IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON MOBILE EDGE COMPUTING AND MOBILE CLOUD COMPUTING: ADDRE-
SSING HETEROGENEITY AND ENERGY ISSUES OF COMPUTE AND NETWORK RESOURCES

Received March 8, 2019, accepted April 2, 2019, date of publication April 12, 2019, date of current version April 24, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2910932

Towards Energy-Efficient Heterogeneous

Multicore Architectures for
Edge Computing

ABDOULAYE GAMATIE !, GUILLAUME DEVIC', GILLES SASSATELLI', STEFANO BERNABOVI?,

PHILIPPE NAUDIN2, AND MICHAEL CHAPMAN?
ILIRMM — CNRS, University of Montpellier, 34095 Montpellier, France
2Cortus S.A. Company, 34130 Mauguio, France

Corresponding author: Abdoulaye Gamati€ (abdoulaye.gamatie @lirmm.fr)

This work was supported in part by the CONTINUUM French ANR Project under Grant ANR-15-CE25-0007-01, and in part by the R&D

ARPE-CONTINUUM Project funded by Région Occitanie, France.

ABSTRACT In recent years, the edge computing paradigm has been attracting much attention in the Internet-
of-Things domain. It aims to push the frontier of computing applications, data, and services away from
the usually centralized cloud servers to the boundary of the network. The benefits of this paradigm shift
include better reactivity and reliability, reduced data transfer costs toward the centralized cloud servers, and
enhanced confidentiality. The design of energy-efficient edge compute nodes requires, among others, low
power cores such as microprocessors. Heterogeneous architectures are key solutions to address the crucial
energy-efficiency demand in modern systems. They combine various processors providing attractive power
and performance trade-offs. Unfortunately, no standard heterogeneous microcontroller-based architecture
exists for edge computing. This paper deals with the aforementioned issue by exploring typical low power
architectures for edge computing. Various heterogeneous multicore designs are developed and prototyped
on FPGA for unbiased evaluation. These designs rely on cost-effective and inherently ultra-low power
cores commercialized by Cortus SA, a world-leading semiconductor IP company in the embedded ultra-low
power microcontroller domain. Some microarchitecture-level design considerations, e.g., floating point and
out-of-order computing capabilities, are taken into account for exploring candidate solutions. In addition,
a tailored and flexible multi-task programming model is defined for the proposed architecture paradigm.
We analyze the behavior of various application programs on available core configurations. This provides
valuable insights on the best architecture setups that match program characteristics, so as to enable increased
energy-efficiency. Our experiments on multi-benchmark programs show that on average 22% energy gain
can be achieved (up to 45%) compared to a reference system design, i.e., a system with the same execution
architecture, but agnostic of the task management insights gained from the comprehensive evaluation carried
out in this work.

INDEX TERMS Edge computing, energy-efficiency, heterogeneous multicore architectures, programming
model, embedded systems.

I. INTRODUCTION

The recent trend towards edge computing witnessed in the
well-established Internet-of-Things (IoT) domain [1] will
keep on increasing thanks to new promising hardware solu-
tions enabling applications to meet computing task require-
ments at affordable costs in power [2]-[4]. This computing

The associate editor coordinating the review of this manuscript and
approving it for publication was Junaid Shuja.

paradigm aims to push the frontier of computing applications,
data, and services away from the usually centralized nodes
located in the cloud-first architecture, to the periphery of the
network. The resulting decentralization brings a number of
benefits [2], [5], [6] including better reactivity and reliability
thanks to local compute resources that fill parts of applica-
tion demands in an isolated way; reduced data transmission
costs towards cloud servers thanks to local data processing
capabilities; enhanced confidentiality thanks to the ability of

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

49474

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 7, 2019

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8326-3257

A. Gamatié et al.: Toward Energy-Efficient Heterogeneous Multicore Architectures for Edge Computing

IEEE Access

transforming sensible raw data before the transfer on cloud
server if required; and human-centered designs in which pro-
prietary information remain under the control of their owners,
who can also manage the links of their networks.

Among state-of-the-art compute platforms [7] entering the
race to solve the edge computing challenges, we can men-
tion the Intel Movidius Myriad technology [8], the Sam-
sung Exynos 9 Series 9810 processor [9], the Jetson TX2
board [10] and the Machine and Object Detection processors
announced by ARM in its Trillium project [11]. An important
aim of these platforms is to provide power-efficient com-
pute capabilities for embedded artificial intelligence. This
favors autonomous decision-making in the edge. In this con-
text, the integration of several low power processors within
the corresponding chips has become the current practice.
On the other hand, to deal with the data storage require-
ments in edge devices (e.g., saving weights in neural net-
works), Non-Volatile Memory (NVM) technologies [12] have
been adopted. They enable low energy consumption while
providing fast I/O accesses. They also promote emerging
computing paradigms such as in-memory computing [13],
which removes the costly data movements occurring in
Von Neumann computer architecture, where memory and
computing units are physically decoupled.

Harnessing the energy-efficiency of edge computing
peripheral nodes, i.e., the amount of achieved work per watt,
calls for ultra-low power hardware devices that are capable
of delivering adequate computing performance to process
data locally on the node. Typical approaches such as the
aforementioned ARM Object Detection processors, rely on
architecture specialization for particular applications tasks.
Thus, they are insufficient for dealing with the general-
purpose computing challenge on edge nodes [14]. Further
computing platforms that could be considered at the edge
include Raspberry Pi, Arduino, and Intel Galileo [7].

However, the real game-changers are expected to be het-
erogeneous multicore architectures supporting any kind of
workload within a very tight power budget. The present
paper focuses on this direction by exploring compute node
designs, built from microcontrollers, with an overall power
consumption that remains below a watt. It addresses both the
architecture construction and its programming.

A. HETEROGENEOUS ARCHITECTURES

Heterogeneous computing usually refers to systems including
various processing elements so as to meet both performance
and power-efficiency requirements. Typical heterogeneous
architectures combine CPUs and compute accelerators such
as Graphical Processing Units (GPUs). While the former
are well-suited for executing sequential workloads and the
operating system, the latter are rather devoted to massively
regular parallel workloads, e.g., data-parallel algorithms.
For instance, the Llano processor [15] proposed by AMD
and the Jetson TX2 board [10] from Nvidia follow this
idea by combining multicore CPUs with a GPU. Other
heterogeneous multicore platforms rather combine DSPs

VOLUME 7, 2019

with CPUs, as in the KeyStone DSP+-ARM SoC! from Texas
Instruments.

The ARM big.LITTLE technology [16] considers two dif-
ferent clusters: a big cluster composed of high-performance
application processors used to execute heavy workloads, and
a LITTLE cluster composed of low power application pro-
cessors that are used for a lightweight workload to save
energy. By exploiting this feature, a suitable runtime can
provide workloads with required performance while reducing
the power consumption whenever possible.

Despite the attractive features of the above heteroge-
neous multicore chips, they do not offer a power reduction
below a watt for aggressive energy sustainability in battery-
powered edge nodes. This is hardly achievable with plat-
forms such as the Jetson TX board and ARM big.LITTLE
Exynos chip families, which even consume a few watts in
idle status. Moreover, platforms that combine processing
elements supporting different instruction set architectures,
such as the aforementioned Jetson TX2, Llano and KeyStone
DSP+ARM SoCs, do not facilitate a uniform and simple pro-
gramming of applications. Note that some of these chips are
not mature and robust enough in real-world commercial solu-
tions [17]. Therefore, exploring complementary opportunities
is very relevant.

B. PROBLEM FORMULATION

Our study aims to devise heterogeneous compute node
designs [18], [19], which have sub-watt power consumption
and can fill the current gap observed in the implementation of
edge devices. It is expressed through the following problem.

Definition 1 (Design Problem): Starting from a family of

low power processors, supporting the same instruction
set architecture (ISA) and their complementary System-on-
Chip (SoC) blocks, we build and evaluate heterogeneous
systems. The main requirements taken into account are:

1) cores heterogeneity: the target architectures rely on the
combination of cores with different features resulting
from graceful customization, which could be leveraged
as much as possible in order to provide the best trade-
offs in terms of performance and power;

2) low power hardware architecture: the cores and SoC
blocks used to build the target heterogeneous architec-
tures inherently dissipate low power, which contributes
to minimizing the energy consumption of the target
architecture;

3) application characteristics-aware execution: the con-
sidered programming model favors workload manage-
ment in such a way that application programs execute
on the most energy-efficient hardware configurations
with respect to their characteristics, e.g., compute-
intensiveness versus synchronization-intensiveness.

The work carried out in this paper is based on FPGA proto-

typing so as to derive performance and power measurements
with the highest possible confidence.

1 https://training.ti.com/keystone-ii-dsparm-soc-architecture-overview

49475

IEEE Access

A. Gamatié et al.: Toward Energy-Efficient Heterogeneous Multicore Architectures for Edge Computing

C. OUR CONTRIBUTION

In light of the issues raised above, this paper advocates a novel
asymmetric multicore architecture, together with an associ-
ated programming model and workload management. This
architecture includes ultra-low power cores devoted to par-
allel workloads for high throughput, and a high-performance
core that copes with weakly-parallel workloads. The covered
parallel workloads can be either regular and irregular. Even
though the above design a priori resembles a CPU/GPU
heterogeneous combination, it proves far more flexible in the
sense that GPU is only practical for rather regular parallel
workloads. In addition, GPUs require specific APIs such as
OpenCL and CUDA, which are not necessarily supported
by CPUs, requiring extensive software support. Our proposal
exploits a unique programming model, thus facilitating the
programmer’s job.

A salient feature of our proposal is the usage of the cost-
effective and inherently low power core technology provided
by Cortus SA [20], one of the world-leading semiconduc-
tor IP companies in the embedded domain. These cores are
highly energy (MIPS/tW) and silicon efficient (MIPS/mm?)
compared to existing technologies. We believe the mas-
sive usage of such embedded cores deserves attention
to achieve the energy-efficient architectures required for
high-performance embedded computing. Compared to ARM
big. LITTLE, which considers only application processors,
our approach combines a high-frequency core and several
microcontrollers (not intended to support a full OS), which
are key for aggressive energy optimization.

Another trade-off considered in our solution is the support
of floating point arithmetic, which is important for a range of
applications executed in edge computing nodes: matrix inver-
sion required for Multiple Input / Multiple Output (MIMO);
Fast Fourier Transforms (FFT) which often suffer from scal-
ing problems in fixed point; and Machine Learning tasks
(e.g., [21]) through the weights neural networks, etc. As float-
ing point units (FPUs) can be expensive in terms of area and
power in the very low power cores being considered, it is
considered as a customization parameter.

