the baseline methods. This is one of the reasons
why we develop the spatiotemporal MRF, because it allows the
proposed approach to use both the observed features and the
information of the spatiotemporal neighbors, which eventually
improves its performance.

In Fig. 6 we investigate the relationship between the state
selection and energy function of a node when the states of
its neighbors are known. Here, we only take the results of
the germany50 ddosl as examples for analysis and omit the
remaining due to the limited space. In the main diagram of
Fig. 6(a), we calculate the normalized energy function (NEF)
of all nodes that select Statel as the optimal state and show
their statistical distribution. In order to explore the influence
of a node’s selection of different states on its energy function,
we sequentially replace the optimal state (Statel) with other
states (State2 and State3) for those nodes shown in the main
diagram, and display the corresponding distributions of their
normalized energy functions in the embedded diagrams. We do
similar processing in Fig. 6(b) and 6(c) where we analyze the
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TABLE II: Performance comparision in the SN scenario.
Metrics i ard (% ans (% GMM (% CM (% STCA (%
(ang Loy Birch (%) Ward (%) KMeans (%) MM (%) KFCM (%) TCA (%)
Accuracy 80.38 + 10.29 85.03 + 5.71 88.37 £+ 0.66 89.04 £ 0.55 88.17 £+ 0.59 95.22 £+ 1.89
smallworld256 SI Macro F1 78.73 £ 10.62 84.1 £ 5.53 87.68 + 1.24 88.3 + 1.02 87.73 + 0.86 93.06 £+ 1.47
FPR 19.3 + 7.89 14.7 + 3.98 11.27 £ 0.69 11.05 £ 0.61 11.32 £ 0.35 6.87 £+ 2.07
Accuracy 79.14 £+ 9.93 86.21 + 4.74 88.89 + 0.54 89.33 £+ 0.54 88.68 + 0.44 94.67 + 1.29
smallworld256 SIS Macro F1 77.96 £ 9.9 85.5 + 4.64 88.36 + 0.91 88.74 £ 0.79 88.29 + 0.57 93.34 £+ 0.99
FPR 19.8 + 6.75 13.66 + 3.33 10.86 £+ 0.52 10.85 £ 0.55 10.93 £+ 0.28 6.29 £ 1.05
Accuracy 81.43 + 8.39 85.98 + 4.1 89.44 + 0.43 89.63 +£ 0.4 89.26 + 0.43 94.65 + 1.16
scalefree256 SI Macro F1 80.03 £+ 9.12 85.37 + 4.08 89.02 £+ 0.75 89.17 £ 0.63 89.02 + 0.59 93.53 + 1.19
FPR 18.47 £ 7.43 13.8 £+ 3.17 10.43 + 0.42 10.46 £+ 0.42 10.49 + 0.28 6.53 £ 1.16
Accuracy 83.07 £ 5.39 85.89 + 3.97 89.4 + 0.45 89.4 4+ 0.46 89.35 + 0.32 94.66 £+ 1.18
scalefree256 SIS Macro F1 82.28 + 6.09 85.59 + 4.19 89.31 + 0.48 89.31 £ 0.49 89.32 + 0.34 93.61 4+ 0.98
FPR 17.15 £ 5.51 13.97 + 3.66 10.57 £+ 0.47 10.58 + 0.48 10.6 +£ 0.3 6.31 + 1.02

nodes whose optimal states are State2 and State3, respectively.
From these results, we can see that the energy distributions
of the optimal states prefer the low value region while the
non-optimal states are in the high value region. This result
is consistent with the purpose of the energy function: when
the state selected by a node is consistent with its neighbors,
the value of its energy function is very small; otherwise, the
value of its energy function will increase with the degree of
difference and reduce the probability of choosing the different
states. This indicates that in the proposed approach, the
spatiotemporal context of the state field can be used to decide
the optimal hidden state of each node and is not limited to the
external observation features, which partially solves the issue
caused by the overlapping of the output distributions of the
states and improves the accuracy of the event discrimination.

