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ABSTRACT Nowadays, real-time 3D scanning and reconstruction becomes a requirement for a variety
of interactive applications in various fields, including heritage science, gaming, engineering, landscape
topography, and medicine. From the introduction of 3D scanning, which allowed the representation of real
world or synthetic objects into the virtual world, hardware and software advances have seen tremendous
progress. However, despite the continuous improvement of the new generation image sensors and acquisition
techniques, the acquired data are often corrupted by the low-frequency noise, outliers, misalignment, missing
data, and variations in point density. These effects are amplified if the low-cost sensors and hardware are
being used (e.g., mobile devices); thus, the acquisition and communication cost per datum is driven to
a minimum. This paper provides a comprehensive review of the ongoing efforts in geometry and signal
processing, describing several models from a wide range of signal processing relevant tasks, such as robust
principal component analysis, compressive sampling, and matrix completion. Various scalable architectures
and optimization algorithms are analyzed and reviewed, revealing significant insights into the fundamental
processing operations and the involved implementation tradeoffs. Moreover, the impact of sparse modeling
and optimization tools to several 3D mesh processing tasks, such as completion of missing data, feature
preserving noise removal, and rejection of outliers, is illustrated via test cases with several constraints posed
by the arbitrarily complex animated scenarios. Finally, the identified limitations together with the potential
open research directions are also presented for future research efforts toward modeling and optimization for
static and dynamic 3D models.

INDEX TERMS Signal processing on static and dynamicmeshes, sparse representation theory& algorithms,
3D geometry acquisition and processing.

I. INTRODUCTION
The rapid advancements in computational methods, optics,
and graphics computing have significantly contributed to
the evolution of 3D scanning technologies and the acquisi-
tion of dynamically deforming 3D shapes at sustained video
rates. Today’s 3D scanning devices are capable of capturing
dynamic 3D scenes (e.g., humans in motion, 3D scenes from
a moving camera) in real time facilitating several tasks in
diverse fields such as archaeology, landscape topography,
gaming, engineering and medicine. Virtual and Augmented

Reality (VR/AR)which represents a real-time fusion between
real-world geometry and 3D graphics being rendered live
to the user; immersive technologies to provide immediate
feedback to users during 3D scanning; autonomous guidance
for robots which permits the rapid respond to changes of their
environment (e.g., robotic surgery).

From the early days of photography, there are several
attempts to capture shape by optical means. In the 1860s,
Francois Villeme invented a process known as photosculp-
ture [1] by using a set of 24 cameras. However, the process
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required a substantial investment in cameras, projection and
reproduction systems, while a professional sculptor was still
needed for fine tuning the pieces. The reliable generation
of the shape of real-world scenes has regained substantial
interest with the advent of computers. The use of calibrated
digital cameras to recover with high accuracy the position
of features in the scene is a well-established technique that
operates under ambient illumination and is known as passive
approach. Passive systems offer high accuracy on well-
defined features, e.g., corners and edges. However, the output
geometry of unmarked surfaces is highly affected by the
ambient light since are hard to be measured using passive
systems. Active systems on the other hand, provide their own
illumination and the features to be measured so that they can
easily capture surfaces in most environments [2]. There are
many active 3D scanning technologies while some of the
most widely adopted are: (i) structured light systems and
(ii) Laser Imaging Detection and Ranging (LIDAR) systems.

The resolution and accuracy of the new generation
3D scanning systems are constantly improving, however,
the generated surface usually contain a variety of imper-
fections (e.g., noise, outliers, sampling density, misalign-
ment and missing data [3]–[5]), owing to occlusions and
the scanners physical limitations. These effects pose sig-
nificant challenges for reconstruction of static and dynamic
surfaces representing the rigid body and highly deformable
motions. While they can be mitigated by applying effective
denoising, in painting, filtering and compression techniques
to the dense captured geometry, the tremendous computing
resources required due to the high spatiotemporal resolution
bring significant challenges to be solved. The challenges
become even more demanding in real-time scenarios, such
as immersive communications (e.g., streaming) and content
creation applications, where decentralized processing in par-
allelized multicore systems is preferred.

Usually, in order to represent 3D models in applications,
polygon modeling via 3D meshes is being used to approxi-
mate surfaces. In general, 3D meshes consist of vertices that
provide the geometry information and polygons that connect
the vertices. Dynamic meshes are defined as a series of static,
mainly triangular, meshes representing a 3D animation that
usually appears in two forms: rigid and soft-body motions.
In rigid-body animations, the relative position of two adjacent
vertices between consecutive 3D meshes stays fixed and the
body moves as one entity. Although the assumption that the
bodies are rigid simplifies their representation, it does not
allow the capturing of many realistic motions of deformable
objects. To overcome this limitation, soft-body dynamics has
been widely adopted for simulating the motion and properties
of deformable objects, also known as soft-bodies. Unlike
rigid-bodies, the shape of soft-bodies changes over time,
meaning that the relative distance of two vertices between
consecutive meshes does not remain fixed. In both cases,
the captured geometry has a rich spatiotemporal structure
which that can be efficiently exploited using fast and effective
approaches to overcome the aforementioned challenges.

Among our motivations for writing this review article
were the results of an extensive literature overview, we per-
formed regarding recent advances for the research areas under
consideration (mostly for the time window 2006 to 2018).
More specifically, the top world’s leading scientific, research
and development publication indexing databases, Elsevier’s
Scopus and Web of Science (WoS) by Clarivate Analytics,
yield thousand results if keywords as ‘‘low rank’’,
‘‘sparsity’’, ‘‘3D scanning’’ and ‘‘point cloud consolidation’’
are included in the searching title or keyword. By inspecting
this results, it can be easily observed that the total number of
relevant publications has been remarkably increased. More
than 100 selected articles, which are closely related to the
application of sparse modeling and optimization tools on
static and dynamic 3D meshes, have been studied. Motivated
by this extensive literature study, the scope of this article
is to provide a comprehensive review of recent approaches
capitalizing on the low-rank property of the captured geom-
etry of both rigid and soft-body motions and the sparsity of:
i) the outliers and ii) the sharp geometric features (e.g, corners
and edges), allowing benefits from rank minimization, com-
pressive sampling, and robust principal component analysis
when processing the captured geometry of dynamic meshes
that might contain outliers, noise, and nonuniformities. This
article analyzes and assesses scalable architectures, opti-
mization algorithms and it suggests possible future research
directions to be tackled by scientists and engineers in the
field [6]. Evaluation studies carried out using captured static
and dynamic 3D scenes, reveal fundamental insights into the
various signal processing tasks involved when dealing with
scanning imperfection attributed to occlusions and physical
limitations of the device. Undoubtedly, the presented state
of the art computationally intelligent approaches, based on
signal processing (SP) methodologies, are expected to play
a crucial role in this exciting endeavor and inspire also new
SP techniques in the field of static and dynamic 3D mesh
processing.

Organization: Basic definitions related to static and
dynamic 3D models are provided in Section II. Section III
provides a comprehensive review of prior art on exploiting
the rich spatiotemporal structure, of the captured static and
dynamic 3D geometry, using sparse modeling and optimiza-
tion tools. Section IV analyzes state of the art centralized
optimization algorithms for dealingwith a variety of scanning
imperfections and the article is wrapped up with a few open
research directions in Section VI.
Notation: AT , A∗, AH , and ‖A‖F represent A’s trans-

pose, conjugate transpose, Hermitian transpose, and Frobe-
nius norm; the inner product of two matrices X,Y is defined
as 〈X,Y〉 = tr(XHY); diag(x) denotes the diagonal matrix
which is constructed based on the vector x; (x)+ = max(0, x)
which represents the positive part of x; ◦ denotes the
Hadamard (element-wise) product; [X ]i,j denotes the ele-
ment of the matrix X at the i-th row and j-th column [7];
‖X‖∗ =

∑
k σk (X) denotes the nuclear norm of the matrixX,

where σk (X) is the k-th singular value of the matrix;

15780 VOLUME 7, 2019



A. S. Lalos et al.: Signal Processing on Static and Dynamic 3D Meshes: Sparse Representations and Applications

FIGURE 1. Static and Dynamic 3D Models: Definitions. (a) Static 3D mesh and respective point cloud. (b) Dynamic 3D mesh.

Operands ◦ and ⊗ denote the matrix Hadamard and
Kronecker products, respectively the lp norm of a vector is
defined as ‖x‖p =

(∑n
i=1 |xi|

p
)1/p and the l1 norm of amatrix

is defined as the sum of the absolute values of its elements
‖M‖l1 =

∑
ij

∣∣Mij
∣∣; < represents the set of real numbers.

II. 3D MESHES: BASIC DEFINITIONS AND TOOLS
The analysis and processing of static and highly deformable
3D objects facilitate new discoveries in various scientific
areas, such as neuroscience, astrophysics, mechanical and
civil engineering [8]. These objects are digitized using dif-
ferent 3D acquisition technologies, including computational
tomography (CT), 3D LIDAR, ultrasound, magnetic reso-
nance imaging, and structured light, to name a few. Recently,
there has been increasing interest for reliable generation
of 3D content in other fields industries, including remote
science, entertainment, urban modeling, and heritage sci-
ence. Digital geometry processing of complex 3D objects
lies between acquisition and production and is a field of
computer science focusing on the mathematical models and
algorithms for processing and analyzing geometric objects,
usually represented via polygon models.

In the following subsections, first, we introduce some
basic definitions on the 3D static and dynamic meshes and
their mathematical representation. Then, we describe vertex
and normal filtering operations and the principal component
analysis based compression, two standard tools that are used
in mesh processing for removing imperfections and/or com-
pressing static and dynamic 3D meshes.

A. BASIC DEFINITIONS
3D meshes are described by a set of vertices corresponding
to the geometric information and a set of polygons, also
known as faces that determine elementary surfaces, as shown
in Fig. 1 (a). The output of a 3D scanning process is a
sequence of unstructured point clouds (e.g., vertices), which
are then transformed into a surface mesh, after applying a
surface reconstruction method that generates the connectivity
information. In this work, we focus on triangle meshes since
they are the most widely adopted polygon meshes. A trian-
gle mesh M with n vertices is defined as M = (V,F),

whereV corresponds to the vertices that represent also a Point
Cloud (PC) and F is a set with the indexed faces. The
corresponding set of edges E , are directly derived from sets V
and F . A vertex is defined by its absolute Cartesian coordi-
nates and is represented as a 3 × 1 vector vi = [xi, yi, zi]T .
Therefore the mesh vertices can be also seen as a three-
dimensional graph signal M = [v1, v2, · · · , vn] ∈ <3×n.
A neighbourhood of vi in M corresponds to the set Ni of
vertex indices j connected to i by an edge (i, j),

Ni = {j |(i, j) ∈ E } . (1)

Any vertex that belongs to the neighbourhood Ni is a topo-
logical neighbor of i. The differential (or δ) coordinates of a
mesh are calculated as the difference between the coordinates
of each vertex vi and the coordinates of the neighborhood
barycenter, e.g.,

δi =
[
δxi , δyi , δzi

]T
= vi − 1/di

∑
j∈Ni

vj, (2)

where di = |Ni| corresponds to the number of neighbours
of vertex i, also known as degree of vi [9]. The direction
of δi approximates the curvature flow normals as it is
also shown in Fig. 2, i.e., δi = −H (vi)ni [10], where
H (vi) represents the mean curvature at vi and γ is a closed
surface curve around vi and |γ | is the length of γ . Moreover,
it should be noted that for a face fi ∈ F , the normal can be
computed as:

ni =

(
vi2 − vi1

)
×
(
vi3 − vi1

)∥∥(vi2 − vi1
)
×
(
vi3 − vi1

)∥∥
2

(3)

where × corresponds to the cross product operation,
vi1 , vi2 and vi3 are the position of the associated vertices in a
fixed orientation. Each normal ni is associated with the face
centroid ci =

(
vi1 + vi2 + vi3

)
/3 as shown in Fig. 3.