Finally, a tailored lightweight and flexible multi-task pro-
gramming model is defined in order to describe and man-
age application programs on the multicore architectures.
By taking different programs characteristics into account
during workload allocation, we show 22% energy-efficiency
improvement on average (up to 45%) while executing
multi-benchmark programs, compared to a reference design,
measured on FPGA prototypes.

D. OUTLINE OF THE PAPER

The remainder of this paper is organized as follows: Section II
discusses some related studies on the design of computing
solutions for edge computing; then Section III introduces
the architecture building blocks selected for our proposal;
Section IV presents the programming model devised for
application workload management on top of designed archi-
tectures; Section V describes a comprehensive evaluation

49476

of different architecture variants, in terms of energy gain;
Section VI shows how the insights gained from the previ-
ous evaluation can be exploited for improving the energy-
efficiency through a better workload scheduling; finally,
Section VII gives concluding remarks and perspectives.

Il. RELATED WORK

The need of well-suited heterogeneous architectures for IoT
devices has been already motivated [18]. Similarly, the edge
computing applications also require such architectures for
energy-efficient execution on their compute nodes. A recent
survey [19] presents the main microprocessor technolo-
gies and computing paradigms that are under considera-
tion for addressing the IoT compute node requirements,
i.e., intelligence, heterogeneity, real-time constraints, spatial
constraints, inter-node support, etc. A certain number of
computing paradigms are distinguished, as follows:

o configurable architectures, which support configurable
components such as caches [22], reorder buffer [23]
or pipeline [24]: they are efficient w.r.t. energy, perfor-
mance, cost, and area; configurable, i.e., specialized to
different applications for better energy-efficiency; and
profitable for future applications without being over-
provisioned for current applications.

o distributed heterogeneous architectures [25], which
equip a microprocessor with other core types or config-
urations, such as CPUs, DSPs or GPUs: they are effi-
cient, profitable for future applications, and extensible,
i.e., further microprocessors could be derived from the
current ones by extending them with additional function-
alities (e.g., specialized instructions).

o approximate computing [26], [27], energy harvest-
ing [28], [29] and non volatile processors [30], [31],
which are mainly efficient. The approximate computing
paradigm tolerates less accurate results while preserving
acceptable output quality. This concession comes with
notable performance and energy gains. Energy harvest-
ing for available sources such as solar or radio frequency
radiation enables to supplement batteries in ultra-low
power nodes. Non-volatile processors integrate NVM to
save processor state and quickly restore it later on wake
up (after a power disruption). They have been leveraged
for energy harvesting systems [32].

o in-memory processing [33], [34], which reduces off-chip
communications and favors the local processing of the
data collected on a node: this computing paradigm is
efficient and extensible.

o secure microarchitectures [35], [36]: they provide secu-
rity guarantees since IoT compute node are potentially
subject to attacks.

We adopt an approach based on heterogeneous architec-
tures as a design solution in this work. As pointed out
in [19], the major part of research efforts on heterogeneous
cores has been conducted in general-purpose computers
and embedded systems, without explicit application to IoT
MiCroprocessors.

VOLUME 7, 2019

A. Gamatié et al.: Toward Energy-Efficient Heterogeneous Multicore Architectures for Edge Computing

IEEE Access

(a)

(c)

FIGURE 1. Various templates of the proposed asymmetric architecture. (a) Quadcore template. (b) Another quadcore template. (c) Heptacore template.

Several studies have been carried out in academia on
asymmetric architecture design. Hill and Marty [37] applied
Amdahl’s Law to explore different multicore chip architec-
ture designs, namely symmetric, asymmetric and dynamic
multicore (which enables multiple cores to work together
for sequential execution). They combined an Amdahl’s soft-
ware model with a simple hardware model based on fixed
chip resources. They observed that asymmetric and dynamic
multicore chips offer the highest speedups. Morad et al. [38]
evaluated asymmetric cluster chip multiprocessors for max-
imizing performance within a given power budget. Here,
serial regions of multi-task programs are executed on high-
performance cores while parallel regions are executed on both
large and small cores. A theoretical analysis, validated by
emulation, has been applied to make a comparison with sym-
metric clusters. The authors observed that asymmetric design
can provide a reduction of more than two thirds in power for
similar performance while enabling more than 70% higher
performance for the same power budget. Both [37] and [38]
concluded their study by pointing out the fact that asymmetric
architecture design exploration deserves much more attention
for improved performance and power-efficiency in modern
multicore systems. Reaching this goal obviously requires
suitable program execution models capable of exploiting this
asymmetric feature [39].

The two major challenges raised by authors in [19] regard-
ing heterogeneous microprocessors for the IoT concern the
core configuration (i.e., number and type of cores) and the
scheduling of applications to the appropriate cores. This
requires a careful analysis of the execution requirements of
a wide variety of application characteristics, w.r.t. considered
cores. Only a few existing works partially addressed this
problem in the literature. In [40], authors tried to under-
stand the interaction between execution characteristics of [oT
applications (such as compute or memory intensity) and the
architectural features of edge nodes (such as clock frequency,
memory capacity) designed with ARM and Intel CPUs.
In [41], authors described a design space exploration method-
ology that focuses on the combination of different CPU
microarchitectures to design energy-efficient processors for
IoT applications. In both studies, authors mainly focused
on the impact of CPU frequencies and cache sizes on

VOLUME 7, 2019

the performance and energy when executing the consid-
ered benchmarks. They used existing architecture simulators
(i.e., gemS and ESESC) combined with power estimation
tools (e.g., McPAT) to perform their respective analyses.
While such tools enable reasonable virtual prototyping, they
can lead to biased evaluations. For instance, the average error
of the used CPU models in such tools is rarely low, e.g., below
20% [42].

The current paper deals with similar issues as in [40], [41].
It relies on a novel asymmetric single-ISA architecture built
with cost-effective and very low power core technology.
Unlike the aforementioned studies, it considers microar-
chitecture design trade-offs targeting advanced mechanisms
such as out-of-order, in-order, float-point unit execution sup-
ports. It adopts an FPGA-based prototyping to avoid unbi-
ased evaluation. Special attention is given to the application
workload management on such an architecture in order to
optimize both performance and power consumption. We also
show that the design trade-off of floating point support plays
an important role in performance improvement while bene-
fiting the inherently low-power nature of the cores. Finally,
we demonstrate that leveraging some knowledge of applica-
tion characteristics contributes to reaching this goal.

IlIl. HETEROGENEOUS ARCHITECTURE DESIGN

The design approach adopted for the considered heteroge-
neous multicore architectures relies on different core cus-
tomization degrees: i) a basic ultra-low-power and high
code density CPU microprocessor without a floating point
unit (FPU), ii) a low-power microprocessor having a FPU,
and iii) a high-performance application processor based on a
fully-out-of-order multiple issue architecture, FPU and full
MMU support. This offers more opportunities in terms of
performance and power tradeoffs.

A. GENERAL PRINCIPLE

Fig. 1 shows three templates of candidate designs. These
templates are arbitrary designs, which, however, aim at
providing a trade-off regarding the core diversity require-
ments, e.g., out-of-order versus in-order cores, cores with
versus without FPU, for global energy-efficiency. The
quadcore architecture depicted in Fig. la comprises one

49477

IEEE Access

A. Gamatié et al.: Toward Energy-Efficient Heterogeneous Multicore Architectures for Edge Computing

FIGURE 2. Design of the asymmetric heptacore architecture shown in Fig. 1c.

high-performance core, referred to as HP-Core?; and three
low power cores, i.e., micro-controllers, with various fea-
tures: one core with FPU, referred to as LPF-Core’ and
two cores without FPU referred to LP-Cores.* Assuming the
Amdahl’s law, considering only one single high-performance
core for fast execution of serial regions combined with several
power-efficient cores appears relevant [37].

In the quadcore architecture depicted in Fig. 1b, the low
power cores configuration is different: two LPF-Cores are
combined with a single LP-Core.

Core count can be increased as shown in Fig. 1c, through an
heptacore system representing a superset of the previous two
quadcore templates. This provides a diversity of microarchi-
tecture features that meets the requirements of applications.
Indeed, floating point operations are not always present in
embedded workloads. In all templates, the cores are con-
nected to the shared memory via a hierarchy of crossbars.
The cache memory hierarchy is organized in such a way
that every core has its private L1 cache. On the contrary,
a unique L2 cache is shared by these cores. This ensures

2Acronym for the high-performance core.
3Acronym for low-power core with floating point unit.
4Acronym for low-power core without floating point unit.

49478

cache coherence by construction for the considered multi-
programmed workload setup in this paper. Fig. 2 illustrates
a synthesizable implementation of this heptacore template.

B. DESIGN INSTANTIATION

The generic HP-Core, LPF-Core and LP-Core cores ref-
erenced in Fig. 1 are respectively implemented with the
APSX2, FPS26 and APS25 core technologies,® developed by
the Cortus company.

The APSX2° is a recent high-end multiple-issue, out-of-
order CPU supporting floating point computation. It was
designed as an application processor with features such as
precise exceptions handling, branch prediction and multiple
threads of execution. Compared to other cores from Cortus,
it provides a higher memory bandwidth thanks to wider mem-
ory buses.

The FPS26 is an extensible 32-bit core featuring single
precision floating point combined with excellent code den-
sity. As most Cortus cores, it relies on Harvard architecture

SNote that in the Cortus hardware platform, RISC-V cores and their
software tools have been already adapted by the company to provide a
leading RISC-V based solution.

SFor reasons of confidentiality, some details are omitted.

VOLUME 7, 2019

A. Gamatié et al.: Toward Energy-Efficient Heterogeneous Multicore Architectures for Edge Computing

IEEE Access

with 2 x 4 GByte address space. It is suitable for creating
complex embedded systems with caches, co-processors, and
multiple cores, e.g., in audio, vision, advanced control and
communication applications. Floating point arithmetic bene-
fits a number of algorithms in those domains.

The APS25 is similar to the FPS26, but has no FPU as a
major part of embedded applications do not require floating
point calculations. This reduces its complexity in terms of
area as well as decreases power consumption. The execution
of floating point computations on this core is achieved via
a software emulation mechanism. There is a strict inclusion
between the above Cortus cores in terms of instruction sets:
APS25 is included in FPS26, itself included in APSX2.

at which a NoC becomes necessary can be postponed by
using a multi-level crossbar system where the number of
communicating cores per crossbar is reduced. Our design
templates adopt this last approach (see Fig. 1).