C. SMS worm detection in SN

In the second part of the experiments, we evaluate the
performance of the proposed scheme via a worm propagation.
Each NE corresponds to a social network account. When an
NE gets infected, it sends the SMS spam to the others. The
details of the simulation are as follows.

Topology. According to the previous analysis of real social
networks [46], we generate two topologies for the simulation
of a social network. The first one is based on a small-world
model and contains 256 nodes and 512 links. We denote it
by “smallworld256”. The second one is based on a scale-free
model, and contains 256 nodes and 509 links. We denote it by
“scalefree256”. Different from the first part of the experiments,
there is no terminal here, and each NE in these topologies

represents a social network user. In the initial stage, a small
number of NEs are randomly selected as the sources of the
worm.

propagation. The SMS worm propagation is controlled by
a Susceptible-Infected (SI) model and a Susceptible-Infected-
Susceptible (SIS) model, both of which are widely used in
worm propagation dynamics analysis [47]. We adopt a linear
probability of infections, i.e., an NE’s infected probability is
proportional to the number of its infected neighbors.

The “average SMS text length” is used as the observable
behavior characteristic for the worm detection [48]. Two
states are defined to denote the “susceptible” and “infected”,
respectively. The change in states reflects the propagation of
the worm in the network.

Like the first part of the experiments, we run each of the
algorithms for ten times ten-fold cross-validation. The exper-
imental scenario includes smallworld256 SI, smallworld256
SIS, scalefree256 SI, and scalefree256 SIS. Fig. 7 shows the
comparison of Accuracy, Macro F1 and FPR for the five
baselines respectively, while Table II includes the average
values and the confidence intervals. From the perspective of
the data divergence, the performance of the proposed STCA
is better than the Birth and Ward, and a little worse than the
KMean, GMM and KFCM. However, for the median of the
results, the STCA is significantly better than the others for all
metrics.

Fig. 8 shows a part of the smallworld256 topology that
visualizes the state field varying over time. The results indicate
that the state field of the proposed scheme can be used to track
and forecast the development trend of the worm propagation,
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Fig. 7: Accuracy, Macro-F1 and FPR of the SN Scenarios.

which is valuable for an early threat response.

In Fig. 9, we take the smallworld256 SI as an example
to show the relationship between the observation distribution
for each hidden state. The other cases are not shown here
due to space limitation. The results show that each state can
be considered as a cluster of the observations. However, as
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there are no clear boundaries between the different clusters,

the distribution of the observations corresponding to each state
overlap with each other. Similar to the previous experiments,
the proposed STCA compensates for the loss caused by the
state overlapping through neighbor information, which makes
it have better performance in the experiments. On the other
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hand, in order to verify the validity of the Gaussian distribution
fitting, we perform the Jarque-Bera (JB) test [49] to verify
whether the observations match a Gaussian distribution. For
the sample data of State 1 and State 2, we compute the test
statistic JB according to the skewness and the kurtosis of the
samples. At the 5% significance level, the critical value for
the test is 5.43. The test statistic JB is 1.45 and 0.8 for the
samples of State 1 and State 2, respectively. Both of them
are less than the critical value, thus the null hypothesis (“the
data follow a Gaussian distributed””) cannot be rejected, which
indicates that the data fit a Gaussian distribution.

Fig. 10 shows the selection-probability of an NE when the
states of its neighbors are given. The abscissa indicates the
NEF, while the vertical axis denotes the probability density
according to which a node selects the corresponding state.
This result again shows that the working pattern of an NE
is greatly affected by its neighbors. Based on this result, we
can predict the future development trend of the network events
through the state field, including the direction and the speed.