B. FILTERING MESH GEOMETRY
Mesh filtering is usually adopted for improving imperfect
meshes obtained by 3D acquisition devices (e.g., surface
reconstruction from CT scans). Taubin [10] first intro-
duced the use of Laplacian operators for discrete geometry
processing. To overcome the smoothing effects, several
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FIGURE 2. The direction of the differential coordinate vector
approximates the local normal direction [10].

FIGURE 3. Normal vectors ni associated with the face centroids ci .

FIGURE 4. Compact representation of the Armadillo geometry using a
different number of eigenvectors of the graph Laplacian: (i) original
geometry, (ii) compact representation using 90% (those that correspond
to small eigenvalues) of the eigenvectors (iii) compact representation
using 25% of the eigenvectors (iv) compact representation using 10% of
the eigenvectors. Note that the surface attains more high-frequency
detail as we increase the number of eigenvectors.

works suggested the use of the bilateral filter [11], either
directly to the vertices [12], [13] or to the normals associ-
ated with the faces. In the second case, the feature preserv-
ing bilateral process is then followed by a vertex updating
scheme [14]–[16]. In the rest part, we focus on approaches
that have been widely used for filtering either the vertex
positions and/or the normals associated with the centroids of
the faces.

1) FILTERING VERTEX POSITIONS
Several works make use of the Laplacian operator for eval-
uating the delta coordinates and filtering the vertex coordi-
nates. Assuming that the connectivity information is provided
(e.g., set of faces F), then we can define the adjacency

matrix C ∈ <n×n with elements:

C(i,j) =

{
wij (i, j) ∈ E
0 otherwise

(4)

where wij can either take the value 1 (binary adja-
cency) or weighted values (e.g., e(−‖vi−vj‖

2
2)/(2σ

2)) in case
of weighted adjacency, with σ denoting the variance of the
threshold for edge existence. The Laplacian operator can be
written also in matrix form as:

L = D− C (5)

and D is the diagonal degree matrix with D(i,i) = |N (i)|.
In the literature, the normalized Laplacian is also known
as graph Laplacian and is defined as L̄ = D−1/2LD−1/2.
Matrix L̄ has the same spectrum with the symmetric Tutte
Laplacian [17] L̄ = D−1/2LD−1/2 = D−1L, symmetry
facilitates the computation of the eigenvectors of L.

The Laplacian operator can be also defined if we assume
that the connectivity information is not available. In such
case, we usually consider the graph G = (V, E,W) where
W = {wij | i, j = 1, . . . , n} is the set with the non-negative
weights and E is the set of edges. These graph weights can
be constructed either by utilizing the ε ∈ < neighborhoods
(ε-N) and/or the κ ∈ N nearest neighbors (κ-NN). At this
point it should be noted that the ε-N graphs are symmetric
and more geometrically meaningful. However ε should be
carefully selected, since there are cases where specific values
of ε could lead to dense or disconnected graphs, con-
trary to the κ-NN graphs which usually correspond to con-
nected graphs. In the following part we employ κ-NN binary
weighted graphs for the derivations of the Laplacian matrix L
which is defined in Eq. (5) and can be employed in order
to provide a proximity metric for the point cloud geometry.
Let as assume that the eigenvalue decomposition of the con-
structed graph Laplacian L is written as:

L = U3UT (6)

where 3 is a diagonal matrix consisting of the eigenvalues
ofL andU = [u1, . . . ,un] is the matrix with the eigenvectors
ui ∈ <n×1 ∀ i = 1, . . . , n that span the graph Fourier
basis. Similar to classical Fourier transform, the eigenvectors
and eigenvalues of the Laplacian matrix L provide a spectral
interpretation of the 3D signal [18]. The Graph Fourier Trans-
form (GFT) and the inverse GFT of the vertex coordinates is
defined as:

GFT : v̄ = UT v (7)

IGFT : v = Uv̄. (8)

2) FILTERING FACE NORMALS
Several works suggest filtering the normals instead of the
vertices since they are considered as reliable indicators of
geometric features (e.g., corner or edges). For example,
an edge is indicated by a large difference between the nor-
mals of its two incident faces. The bilateral filter output of
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FIGURE 5. Left: The original mesh of the 39-th frame of the Handstand animation model. Middle: The PCA-based
reconstructed mesh using 10% of the principal components. Right: Heatmap visualization of NMSVE to the
handstand surface with maximum error equal to 4.79e−3.

the nf face normals ni, i = 1, . . . , nf , using a normal guid-
ance unit vector gi that is associated with face fi and is cal-
culated as a weighted average of normals in a neighborhood
of i, is computed by:

n̂i =
1
Wi

∑
fj∈Nfi

AjKs
(
ci, cj

)
Kr
(
gi, gj

)
nj (9)

where Nfi =
{
fj
∣∣fj is adjacent to fi∣∣} is the set of faces in a

neighborhood of fi, Aj is the area of face fj, Wi is a weight
that ensures that n̂i is a unit vector and Ks, Kr are the spatial
and range Gaussian kernels defined in Eqs. (10) and (11).
More specifically, Ks and Kr decrease monotonically with
respect to the distance of the centroids ci and cj, and with the
proximity of the guidance normals gi, gj that lie on the unit
sphere:

Ks
(
ci, cj

)
= e

(
−
‖ci−cj‖

2
2

2σ2s

)
(10)

Kr
(
gi, gj

)
= e

(
−
‖gi−gj‖

2
2

2σ2r

)
, (11)

where σs, σr are variance parameters. The output normals
are then used to update the vertices in order to match the
new normal directions ni, according to the iterative approach
proposed in [19]. More specifically, the vertex positions v̂i1 ,
v̂i2 , v̂i3 of a face fi are updated by:

v̂(t+1)ij = v̂(t)ij +
1∣∣Fij
∣∣ ∑
z∈Fij

n̂z
[
n̂Tz
(
ĉ(t)i − v̂(t)ij

)]
(12)

ĉ(t)i =
(
v̂(t)i1 + v̂(t)i2 + v̂(t)i3

)
/3 (13)

where (t) is the iteration number, Fij is the index set of
incident faces for v̂ij . This iterative process corresponds
to a gradient descent process, applied for identifying the

minimum energy cost across all faces, defined by:∑
z∈Fij

∣∣∣n̂Tz (ĉ(t)i − v̂(t)ij

)∣∣∣2 , j = 1, 2, 3. (14)

This term penalizes any displacement which is perpendicular
to the tangent plane defined by the vertex position v̂(t)ij and the
local surface normal n̂z.

C. DYNAMIC GEOMETRIES: LOW-RANK
APPROXIMATIONS AND PCA BASED
PROCESSING
A dynamic mesh is defined as a series of k static, mainly
triangular, meshes representing a 3D animation, as shown
in Fig. 1 (b). These meshes M1, . . . ,Mk , namely poses or
frames, are represented as in the static case, by a set of
vertices Vi and a set-indexed faces Fi. The Euclidean coor-
dinates of n vertices for each frame i are used to form the
following matrix:

Mi = [v1i, . . . , vni] ∈ <3×n ∀ i = 1, . . . , k (15)

The animation matrix M =
[
MT

1 , . . . ,M
T
k

]T
∈ <

3k×n is
constructed from the k sequential frames. Common Dynamic
mesh compression approaches are based on the application
of Principal Components Analysis (PCA) to the animation
matrix M [20]–[22]. Considering that M = U3UT corre-
sponds to the SVD of the animation matrix, it is reason-
able to assume that M can be adequately approximated by
using fewer principal components, due to the underlying
spatiotemporal coherences. To be more specific, the anima-
tion matrix M̂ can be reconstructed from m < min(3k, n)
principal components as shown below:

M ≈ M̂ = U3̂mUT . (16)

In Fig. 5 we present the reconstructed mesh corresponding
to the 39-th frame of the Handstand animation model [23],
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FIGURE 6. Static and Dynamic 3D Models: Signal processing tasks and applications. This figure illustrates some well-known approaches, separated in
categories, which use both classical and modern SP techniques and they have been proposed for dealing with important geometry processing tasks and
applications.

where only the 10% of the principal components have been
used, i.e., m = 50 withM39 ∈ <

525×10002. By inspecting the
heatmap visualization of the mean square visual error [24],
defined as the average error in the Cartesian and Laplacian
domain, it is obvious that the reconstruction is not exactly
equal to the input data, however, the loss of precision is not
easily distinguishable.

In several dynamic meshes capturing soft-body anima-
tions, matrix M ∈ <3k×n can be accurately approximated
by a low-rank matrix, introducing small reconstruction errors
that cannot be easily perceived [25].

III. SPARSE MODELING FOR 3D MESHES
IN A NUTSHELL
Sparsity is a fundamental characteristic in many sciences.
Sparse modeling and optimization approaches have been
widely adopted in many information sciences and are moti-
vated by the classical problem of selecting a small number of
predictive variables in high-dimensional datasets. In machine
learning, the sparsity principle is used to automatically select
a simple model among a large collection of them [26], while
in signal processing, sparse modeling is employed to cap-
ture the ability of data to be expressed as linear combina-
tions of a few atoms from a pre-described dictionary [27].
These models provide reasonable ways for exploiting the rich

spatiotemporal structure, of the captured static and dynamic
3D geometry, using various statistical learning paradigms
and well-documented merits, including PCA [20], [22],
Dictionary Learning [28], Compressive Sampling (CS) [21],
[29], [30] and Matrix Completion (MC) [31], to name a few.

Taubin [10] first suggested the application of Laplacian
operators to the mesh vertex coordinates for discrete geome-
try processing. This analysis wasmotivated by the similarities
between the spectral method with respect to mesh Laplacian
and the classical Fourier approach. Several other studies,
including implicit mesh fairing [32] and geometry compres-
sion [24], [33] are based also on the fact that the spectrum
of smooth geometries is dominated by low-frequency com-
ponents. During the last years, numerous approaches using
both classical and modern SP techniques have been pro-
posed for dealing with important geometry processing tasks
(see Fig. 6), effectively exploiting correlations and sparsity
structures that are hidden into the complex geometric pat-
terns. The most important of these tasks are briefly presented
in the following part of this section.

POINT CLOUD CONSOLIDATION
The output of a 3D scanning process is a sequence of unstruc-
tured point clouds, that are do not always sample uniformly
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the surface and they usually are contaminated with noise.
The process of addressing the aforementioned artifacts and
enhancing these low-quality point cloud data is also known
as consolidation [34]. Consolidation techniques [35]–[37]
process the captured data and they generate a new point
set which represents more accurately the underlying shape.
They are without a doubt, an essential pre-processing step
before surface reconstruction, where a well-sampled point
cloud is transformed into a surface mesh. Despite the recent
advances in the area of surface reconstruction [3], [38], [39],
it is still a process that is highly susceptible to artifacts
as those mentioned above. Specifically, decoupling the pro-
cesses of point cloud consolidation and surface reconstruc-
tion can effectively avoid premature and erroneous decisions.
In [40] a new algorithm is proposed for completing missing
surface patches building on the same line of thought with
sparse modeling and optimization techniques. The key intu-
ition is that the spatiotemporal geometric coherence’s that
are present in any mesh, can be expressed as a sparse rep-
resentation in some transformed domain. Arvanitis et al. [41]
present a method for performing real-time outlier detection
and removal, in time-varying point clouds using RPCA.
Despite the promising results, no attention has been given
to the exploitation of temporal coherence, thus limiting sig-
nificantly its performance as compared to the methods that
exploit this property. Regarding completion of missing parts,
Zhong and Qin [40] use sparsity constraints for in-painting
3D surfaces with missing parts. The main drawback of the
proposed approach is the fact that requires an eigenbasis
decomposition which is very time consuming, especially in
dense meshes. Laplacian interpolation is a well-known tech-
nique that has been successfully applied in image processing
providing remarkably good results even in cases where a
large amount of data is missing. Despite its computational
efficiency when applied to point clouds, the reconstruction
results are usually smoothed. To overcome this limitation,
Arvanitis et al. [38] introduced a novel approach using the
motion vectors instead of points. Although the method offers
improved accuracy, its application in real scenarios has cer-
tain limitations since prior knowledge of a single pose is
required.