For instance, Table 1 shows that the cost of the crossbar
interconnect is reasonable compared to that of cores. An esti-
mate for the three design templates (memory is not included
as assumed to be off-chip). An interesting observation is
that the scalability of these templates does not dramatically
degrade their cost in area and power, while performance
improvement is expected thanks to more parallelism.

TABLE 2. Microarchitecture comparison: Cortus versus ARM.

TABLE 1. Design elements assessment. Performance values (DMIPS/MHz)
APS25 | 2.51 DMIPS /MHz | Cortex-M0 | 0.03 DMIPS/MHz
FPS26 2.51 DMIPS /MHz | Cortex-M3 1.25 DMIPS/MHz
FPGA metrics ASIC metrics Cortex-M4 1.25 DMIPS/MHz
Slices Gates Area (qu) Power (mw) APSX2 4 DMIPS / MHz Cortex-A7 1.9 DMIPS/MHz
Cortex-A15 3.5 DMIPS/MHz
HP-Core 122941 1471462 1341624 4
LPF-C 7919 93083 134039 0.86 . . .
ore Compared to ARM microarchitectures, which are the
LP-Core 3981 47648 68613 0.42 biggest competitors, the aforementioned cores provide more
Intercon. (Quadcore) 7359 24736 119733 0.78 attractive performance scores as illustrated in Table 2. Here,
Quadcore (Fig. 1a) 164653 || 1551905 4431142 6.48 a comparison of considered Cortus cores with relevant ARM
Quadcore (Fig. 1b) 168591 1599038 4499015 6.92 microarchitectures [44] is given in terms of Dhrystone Mil-
Heptacore 205135 1809319 6160819 8.62 lion Instruction per Second (DMIPS) per MHz, which is a

Table 1 provides an assessment of different design ele-
ments in terms of the number of FPGA slices. Furthermore,
number of gates, area and power figures resulting for a syn-
thesis targeting a UMC 55nm ULP ASIC technology are indi-
cated. This assessment relies on two prototypes: a Kintex-7
FPGA embedded in the Genesys 2 board of Diligent [43],
and a Virtex Ultrascale VCU108 FPGA evaluation kit. The
power consumption indicated in Table 1 has been estimated
while assuming a toggling activity of 50% of the synthesized
logics every clock tick. Cache memory is covered in these
design estimations, but not the external memory. Through
the reported numbers, we can observe the higher complexity
of the HP-Core compared to LPF-Core and LP-Core, due to
its advanced features. In addition, the presence of a floating-
point unit in LPF-Core makes this core twice costly than the
LP-Core.

In order to meet the energy-efficiency requirements of
the overall target system, the design of the communication
infrastructure should consider a trade-off between complexity
(required die area and the corresponding dissipated power),
transfer speed, latency, and throughput. In general, very sim-
ple systems composed of a few cores can use a shared bus.
When the core count increases, a crossbar becomes more
attractive, allowing multiple accesses between cores via high-
speed paths. As the number of potential paths between cores
increases the complexity of the crossbar increases to a point
that a large portion of the die is reserved for the crossbar and
timing closure becomes increasingly difficult. At this point a
network-on-chip (NoC) is desirable. Nevertheless, the point

VOLUME 7, 2019

representative metric for processor performance evaluation.

IV. TAILORED MULTITASK PROGRAMMING

Having a suitable programming model is crucial for ade-
quate exploitation of the proposed asymmetric system design.
Here, a task data-flow programming models similar to
OpenMP 4.0 [45] or OmpSs [46] is considered. It allows one
to define the job of each task and how to execute it on the
available cores.

A. PROGRAMMING MODEL

From a syntactic point of view, the programming model
considered in this work is close to POSIX Threads program-
ming [47]. Fig. 3 illustrates the correspondence between the
two programming styles. One can distinguish the declaration
and definition of the functions that are performed by cre-
ated threads or tasks depending on the programming model.
In particular, when focusing on our task-oriented program-
ming model, the specified parameters include the input argu-
ments taken of the functions realized by every task, and the
dependency information between tasks. The programming
model considered in this work is adequately tailored for Cor-
tus technology-based architecture. Nevertheless, automatic
code generation from existing code, e.g. written in POSIX
Threads could be envisioned due to their high syntactical
similarity.

B. DATA MANAGEMENT
We separate program and data memories for each core. Two
additional memory zones are reserved for shared memory

49479

lE E E ACCGSS A. Gamatié et al.: Toward Energy-Efficient Heterogeneous Multicore Architectures for Edge Computing

01 4#include Pthread library 01 #include Cortus library
02 typedef struct { 02 typedef struct {
a3 - 03 -
04 /{ argument wvariable 04 // argument wvariable
as - a5 -
06 } BRG; 08} RRG;
07 woid * TaskToDoc(veid * TaskArgument) { 07 woid * TaskToDo(veoid * TaskArgument) {
08
a8 return output; a9 return {veoid*)output;
a9 1 0 1}
10 woid main(){ 11 E char * TaskOutputd _ attribute_ ((section(".shared")}); 3
11 - |

// declaration of the cutputs returned by function
12 i pthread /{ (one declaration for each function)

13 |pthread attr_t attr;

14 | pthread attr init{gattr); | cFunction * function list = NULL;
15 E . | cTask * task list = NULL;
1lg for (id = 0; id < numTask; id++) { | ARG argsl _ attribute ({section(".shared")})
___ : = {fill the task argument structure};
17 | BRG *args = (BRG*)mallcc(sizeof (BRG)); 0, - |
18 L= f/ declaration of the arguments of function
19 | // £ill the task argument structure // lone declaration for each function)
20 T) - |
void mein(} {
cFunction create (&function list, "TaskToDo", TaskTeDo);
21 [/ Task creation and exscutioen |
22 Eif { pthread create(i
23 | stask list[id], s&attr, TaskToDe, (void*) args)) %, 27W\ if (cpu id{} = O0)}{
24 | fprintf(| (stask list, TaskOutputl, "TaskToD "é
25 E stderr, "Errcr during creation of thread %d\n");i ! (void*) &args(, NULL, O, 0) == NULL |
26 Y ' L= Lo
27 1 315 E //declaration of task creation E
32 i //(ocne declaration per task) 1
__ 33 S S
28 | for (id = 0; id < numTask; id++) { } 34) |
29 E if (pthread join(task list[id], TaskOutput)) { 35 printf ("Problem creating tasks\n");
30 | fprintf (stderr, "Error when joining %d\n", id); | 365 msgbex_master—>reg[0] = 1;
31 T } T T T R '
3z 13
33 1

FIGURE 3. Pthread (left) versus our proposed programming model (right).

(a) (b) (0

FIGURE 4. Multi-threaded management approach. (a) Memory organization. (b) Task creation. (c) Task execution.

and for the memory management unit (MMU) configura- three different functions a (), b () and ¢ () can be com-
tion. This makes it possible to compile the same program piled differently, resulting in different machine codes, sizes
for cores implementing different instruction sets. In Fig. 4a, and memory placements, but unchanged functionality. If a

49480 VOLUME 7, 2019

A. Gamatié et al.: Toward Energy-Efficient Heterogeneous Multicore Architectures for Edge Computing

IEEE Access

specific code fragment has to be executed by a specific core,
the cpu_id () run-time function is used to indicate this core.
At the data level, each core has its own data, stack, and
heap. To share data, a shared memory section is available,
including a shared heap. For dynamic memory allocation,
the smalloc () and sfree () functions are available.
A basic lock mechanism for exclusive access is implemented
in those functions. The MMU configuration for all cores is
stored in a dedicated memory section. Since direct memory
mapping is used and is same for every core, this allows for
memory saving, hence reducing information replication.
In the shared data, three status vector are provided:
e cpu_ready[4] toindicate if a core is ready,
e cpu_valid[4] toindicate to acore if datais valid and
execution can be started,
e Cpu_assigned_task[4] to store the address of the
task to execute.
Furthermore, a cpu_ 1 ock variable is available to implement
exclusive access to shared resources.

C. TASK SCHEDULING
A cooperative task scheduling is adopted, i.e., a task com-
pletes before switching to another task on a given core (mean-
ing no context switch). While this approach is less flexible
for real-time workloads, it is simple and more effective for
computation-intensive workloads. Multi-tasked execution is
eased here by giving tasks a list of dependencies to be met by
the scheduler. The scheduling is also dynamic, i.e., tasks can
be executed by any available core in any order when allowed.
Task declaration is static, thus fixed at compile time. A library
of user-level functions and data structures is provided for task
scheduling.

Here, the scheduler is executed on the HP-Core, which
plays the role of “master” core that assigns tasks to ““slave”
cores (i.e., LPF-Core and LP-Cores) and itself.

1) TASK CREATION
Tasks and functions are represented by data structures:

o cFunction makes the link between a function and its
physical address in memory. This is very important to
support different instruction sets.

o cTask contains the reference to the function with its
parameters, the return value, dependencies, status, exe-
cution time and further information.

Two creation functions populate these structures and link

them in lists:

e cFunction_create ():takes a function pointer and
a string tag, and associates them in a linked-list working
as a look-up table in the heap memory. Each core must
perform this creation to have its LUT in its heap.

e cTask_create(): takes a function string tag,
the parameters, return value, dependencies and informa-
tion on the presence of floating point computation; then,
puts them in a linked list in the shared heap memory.
The information about the presence of floating point
computation allows the scheduler to execute the tasks

VOLUME 7, 2019

on the appropriate CPU configurations, i.e. HP-core and
LPF-cores when floating point computation is involved.
Parameters and return values are always cast voidx.
This information is available to every core in the shared
heap.

In Fig. 4b, cFunction_create takes the address of a
function and links it with the string tag function_a (blue
solid arrows). Then, cTask_create takes the string tag to
create a task in the shared memory (blue dashed arrow).

2) TASK EXECUTION

When the two steps of creation are performed, the “master”
core can start task scheduling, and finally all cores can start
execution. For this purpose, two methods are provided:

e cScheduler_execute ():launches one iteration of
the scheduler, which checks whether:

— there are tasks available in the task list;

— dependencies are fulfilled;

— acore is available (cpu_ready[1] == 1);
If all conditions are satisfied, then a task is assigned
to a core. Its address is copied in cpu_assign-—
ed_task[i] where i is the identifier of the target
core. The core is signaled via an interrupt or by set-
ting cpu_valid([i] to 1. cScheduler_execute
returns the identifier of the task to be executed.

e cTask_execute (): executes a task after retrieving
the function to be executed from the function list. When
it has finished, it notifies the ‘“master’ core.