V. DISCUSSION
A. Methodology

In contrast to the well-known Markov chain model and
classical time series analysis methods that can only describe
the physical process of a chain-like structure, MRF inherently
has an intuitive network structure, which makes it very suitable
for the characterization of contextual constraints and the
derivation of the probability distribution of interacting features
in two-dimensional space. For this reason, MRF has been
widely employed to 2/3D spatial modeling, such as image
and video analysis. Considering the similarity between the
time-varying behavior process of the distributed network and
the 3D video, we choose the MRF-framework to solve our
problem. We also noticed that deep neural network (DNN)
and its various variants (e.g., CNN, RNN and LSTM) have
become a popular technology in different fields. The main
reasons why we adopt the MRF-framework rather than the
DNN-based models in this work are as follows. (i) The key
link to the DTE detection is to model the time-varying process
of the distributed network behavior. The net structure of
the MRF allows it to effectively describe the spatiotemporal
contextual interaction of each NE’s behavior, and lets it exhibit
mathematical analyzability for the described physical process.
Although the DNN-based methods show good classification
performance in some applications, they usually work as a
black-box, which makes it difficult for them to provide un-
derstandable mathematical analysis for the physical process
of the application problem to be resolved. (ii) Due to the
mathematical analyzability, the MRF-framework is easy to
couple with labelled and unlabelled real training data with-
out human intervention and shows good stability, such as
the parameter estimation and inference. However, the model
learning of the DNN-based methods relies on a large amount
of labelled data, which limits their usability in most practical
applications, e.g., unsupervised learning involved in this work.
Moreover, there are a large number of redundant parameters
in the DNN-based models, which affect their convergence and
operational efficiency. (iii) There are many mature theories
and methods to support the expansion of the MRF for new
modeling problems, such as the EM and MAP algorithms,
Hammersley-Clifford theorem and iterated conditional modes.
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Yet in most of the DNN-based applications, model design and
parameter estimation lack the necessary theoretical guidance
because of their unanalyzability. The reliance on artificial ex-
perience leaves them with a lack of convenient and consistent
approaches to deal with different application problems and
thus becomes unstable. Combining the advantages of both the
MRF-framework and the DNN-based models may be another
optional scheme that will be explored in our future research.

In this work, GMM was used to describe the distribution
of traffic features for each behavioral pattern. The reasons for
adopting GMM mainly come from two aspects [50]: (i) it
has been proved that a finite mixture of Gaussian components
can model any continuous distribution with arbitrary precision
if a sufficient number of components are provided and the
parameters of the model are chosen correctly; (ii)) GMM can
be applied to a wide range of problems without any assumption
with respect to the distribution properties of the raw data
analyzed.

The normalization of the energy function shown in formula
(8) is an important part of this work. We map each network
element (e.g., router or switch) to a node in a graph, and only
focus on their packet forwarding behavior rather than their
actual role and category in the network. The heterogeneity
of the nodes mainly comes from the huge difference in the
degree of the nodes. Unlike image processing based on regular

grid, there are significant differences in the degree of network
nodes, which makes it impossible to adopt a unified indicator
to decide the optimal state for every node. For example, the
traffic behavior that is evaluated as normal by the high-degree
nodes will be considered as abnormal by the low-degree nodes.
Thus, we normalize the energy function of each node in
the proposed approach, which maps the heterogeneous nodes
to the same metric space, so that different types of nodes
can share the same state space. Experiments show that this
approach is simple and effective. It eliminates the influence of
the heterogeneity of the nodes to a certain extent.

B. Configuration

Markovianity. The purpose of using the first-order Marko-
vianity is to reduce the complexity of the spatiotemporal
behavior model and highlight the core idea of the proposed
scheme. Its essence is to simplify the model at the expense of
higher-order information loss.