FEATURE PRESERVING SURFACE DENOISING
Surface denoising approaches focus on eliminating the noise,
preserving at the same time surface areas with geometric
features of different scale. Despite the computational effi-
ciency of the smoothing approaches, the lack of selectivity
between salient features and noise is limiting, e.g., a noisy
cube could become extremely rounded. In smoothing, the aim
is to remove high-frequency information in the surface,
whereas in denoising, the aim is to preserve genuine infor-
mation at all frequencies by locally adjusting vertex posi-
tions while respecting the underlying features. The denoising
approaches and can be classified into four major categories:
(i) anisotropic geometric diffusion [42], [43] (ii) Bilateral
Filtering of Vertices and Normals [12], [44], [19] (iii) Sparse

modeling and recovery of geometric features in the Lapla-
cian domain [45], [46] (iv) Data-driven approaches [47] that
efficiently exploit training sets of noisy objects. Although
the aforementionedmethods successfully preserve sharp geo-
metric features, they fail to preserve medium and/or small-
scale features. More importantly, while their performance is
significantly deteriorated when the surface is contaminated
with complex noise patterns (e.g., anisotropic noise, real-
scan noise). Finally, they cannot be used for reconstructing
noisy 3D models, where poorly-shaped triangles are formed
by vertices mostly lying on sharp edges. Thus, the main
need for robust and fast algorithms able to manage dense
dynamicmeshes affected by complex noise seems to remain a
challenge, offering ample opportunities for signal processing
research.

COMPRESSION OF STATIC AND DYNAMIC GEOMETRIES
Geometry compression is much more demanding than con-
nectivity compression, since the corresponding memory
requirements are on average five times higher. This is
attributed to the floating point representation for the raw
geometry data. Thus, although state-of-the-art connectiv-
ity encoders are extremely effective, the compression of
geometry information bring tough challenges to be solved.
Lalos et al. [21] utilize sparse coding to generate compact rep-
resentations of static geometries. Similarly, Yoon et al. [28]
apply dictionary learning to get a few representative features
that can be used to identify local patches from large-scale
geometry data. Thanou et al. [48] and Lalos et al. [22] address
the problem of compression of 3D point cloud sequences that
are characterized by moving 3D positions. The fundamental
theories presented in this tutorial will be essential for achiev-
ing improved compression rates offering at the same time low
computational complexity [49].

While the major role of computer science disciplines
(such as graph theory and data structures) in digital geometry
processing is undeniable, the nature and scope of this field
is certainly multidisciplinary and welcomes SP expertise and
its recent advances, for effectively exploiting correlations
and sparsity structures of different static and moving geo-
metric data. This is also obvious when inspecting Table 1,
where we present several low level information processing
approaches that study the impact of sparse modeling and
optimization tools to several static and dynamic 3Dmesh pro-
cessing tasks. The tremendous computing resources required
due to the high spatiotemporal resolution of processing mas-
sive geometric datasets, bring tough challenges to be solved
that become even more demanding in real time scenarios
(the data are processed when they are received), such as large
scene 3D acquisition and streaming (e.g., aerial 3D scanning,
immersive communications), where decentralized processing
is essential.

IV. SPARSE MODELING FOR GEOMETRY PROCESSING
The wide availability of inexpensive depth cameras
(e.g., the Microsoft Kinect, Asus Xtion or PMD CamBoard)
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TABLE 1. Prior art on exploiting the rich spatiotemporal structure, of the captured static and dynamic 3D geometry, using sparse modeling and
optimization tools.

have facilitated the real-time generation of static and
dynamic 3D Meshes, opening up a variety of mixed reality
applications, such us bi-directional telepresence tools that
offer perceptually enriched experiences, autonomous guid-
ance for robots that reconstruct and respond rapidly to their
environment [70] and others, bringing a range of benefits to
business and society in various ways. However, processing
this massive output dataset in real time using a central pro-
cessor and storage is often impossible. In addition, despite
the continuous advances in new generation image sensors and
scanning technologies, the acquired data are often corrupted
by severe noise [45], [46], outliers [41], [50], high varia-
tions in point density [36], misalignment, and missing data
(see Fig. 7).

This section contributes to the ongoing efforts in fast and
reliable generation of dense 3D models representing real-
world moving objects capturing a wide range of SP-relevant
tasks [71], such as nuclear norm minimization, CS, and
MC that effectively exploit spatiotemporal correlations and
sparsity structures that are hidden into the complex geo-
metric patterns. It offers scalable architectures and opti-
mization algorithms while revealing fundamental insights
into the various processing and implementation tradeoffs
involved in several static and dynamic 3D processing tasks.
More specifically, subsection IV-A focuses on the identifi-
cation of outliers in static and dynamic 3D geometric data,
subsection IV-B deals with surface holes & non uniformly
sampled surfaces and subsection IV-C offers details related
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FIGURE 7. 3D acquisition artifacts shown in 2D, which are addressed
using sparse modeling and optimization approaches.

to feature-aware denoising and compression of static and
dynamic 3D models.

A. OUTLIER DETECTION IN STATIC AND DYNAMIC
3D SURFACE DATA
Commercially available 3D scanners generate a sequence
of unstructured point clouds contaminated by a variety of
acquisition errors including outliers, holes, surface noise,
as those depicted in Fig. 7. In the rest subsection, we provide
different consolidation approaches that exploit the sparsity of
the outliers in the spatial domain.

l1 MEDIAN PROJECTION
A common approach for dealing with outliers and noise is
the l1 median projection [51], a statistical tool that provides a
robust global center of an arbitrary set of points. Assuming a
set of data points v =

[
vi1 , . . . , vin

]
∈ <

3×n, the l1 median q
is obtained as the minimizer of the following cost function:

q = min
x


n∑
j=1

∥∥vij − x
∥∥
1

 (17)

where the l1-norm is also known as the Least Absolute Devi-
ations (LAD) and enforces sparsity in the solution.

Lipman et al. [35] apply a slide median filter locally, for
evaluating a set of n′ points Q =

[
qi1 , . . . ,qin′

]
. More

specifically, they suggest approximating the geometry of P
by iteratively minimizing:

Q(t+1) = min
X

{
E1
(
Q(t),X, v

)
+ E2

(
Q(t),X

)}
(18)

where X = [x1, x2, . . . , xn′ ] ∈ <3×n
′

, and:

E1
(
Q(t),X, v

)
=

n′∑
i=1

n∑
j=1

∥∥xi−vj∥∥2 θ (∥∥∥q(t)i −vj∥∥∥2) (19)

E2
(
Q(t),X

)
=

∑
z∈I

λz
∑
i∈I{z}

η
(∥∥∥xi − q(t)z

∥∥∥
2

)
× θ

(∥∥∥xi − q(t)z
∥∥∥
2

)
(20)

θ (r) = e−r
2/(h/4)2 , where h is a scalar value representing the

size of the influence radius, I = [i1, . . . , in′ ] is the indices set,
the term E1 enforces the projected points to approximate v,
the term E2 regularizes the points in Q(t) by using local
repulsion forces,1 to ensure a fair spatial distribution and the
weights λz ∀ z ∈ I are penalty parameters that can be tuned,
to trade off the robustness to outliers provided by E1 (·) with
the fair distribution of points in space provided by E2 (·). The
aforementioned approach is also known as Locally Optimal
Projection algorithm (LOP). Huang et al. [29] have proposed
the incorporation of locally adaptive weights into LOP, result-
ing in Weighted LOP (WLOP) resulting in an outlier free and
uniformly distributed set of points.

OUTLIER DETECTION USING ROBUST PCA
An alternative approach would be to fit geometry data matri-
ces with local point neighbours as a super position of a
low-rank matrix capturing spatial coherence’s and a sparse
matrix that consist of outliers [52]. Building on the same
line of thought, let v = [v1, v2, . . . , vn] ∈ <3×n be the
sequence of n noisy 3D points and Ri ∈ <

n×κ represents an
operator that extracts the κ-neighborhood of vi. Therefore,
if Di = [vi, viRi] ∈ <3×(κ+1) is the local data matrix where
its first column correspond to the 3 × 1 vector vi and the
next columns to the coordinates of the neighbors of vi, then
the data matrix D =

[
DT
1 ,D

T
2 , . . . ,D

T
n
]T
∈ <

3n×(κ+1) can
be decomposed as D = P + S, where P ∈ <3n×(κ+1) is a
low-rank matrix representing the space of the original points
and their neighbors, while S ∈ <3n×(κ+1) is a sparse matrix
representing the space where outliers lie. The conventional
PCA estimates the P by seeking the best (in the least square
sense) rank-m estimate of P by solving:

min
P
‖D− P‖2F subject to rank(P) ≤ m. (21)

Assuming that the few non zero entries of S have an
independent and identically Gaussian distribution then the
problem in Eq. (21) can be efficiently solved using the SVD.
However, it is well known that standard PCA, is notoriously
fragile to outliers, since its performance can significantly
degrade in the presence of few corrupted samples, due to the
quadratic error criterion used.

Robustification of PCA was initially achieved via robust
estimates of the data covariance matrix [53]. Several relaxed
optimization approaches with guaranteed convergence, have
been lately proposed for recovering low-rank matrices in the
presence of sparse and large errors [54], [72], that can be also
applied for solving Eq. (21). Their goal is to estimate both
data P and noise S by solving:

min
P,S
‖P‖∗ + λ‖S‖1 subject to P+ S = D (22)

where λ a penalty parameter that can be tuned, to tradeoff the
rank of matrix P and the degree of sparsity of outliers in S.
A widely adopted solver to the aforementioned convex prob-
lem is the Augmented LagrangeMultiplier (ALM) algorithm,

1A common repulsion function is given by η (r) = 1/(3r3)
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FIGURE 8. (a) Real-scanned urban environment with a great amount of outliers, (b) Point cloud without outliers after using the proposed
approach.

which works with stability across a wide range of situations
without the necessity of parameters configuration. The ALM
method solves the problem of Eq. (22) by setting (P̂, Ŝ) =
minP,S L(P,S,Y) repeatedly, and then updating the Lagrange
multiplier matrix via Y(t+1)

= Y(t)
+ µ(D − P(t)

− S(t)).
In case studies, where a low-rank and sparse decomposition
problem exists, both theminP L(P,S,Y) andminS L(P,S,Y)
have very simple and efficient solutions. We introduce two
ancillary operators Qτ and Dτ . Qτ : < → < denotes
the shrinkage operator Qτ (·) = sgn(·)max(| · | − τ, 0) and
extends it to matrices by applying it to each element while the
Dτ (·) denotes the singular value thresholding operator given
by Dτ (·) = UQτ (6)VT . The estimation of the point coordi-
nates and the outliers is given by iteratively minimizing L
with respect to P (fixing S) and then with respect to S
(fixing P):

min
S

L(P,S,Y) = Qλµ−1(D− P+ µ−1Y) (23)

min
P

L(P,S,Y) = Dµ−1(D− S+ µ−1Y) (24)

Finally, the Lagrange multiplier matrixY is updated using the
residualM−P−S. The process is repeated everyF sequential
frames.