In Fig. 4c, cScheduler_executes (on HP-Core)
assigns the task to LP-Core: cpu_ready[3] goes 0,
cpu_valid[3] is set to 1 while the task address is stored
in cpu_assigned_task[3] (red solid arrows). Then,
cTask_execute (on LP-Core) takes this address and the
control of the task. It uses the function string tag to retrieve the
address of the function and executes it (red dashed arrows).

In the above scheduler description, we mentioned a
“polling™ approach which uses cpu_valid[] for signal-
ing and an “interrupt” approach which relies on interrupt
routines. The polling approach consists of continuously
looking at a memory location waiting for some value
(in this case, cpu_valid[i] == 1).During idle phase,
“slave” cores do nothing and “‘master”” core runs the sched-
uler. All cores can run a task. A corresponding pseudo-code
is as follows:

00 1if (cpu_id() == 0) {

01 do {

02 remaining = cScheduler_execute();

03 if (cpu_valid[0]) cTask_execute();

04 } while (remaining != 0);

05 } else {

06 do {

07 if (cpu_valid[cpu_id()]) cTask_execute();
08 } while (1);

09 1}

This approach is much simpler but less effective. In fact,
the “master” core assigns a task to itself and re-runs the
scheduler only once this task is completed.

49481

IEEE Access

A. Gamatié et al.: Toward Energy-Efficient Heterogeneous Multicore Architectures for Edge Computing

The interrupt approach consists of notifying the core when-
ever an interrupt signals the start of execution. An interrupt is
also sent to signal the end of execution; launching the sched-
uler. The interrupt routines then call the execution functions.
Corresponding pseudo-code is as follows:

00 void interrupt_handler (IRQ_MSGBOX_0MtolS) {
01 msgbox[1l]->req[0] = 0;

02 cTaskExecute () ;

03 }

04 void interrupt_handler (IRQ_MSGBOX_1StoOM) {
05 msgbox [0]->req[l] = 0;

06 cSchedulerExecute () ;

07 }

Here the routines, shown for HP-Core and LPF-Core, exist
for all four cores. This approach is more difficult to handle
but, if nesting interrupts is enabled, is more effective. In fact,
the ““master core’” can interrupt its assigned task execution to
run the scheduler and assign a new task to a free core as soon
as possible.

TABLE 3. Selected benchmarks.

[Benchmarks [Parallel workload [Float | Intensity |
I-Factorial No No Compute-intensive
F-Factorial No Yes Compute-intensive

FFT Yes Yes Compute-intensive
I-Matmul Yes No Compute-intensive
F-Matmul Yes Yes Compute-intensive

Mpeg Yes Yes Compute-intensive

RandNumCmp Yes No Branch instructions
HashSync Yes No Sync.-intensive
InstPar Yes No Instr. parallelism
Bitonic Yes No Memory-bound
KNN Yes Yes Memory-bound
Stencil Yes Yes Memory-bound

V. EVALUATION OF THE ASYMMETRIC ARCHITECTURE

A. BENCHMARKING APPROACH

The explored architecture designs will be evaluated by using
selected benchmarks. We re-encoded these benchmarks in the
task-based programming model presented previously. Table 3
summarizes the entire set of benchmarks. Some characteris-
tics of interest are specified for each program: parallelism
(i.e., multi-task), floating point manipulation alongside the
major algorithmic features: compute-intensive, many branch-
ing instructions, synchronization-intensive, high instruction
parallelism and memory-boundedness. This enables to study
the tradeoff between the possible architecture configurations
w.r.t. the workload characteristics.

1) CONSIDERED BENCHMARKS
The I-Factorial and F-Factorial benchmarks implement algo-
rithms that compute the factorial of integer and floating-point
numbers respectively. They are the only sequential programs
considered in our experiments. Henceforth, they will be only
executed on single-core configurations. This enables to com-
pare the three core types part of the Cortus IP portfolio.

On the other hand, since multicore heterogeneous designs
are the main focus of our study, all remaining benchmarks

49482

have been re-encoded as parallel multi-task programs. Most
of them consist of a set of identical tasks, i.e. each task
realizes the same function. FFT [48] is a benchmark where
each task executes the same Fast Fourier Transform. The aim
is to devise a typical embarrassingly parallel workload that
is compute-intensive. In the Mpeg benchmark,” each task
executes an MPEG algorithm.

The RandNumCmp benchmark encodes an algorithm
consisting of a loop that iterates five successive if-condition
statements. All Boolean conditions in these statements
depend on a random integer value. The aim of this benchmark
is to make the branch prediction difficult to the processor.
Hence, this will result in a high number of branch mispredic-
tions, with variable impact on processor microarchitecture.

The HashSync benchmark implements an algorithm that
triggers frequent accesses to a shared and synchronized hash-
table. Each task calculates a key corresponding to arow where
to insert some elements in the hash-table. By specifying a
high number of tasks, this benchmark allows to reproduce the
behavior of synchronization-intensive workloads.

InstPar is a simple benchmark that contains a sequence of
independent operations that can be executed in parallel. Pro-
cessors with deeper instruction pipelines efficiently execute
such a benchmark.

The last three benchmarks, Bitonic [49], K-Nearest Neigh-
bours (KNN) [49] and Stencil [50], have in common are
memory-bound. They can handle large array data struc-
tures that lead to many cache misses. Bitonic is an algo-
rithm that sorts the elements of an array in ascending order.
KNN implements a classification algorithm commonly used
in machine learning. It relies on the calculation of distances
between the points within a bi-dimensional space. Finally, the
Stencil benchmark often used in image processing consists of
matrix cell averaging algorithms. Given a cell, it computes
the average of the values in the current cell and its four
adjacent cells.

Finally, I-Matmul and F-Matmul encode a matrix multi-
plication, respectively on integer matrices and floating-point
value matrices. Unlike the other parallel benchmarks, these
two benchmarks are encoded in such a way that each task
computes a different column of the resulting matrix. Note that
the following benchmarks are in-house programs that cap-
ture well-known algorithms: I-Matmul, F-Matmul, InstPar,
HashSync, RandNumCmp, I-Factorial and F-Factorial.

2) MULTI-BENCHMARK PROGRAMS

Based on above benchmarks, we define multi-benchmark
programs to reflect realistic application workloads. Indeed,
such workloads generally combine more than one of the sep-
arate characteristics found in a given benchmark. These con-
sidered multi-benchmark programs are described in Table 4.
We arbitrarily selected five benchmarks, reflecting differ-
ent characteristics, which are combined in different ways:

7Adapted from http://www.jonolick.com/uploads/7/9/2/1/7921194/jo_
mpeg.cpp.

VOLUME 7, 2019

A. Gamatié et al.: Toward Energy-Efficient Heterogeneous Multicore Architectures for Edge Computing

IEEE Access

TABLE 4. Multi-benchmark program variants.

[Variants [Dominant character. | Composition |

Multi-B Balanced 10 tasks per characteristic
Multi-BI | Branch instructions

Multi-CT' | Compute-intensive 50 tasks with dominant charac.
Multi-MB | Memory-bound & 40 tasks with the remaining
Multi-TP | Instr. parallelism characteristics by groups of
Multi-SI Sync.-intensive 10 tasks

FIGURE 5. Energy measurement setup.

I-Factorial (compute-intensive), RandNumCmp (branch-
ing), Bitonic (memory-bound), HashSync (synchronization-
intensive) and InstPar (instruction parallelism). The idea is
to have five different phases in terms of algorithm character-
istics. Each phase consists of several similar tasks.

Six variants of multi-benchmark programs are defined (see
Table 4). In the variant referred to as Multi-B, each phase has
10 tasks with the same characteristic, i.e., a total of 50 tasks
in this multi-benchmark program. Then, in the other program
variants, we increase the number of tasks for each phase.
This moves the nature of a program towards the algorith-
mic characteristics of the increased task phase. For instance,
the program Multi-Cl, which is composed of 50 compute-
intensive tasks and 10 tasks for each of the four remaining
characteristics will tend to have a compute-intensive domi-
nant characteristic. In total, it has 90 tasks.

B. EXPERIMENTAL SETUP

A major part of the experimentation reported in the sequel
is performed on the two quadcore configurations mentioned
in Fig. 1. They are implemented separately on two Genesys 2
Kintex-7 FPGA boards of Diligent [43]. The template pre-
sented in Fig. la is considered for benchmarks without
floating-point computations, while Fig. 1b is preferably used
for benchmarks with floating-point computations since it
includes more cores supporting an FPU.

Both the execution time and power consumption are mea-
sured to compare the energy variations according to bench-
marks and explored architecture configurations. To enable a
high accurate power measurement of the architectures syn-
thesized on the FPGAs, we implemented the apparatus illus-
trated in Fig. 5, inspired by the JetsonLeap approach [51].
An interesting feature of the considered FPGA board is that it
offers the possibility of setting a targeted power supply of the
board. Indeed, without using the default 12V power supply,

VOLUME 7, 2019

TABLE 5. Genesys 2 power supplies.

[Supplied voltage | Covered circuit components
1.0V FPGA cores
1.8V FPGA auxiliary
33V FPGA peripheral & ect
5V USB Host & HDMI & DDR3 & ect

the board can be powered based on the voltage values shown
in Table 5. This allows us to directly measure the consumption
of the FPGA chip itself (covering all design components,
including the external memory used in the FPGA). It is
illustrated in Fig. 5. A shunt resistance is used between a
power supply (i.e., a current generator) and the power supply
of the FPGA board. It enables to measure the voltage at its
boundaries. This voltage is used afterward to compute the
instantaneous power consumption and the resulting energy
consumption.

In addition to the aforementioned experiments, some com-
plementary evaluations are conducted on an implementation
of the heptacore architecture version (see Fig. 1c) to ana-
lyze the performance tendency observed on the quadcore
architecture prototypes. For this purpose, the Virtex Ultra-
scale VCU108 FPGA evaluation kit is used to synthesize the
heptacore architecture.

C. BENCHMARK EVALUATION

We execute the benchmarks presented in Table 3 on the core
configuration space corresponding to the proposed quadcore
architectures. The obtained energy consumption values are
summarized in Fig. 6. The corresponding execution time
and measured power consumption are given in Fig. 7 for a
fine-grain analysis.

In the sequel, to enable a convenient comprehensive com-
parison of all system execution scenarios, we consider two
different reference scenarios according to which all the
remaining ones are normalized. In the assessment of the
quadcore architecture templates (Section V-C1), the reference
design consists of a single HP-Core execution. For the hep-
tacore template (Section V-C2), the reference design is the
quadcore architecture shown in Fig. la.