It is reasonable to adopt the first-order Markovianity in this
work, because a large number of existing studies have shown
that in a network the influence of nodes decreases with propa-
gation. It means that the impact from the one-hop neighboring
NEs is much larger than that of their multi-hop neighbors.
This property was found in various types of networks, e.g.,
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communication network [47] and social network [51]; it was
also verified by our experiments shown in Fig. 11. Moreover,
the above experiments also showed that this simplification
does not have a significant impact on the final detection
performance. On the contrary, the overall performance of the
proposed scheme is better than other baseline methods. In
fact, the proposed scheme is not limited to the first-order
Markovianity. If there are enough computing resources, it can
be extended to a higher-order hidden MRF that can describe
the spatiotemporal context of the multi-hop neighbors [52].
The key technology is to solve the parameter estimation of
the higher-order energy function. An alternative method is
the mean field theory that has been widely used to solve
multi-body problems. Because it adopts the pseudo-likelihood
function to do approximate calculations, the spatiotemporal
correlation described by the Markovianity is achieved during
the iterative calculation process of the local mean values and
the local mean field conditional probabilities, i.e., the current
updated value of each node will affect all other nodes in the
next iteration.

Number of states. As far as we know, currently there is
no analytical approach for solving this issue for the Markov-
family models. For the proposed scheme, there are at least
three alternative ways to estimate the number of model states.
(1) The number of hidden states can be defined according to
the prior knowledge of network events [53]. (ii) If the network
event is unknown, we can utilize the criteria or procedures
based on exhaust algorithms to determine the number of
the states [50], such as Akaike information criterion (AIC),
Hannan-Quinn information criterion, Bayesian information
criterion(BIC), the integrated classification likelihood criteri-
on, the mutual information and the Greedy mixture learning.
(iii) Similar to most Markov-based applications, the number
of the states can be selected by experimenting the pending
number one by one. On the other hand, theoretically each state
should correspond to a meaningful entity, yet the actual results
do not often happen as such, because the models with large
number of states may easily lead to over-fitting. Moreover,
some states may be merged during the model training, which
causes the final states to be inconsistent with the physical
entities, i.e., the actual number of states is much smaller than

the theoretical value. Actually, the change in the number of
states does not cause significant impact in this work.

Selection of traffic features. This work focuses on the
network-centric DTE detection instead of feature engineering.
Thus, we did not introduce new traffic features for the DTE
detection in the above experiments, but adopted the traffic
features that have been widely used in the VCAs for DDoS
attack detection and SMS spam detection. In fact, the proposed
scheme does not limit what traffic features should be used; it
can support various types of traffic features such as scalars
and vectors. Because there are no universal traffic features
that can meet the requirements of all threat event detections,
in practical applications, traffic features should be determined
according to the target event to be detected.

Topology size. We did not adopt large-scale network topolo-
gies in the experiments. The reasons mainly come from two
aspects. (i) Based on the theory of modeling, the proposed
scheme achieved the purpose of event detection through mul-
tiple local iterations. Thus, the topology size has no significant
impact on the model’s performance except for the computing
time, which shows the scalability of the proposed scheme. (ii)
The growth of topology size seriously affects the efficiency of
the simulation, as the operation and computation of all NEs
and links are implemented on the same server. Therefore, in
this work we have limited the maximum number of NEs to
less than 256, which can balance the need for performance
evaluation and the available computing resources.

C. The States of the model

States are usually defined manually in order to concisely
describe a real event. They are just the abstract and logical
expressions of the real event. Even for the same event, it is
difficult to form a consistent definition of the states because
the opinions of analysts are different.

In this work, we used an unsupervised learning method to
make the proposed model automatically extract state infor-
mation from the training data. Due to the limitations of the
data size and the scale of the selected features, the states
that the model learns from the given data are not exactly
the same as those defined by humans; they can only capture
partial components of the real states projected in the selected
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learning data, i.e., abstraction of real-world states, rather than
the complete and objective view obtained by the human brain.
This issue exists widely in most current machine learning
tasks. A widely accepted solution is to capture more state
information of the physical processes by increasing the scale
of effective data and features.