S = Y = 0;µ > 0 (25)

P(t+1)
= Dµ−1 (D− S(t) + µ−1Y(t)) (26)

S(t+1) = Qλµ−1(D− P(t+1)
+ µ−1Y(t)) (27)

Y(t+1)
= Y(t)

+ µ(D− P(t+1)
+ S(t+1)). (28)

The singular value thresholding operation is the most compu-
tationally expensive operation, since it requires the singular
value decomposition of D − S(t) + µ−1Y(t) that correspond
to the singular values that are higher than µ−1.The perfor-
mance of the aforementioned approach, in terms of accu-
racy and complexity is determined by the stopping criterion
(e.g., ‖D − P − S‖F ≤ 10−7‖D‖F ) and the number
of the required principal eigenvectors determined by µ,

which can be empirically estimated using the following rule
µ = m2/4‖D‖1 [54].
At this point, it should be noted that the points in the

component Pt , where t is the number of executed itera-
tions, correspond to the denoised version of D. However the
denoised PC consists of a collection of independent local
estimates since each row i contains the estimation of vi
and its neighbors Rivi. Thus, each point is a member of
multiple overlapping neighborhoods. In order to efficiently
exploit all the independent estimates for a single point,
Mattei and Castrodad [52] formulate a convex problem that
exploits the redundancies present in the overlapping neigh-
borhoods. More specifically, the denoised vertices v̂ of the
PC can be obtained as the solution of the following optimiza-
tion problem:

min
v

n∑
i=1

∥∥(vRi − Pvi
)
Wi
∥∥2
F + λ

∥∥∥v− PT(:,1)
∥∥∥2
F

(29)

where Pvi ∈ <
3×κ is a submatrix that is formed from the

3(i − 1) + 1, . . . , 3i rows and the 2, . . . , κ + 1 columns
of Lκ , Wi = diag {wi1, . . . ,wiκ} is a diagonal matrix with
the weights wij = e−θ

2
ij/σ

2
θ and θij, j = 1, . . . , κ in its

main diagonal, which represent the angle between the point
normals ni and nj. Moreover, σθ is a user defined parameter
representing the size of the influence radius and λ is a reg-
ularization parameter that controls the trade-off between the
denoising strength and data fidelity. The solution of Eq. (29)
is given by:

v̂=

(
λPT(:,1)+

N∑
i=1

PviWiWT
i RT

i

)(
λI+

n∑
i=1

RiWiWT
i R

T
i

)−1
(30)

where I ∈ <n×n is the unity matrix.
In Fig. 8, we show the results of our outliers removal

process using, as input, two real-scanned and unorganized
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point clouds containing an unknown percentage of outliers.
Fig. 8 includes zoomed regions of these highly dense point
clouds providing an easier evaluation of our method’s perfor-
mance. Two different types of outliers seem to be apparent:
(i) the large-scale outliers (identified in red circles) which
lie away from the point cloud and (ii) the small-scale out-
liers (identified in yellow circles) which are tangled with the
useful information and mistakenly could be recognized as
points. The proposed approach can efficiently remove both of
these abnormalities, as shown in Fig. 8. The dataset, which
is used for the evaluation of the outliers removal method,
was taken from the ‘‘IQmulus & TerraMobilita Contest’’
benchmark [73]. It contains 10 highly dense point clouds
(13 · 106 − 17 · 106 points) in different views of an urban
environment.

OUTLIER DETECTION IN TIME VARYING PCs: DYNAMIC
ROBUST PCA
In the time varying scenario, we consider a sequence of PCs
(e.g., time varying point clouds (TVPC)), where each one
of them is represented by a frame. After finding correspon-
dences in temporally successive PCs we are able to formulate
a matrix M, where each column i represents the PCs of a
frame i with authentic and corrupted points that are far from
the model’s surface and which we characterize as outliers.
In the time varying case, M =

[
MT

1 , . . . ,M
T
k

]T
∈ <

3k×n is
defined as a series of PCs now corresponding to the different
frames k . Our focus, is the identification of a low dimensional
subspace P that captures as much variance of the authentic
points in space and time using the Robust PCA (RPCA)
approach presented above. We start by assuming that the
TVPC is represented as a matrixM, that can be decomposed
as:

M = P+ S (31)

where P is a low-rank matrix representing the space of the
authentic points while S is a sparse matrix representing the
space where outliers in the different frames i = 1, . . . , k
live. By executing iteratively the steps presented
in Eqs. (25)-(28) we are able to estimate the k consecutive
denoised point clouds v̂(1), . . . , v̂(k) that correspond to the
k columns of the estimated component P.
Fig. 9 shows the application to three reconstructed frames

(1, 88 and 109) of the ‘‘Handstand’’ animation model. The
heatmap visualizations of the NMSVE show that the pre-
sented outlier removal methods (e.g., (i) WLOP executed in a
per frame basis, (ii) Static RPCA executed in a per frame basis
and (iii) Dynamic RPCA) successfully identify and remove
the outliers even in the extreme case where 20% of the points
can be considered as outliers, randomly distributed over the
range of 1/50 of the bounding box’s diagonal length.

Fig. 10 shows the reconstructed models, detecting and
removing outlier points, using different recent and rel-
evant approaches (e.g., [36], [39]). The conventional
RPCA approach seems to provide the best results, although
it fails to remove outliers that appear in more dense areas.

FIGURE 9. Outlier removal on the Handstand animation model: (i) 20%
noisy points, (ii) output of WLOP, (iii) output of Static RPCA, (iv) output of
RPCA applied to the time-varying point cloud matrix (DRPCA). The
proposed outlier removal method successfully identifies and removes the
outliers even in the extreme case where 20% of the points can be
considered as outliers, randomly distributed over the range of 1/50 of the
bounding box’s diagonal length.

In such cases, the approach presented in [39], outperform the
others because it does not only remove the identified outliers
but it also can be modified to remove some controversial
points, without losing information.

B. COMPLETION OF TIME VARYING PCs
A time varying PC can be represented by a low-rank matrix,
where its columns correspond to sequential point clouds
(i.e., registered TVCP’s). The low-rank property can be also
exploited for mitigating non-uniformities in thickness and
spacing, due to acquisition errors, occlusions, physical limita-
tions of the scanners or misalignment of multiple scans. More
specifically, the under-sampled or completely missed regions
corresponding to surfaces that are invisible to the cameras
(e.g., deep cavities and bifurcations), lead to reconstruction
errors or too smooth surfaces.

MC [74] is a well established signal processing framework
which has been extensively used with great success in several
applications. In particular, MC has been successfully applied
to several computer graphics and vision problems, such as
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FIGURE 10. Reconstructed models using: (a) Liu-chan method in [36], (b) the low-rank component of RPCA, (c) the approach presented in [39], (d) the
Original mesh, (e) the original model with 20% of outliers (Camel frame 36).

the recovery of occluded faces [75], the face image align-
ment [76], 3D mesh in painting [77], and the fusion of PCS
from multiview images of the same object [78]. MC aims to
the reconstruction of a low-rank matrix M ∈ <3k×n given
a reduced number of known entries. In order to represent
the known entries in matrix form, we define the sampling
operator P�(·) and the set of indices � ⊆ {1, . . . , 3k} ×
{1, . . . , n}. Then, with P�(M) we denote the 3k × n matrix
that sets to zero the entries of M which are not in �, leaving
unchanged the ones which are in �. A natural estimator for
M would minimize the tradeoff between the least-squares
error in fitting the known data and the rank [79], [80], e.g.,

min
X

rank(X) subject to P�(X) = P�(M). (32)

Similarly to the RPCA approach, the nuclear norm is the
closest convex approximation to the rank [74] and the original
problem can be written as follows:

min
X
‖X‖∗ subject to P�(X) = P�(M). (33)

Note that, the minimization of the nuclear norm will result
into the lowest rank reconstruction which satisfies the hard
constraint of equality for the known values ofM.

I Remark: (on the projection operator and the Hadamard
product): The projection operator P�(·) can be also repre-
sented as a Hadamard product of the animation matrix and
the matrix E� ◦ M̂ composed by ones and zeros, i.e.,

[E�]i,j =

{
1 if (i, j) ∈ �
0 otherwise

(34)

Recall that the Hadamard product can be expressed as:

E� ◦M =
3k∑
i=1

EiiMD(E�,i) (35)

where Eii is the matrix with a unity value at the position (i, i)
whileD(ET�,i) is the diagonal matrix with the i-th row of P�.
Based on the following property of the vectorization function:

vec(
∑
i

AiBCi) =
∑
i

(CT
i ⊗ Ai)vec(B) (36)

we have that:

vec(E� ◦M) = vec(
∑
i

EiiMD(E�,i)) (37)

=

3k∑
i=1

(D(E�,i)T ⊗ Eii)vec(M) (38)

= D(P�)vec(M) (39)

This result indicates that the projection operator can be
expressed as a simple linear matrix-vector product after
vectorization.J

Relaxing the hard constraint of Eq. (33), we can formulate
the following unconstrained optimization problem:

min
X

1
2
‖P�(X−M)‖2F + τ‖X‖∗, (40)

which jointly minimizes the Euclidean distance between
the known points and the recovered, and imposes low-
rank to the recovered geometry, depending on the weighting
parameter τ . Although Eq. (40) is an unconstrained form,
the nuclear norm term prohibits from a closed form solu-
tion. To overcome this issue, a standard approach is
to split the problem into two parts and use alternat-
ing minimization techniques to iteratively solve each one.
Specifically, we introduce an auxiliary matrix Y ∈ <3k×n

and formulate the optimization problem of Eq. (40) as
follows:

min
X,Y

1
2
‖P�(Y−M)‖2F + τ‖X‖∗ subject to X = Y, (41)

which can be efficiently solved by using the Alternating
Direction Method of Multipliers (ADMM) [79].

I Remark: (on ADMM and relation with ALM): ADMM
can be viewed as an approximate ALM, where the first
step is replaced by two, splitting the original joint opti-
mization over the primal variables. This splitting improves
the decoupling of the problem and permits the distributed
implementation of the technique. However, there is no gen-
eral way of qualifying how close is this approximation to
the joint one. More specifically, ADMM is composed by
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three steps:

x(t+1) = argmin
x

La(x, z(t), y(t)) (42)

z(t+1) = argmin
x

La(x(t+1), z, y(t)) (43)

y(t+1) = y(t) + µ(Ax(t+1) + Bz(t+1) − c) (44)

where again µ = m2/4‖M‖1 is initialized as in the static
case. An important property that renders ADMMa distributed
technique is that the order of the processes does not affect the
steady-state performance. A pre-determined communication
protocol is responsible for defining thewaywhere the updates
are being synchronized among them. J

Algorithm 1 ADMM-Based PC Completion (MC)
Require: �,P� ◦M, ρ
Ensure: XImax

for t = 0, . . . , Imax − 1 do
X(t+1)

← Dτ/ρ
(
Y(t)
− ρ−1Z(t)

)
Solve the system to estimate Y(t+1):

P�(Y−M)− ρ
(
X(t+1)

− Y
)
= Z(t)

Z(t+1)
← Z(t)

+ ρ(X(t+1)
− Y(t+1))

end for

GRAPH-BASED COMPLETION OF TVPC’s
We have seen that the geometry data matrix has the low-rank
property in the principal components domain. However, due
to the special nature of the geometric data, correlations also
exist in the 3D space due to the proximity of the 3D points,
especially in flat areas. This information can be exploited
and incorporated into the previous problem as an additional
constraint, extending the developed tools to this case. In par-
ticular, if we consider a reduced number of 3D points forming
an incomplete animation matrix, the proximity metric can be
embedded into problem Eq. (40) according to the following
formulation:

min
X

1
2
‖P�(X−M)‖2F + τ‖X‖∗ +

γ

2
‖XL‖2F (45)

where the last term imposes that the positions of the neigh-
boring nodes of the reconstructed frames will be close to each
other. The parameter γ represent the associated regularization
parameter of the graph Laplacian L.