1) QUADCORE ARCHITECTURE ASSESSMENT
For the sake of simplicity, the following notations® are
adopted to encode the different architecture configurations:

« single core: 1X

e two cores: 1X 1Y, and 2X

o three cores: 1X 1Y 1Z, and 1X 2Y

o four cores: 1X 1Y 27
where X, Y and Z denote either HP-Core (abbreviated as H),
LPF-Core (abbreviated as F) and LP-Core (abbreviated as T).
For instance, the configuration 1H 1F 2T denotes the full
quadcore configuration depicted in Fig. 1a.

8

8Note that only the benchmarks with floating point computations include
configuration abbreviations that contain “2F”, which refers to the two LPF-
Cores available in the template of Fig. 1b.

49483

IEEE Access

A. Gamatié et al.: Toward Energy-Efficient Heterogeneous Multicore Architectures for Edge Computing

I3 < £

£ 102 ® 14 ® S

S8 1 gl 2 ;4,5

2 098 . 4

£ 09 51 @ 35

g 094 S 038]

3 o9 gos 35

£ 088 = 04 S5

® 086 s e

£ om . £ — £os | I | I I I

S og 20 2 0 - -

1H 1F 1 1H 1F 1 RXERNLERNARNKSA VXS AV
NN ~ ~ ~
T VR
~ ~ N ~
L Qi
SR
CPU Configuration CPU Configuration CPU Configuration
(@ (b) ©

g 2,5 g 3,5 g 2,5

3 3 g 2

£15 £ 2 £15

° B 15 2

o 1 @ o 1

8 S 8

= = 1 =

S 05] S 05

£ III III I I 2 | II I III [E'“ ' ||I|| IIl

£ £ £

S o S o - - S o - =

2 2 2
%“Q“Q'DQQ'D'V'E TEIENVNANAANASANS TEIEKNAVNASNAIANASANS
N ~ NN ~ ~ ~ NS ~ ~ Q

K $*\4‘$~\¢‘> RN \ﬁ$é$f‘ég‘>é‘¢ R IR S
< SN 5 SN
CPU Configuratuon CPU Configuration CPU Configuration
(d) (e) ®

c < c

w0 s 25 ® 3

Bas : 22

> 2 2)

535] §

€ 3 S 15 <

g 2,5 - o 15

2.8 2 2.

sl : L

£o5 I £ £

S S

S o 2 0 2 0
T E T E S v 5 v v SN O ~> SN SORENSESERNEEN '\> '»\ > '»\ » D
Sy > SN \ RN &

S $§‘$é‘$‘,‘ KON é‘&@é‘ R (\m‘f» S
~ Y 5 S
CPU Configuration CPU Conflguratlon CPU Configuration
(2 (h) Q)

c c c

‘® 3.5 ‘s 4 s 8

:s 5 s

8,5 8 3 [

%) ;é:z,s g 5

@

B 15 2 1; 3 ;

2 8L 2

= = =

© c 1 ® 2

1 E“II 1 I F .

5% 5% 1 Sl Il alna
%‘<~>‘<~>'\>~\~>w\'v'v TEIENS VNS AVAVALS NS LEIENANENSANAL S AN
N ~ NS ~ ~ N NS ~ ~ ~

O R UMM A VLK
2 2 2 R 3 R
CPU Configuratuon CPU Configuration CPU Configuration
()} (k))

FIGURE 6. Normalized energy consumption comparison for evaluated benchmarks. (a) I-Factorial. (b) F-Factorial. (c) FFT. (d) I-Matmul.

(e) F-Matmul. (f) Mpeg. (g) RandNumCmp. (h) HashSync. (i) InstPar.

a: COMPUTE-INTENSIVE WORKLOADS

Overall, the obtained results show that for single core exe-
cution of compute-intensive workloads, the HP-Core is more
energy-efficient than the others. For I-Factorial benchmark,
we observe that the HP-core is 8% more efficient than
LPF-Core, as reported in Fig. 6a. Since this benchmark has
no floating point computation, one would expect the same
efficiency for both LPF-Core and LP-Core, but the former
is slightly better, i.e., by 4%. When considering the floating
point version of the benchmark, i.e., F-Factorial, the ben-
efit of the FPU in the LPF-Core becomes clearly visible
through its higher energy efficiency compared to LP-Cores,
estimated around 91% as shown in Fig. 6b. Most importantly,
for benchmarks performing intensive floating point opera-
tions such as F-Factorial, FFT and F-Matmul, the LPF-Core
can be even more efficient than HP-core by 26%, 96% and
11.5% respectively, due to the aggressive FPU optimization
in LPF-Core.

49484

(j) Bitonic. (k) KNN. (I) Stencil.

Similar single-core energy tendencies are observed
for all compute-intensive parallel benchmarks, i.e., FFT,
I-Matmul, F-Matmul and Mpeg, respectively shown in
Figs. 6c¢, 6d, 6e, and 6f. The multicore configurations show
that only two LPF-Cores combined with HP-Core provide the
best energy consumption for benchmarks containing inten-
sive floating point computations (FFT and F-Matmul). With-
out floating point computation, as in I-Matmul benchmark,
the full quadcore configuration shown in Fig. 1a is the best.
Nevertheless, this configuration does not bring a significant
gain compared to configurations with three cores. Finally,
in presence of floating point computations, both full quadcore
architecture depicted in Fig. l1a and Fig. 1b yield a similar
energy consumption for the parallel F-Matmul and Mpeg
benchmarks. This pertains to the significant execution time
overhead induced by LP-Cores in both architecture configu-
rations, which hides any improvement enabled by HP-Core
and LPF-Cores. For the FFT benchmark, the full quadcore

VOLUME 7, 2019

A. Gamatié et al.: Toward Energy-Efficient Heterogeneous Multicore Architectures for Edge Computing

IEEE Access

330

340

325 A1H 335 A 1H
320 330
2506 2325
5310 Esn
§ 5315
3 305 F10
300 1F4A 305
295 A1l 300 A1F
A1l
290 295
0 2 4 6 .10 15 20
Time[s] Time[s]

(a)

(d)

(&

)

(b)

(e)

(h)

(k)

(c)

®

(U]

FIGURE 7. Power consumption and execution time for evaluated benchmarks on different core configurations. (a) I-Factorial. (b) F-Factorial.

(c) FFT. (d) I-Matmul. (e) F-Matmul. (f) Mpeg. (g) RandNumCmp. (h) HashSync. (i) InstPar. (j) Bitonic. (k) KNN. (I) Stencil.

including two LPF-Cores is slightly better than the other
quadcore configuration. More generally, we observe that the
best energy gain for parallel floating-point compute-intensive
benchmarks is obtained with the configuration 1h 2F.
It means that the combination of HP-Core and LPF-Cores
provides the most efficient floating-point execution. When
adding LP-Cores, which do not include any FPU in their
microarchitecture, the overall performance becomes worse
despite a higher execution parallelism due to more cores.

VOLUME 7, 2019

b: BRANCHING, INSTRUCTION PARALLELISM AND
SYNCHRONIZATION INTENSIVE WORKLOADS

Unlike the above observations, the RandNumCmp bench-
mark containing a high number of branching instructions
exhibits similar energy consumption for both LPF-Core and
LP-Core in single-core executions (see Fig. 6g). The HP-Core
is the least efficient with an additional energy consump-
tion, the low power cores have a better energy efficiency
of almost 50%. This is explained by the detrimental impact

49485

IEEE Access

A. Gamatié et al.: Toward Energy-Efficient Heterogeneous Multicore Architectures for Edge Computing

of frequent branch mispredictions on the microarchitecture
of the HP-Core. As a matter of fact, the processor often
needs to revert all intermediate results whenever the pre-
diction turns out to be wrong: this implies emptying the
instruction pipeline of the core, which further requires to save
and restore structures such as renaming tables. In multicore
configurations, even though the full quadcore configuration is
the most energy-efficient, its gain is very marginal compared
to a configuration with only three low power cores. This
minimum energy gap is induced by the branch misprediction
penalty on HP-Core with quadcore.

For the InstPar benchmark, which is characterized by high
instruction parallelism, the HP-Core is more energy-efficient
than the LP-Cores by 33% (see Fig. 61). This is favored by the
advanced microarchitecture of HP-Core, e.g., out-of-order
execution, deeper pipeline stages. The parallel execution of
this benchmark improves the energy by 50% compared to
a single core. Most of the configurations with equivalent
core count have comparable energy consumption, while those
including the HP-Core run 25% faster compared to configu-
rations using only low power cores (see Fig. 7i).

While the above observations were expected for InstPar,
adifferent outcome is obtained for the HashSync benchmark,
which is synchronization-intensive. On a single-core, the exe-
cution of this benchmark shows low power cores are slightly
more energy-efficient than HP-Core, as illustrated in Fig. 6h.
In configurations with an equivalent number of cores, those
including the HP-Core are less efficient, by 25% compared
to low power cores only. This is explained by the overhead
induced by the HP-Core microarchitecture management in
presence of task synchronizations. More precisely, this over-
head comes from the costly context switches occurring in the
complex microarchitecture of this specific core (contrarily to
low power cores). The HashSync algorithm involves frequent
task suspension and resumes. In the end, there is an important
execution time overhead due to pipeline stages emptying.

¢: MEMORY-BOUND WORKLOADS

The Bitonic sorting algorithm shows that execution on two
cores makes it possible to obtain an improvement of the
efficiency of the order 40% with HP-core and 70% with
LP-core compared to a single core (see Fig. 6j). Multicore
configurations with the same number of cores have compa-
rable execution time as shown in Fig. 7j, while those using
only low power cores are more energy-efficient. The only
exception concerns the 3-core configuration 1F 2I and the
full quadcore, which have equivalent energy consumption.
The latter configuration has a gain of 24% in execution time
compared to the former.

In the case of KNN benchmark, an energy gap of 70%
between an LP-Core and an LPF-Core is observed, due to
the presence of floating-point operations in this program
(see Fig. 6k). The HP-Core is also 40% less energy-efficient
than the LPF-core. Actually, the quadcore template shown
in Fig. 1b, which contains two LFP-Cores is the best choice
for the KNN benchmark.

49486

For the Stencil benchmark, which also contains floating-
point computations, the LP-Core is, of course, the least
energy-efficient. Similarly to the KNN benchmark, the
LPF-Core is the best, being nearly 280% better than
the HP-core (see Fig. 6l). This huge difference reduces
the benefits of the program parallelization. In general, the
configurations including one or two LPF-Cores are the most
energy-efficient. The LP-core is extremely penalizing, while
the HP-core enables only a limited improvement, about 3%,
as shown in Fig. 61 when comparing the configurations 2F
and 1H 2F.