As the purpose of this work is to develop a general NCA for
the detection of distributed threat-events, we haven’t explored
the extraction of training data and features in depth, but only
follow the methods validated by other works. In fact, the
proposed NCA and algorithms are loosely coupled with the
selection of training data and features. Thus, not only is it
not limited to what is presented in the experiments, but it is
able to support large-scale training data and features, which
enables the state description ability of the proposed approach
to be improved through massive learning data.

D. Performance

Algorithm complexity. In Algorithm 1, the proposed scheme
only needs to traverse all NEs in the network. For a given
NE, it only needs its observation, its previous state, and
the states of its neighboring NEs to infer its current state.
Hence the computation complexity of the proposed scheme
is O(N - |S]), where N is the number of samples and |S]
is the number of states. For the computation complexity
of the baseline methods, Birch is O(N); Ward is O(N3);
KMeans is O(N - |S]), GMM is O(N - |S]); and KFCM is
O(N -|S]). Therefore, the complexity of the proposed scheme
is acceptable.

Convergence. The convergence of the EM-based learning
algorithm has been proved theoretically for MRFs by previous
studies [15]. Although the proposed model is not exactly the
same as the classical MREF, it is based on the framework of the
MRE. Thus, we do not make the theoretical proof for its con-
vergence in this work, but only show the convergence process
observed in the experiments. Fig. 12 shows the convergence
of model training in the experimental scenarios. The abscissa
indicates the number of iterations. The vertical axis denotes
the normalized log-likelihood £ that is used to evaluate the
convergence of the model and to control the iteration for
training. Both of the results show that the model is convergent
after 5 iterations, which further verifies the effectiveness of the
proposed training algorithm.

In general, the merits of the proposed scheme are threefold.
(i) The proposed scheme achieves the DTE detection from
the perspective of network-side, which provides a global
perspective for the distributed scenarios. (ii) It utilizes the spa-
tiotemporal context approach to model the dynamic evolution
process of distributed network events and help increase the
detection performance. (iii) The proposed scheme has a low
computation complexity and can quickly converge.

VI. CONCLUSION AND FUTURE WORK

In this work, a new network-centric approach was de-
signed for distributed threat-event detection. The proposed
approach treated a distributed network as a holistic system

16

and characterized its spatiotemporal dynamic evolution pro-
cess from the perspective of network-side. Then, network
events were detected by the dynamic behavior analysis of the
distributed network. We introduced the rationale of deriving
the spatiotemporal behavior model in detail, and developed
a two-layer hidden MRF to formulize the proposed model
and achieve the numerical detection. Algorithms were derived
for the model learning and event detection based on the
EM algorithm and the MAP criterion, respectively. In the
experiments, we evaluated the performance of the proposed
approach through two independent distributed network sce-
narios. The results of three evaluation metrics showed that
the proposed approach was superior to other five widely used
baseline methods. Since the approach is not limited to a
specific network scenario, it is expected to be applicable to
different types of threat-event detection in various distributed
scenarios.

In order to highlight the rationale of the proposed approach
and make the computation tractable, we have adopted some
simplified methods in this work, including manually defining
the number of the model’s states, only using the first-order
Markovianity to describe the spatiotemporal context, making
the independence constraint on the observed features of NEs,
and merely considering the cloud-based deployment method.
In addition, due to the limited space, we only showed the
results of two typical DTE detection scenarios in the experi-
ment. However, these simplifications are not mandatory for
the proposed approach; they are optimizable and solvable.
Thus, it is foreseeable that the proposed approach is not
limited to what is described in this work. The limitations
and some interesting issues arising from this work will be
further explored in our future research, such as higher-order
hidden MREF, fusing the MRF-framework and deep NN based
methods, combining cloud computing and edge computing
systems for the deployment of the proposed scheme, and
applying it to a wider range of application scenarios like
blockchain and IoT scenarios.
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