I Remark: In [81], a well known technique termed as
Least-SquareMeshes (LSM)which exploits the spatial coher-
ence, has been successfully employed for the reconstruction
of a static PC. In particular, LSM can be expressed as the
solution of the following extended system of equations:

XLSM
[
δL In×K

]
=
[
03k×n R

]
(46)

where XLSM ∈ <
3k×n, L ∈ <n×n, δ is a weighting parameter

andR ∈ <3k×K are the known 3kK anchor points fromM for
K ≤ 3k . Let Le =

[
δL In×κ

]
and Re =

[
03k×n R

]
, then

the least-squares solution of Eq. (46) is expressed as:XLSM =

ReLTe (LeL
T
e )
−1. It is important to note that, the optimization

problem of Eq. (45) can be expressed as Eq. (46) for τ = 0,
|P(M)| = 3kK and γ = δ. J

The augmented Lagrangian of the equivalent splitting ver-
sion of the optimization problem Eq. (45) is expressed as:

La(X,Y,Z) =
1
2
‖P�(Y−M)‖2F + τ‖X‖∗

+
γ

2
‖YL‖2F +

ρ

2
‖X− Y‖2F + 〈Z,X− Y〉

(47)

where, as previously, X,Y are the primal variables, Z the
dual variable, and ρ is the penalizing factor. Taking the partial
derivative with respect to the Y variable is expressed as:

P�(Y−M)+γY(LTL)+ρ
(
Y−X(t+1))

−Z(t)
= 0. (48)

The minimizer of Eq. (48) is obtained by solving the follow-
ing 3kn× 3kn linear system:[∑

i

BTi ⊗ Ai

]
vec(Y) = vec(C) (49)

where

Ai =


Pii i = 1, . . . , 3k
γLTL i = 3k + 1
ρIn i = 3k + 2

(50)

Bi =

{
diag(P�,i) i = 1, . . . , 3k
In i = 3k + 1, 3k + 2

(51)

andC = P�(M)+ρX(t+1)
+Z(t), which has a unique solution

for ρ > 0 [25].

Algorithm 2 Graph-Based Surface Completion (GMC)
Require: �,P� ◦M, ρ,L
Ensure: XImax

for t = 0, . . . , Imax − 1 do
X(t+1)

← Dτ/ρ
(
Y(t)
− ρ−1Z(t)

)
Solve the system (49) to estimate Y(t+1):

P�(Y−M)+ γY(LTL)+ ρ
(
Y− X(t+1)

)
= Z(t)

Z(t+1)
← Z(t+1)

+ ρ(X(t+1)
− Y(t+1))

end for

In Fig. 11 we depict three frames (1, 88 and 109) of the
‘‘Handstand’’ animation model. We compare the original,
the LSM, the MS (Algorithm 1) and the GMC techniques
(Algorithm 2) for the case of 30% undersampling ratio.
A close look at the heatmap visualization of the normalized
mean square visual error (NMSVE), we can easily observe
that the exploitation of the underlying low-rank structure of
the animation matrix (GMC) results in better reconstruction
quality compared to MC (e.g., preservation of the geometric
features of a different scale).

VOLUME 7, 2019 15791



A. S. Lalos et al.: Signal Processing on Static and Dynamic 3D Meshes: Sparse Representations and Applications

FIGURE 11. Dynamic PC Completion Results: (i) Handstand model: known points are highlighted with red,
(ii) reconstructed mesh using LSM approach, (iii) reconstructed mesh using MC approach, (iv) reconstructed
mesh using GMC approach.

C. FEATURE-AWARE MESH DENOISING AND
COMPRESSION
Throughout the years, several approaches have been pro-
posed for performing feature-preserving mesh denois-
ing [19], [45]–[47]. In many cases small and large-scale
geometric features cannot be easily differentiated from noise.
Recent works focus on addressing this challenge, by exploit-
ing the fact that geometric features can be considered as
outliers in the Laplacian domain [83], [84].

GUIDED MESH NORMAL FILTERING
Zhang et al. [44] propose a new mesh normal filtering frame-
work based on the bilateral filter presented in Section 2.B.2.
More specifically, they first apply bilateral filtering to the
face normals, using a properly constructed normal field as the
guidance and then, the vertex positions are updated according
to the filtered face normals via Eqs. (12), (13). The face nor-
mals of a 3Dmesh (that is not corrupted by noise) can provide
good guidance for joint bilateral filtering. However, in the
presence of noise, the noisy normals become less reliable for
indicating the features of the ground truth shape, eventually
leading to erroneous results. For this reason, it seems neces-
sary to compute guidance normal on a face, that provides a
reliable estimation of the true normal even when the model is
corrupted with severe noise.

For each face fi of the triangle mesh, a lot of candidate
patches are available. We define as a candidate patch Pi
the union of fi with all surrounding faces that share ver-
tices with it. To compute the guidance normal at a face fi,
all patches that contain fi are candidates, while the one
with the most consistent normal direction is selected, based
on a function which measures the consistency of the nor-
mals. The consistency of each patch Pi is measured by the
function:

H (Pi) = 8(Pi) ·R (Pi)

8 (Pi) = max
fk ,fj∈Pi

∥∥nj − nk
∥∥
2 ,

R (Pi) =
maxej∈EPi φ(ej)

ε +
∑

ej∈EPi
φ(ej)

,

where EPi is the set of edges with both incident faces con-
tained in patch Pi. The edge saliency φ(ei) in a patch, is an
important factor which determines the decision for the ideal
patch’s selection. This factor can be used for identifying
the saliency of an edge ej and can be estimated from the
difference of the normal’s corresponding to the two incident
faces fi1 , fi2 :

φ(ei) = ‖ni1 − ni2‖2 (52)
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The set of the normalized φ(ei) from all of the candidate
patches could be defined as:

9(P) = (
φ(e1)
φmax

,
φ(e2)
φmax

, · · · ,
φ(en)
φmax

) (53)

where φmax = max(φ(ei)) ∀ i = 1, n. Based on the fact that
the l1-norm for a vector is related to its sparsity, we can con-
clude that a small l1-norm of 9(P) indicates a small number
of edges are much more salient than the others. Additionally,
the l1-norm of 9(P), can be used for identifying the patches
that can be used for the guidance normal estimation. Finally,
the guided gi normal is estimated as the area-weighted aver-
age normal of this patch and the bilateral procedure is applied
on the guidance normals.

FEATURE IDENTIFICATION USING l1 MINIMIZATION
The mesh vertices that are considered as features are sparse
and their number is usually much smaller than non-feature
vertices. Lu et al. [85] exploit the fact that the magnitude of
the δ coordinates of feature vertices is much larger than the
δ coordinates of the non-feature vertices, which usually tends
to zero. Then, they defined a function Ji used for identifying
whether the i-th vertex is a feature or not, based on the
aforementioned observation. Building on the same line of
thought, it is reasonable to define fi as the dot product of the
i-th vertex normal ni and its Laplacian LiP for the i-th vertex,
as follows:

Ji = ni · (Liv)T ∀ i = 1, . . . , n (54)

where Li is the i-th row of the matrix L, and v is the vec-
tor composed with all the vertex positions. An extension of
Eq. (54) providing more accurate results is the following:

Ji =
1∑

j∈Nfi
aj

∑
j∈Nfi

aj(ni − ncj) · (Liv)
T
∀ i = 1, . . . , n

(55)

where Nfi is the first-ring neighboring faces of the i-th vertex,
aj is the j-th face area in Nfi , and ncj is the corresponding face
normal.

It is obvious that only few features exist in a model, and
correspond to the vertices with large Ji values, while most
vertices, correspond to flat areas and they take a small close-
to-zero Ji value. Since, features are indeed sparse in a model,
l0-norm minimization can be used for identifying them [46].
To alleviate the computational complexity issue, a simple
l1-norm regularized formula could be used, given by:

min‖x− J‖2 + λ‖x‖1 (56)

where J = [J1, · · · , Jn]T , x is the vector with all the
unknowns, and λ is the regularization parameter to control
the sparsity of the vector x.

IDENTIFYING SHAPE FEATURES USING RPCA
To exploit the sparsity of features in the Laplacian domain
we suggest working with guided normals defined as the

FIGURE 12. Static case: Construction of a low-rank matrix.

FIGURE 13. Dynamic case: Construction of a low-rank matrix.

average normal of an ideal neighborhood of faces for each
face centroid. More specifically, we suggest following the
idea originally proposed in [44] and construct a matrix with
guided normalsA ∈ <nf×3κ , where nf is the number of faces,
as shown in Fig. 12. Then we suggest exploiting spatiotempo-
ral coherences and the sparsity of the faces that are identified
as features using the RPCA approach described by the steps
presented in Eq. (25). The output of this approach is a set of
guided normals that define piecewise smooth areas PA and a
set of normal corresponding to features SA. The results of an
RPCA based denoising approach is shown in Fig. 14, where it
is obvious that the sharp features are progressively identified
as the number of RPCA iterations increases.

In Fig. 15, we show the results for different recent
feature detection algorithms applied in original and noisy
objects of different 3D models. The method in Fig. 15-(a)
provides thicker areas of features, which is convenient in
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FIGURE 14. Mesh Denoising using RPCA on Fandisk and Farao model, (I) Original meshes, (II) Noisy meshes, (III) RPCA
applied to the guided normals selected of the optimal overlapped patches, (IV) Heatmap visualization of difference
between reconstructed and original mesh.

TABLE 2. Extensive evaluation of results using as metrics both the angle θ and the Hausdorff distance error (hde).

TABLE 3. Extensive evaluation of results in comparison with a variety of different state-of-the-art methods using as metrics both the angle θ and the
Hausdorff distance error (hde).

some applications. A disadvantage of this method is that it
requires a careful selection of parameters, making it prac-
tically difficult to use. The approaches in Fig. 15-(b),(c)

provide perfect results when they are used in origi-
nal/denoised meshes with intense features (e.g., Fandisk).
However, the results are far from satisfying when they are
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FIGURE 15. Feature detection of original and noisy 3D objects (Octa-flower, Frog, Fandisk) using different approaches. Specifically: (a) The
method presented in [16], (b) l1 based feature identification, (c) the method in [85] using the Eq. (55), (d) RPCA based feature identification.

applied in: (i) noisy objects, (ii) smoothed objects without
intense features, pointing the need for an appropriate pre-
processing step. The most robust method seems to be the
RPCA based approach providing accurate results in any case.

FEATURE-AWARE 3D MESH DENOISING
The identification of features is a vital pre-processing
step for many recent efficient denoising processes.
Arvanitis et al. [16] classified each face as feature or
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FIGURE 16. (a) Original models, (b) Noisy models and reconstructed denoising models of (c) Non Iterative [13], (d) Fast &
Effective [19], (e) Bilateral Normal [14], (f) l0 min [46], (g) Guided Normal Bilateral [44], (h) Feature-aware denoising [16].

FIGURE 17. (a) Original 3D model, (b) Noisy model, (c) Guided Normals Bilateral [44], (d) Cascaded Normal Regression [47],
(e) Parameter-free feature-aware denoising [16], (f) Feature-aware denoising using ideal parameters [16].

non-feature, in order to accelerate the execution time of the
proposed method, by applying additional iterations only to
the faces that were classified as features, reducing signif-
icantly the total computational complexity. Other methods
(e.g., [44]), search for the ideal representative area of each
face in order to estimate the guided normals. The identi-
fied features are used for selecting the best representative
area for each face, improving significantly the outcome of
the bilateral reconstruction process. Lu et al. [85] preserve
features during the denoising process by performing a series

of operations including feature detection, identification, and
connection. To achieve the desired results, the authors pro-
pose a new feature-aware vertex update algorithm that takes
advantage of local geometric neighboring information of
each vertex and updates vertices in a feature-aware man-
ner. In the rest part of this subsection, we provide evalua-
tion studies of different feature aware denoising approaches
as compared to other state-of-the-art methods for recon-
structing various noisy 3D models. In Figures 16, 17 we
show the reconstruction results, while the reconstruction
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FIGURE 18. (a) Original mesh, (b) noisy mesh, (c) Fleisman et al. [12],
(d) Sun et al. [19], (e) Zheng et al. (local), (f) Zheng et al. (global) [14],
(g) Zhang et al. [44], (h) Arvanitis et al. [16].

quality is evaluated using the average angle normal
difference θ .
Although the aforementioned approaches are computation-

ally efficient and work well for various noisy inputs, potential
users have to fine-tune the parameters and iteration numbers
to obtain satisfactory results for meshes with different geom-
etry features and noise levels. Motivated by this observation,
we decided to include also results (see Fig. 17) using data-
driven approaches (e.g., [16], [47]), that formulate the denois-
ing processwith cascaded non-linear regression functions and
learn them from a set of noisy meshes and their ground-truth
counterparts.