Finally, we generally observe that thanks to the adopted
data management approach, the memory bandwidth is never
saturated during the execution of the above memory-bound
benchmarks. This also confirms an adequate dimensioning of
the system.

2) HEPTACORE ARCHITECTURE ASSESSMENT

We extend the previous assessment to the heptacore template
through a brief comparison of the speedup obtained with
the above two quadcore designs (Fig. la and Fig. 1b) and
the heptacore design (Fig. 1¢). For brevity, in the following
these three designs are referred to as Archi_A, Archi_B and
Archi_C respectively.

Overall, we observe in Fig. 8° that the heptacore architec-
ture C provides a speedup improvement of 2.4x on average.
It is worth mentioning that in the F-Matmul benchmark,
architecture C does not bring any speedup improvement
compared to the full quadcore configurations. As discussed
earlier, this comes from the very low performance of
LP-Cores, which always makes the execution time higher:
tasks assigned to HP-Core and LPF-Cores terminate earlier,
while those executed by LP-Cores complete later. So, the exe-
cution acceleration enabled by HP-Core and LPF-Cores is
still hidden by the penalty induced by LP-Cores. It is not
the case of the Mpeg, which is similar to F-Matmul on
the two full quadcore configurations. The negative impact
of LP-Cores on the speedup obtained with heptacore is
mitigated.

VI. TOWARDS BETTER ENERGY-EFFICIENCY

We first summarize the main insights gained from the above
comprehensive architecture evaluation. Then, we show how
these insights can be exploited for additional energy gains.

A. SUMMARY OF GAINED INSIGHTS

First of all, even though the covered benchmarks are rela-
tively modest application workloads, the maximum power
consumption threshold reached in our experiments is always
below 0.4 W. This is favored by the inherently low power SoC
blocks integrated in our designs. Note that complementary
well-known power saving techniques such as power or clock

90n1y, parallel benchmarks are considered in this comparison. In other
words, the two sequential variants of the factorial algorithm are ignored.

VOLUME 7, 2019

A. Gamatié et al.: Toward Energy-Efficient Heterogeneous Multicore Architectures for Edge Computing

IEEE Access

B Archi_A = Archi_B " Archi_C B Archi_A m Archi_B = Archi_C

2,5 1,5 1,5
g g g
© 15 ° 10 ° 10
o 2 o
205 205

;’,,_ 1,0
0,5
0,0 - 0,0 . 0,0
Architecture Architecture

(@ (b)

W Archi_A = Archi_B " Archi_C B Archi_A m Archi_B ' Archi_C

10 2,0 2,0
s 215 215
© b=} ©
8 0,5 g 1,0 8 1,0
Q. o Q.
» ®»n 0,5 “ 0,5

0,0 . 0,0 . 0,0

Architecture Architecture
® ()

M Archi_A B Archi_B = Archi_C

Architecture

B Archi_A m Archi_B © Archi_C

Architecture

M Archi_A ® Archi_B ' Archi_C m Archi_A = Archi_B = Archi_C

2,5
g_2,0
- 15

o

2 1,0
0,5
0,0

Architecture

Architecture

Speedup
SorPrNNwwWa
ououvouvnouno

(d) (e)
B Archi_A ® Archi_B " Archi_C ® Archi_A = Archi_B = Archi_C

2,5 2,5
220 a2,0
315 315
: 3
%LO ‘%1,0

0,5 0,5

0,0 0,0

Architecture Architecture

@@ @

FIGURE 8. Speedup comparison for quadcore and heptacore architecture configurations. (a) FFT. (b) I-Matmul. (c) F-Matmul. (d) Mpeg.

(e) RandNumCmp. (f) HashSync. (g) InstPar. (h) Bitonic. (i) KNN. (j) Stencil.

Best configurations

I-Factorial

F-Factorial L
FFT
I-Matmul
F-Matmul
Mpeg

L 2

L 2
L 2

@

2
2

RandNumCmp

Benchmarks

HashSync .

2
2

InstPar

L 2

Bitonic
KNN
Stencil *

FIGURE 9. Best configuration for each benchmark.

gating [52], [53] could further contribute to reduce the power
consumption measured in our current experiments.

On the other hand, the different architecture evaluations
show that the expected energy gains often depend on the
workload nature. Fig. 9 summarizes for each benchmark,
its best configuration. Fortunately, the heterogeneity of the
proposed architecture enables to run workloads on the most
favorable configurations.

For benchmarks that scale with several cores, such as
I-Matmul or InstPar, noticeable energy gains are observed
while selecting configurations with higher core count. As pre-
sumed, the architecture configurations including LPF-Cores
provide the lowest energy consumption in presence of
floating-point computations, e.g., see the F-Matmul, FFT and
Mpeg benchmarks. An interesting insight is that the FPU
customization implemented in the LPF-Core by the Cor-
tus company is powerful enough to become an alternative
choice compared to the HP-Core. Using the latter, which
dissipates much more power, can be even notably worse for
the memory-bound KNN and Stencil benchmarks. However,
in the case of the Bitonic benchmark, which is also memory-
bound but without floating point computations, increasing

VOLUME 7, 2019

the number of LP-Cores contributes to energy minimization,
even without the help of the HP-Core.

A non-trivial insight concerns synchronization handling
in the considered heterogeneous multicore architecture. The
usage of the HP-Core to execute synchronization-intensive
algorithms reveals penalizing. A similar remark concerns
workloads with high branch misprediction rates as illustrated
by the RandNumCmp benchmark. The HP-Core becomes
less energy-efficient because of the costly operations occur-
ring in its microarchitecture upon branch mispredictions.
More generally, low power cores turn out to be better in the
above two situations.

B. LEVERAGING THE GAINED INSIGHTS

The above insights result from experiments while consider-
ing the task scheduling (described in Section IV-C), which
assigns any ready task to a CPU as soon as it becomes
available. Let us refer to this scheduler as the Default-sched
scheduler.

The affinity between workload nature and architecture con-
figurations, depicted in Fig. 9 can be leveraged to refine the
task scheduling policy on cores. More precisely, the ready
tasks of a program should be assigned to their most favorable
core configurations. To show the potential benefit of such a
scheduling strategy, we consider the multi-benchmark pro-
grams already presented in Table 4. Then, a typical applica-
tion example is evaluated to further confirm the relevance of
our gained insights. We only present execution scenarios on
quadcore architectures.

1) MULTI-BENCHMARK EVALUATION

Each multi-benchmark program is executed according to
three scenarios: i) on the full quadcore using Default-sched,
ii) on low power cores only, using Default-sched, and iii) on
the full quadcore using a new scheduler Opt-sched, which
assigns tasks to their best matching configuration in terms
of workload nature. The main idea of this experiments

49487

IEEE Access

A. Gamatié et al.: Toward Energy-Efficient Heterogeneous Multicore Architectures for Edge Computing

is to show that when taking algorithmic characteristics of
tasks into account, further energy-efficiency improvements
become reachable.

MW Default-sched @ LP-Cluster-sched [Opt-sched
1,6
1,4

o M7 . A\ //
Multi-B Multi-BI Multi-IP Multi-MB Multi-Cl

Normalized energy gains

Multi-S|

Multi-benchmark program variants

FIGURE 10. Normalized energy gain.

Fig. 10 summarizes the normalized energy gain corre-
sponding to the above three scheduling scenarios for each
multi-benchmark program. Globally, we observe that using
only low power cores with Default-sched (i.e., referred to as
“LP-Cluster-sched” in the figure) is less efficient than the
Default-sched scenario, by about 20%. The only exception
appears for the Multi-SI multi-benchmark where the poor per-
formances of the HP-core negatively influence the execution
of the benchmark with Default-sched.

For all multi-benchmarks, the Opt-sched provides the
best energy improvements. The energy gains are about 22%
on average (and vary between 5% and 45%) compared to
Default-sched in the reported case studies. This confirms the
benefits of adaptive workload assignments on the heteroge-
neous architecture. Here, the task allocation decisions rely
on the insights obtained from the comprehensive evaluation
presented in Section V-C. There are advanced well-known
approaches to deal with such decisions, which are under
consideration in our future work. Typically, we can men-
tion dynamic information monitoring and workload mapping
techniques [54], [55] and adaptive mapping techniques based
on static program analysis [56].

Example 1 (Focus on the Execution of Multi-B): To give
a more precise idea of the improvements enabled by the
gained insights, let us focus on the executions of the
Multi-B multi-benchmark when using the Default-sched and
Opt-sched.

Fig. 11 depicts the respective energy consumptions for
each sub-part of Multi-B, corresponding to a benchmark
with a specific algorithmic characteristic. To improve the
readability of the produced results, we inserted a dummy
task (represented by the light-blue portions of the graphs
in Fig. 11a and Fig. 11b) between the different sub-parts of
Multi-B. This dummy task has a constant power consumption
within each execution scenario.

We observe that the overall execution time of Multi-B is
reduced with Opt-sched compared to Default-sched. In addi-
tion, for each sub-part (excluding the dummy task portions),
the corresponding energy consumption is annotated in the
figures. This reflects the obtained improvements.

49488

(a)

(b)

FIGURE 11. Execution of Multi-B with different schedulers.
(a) Default-sched. (b) Opt-sched.

FIGURE 12. Data analytics application example.

2) TYPICAL DATA ANALYTICS APPLICATION EVALUATION
We consider an artificial, yet typical example of application
workload that is representative of functions executed on edge
nodes. The application features data analytics and mainly per-
forms a linear regression on a set of data collected from some
sensors (see Fig. 12). Its result is subsequently used to make
predictions. The advantage of deporting such a regression
task on the edge node is the reduction of the costly frequent
transfer of raw data from sensors to centralized cloud servers.

The executed application is composed of four tasks: the
tasks Sensorl and Sensor2 collect data aggregated and
exploited in a linear regression process realized by the task
LinReg. Concretely, the tasks Sensorl and Sensor2
are implemented by random number generation functions.
The LinReg task implements a linear regression algorithm
that takes as inputs two vectors of data values. Finally,
a task named Forecast takes the regression coefficients
computed by LinReg for prediction.

VOLUME 7, 2019

A. Gamatié et al.: Toward Energy-Efficient Heterogeneous Multicore Architectures for Edge Computing

IEEE Access

= g
= %} N 5]

Normalized energy gains
o
w

2I1H1F 2I1F1H 1I2F1I 2I1F1I

o

I I |
1H 1F 1I

Architecture configurations

FIGURE 13. Energy comparison for data analytics application.