These methods, use training sets of noisy objects, scanned
by the same devices, and they are appropriate for removing
noise with similar characteristics. While many geometric
features are reconstructed adequately, geometric details are
not always preserved. In other words, the data-drivenmethods
require a large dataset of models, transforming training into
a very time-consuming process.

In Tables 2-3 we provide some additional de-noising
results, using as evaluation metrics both the Hausdorff dis-
tance error and the average normal angle difference θ .

The presented evaluation studies help us identify sev-
eral limitations that appear when considering complex
noise patterns and/or complex geometries. More specifically,
the effect of noise in the estimated bilateral parameters affects
also the reconstruction accuracy of the geometric features,
e.g., [14], [19], [44]. Though it should be noted that the
aforementioned methods can be successfully applied for
identifying sharp features and not medium or small-scale fea-
tures. The method in [83] is an iterative approach combining
pre-filtering, feature detection, and l1-based feature recovery.
The identified limitations of the presented approach is the
increased computational complexity and the fact that in many
cases the identified sharp features are irregularly highlighted.
The l0 presented in [46], is robust to noise with Gaussian

FIGURE 19. (a) Original Models vs Reconstruction results using: (b) feature-aware compression approach using Algorithm 3, (c) Uniform
high pass quantization of different 3D models, (d) The OD3GC approach of [66] and, (e) Spectral compression in parts (∼ 600 vertices per
part).
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FIGURE 20. Reconstruction results using Samba model, (i) Original mesh, (ii) Noisy mesh, (iii) RPCA applied
to the guided normals selected of the optimal overlapped patches, (iv) RPCA applied to the normals, (v)
Bilateral normal filtering approach applied to each frame individually.

distribution, however, its performance is significantly
reduced in more complex noise patterns (e.g., anisotropic
noise, real-scan noise). Despite the good surface reconstruc-
tion results they cannot always preserve sharp features well,
while in many cases their complexity becomes prohibitive.
Finally, the presented denoising approaches cannot be used
for reconstructing noisy 3D models where poorly-shaped
triangles are formed by vertices mostly lying on sharp edges,
(please refer to Fig. 18), a problem that remains a challenge
for the future.

FEATURE-AWARE 3D MESH COMPRESSION
The identified features can be used also for efficiently com-
pressing the geometry of a 3D mesh. To be more specific,
features convey important visual information that should be
preserved in lossy compression approaches in order to pro-
vide reconstruction output where the error is not easily per-
ceived. Lalos et al. [84] suggest quantizing the δ coordinates
of the geometric features and assigning zeros to rest delta
coordinates that correspond to non feature points. Thus the
encoding vector is written as δz =

[
δz1 , . . . , δzn

]
, where, δzi =

Q (δi), if vi is feature and 0, otherwise, and Q (·) is a scalar
quantization function. In addition to δz, Lalos et al. [84] also
quantize a set of known control points, which are uniformly

distributed on the model surface vc = Q
([
vi1 , . . . , via

])
where ia is the vertex index and a correspond to the 1% of the
total number of vertices n. The reconstruction of the 3Dmesh
vertices is performed as in [33], by solving a sparse linear
system: [

L
Ia

]
v =

[
δz
Iavc

]
(57)

where L is the Laplacian operator defined in Eq. (5). The
proposed compression approach is shortly presented in Algo-
rithm 3.

Fig. 19 shows the reconstructed meshes at the decoder for
different compression ratios using the following approaches:
1) a GFT based compression scheme (Spectral approach)
[21], [24] 2 2) the uniform high pass quantization approach
presented in [33] and the 3) the OD3GC method [66] that
performs direct quantization to the 3D-space coordinates.
By inspecting these figure, it is obvious that the feature
aware compression approach, enables aggressive compres-
sion ratios, that correspond to 0.5 bit per vertex (bpv), without
introducing significant loss on the visual quality, measured

2Note that spectral method is executed in overlapped parts as described in
[21] due to complexity constraints
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FIGURE 21. Triangulated details of lung model affected by the staircase effect (i) noisy mesh, and denoising
result: (ii) l0 min [46], (iii) bilateral normal [14], (iv) feature-aware denoising [16], (v) staircase-aware
smoothing [63].

Algorithm 3 Feature-Aware High Pass Quantization
Require: Model M
Ensure: Decompressed model M̃
for f = 1, . . . ,NumberofFrames do
Construct a matrix with Guided Normals, as shown
in Fig. 12;
Evaluate features by executing RPCA as described in
Eqs. (25)-(28).
Evaluate delta coordinates of feature points using Eq. (2)

Evaluate delta coordinates of a sparse set of anchors and
perform quantization
At the decoder site solve a sparse linear system, see
Eq. (57)

end for

using the NMSVE. Finally, feature agnostic approaches intro-
duce high-frequency errors affecting significantly the appear-
ance of the surface, resulting in a blocky structure, where the
errors are highly noticeable even in compression ratios which
are higher than 2.5 bpv.

RPCA-BASED DYNAMIC MESH DENOISING
A similar approach can be also used for dynamic mesh com-
pression by applying RPCA to a matrixMc ∈ <

3nf×κk where
κ is the number of faces in the geometrical or topological
neighborhood and k is the number of frames. Guided normals
resulted in very smooth reconstructed surfaces. To address,
this limitation we suggest executing RPCA directly

Algorithm 4 Denoising of Dynamic Meshes Using RPCA
Require: Noisy animationM
Ensure: Denoised animation M̂

for f = 1, . . . ,NumberofFrames do
Estimate the face normals for each frame meshMf
individually via Eq. (3)
Construction of a low-rank MatrixMn
according to Fig. 13
Execute RPCA on normals via Eq. (25)-(26)
and estimate Pn,Sn
if Sfi < threshold then

nfi ← Pfi;
else

nfi ← Pfi + Sfi;
end if

end for
for t = 1,...,NumberofIterations do
v̂(t+1)ij = v̂(t)ij +

1∣∣∣Fij

∣∣∣
∑

z∈Fij
n̂z
[
n̂Tz
(
ĉ(t)i − v̂(t)ij

)]
;

ĉ(t)i =
(
v̂(t)i1 + v̂(t)i2 + v̂(t)i3

)
/3;

end for

to a matrix with normals. The robustness, in that case,
is ensured by the exploitation of the temporal coherence
(refer to Fig. 13). After identifying the geometric features
in each frame, we evaluate the reconstructed vertices by
executing the iterative process defined in Eqs. (12), (13). The
proposed geometry reconstruction algorithm is summarized
in Algorithm 4. By inspecting the dynamic mesh denoising
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FIGURE 22. Denoising of real scanned 3D models (cone, girl, boy): (a) noisy, (b) bilateral normal [14],
(c) l0 min [46], (d) bilateral guided normal [44], (e) feature-aware denoising [16].

results in Fig. 20, it is clearly shown that the use of the
individual normals, preserves more geometric details than the
used of guided normals.

V. SUMMARY AND OPEN ISSUES
This article presents a comprehensive review of new method-
ologies that cross-fertilize sparsity-aware signal process-
ing tools with digital geometry processing. The analyzed
approaches support fast and efficient outlier rejection, denois-
ing and completion of fully dynamic scenarios with an unde-
fined motion pattern and complex topology modification
behavior. In the heart of the reviewed approaches lie sev-
eral sparse modeling and optimization tools, including Com-
pressed Sensing (CS), Matrix Completion (MC) and Robust
PCA (RPCA) approaches simultaneously maintaining fast
processing times, plausible reconstruction results and out-
of-core behavior. In Figs. 21-22 we illustrate the impact
of the presented signal processing tools on a heritage sci-
ence and a medical example where we process: i) sculp-
ture models scanned by off the shelf devices (e.g., Kinect
v1, v2) (see Fig. 22) and 3D lung models reconstructed from

CTs/MRIs (see Fig. 21). Although the presented approaches
are expected to play a crucial role in this exciting endeavor,
there are a lot of open issues awaiting investigation.

The scale of acquired data in real time 3D scanning oper-
ations is growing very quickly, requiring the accurate recon-
struction of entire scenes with various objects represented by
structured shapes. These requirements introduce significant
scientific challenges, facilitating a wide number of applica-
tions with tight timing restrictions, such as tele-immersion,
real-time surface mapping, and tracking, aero-reconstruction
for disaster management. Therefore in order to support such
challenging problems, the presented approaches should be
able to work in a real-time fashion by utilizing both adaptive
and distributed approaches.

Another important application of the presented sparse opti-
mization techniques is the consolidation of dynamic point
clouds, in order to enhance the captured data. We have seen
that graph-based matrix completion techniques can success-
fully recover the unknown points with only 30% of the
original data. The optimization techniques are based on the
sparsity of the matrix in the singular value domain as well
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as the exploitation of the spatial coherence. The performance
of the techniques is depending on the parameters which give
different weights to each domain, depending on the specific
model to be reconstructed. Therefore, techniques that obtain
the values of these parameters in an optimal manner for
each specific model would be an important extension of
the presented techniques. Moreover, when the whole point
cloud is available for processing, a hierarchical or multi-layer
approach for the recovery of themissing points could improve
even more the performance of the techniques.

Despite the tremendous progress on the landscape of the
3D mesh processing field, we believe that our approaches
provides a novel insight at a key area with renewed research
interest, where high potential for novel improvements such
as online clustering and processing based on the motion,
the number and the scale of geometric features, is feasible
in the near future.

REFERENCES
[1] F. Bernardini, H. Rushmeier, I. M. Martin, J. Mittleman, and G. Taubin,

‘‘Building a digital model of Michelangelo’s Florentine Pieta,’’ IEEE
Comput. Graph. Appl., vol. 22, no. 1, pp. 59–67, Jan. 2002.

[2] F. Bernardini, H. Rushmeier, I. M. Martin, J. Mittleman, and G. Taubin,
‘‘Building a digital model of Michelangelo’s Florentine Pieta,’’ IEEE
Comput. Graph. Appl., vol. 22, no. 1, pp. 59–67, Jan./Feb. 2002,
doi: 10.1109/38.974519.

[3] M. Berger et al., ‘‘State of the art in surface reconstruction from point
clouds,’’ in Proc. EUROGRAPHICS Star Rep., vol. 1, no. 1, 2014,
pp. 161–185.

[4] Y.Wang, L.Wang,W. Hao, X. Ning, Z. Shi, andM. Zhao, ‘‘A novel slicing-
based regularization method for raw point clouds in visible IoT,’’ IEEE
Access, vol. 6, pp. 18299–18309, 2018.

[5] A. Anwer, S. S. A. Ali, A. Khan, and F. Mériaudeau, ‘‘Underwa-
ter 3-D scene reconstruction using Kinect v2 based on physical mod-
els for refraction and time of flight correction,’’ IEEE Access, vol. 5,
pp. 15960–15970, 2017.

[6] L. Pekař and Q. Gao, ‘‘Spectrum analysis of LTI continuous-time systems
with constant delays: A literature overview of some recent results,’’ IEEE
Access, vol. 6, pp. 35457–35491, 2018.

[7] Y. Zhong and F. Chen, ‘‘Computing medial axis transformations of
2D point clouds,’’ Graph. Models, vol. 97, pp. 50–63, May 2018.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1524070318300092

[8] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Lévy, Polygon Mesh
Processing. Boca Raton, FL, USA: CRC Press, 2010.

[9] O. Sorkine, ‘‘Differential representations for mesh processing,’’ Comput.
Graph. Forum, vol. 25, no. 4, pp. 789–807, 2006.

[10] G. Taubin, ‘‘A signal processing approach to fair surface design,’’ in
Proc. 22nd Annu. Conf. Comput. Graph. Interact. Techn. (SIGGRAPH),
New York, NY, USA, 1995, pp. 351–358, doi: 10.1145/218380.218473.

[11] N. Himayat and S. A. Kassam, ‘‘Approximate performance analysis of
edge preserving filters,’’ IEEE Trans. Signal Process., vol. 41, no. 9,
pp. 2764–2777, Sep. 1993.

[12] S. Fleishman, I. Drori, andD. Cohen-Or, ‘‘Bilateral mesh denoising,’’ACM
Trans. Graph., vol. 22, no. 3, pp. 950–953, 2003.

[13] T. R. Jones, F. Durand, andM. Desbrun, ‘‘Non-iterative, feature-preserving
mesh smoothing,’’ ACM Trans. Graph., vol. 22, no. 3, pp. 943–949, 2003.

[14] Y. Zheng, H. Fu, O. K.-C. Au, and C.-L. Tai, ‘‘Bilateral normal filtering
for mesh denoising,’’ IEEE Trans. Vis. Comput. Graphics, vol. 17, no. 10,
pp. 1521–1530, Oct. 2013.

[15] J. Solomon, K. Crane, A. Butscher, and C. Wojtan. (2014). ‘‘A general
framework for bilateral and mean shift filtering.’’ [Online]. Available:
https://arxiv.org/abs/1405.4734

[16] G. Arvanitis, A. Lalos, K. Moustakas, and N. Fakotakis, ‘‘Feature preserv-
ing mesh denoising based on graph spectral processing,’’ IEEE Trans. Vis.
Comput. Graphics, to be published, doi: 10.1109/TVCG.2018.2802926.

[17] W. T. Tutte, ‘‘How to draw a graph,’’ Proc. London Math. Soc., vol. s3-13,
no. 1, pp. 743–767, 1963.

[18] E. BrianDavies, G. M. L. Gladwell, J. Leydold, and P. F. Stadler, ‘‘Dis-
crete nodal domain theorems,’’ Linear Algebra Appl., vol. 336, nos. 1–3,
pp. 51–60, 2001.

[19] X. Sun, P. Rosin, R. Martin, and F. Langbein, ‘‘Fast and effective feature-
preserving mesh denoising,’’ IEEE Trans. Vis. Comput. Graphics, vol. 13,
no. 5, pp. 925–938, Sep. 2007.

[20] L. Váša, S. Marras, K. Hormann, and G. Brunnett, ‘‘Compressing dynamic
meshes with geometric Laplacians,’’Comput. Graph. Forum, vol. 33, no. 2,
pp. 145–154, 2014.

[21] A. S. Lalos, I. Nikolas, E. Vlachos, and K. Moustakas, ‘‘Compressed
sensing for efficient encoding of dense 3D meshes using model-based
Bayesian learning,’’ IEEE Trans. Multimedia, vol. 19, no. 1, pp. 41–53,
Jan. 2017.

[22] A. S. Lalos, A. A. Vasilakis, A. Dimas, and K. Moustakas, ‘‘Adaptive
compression of animated meshes by exploiting orthogonal iterations,’’ Vis.
Comput., vol. 33, nos. 6–8, pp. 811–821, 2017, doi: 10.1007/s00371-017-
1395-4.

[23] D. Vlasic, I. Baran, W. Matusik, and J. Popović, ‘‘Articulated mesh ani-
mation from multi-view silhouettes,’’ ACM Trans. Graph., vol. 27, no. 3,
pp. 97:1–97:9, Aug. 2008, doi: 10.1145/1360612.1360696.

[24] Z. Karni and C. Gotsman, ‘‘Compression of soft-body animation
sequences,’’ Comput. Graph., vol. 28, no. 1, pp. 25–34, 2004.

[25] E. Vlachos, A. S. Lalos, A. Spathis-Papadiotis, and K. Moustakas,
‘‘Distributed consolidation of highly incomplete dynamic point clouds
based on rank minimization,’’ IEEE Trans. Multimedia, vol. 20, no. 12,
pp. 3276–3288, Dec. 2018.

[26] J. Mairal, M. Elad, and F. Bach, ‘‘Guest editorial: Sparse coding,’’
Int. J. Comput. Vis., vol. 114, nos. 2–3, pp. 89–90, Sep. 2015,
doi: 10.1007/s11263-015-0845-6.

[27] A. Qayyum et al., ‘‘Image classification based on sparse-coded fea-
tures using sparse coding technique for aerial imagery: A hybrid dic-
tionary approach,’’ Neural Comput. Appl., Dec. 2017. [Online]. Avail-
able: https://link.springer.com/article/10.1007/s00521-017-3300-5#citeas,
doi: 10.1007/s00521-017-3300-5.

[28] Y.-J. Yoon, A. Lelidis, A. C. Öztireli, J.-M. Hwang, M. Gross, and
S.-M. Choi, ‘‘Geometry representations with unsupervised feature learn-
ing,’’ in Proc. Int. Conf. Big Data Smart Comput. (BigComp), Jan. 2016,
pp. 137–142.

[29] H. Huang, D. Li, H. Zhang, U. Ascher, and D. Cohen-Or, ‘‘Con-
solidation of unorganized point clouds for surface reconstruction,’’
ACM Trans. Graph., vol. 28, no. 5, pp. 176:1–176:7, Dec. 2009, doi:
10.1145/1618452.1618522.

[30] H. Avron, A. Sharf, C. Greif, and D. Cohen-Or, ‘‘`1-sparse reconstruc-
tion of sharp point set surfaces,’’ ACM Trans. Graph., vol. 29, no. 5,
pp. 135:1–135:12, Nov. 2010, doi: 10.1145/1857907.1857911.

[31] E. Vlachos, A. S. Lalos, K. Moustakas, and K. Berberidis, ‘‘Effi-
cient graph-based matrix completion on incomplete animated models,’’
in Proc. IEEE Int. Conf. Multimedia Expo, Hong Kong, Jul. 2017,
pp. 1121–1124.

[32] B. Kim and J. Rossignac, ‘‘GeoFilter: Geometric selection of mesh filter
parameters,’’ Comput. Graph. Forum, vol. 24, no. 3, pp. 295–302, 2005.

[33] O. Sorkine, ‘‘Laplacian mesh processing,’’ in Proc. Eurographics-State Art
Reports (STARs), 2005, pp. 53–70.

[34] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and
C. T. Silva, ‘‘Computing and rendering point set surfaces,’’ IEEE
Trans. Vis. Comput. Graphics, vol. 9, no. 1, pp. 3–15, Jan. 2003,
doi: 10.1109/TVCG.2003.1175093.

[35] Y. Lipman, D. Cohen-Or, D. Levin, and H. Tal-Ezer, ‘‘Parameterization-
free projection for geometry reconstruction,’’ ACM Trans. Graph., vol. 26,
no. 3, Jul. 2007, Art. no. 22, doi: 10.1145/1276377.1276405.

[36] S. Liu, K.-C. Chan, and C. C. L. Wang, ‘‘Iterative consolidation of unorga-
nized point clouds,’’ IEEE Comput. Graph. Appl., vol. 32, no. 3, pp. 70–83,
May/Jun. 2012, doi: 10.1109/MCG.2011.14.

[37] J. Wang et al., ‘‘Consolidation of low-quality point clouds from outdoor
scenes,’’ in Proc. 11th Eurographics/ACMSIGGRAPH Symp. Geometry
Process., 2013, pp. 207–216, doi: 10.1111/cgf.12187.

[38] G. Arvanitis, A. S. Lalos, K. Moustakas, and N. Fakotakis, ‘‘Weighted
regularized laplacian interpolation for consolidation of highly-
incomplete time varying point clouds,’’ in Proc. 3DTV Conf., True
Vis.-Capture, Transmiss. Display 3D Video (3DTV-CON), Jun. 2017,
pp. 1–4.

VOLUME 7, 2019 15801

http://dx.doi.org/10.1109/38.974519
http://dx.doi.org/10.1109/TVCG.2018.2802926
http://dx.doi.org/10.1145/218380.218473
http://dx.doi.org/10.1007/s00371-017-1395-4
http://dx.doi.org/10.1111/cgf.12187
http://dx.doi.org/10.1145/1360612.1360696
http://dx.doi.org/10.1007/s11263-015-0845-6
http://dx.doi.org/10.1007/s00521-017-3300-5
http://dx.doi.org/10.1145/1857907.1857911
http://dx.doi.org/10.1109/TVCG.2003.1175093
http://dx.doi.org/10.1145/1276377.1276405
http://dx.doi.org/
http://dx.doi.org/10.1145/1618452.1618522
http://dx.doi.org/10.1007/s00371-017-1395-4


A. S. Lalos et al.: Signal Processing on Static and Dynamic 3D Meshes: Sparse Representations and Applications

[39] G. Arvanitis, A. Spathis-Papadiotis, A. S. Lalos, K. Moustakas, and
N. Fakotakis, ‘‘Outliers removal and consolidation of dynamic point
cloud,’’ in Proc. 25th IEEE Int. Conf. Image Process. (ICIP), Oct. 2018,
pp. 3888–3892.

[40] M. Zhong and H. Qin, ‘‘Surface inpainting with sparsity constraints,’’
Comput. Aided Geometric Des., vol. 41, pp. 23–35, Jan. 2016.

[41] G. Arvanitis, A. S. Lalos, K. Moustakas, and N. Fakotakis, ‘‘Real-
time removing of outliers and noise in 3D point clouds applied in
robotic applications,’’ in Interactive Collaborative Robotics, A. Ronzhin,
G. Rigoll, andR.Meshcheryakov, Eds. Cham, Switzerland: Springer, 2017,
pp. 11–19.

[42] K. Hildebrandt and K. Polthier, ‘‘Anisotropic filtering of non-linear sur-
face features,’’ Comput. Graph. Forum, vol. 23, no. 3, pp. 391–400,
2004.

[43] C. L. Bajaj and G. Xu, ‘‘Anisotropic diffusion of surfaces and func-
tions on surfaces,’’ ACM Trans. Graph., vol. 22, no. 1, pp. 4–32,
Jan. 2003.

[44] W. Zhang, B. Deng, J. Zhang, S. Bouaziz, and L. Liu, ‘‘Guided mesh
normal filtering,’’ Comput. Graph. Forum, vol. 34, no. 7, pp. 23–34,
2015.

[45] R. Wang, Z. Yang, L. Liu, J. Deng, and F. Chen, ‘‘Decoupling noise
and features via weighted `1-analysis compressed sensing,’’ ACM Trans.
Graph., vol. 33, no. 2, pp. 18:1–18:12, Apr. 2014, doi: 10.1145/2557449.

[46] L. He and S. Schaefer, ‘‘Mesh denoising via L0 minimization,’’
ACM Trans. Graph., vol. 32, no. 4, pp. 64:1–64:8, Jul. 2013,
doi: 10.1145/2461912.2461965.

[47] P.-S. Wang, Y. Liu, and X. Tong, ‘‘Mesh denoising via cascaded nor-
mal regression,’’ ACM Trans. Graph., vol. 35, no. 6, pp. 232:1–232:12,
Nov. 2016.

[48] D. Thanou, P. A. Chou, and P. Frossard, ‘‘Graph-based compression of
dynamic 3D point cloud sequences,’’ IEEE Trans. Image Process., vol. 25,
no. 4, pp. 1765–1778, Apr. 2016.

[49] A. S. Lalos, I. Nikolas, and K. Moustakas, ‘‘Sparse coding of dense 3D
meshes in mobile cloud applications,’’ in Proc. IEEE Int. Symp. Signal
Process. Inf. Technol. (ISSPIT), Dec. 2015, pp. 403–408.