Fig. 13 describes the energy consumption comparison of
a few execution scenarios of the data analytics application.
This comprises three monocore (“1H”, “1F” and “1I”)
and four quadcore scenarios (“2I 1H 1F”,“2I 1F 1H”,
“1I 2F 1I”and “2I 1F 11I”).These scenarios are nor-
malized w.r.t. the HP-Core monocore execution, denoted
by 1H.

According to the tasks’ characteristics, their mapping to
the most suitable cores enables an energy-efficient execution.
Here, this is obtained by executing Sensorl, Sensor2,
LinRegand Forecast respectively on LP-Core, LP-Core,
LPF-Core and LP-Core, corresponding to the architecture
configuration 2I 1F 1I. Indeed, Sensorl, Sensor2
and Forecast are not compute-intensive, contrarily to
LinReg. From our gained insights, the latter might be exe-
cuted on either the HP-Core or LPF-Core due to the pres-
ence of floating point computations in the corresponding
algorithm. Here, the LPF-Core reveals more energy-efficient
than the HP-Core. The other three tasks can be executed on
low power cores. This makes configuration “2I 1F 1I” a
better candidate than all the others as confirmed in Fig. 13.

VII. CONCLUSION AND PERSPECTIVES

In this paper, we presented the design of heterogeneous mul-
ticore architecture templates based on cost-effective and very
low power core technology targeting the embedded domain.
Our solution combines a high-performance core suitable
for sequential execution, and several lightweight low power
cores devoted to parallel execution. Prototypes of designed
architectures have been implemented on FPGA and reported
performance and power consumption figures were measured
rather than estimated as in existing works [40], [41]. Further,
a tailored and flexible multi-task execution model / API is
proposed for efficiently leveraging the flexibility offered by
the template in selecting at run-time target cores for process-
ing. This is the first attempt to develop an asymmetric mul-
ticore architecture based on the low power core technology
of Cortus company. The opportunity of customizing certain
low power cores, w.r.t. floating point processing makes it
possible to provide a tradeoff in terms of performance, area
and energy efficiency. Based on a comprehensive evalua-
tion of the proposed architecture designs, we showed that
an adequate multi-benchmark workload management on the
heterogeneous cores can provide about 22% energy gain

VOLUME 7, 2019

on average, compared to a reference design. This makes our
solution a very promising candidate for edge compute nodes
where energy efficiency is key.

The core customization exploited in this paper is not lim-
ited to FPU or out-of-order execution supports. It can be also
extended to other features such as cryptographic primitives
or pattern-oriented computations, particularly useful for secu-
rity or channel coding in edge computing devices. Actually,
the Cortus company already provides a range of SoC IPs
for addressing security issue. Integrating such IPs in our
architectures is one relevant perspective to the present study.
Another important perspective concerns the integration of
more advanced workload management techniques to increase
the overall energy-efficiency of the designed systems. One
possible direction may rely on compiler-based static analysis
on programs before execution, to infer their features, e.g.
see [56]. Then, these features could be exploited for effi-
cient workload mapping and scheduling on the heterogeneous
architectures.

ACKNOWLEDGEMENTS

The authors would like to thank the referees of IEEE Access
for their insightful comments and suggestions that con-
tributed to improve this work. They also thank Junio Cezar
Ribeiro da Silva, Fernando Pereira, Kais Belwafi, and Florent
Bruguier for their help and suggestions about the experimen-
tal setup used in this paper.

REFERENCES

[1] F. Ganz, D. Puschmann, P. Barnaghi, and F. Carrez, ““A practical evaluation
of information processing and abstraction techniques for the Internet of
Things,” IEEE Internet Things J., vol. 2, no. 4, pp. 340-354, Aug. 2015.

[2] P.G. Lopez et al., “Edge-centric computing: Vision and challenges,” ACM
SIGCOMM Comput. Commun. Rev., vol. 45, no. 5, pp. 37-42, 2015.

[3] Y. Ai, M. Peng, and K. Zhang, ““Edge computing technologies for Internet
of Things: A primer,” Digit. Commun. Netw., vol. 4, no. 2, pp. 77-86,2018.

[4] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30-39, 2017.

[5] D. Smith. (2018). Computing At the Edge of IoT. [Online]. Available:
https://medium.com/google-developers/computing-at-the-edge-of-iot-
140a888007bd

[6] S.Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A survey
on mobile edge networks: Convergence of computing, caching and com-
munications,” IEEE Access, vol. 5, pp. 6757-6779, 2017.

[71 A. M. Khan, I. Umar, and P. H. Ha, “Efficient compute at the edge:
Optimizing energy aware data structures for emerging edge hardware,”
in Proc. Int. Conf. High Perform. Comput. Simul. (HPCS), Jul. 2018,
pp. 314-321.

[8] M. H. Ionica and D. Gregg, “The movidius myriad architecture’s poten-

tial for scientific computing,” IEEE Micro, vol. 35, no. 1, pp. 6-14,

Jan./Feb. 2015.

(2018). Samsung Optimizes Premium Exynos 9 Series 9810 for Al

Applications and Richer Multimedia Content. [Online]. Available:

https://news.samsung.com/global/samsung-optimizes-premium-exynos-

9-series-9810-forai-applications-and-richer-multimedia-content

[10] D. Franklin. (2017). NVIDIA Jetson TX2 Delivers Twice the Intelligence
to the Edge. [Online]. Available: https://devblogs.nvidia.com/jetson-tx2-
delivers-twice-intelligence-edge/

[11] J. Davies. (2018). Arm is Changing Machine Learning Experiences:
Project Trillium. [Online]. Available: https://community.arm.com/
processors/b/blog/posts/ai-project-trillium

[12] J. Boukhobza, S. Rubini, R. Chen, and Z. Shao, “Emerging NVM:
A survey on architectural integration and research challenges,” ACM
Trans. Design Autom. Electr. Syst., vol. 23, no. 2, pp. 14:1-14:32, 2018.
doi: 10.1145/3131848.

[9

[t

49489

IEEE Access

A. Gamatié et al.: Toward Energy-Efficient Heterogeneous Multicore Architectures for Edge Computing

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

W. H. Chen et al., “A 65nm 1Mb nonvolatile computing-in-memory
ReRAM macro with sub-16ns multiply-and-accumulate for binary DNN
Al edge processors,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2018,
pp. 494-496.

B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopoulos,
“Challenges and opportunities in edge computing,” in Proc. IEEE Int.
Conf. Smart Cloud (SmartCloud), Nov. 2016, pp. 20-26.

A. Branover, D. Foley, and M. Steinman, “AMD fusion APU: Llano,”
IEEE Micro, vol. 32, no. 2, pp. 28-37, Mar./Apr. 2012.

P. Greenhalgh, “Big.Little processing with ARM cortex-Al5 &
cortex-A7 - ARM White paper,” ARM, Cambridge, U.K., Tech.
Rep., 2011.

S. Mittal, “A survey of techniques for architecting and managing asym-
metric multicore processors,” ACM Comput. Surv., vol. 48, no. 3,
pp. 45:1-45:38, Feb. 2016.

D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of
Things: Vision, applications and research challenges,” Ad Hoc Netw.,
vol. 10, no. 7, pp. 1497-1516, 2012. doi: 10.1016/j.adhoc.2012.02.016.
T. Adegbija, A. Rogacs, C. Patel, and A. Gordon-Ross, “Microproces-
sor optimizations for the Internet of Things: A survey,” IEEE Trans.
on CAD of Integr. Circuits Syst., vol. 37, no. 1, pp. 7-20, May 2018.
doi: 10.1109/TCAD.2017.2717782.

(Jul. 2017). Cortus SAS—Advanced Processing Solutions. [Online]. Avail-
able: http://www.cortus.com

A. Sehgal and N. Kehtarnavaz, “A convolutional neural network smart-
phone app for real-time voice activity detection,” IEEE Access, vol. 6,
pp. 9017-9026, 2018.

A. Gordon-Ross, F. Vahid, and N. D. Dutt, “‘Fast configurable-cache tuning
with a unified second-level cache,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 17, no. 1, pp. 80-91, Jan. 2009.

Y. Kora, K. Yamaguchi, and H. Ando, “Mlp-aware dynamic instruction
window resizing for adaptively exploiting both ilp and mlp,” in Proc. 46th
Annu. IEEE/ACM Int. Symp. Microarchitecture, Dec. 2013, pp. 37-48. doi:
10.1145/2540708.2540713.

A. Efthymiou and J. D. Garside, “Adaptive pipeline structures for
speculation control,” in Proc. 9th Int. Symp. Asynchronous Circuits
Syst.,, May 2003, pp.46-56. [Online]. Available: http://dl.acm.org/
citation.cfm?id=785169.785390

R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and
D. M. Tullsen, “Single-ISA heterogeneous multi-core architectures: The
potential for processor power reduction,” in Proc. 36th Annu. IEEE/ACM
Int. Symp. Microarchitecture, Dec. 2003, pp. 81-102. [Online]. Available:
http://dl.acm.org/citation.cfm?id=956417.956569

V. K. Chippa, S. Venkataramani, S. T. Chakradhar, K. Roy, and
A. Raghunathan, “Approximate computing: An integrated hardware
approach,” in Proc. Asilomar Conf. Signals, Syst. Comput., Nov. 2013,
pp. 111-117.

F. Samie, L. Bauer, and J. Henkel, “‘An approximate compressor for wear-
able biomedical healthcare monitoring systems,” in Proc. 10th Int. Conf.
Hardw./Softw. Codesign Syst. Synth., Oct. 2015, pp. 133—142. [Online].
Available: http://dl.acm.org/citation.cfm?id=2830840.2830855

A. P. Chandrakasan, D. C. Daly, J. Kwong, and Y. K. Ramadass, “Next
generation micro-power systems,” in Proc. IEEE Symp. VLSI Circuits,
Jun. 2008, pp. 2-5.

S. Gollakota, M. Reynolds, J. Smith, and D. Wetherall, “The emergence of
RF-powered computing,” Computer, vol. 47, no. 1, pp. 32-39, Jan. 2014.
Y. Liu et al., “Ambient energy harvesting nonvolatile processors: From
circuit to system,” in Proc. 52nd ACM/EDAC/IEEE Design Automat. Conf.
(DAC), Jun. 2015, pp. 1-6.

S. Senni, L. Torres, G. Sassatelli, and A. Gamatié, “Non-volatile pro-
cessor based on MRAM for ultra-low-power IoT devices,” ACM J.
Emerg. Technol. Comput. Syst., vol. 13, no. 2, pp. 17:1-17:23, 2016.
doi: 10.1145/3001936.

J.-M. Choi, C.-M. Jung, and K.-S. Min, “Pcram flip-flop circuits with
sequential sleep-in control scheme and selective write latch,” J. Semicond.
Technol. Sci., vol. 13, no. 2, pp. 58-64, 2013.

J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-enabled instructions: A low-
overhead, locality-aware processing-in-memory architecture,” in Proc.
ACM/IEEE ISCA, Jun. 2015, pp. 336-348.

M. Kang, S. K. Gonugondla, M.-S. Keel, and N. R. Shanbhag,
“An energy-efficient memory-based high-throughput VLSI architecture
for convolutional networks,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), May 2015, pp. 1037-1041.

49490

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

(44]

[45]

[46]

[47]

(48]

(49]

[50]

[51]

(52]

(53]

[54]

[55]

[56]

J. Crenne, R. Vaslin, G. Gogniat, J.-P. Diguet, R. Tessier, and
D. Unnikrishnan, “Configurable memory security in embedded systems,”
ACM Trans. Embed. Comput. Syst., vol. 12, no. 3, pp. 71:1-71:23,
Apr. 2013. doi: 10.1145/2442116.2442121.

P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, ‘““Trustlite:
A security architecture for tiny embedded devices,” in Proc. 9th Eur. Conf.
Comput. Syst., Apr. 2014, pp. 10:1-10:14. doi: 10.1145/2592798.2592824.
M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,” Com-
puter, vol. 41, no. 7, pp. 33-38, Jul. 2008.

T. Y. Morad, U. C. Weiser, A. Kolodny, M. Valero, and E. Ayguade,
“Performance, power efficiency and scalability of asymmetric cluster chip
multiprocessors,” IEEE Comput. Archit. Lett., vol. 5, no. 1, pp.4-17,
Jan./Jun. 2006.

R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan, ‘“Heteroge-
neous chip multiprocessors,” Computer, vol. 38, no. 11, pp. 32-38, 2005.
T. Adegbija, A. Rogacs, C. Patel, and A. Gordon-Ross, ‘“Enabling
right-provisioned microprocessor —architectures for the Internet
of Things,” in ASME Int. Mech. Eng. Congr. Expo., Nov. 2015,
pp. VO14T06A001-V014T06A001.

P. Kansakar and A. Munir, “Selecting microarchitecture configuration
of processors for Internet of Things (I0T),” IEEE Trans. Emerg. Topics
Comput., to be published.

A. Butko et al., “Full-system simulation of big.Little multicore architec-
ture for performance and energy exploration,” in Proc. 10th IEEE Int.
Symp. Embedded Multicore/Many-Core Syst. Chip, (MCSOC) Feb. 2016,
pp. 201-208. doi: 10.1109/MCS0C.2016.20.

(2017). Genesys 2 Kintex-7 FPGA Development Board. [Online]. Avail-
able: https://www.xilinx.com/products/boards-and-kits/1-cfdwjq.html
Wikipedia. (2019). List of ARM Microarchitectures. [Online]. Available:
https://en.wikipedia.org/wiki/List_of ARM_microarchitectures

(2013). OpenMP Application Program Interface—Version 4.0.
[Online]. Available: https://www.openmp.org/wp-content/uploads/
OpenMP4.0.0.pdf

A. Duran et al, “Ompss: A proposal for programming hetero-
geneous multi-core architectures,” Parallel Process. Lett., vol. 21,
no. 2, pp. 173-193, 2011. [Online]. Available: http://dblp.uni-trier.de/db/
journals/ppl/ppl21.html#DuranABLMMP11

B. Nichols, D. Buttlar, and J. P. Farrell, Pthreads Programming.
Sebastopol, CA, USA: O’Reilly Associates, Inc., 1996.

J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The Malardalen
WCET benchmarks—Past, present and future,” in Proc. Int. Workshop
Worst-Case Execution Time Anal., Jul. 2010, pp. 137-147.

L. Ma, L. Lavagno, M. T. Lazarescu, and A. Arif, “Acceleration by
inline cache for memory-intensive algorithms on FPGA via high-level
synthesis,” IEEE Access, vol. 5, pp. 18953-18974, 2017.

N. S. Mokhtari, “Performance optimization of memory-bound programs
on data parallel accelerators,” Ph.D. dissertation, Dept. Comput. Sci. Eng.,
The Ohio State University, Columbus, OH, USA, 2016.

J. C. R. da Silva, E M. Q. Pereira, M. Frank, and A. Gamatié,
“A compiler-centric infra-structure for whole-board energy measurement
on heterogeneous android systems,” in Proc. 13th Int. Symp. Reconfig-
urable Commun. Centric Syst. Chip, May 2018, pp. 1-8. doi: 10.1109/
ReCoSoC.2018.8449378.

Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson,
and P. Bose, “Microarchitectural techniques for power gating of exe-
cution units,” in Proc. Int. Symp. Low Power Electron. Design
(ISLPED). New York, NY, USA: ACM, 2004, pp. 32-37. doi: 10.1145/
1013235.1013249.

Q. Wu, M. Pedram, and X. Wu, “Clock-gating and its application to low
power design of sequential circuits,” IEEE Trans. Circuits Syst. I, Fundam.
Theory Appl., vol. 47, no. 3, pp. 415-420, Mar. 2000.

J. Cong and B. Yuan, “Energy-efficient scheduling on heterogeneous
multi-core architectures,” in Proc. ACM/IEEE Int. Symp. Low Power Elec-
tron. Design (ISLPED). New York, NY, USA: ACM, 2012, pp. 345-350.
doi: 10.1145/2333660.2333737.

R. Nishtala, P. Carpenter, V. Petrucci, and X. Martorell, “Hipster: Hybrid
task manager for latency-critical cloud workloads,” in Proc. IEEE Int.
Symp. High Perform. Comput. Archit. (HPCA), Feb. 2017, pp. 409-420.
J. K. V. Sreelatha, S. Balachandran, and R. Nasre, “CHOAMP: Cost based
hardware optimization for asymmetric multicore processors,” IEEE Trans.
Multi-Scale Comput. Syst., vol. 4, no. 2, pp. 163-176, Apr. 2018.

VOLUME 7, 2019

A. Gamatié et al.: Toward Energy-Efficient Heterogeneous Multicore Architectures for Edge Computing I E E E ACC@SS

ABDOULAYE GAMATIE is currently a CNRS
Senior Researcher with the Microelectronics
Department, LIRMM Laboratory, Montpellier,
France. He has coauthored over 80 articles in
peer-reviewed journals and international confer-
ences. His research activity focuses on the design
of energy-efficient multicore and multiprocessor
architectures for embedded and high-performance
computing. He has also a long experience in the
formal design of safety-critical embedded sys-

tems. He has been involved in several collaborative international projects
with both academic and industrial partners.

GUILLAUME DEVIC received the master’s
degree in microelectronics from the University of
Montpellier, in 2018. He is currently a Research
Associate with the Microelectronics Department,
LIRMM Laboratory, Montpellier, France. His
work focuses on the design of energy-efficient
compute nodes for both embedded and high-
performance computing.

GILLES SASSATELLI is currently a CNRS Senior
Scientist with LIRMM, a CNRS-University of
Montpellier Academic Research Unit, with a staff
of over 400. He is also the Vice-Head of the
Microelectronics Department, and leads a group
of 20 researchers working in the area of smart
embedded digital systems. He has authored over
200 peer-reviewed papers and has occupied key
roles in a number of international conferences.
Most of his researches are conducted in the

frame of international EU-funded projects, such as the DreamCloud and

Mont-Blanc projects.

VOLUME 7, 2019

STEFANO BERNABOVI received the master’s
degree from the Politecnico di Torino, in 2014.
He is currently a Research and Development Engi-
neer with the Cortus S.A.S. Company, Montpellier,
France. Before joining Cortus, he was with Comu-
nico and Envisens Technologies S.R.L, Torino,
Italy. His work focuses on the design of embedded
systems solutions, including software and hard-
ware components.

PHILIPPE NAUDIN received the degree in
microelectronics from the Ecole Centrale Elec-
tronique, Paris, in 1994. He joined Cortus S.A.S.
from Texas Instruments, in 2013. He is currently
the Technical Director of Cortus Company. He has
18 years of experience in companies, such as Texas
Instruments, ZMDI, and Alcatel BS. He has a rich
expertise on big SoCs, such as OMAP, and embed-
ded and low power products; in addition, he has a
solid experience in technical team leading.

MICHAEL CHAPMAN received the master’s
degree in mathematics (Hons.) from Oxford Uni-
versity. More recently, he was the Vice President
of Engineering with Tsqware (later merged into
Globespan-Virata). He is currently the President,
CEO, and Founder of Cortus S.A.S. He has
33 years’ experience in embedded processing and
has repeatedly delivered ground-breaking techno-
logical innovations over this period. He is most
renowned for his design of the Bosch CAN chips
that are now widely used in many cars and in some satellites. In processor
design, he has been active in projects at Intel, Bosch, and Siemens (now
Infineon), and was responsible for a new 16-bit microcontroller; moreover,
Bosch and Siemens continue to profit from his inventions and the patents he
authored.

49491

	INTRODUCTION
	HETEROGENEOUS ARCHITECTURES
	PROBLEM FORMULATION
	OUR CONTRIBUTION
	OUTLINE OF THE PAPER

	RELATED WORK
	HETEROGENEOUS ARCHITECTURE DESIGN
	GENERAL PRINCIPLE
	DESIGN INSTANTIATION

	TAILORED MULTITASK PROGRAMMING
	PROGRAMMING MODEL
	DATA MANAGEMENT
	TASK SCHEDULING
	TASK CREATION
	TASK EXECUTION

	EVALUATION OF THE ASYMMETRIC ARCHITECTURE
	BENCHMARKING APPROACH
	CONSIDERED BENCHMARKS
	MULTI-BENCHMARK PROGRAMS

	EXPERIMENTAL SETUP
	BENCHMARK EVALUATION
	QUADCORE ARCHITECTURE ASSESSMENT
	HEPTACORE ARCHITECTURE ASSESSMENT

	TOWARDS BETTER ENERGY-EFFICIENCY
	SUMMARY OF GAINED INSIGHTS
	LEVERAGING THE GAINED INSIGHTS
	MULTI-BENCHMARK EVALUATION
	TYPICAL DATA ANALYTICS APPLICATION EVALUATION

	CONCLUSION AND PERSPECTIVES
	REFERENCES
	Biographies
	ABDOULAYE GAMATIÉ
	GUILLAUME DEVIC
	GILLES SASSATELLI
	STEFANO BERNABOVI
	PHILIPPE NAUDIN
	MICHAEL CHAPMAN