[50] K. Wolff et al., ‘‘Point cloud noise and outlier removal for image-based
3D reconstruction,’’ in Proc. IEEE 4th Int. Conf. 3D Vis. (3DV), Oct. 2016,
pp. 118–127.

[51] B. M. Brown, ‘‘Statistical uses of the spatial median,’’ J. Roy. Stat. Soc. B,
Methodol., vol. 45, no. 1, pp. 25–30, 1983.

[52] E. Mattei and A. Castrodad, ‘‘Point cloud denoising via moving RPCA,’’
Comput. Graph. Forum, vol. 36, no. 8, pp. 123–137, 2017, doi: 10.1111/
cgf.13068.

[53] N. A. Campbell, ‘‘Robust procedures in multivariate analysis I: Robust
covariance estimation,’’ J. Roy. Stat. Soc. C, Appl. Statist., vol. 29, no. 3,
pp. 231–237, 1980.

[54] E. J. Candès, X. Li, Y. Ma, and J. Wright, ‘‘Robust principal component
analysis?’’ J. ACM, vol. 58, no. 3, p. 11, May 2011.

[55] E. Bayram, P. Frossard, E. Vural, and A. Alatan, ‘‘Analysis of airborne
LiDAR point clouds with spectral graph filtering,’’ IEEE Geosci. Remote
Sens. Lett., vol. 15, no. 8, pp. 1284–1288, Aug. 2018.

[56] D. T. Ngo, J. Östlund, and P. Fua, ‘‘Template-based monocular 3D shape
recovery using Laplacian meshes,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 38, no. 1, pp. 172–187, Jan. 2016.

[57] J. Yang, H. Li, D. Campbell, and Y. Jia, ‘‘Go-ICP: A globally optimal
solution to 3D ICP point-set registration,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 38, no. 11, pp. 2241–2254, Nov. 2016.

[58] A. P. Bustos and T.-J. Chin, ‘‘Guaranteed outlier removal for point cloud
registration with correspondences,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 40, no. 12, pp. 2868–2882, Dec. 2018.

[59] A. W. Vieira, P. L. J. Drews, and M. F. M. Campos, ‘‘Spatial density
patterns for efficient change detection in 3D environment for autonomous
surveillance robots,’’ IEEE Trans. Autom. Sci. Eng., vol. 11, no. 3,
pp. 766–774, Jul. 2014.

[60] S. Xiong, J. Zhang, J. Zheng, J. Cai, and L. Liu, ‘‘Robust surface recon-
struction via dictionary learning,’’ ACM Trans. Graph., vol. 33, no. 6,
pp. 201:1–201:12, Nov. 2014, doi: 10.1145/2661229.2661263.

[61] B. Li, W. Jiang, Z. Cheng, G. Dang, and S. Jin, ‘‘Feature preserving
consolidation for unorganized point clouds,’’ inProc. IEEE Int. Conf. Prog.
Inform. Comput., vol. 2, Dec. 2010, pp. 892–895.

[62] X. Wang, X. Liu, and H. Qin, ‘‘Robust surface consolidation of scanned
thick point clouds,’’ in Proc. Int. Conf. Comput.-Aided Design Comput.
Graph., Nov. 2013, pp. 38–43.

[63] T. Moench, S. Adler, and B. Preim, ‘‘Staircase-aware smoothing of
medical surface meshes,’’ in Proc. Eurograph. Workshop Vis. Com-
put. Biol. Med., D. Bartz, C. Botha, J. Hornegger, R. Machiraju,
A. Wiebel, and B. Preim, Eds. The Eurographics Association, 2010,
doi: 10.2312/VCBM/VCBM10/083-090.

[64] X. Bingqian, G. Yanfeng, and C. Zhimin, ‘‘Building LiDAR point cloud
denoising processing through sparse representation,’’ in Proc. IEEE Int.
Geosci. Remote Sens. Symp. (IGARSS), Jul. 2015, pp. 585–588.

[65] K. Sarkar, F. Bernard, K. Varanasi, C. Theobalt, and D. Stricker, ‘‘Struc-
tured low-rank matrix factorization for point-cloud denoising,’’ in Proc.
Int. Conf. 3D Vis. (3DV), 2018, pp. 444–453.

[66] K. Mamou, T. Zaharia, and F. Prêteux, ‘‘TFAN: A low complexity 3D
mesh compression algorithm,’’Comput. Animation Virtual Worlds, vol. 20,
nos. 2–3, pp. 343–354, Jun. 2009.

[67] J. Castorena, C. D. Creusere, and D. Voelz, ‘‘Modeling lidar scene sparsity
using compressive sensing,’’ in Proc. IEEE Int. Geosci. Remote Sens.
Symp., Jul. 2010, pp. 2186–2189.

[68] J. Hou, L.-P. Chau, M. Zhang, N. Magnenat-Thalmann, and Y. He,
‘‘A highly efficient compression framework for time-varying 3-D facial
expressions,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 24, no. 9,
pp. 1541–1553, Sep. 2014.

[69] J. Hou, L.-P. Chau, N. Magnenat-Thalmann, and Y. He, ‘‘Sparse low-rank
matrix approximation for data compression,’’ IEEE Trans. Circuits Syst.
Video Technol., vol. 27, no. 5, pp. 1043–1054, May 2017.

[70] D. Banerjee, K. Yu, and G. Aggarwal, ‘‘Robotic arm based 3D reconstruc-
tion test automation,’’ IEEE Access, vol. 6, pp. 7206–7213, 2018.

[71] K. Slavakis, G. B. Giannakis, and G. Mateos, ‘‘Modeling and optimization
for big data analytics: (Statistical) learning tools for our era of data deluge,’’
IEEE Signal Process. Mag., vol. 31, no. 5, pp. 18–31, Sep. 2014.

[72] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky,
‘‘Rank-sparsity incoherence for matrix decomposition,’’ SIAM J. Optim.,
vol. 21, no. 2, pp. 572–596, 2011.

[73] B. Vallet, M. Brédif, A. Serna, B. Marcotegui, and N. Paparoditis,
‘‘TerraMobilita/iQmulus urban point cloud analysis benchmark,’’ Com-
put. Graph., vol. 49, pp. 126–133, Jun. 2015. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01167995

[74] E. J. Candès and B. Recht, ‘‘Exact matrix completion via convex
optimization,’’ Found. Comput. Math., vol. 9, no. 6, p. 717, 2009,
doi: 10.1007/s10208-009-9045-5.

[75] Y. Deng, Q. Dai, and Z. Zhang, ‘‘Graph Laplace for occluded face com-
pletion and recognition,’’ IEEE Trans. Image Process., vol. 20, no. 8,
pp. 2329–2338, Aug. 2011.

[76] Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma, ‘‘RASL: Robust
alignment by sparse and low-rank decomposition for linearly corre-
lated images,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11,
pp. 2233–2246, Nov. 2012.

[77] G. Arvanitis, K. Moustakas, N. Fakotakis, and A. S. Lalos, ‘‘3D mesh
inpainting using matrix completion via augmented Lagrange multiplier
method,’’ in Proc. IEEE 13th Image, Video, Multidimensional Signal Pro-
cess. Workshop (IVMSP), Jun. 2018, pp. 1–5.

[78] Y. Deng, Y. Liu, Q. Dai, Z. Zhang, and Y.Wang, ‘‘Noisy depth maps fusion
for multiview stereo via matrix completion,’’ IEEE J. Sel. Topics Signal
Process., vol. 6, no. 5, pp. 566–582, Sep. 2012.

[79] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, ‘‘Distributed
optimization and statistical learning via the alternating direction method
of multipliers,’’ Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
Jan. 2011, doi: 10.1561/2200000016.

[80] M. Fazel, ‘‘Matrix rank minimization with applications,’’ Ph.D. disser-
tation, Dept. Elect. Eng., Stanford Univ., Stanford, CA, USA, 2002,
pp. 1–130.

[81] O. Sorkine and D. Cohen-Or, ‘‘Least-squares meshes,’’ in Proc. Shape
Modeling Appl., Jun. 2004, pp. 191–199.

[82] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[83] R. Wang, Z. Yang, L. Liu, J. Deng, and F. Chen, ‘‘Decoupling noise
and features via weighted `1-analysis compressed sensing,’’ ACM Trans.
Graph., vol. 33, no. 2, pp. 18:1–18:12, 2014.

[84] A. S. Lalos, G. Arvanitis, A. Spathis-Papadiotis, and K. Moustakas, ‘‘Fea-
ture aware 3D mesh compression using robust principal component analy-
sis,’’ in Proc. IEEE Int. Conf. Multimedia Expo (ICME), Jul. 2018, pp. 1–6.

[85] X. Lu, Z. Deng, and W. Chen, ‘‘A robust scheme for feature-preserving
mesh denoising,’’ IEEE Trans. Vis. Comput. Graphics, vol. 22, no. 3,
pp. 1181–1194, Mar. 2016.

15802 VOLUME 7, 2019

http://dx.doi.org/10.1145/2557449
http://dx.doi.org/10.1145/2661229.2661263
http://dx.doi.org/10.1111/cgf.13068
http://dx.doi.org/10.1145/2461912.2461965
http://dx.doi.org/10.1111/cgf.13068
http://dx.doi.org/10.2312/VCBM/VCBM10/083-090
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1007/s10208-009-9045-5


A. S. Lalos et al.: Signal Processing on Static and Dynamic 3D Meshes: Sparse Representations and Applications

ARIS S. LALOS received the Diploma, M.A.Sc.,
and Ph.D. degrees from the Computer Engineer-
ing and Informatics Department (CEID), School
of Engineering (SE), University of Patras (UoP),
Patras, Greece, in 2003, 2005, and 2010, respec-
tively. He was a Research Fellow with the Sig-
nal Processing and Communications Laboratory,
CEID, SE, UoP, from 2005 to 2010, and the Signal
Theory and Communications Department, Tech-
nical University of Catalonia, Barcelona, Spain,

from 2012 to 2014. From 2011 to 2012, he was a Telecommunication
Research Engineer with Analogies S.A, an early stage start-up. He has been
a Research Fellow with the Visualization and Virtual Reality Group, since
2015. In 2018, he was an Elected Principal Researcher (Associate Research
Professor Level with tenure) with the Industrial Systems Institute, ATHENA
Research Centre. He has authored 74 research papers in international journals
(27), conferences (44), and edited books (3). His general research interests
include digital communications, adaptive filtering algorithms, geometry pro-
cessing, wireless body area networks, and biomedical signal processing. He
received the Best Demo Award at the IEEE CAMAD 2014, the Best Paper
Award at the IEEE ISSPIT 2015, and the World’s FIRST 10K Best Paper
Award at the IEEE ICME 2017. In 2015, he was nominated as an Exemplary
Reviewer for the IEEE COMMUNICATIONS LETTERS. He has participated in sev-
eral European projects related to the ICT and eHealth domain (e.g., COOP-
COM, ALPHA, WSN4QoL, KinOptim, MOMIRAS, and MyAirCoach). He
acts as a regular reviewer for several technical journals.

EVANGELOS VLACHOS received the Diploma,
M.Sc., and Ph.D. degrees from the Computer
Engineering and Informatics Department, Univer-
sity of Patras, Greece, in 2005, 2009, and 2015,
respectively. From 2015 to 2016, he was a Post-
doctoral Researcher with the Signal Processing
and Communications Laboratory, University of
Patras, working on sparse signal processing for
distributed networks, where he was also a Postdoc-
toral Researcher with the Visualization and Virtual

Reality Group, working on graph-based optimization for reconstruction
of 3Dmodels, from 2016 to 2017. His research interests include sparse signal
modeling tools, and distributed and graph-based optimization for static and
time-varying point clouds. He received the Best Paper Award (World’s First
10K) from the IEEE International Conference onMultimedia and Expo 2017.

GERASIMOS ARVANITIS received the M.Sc.
degree in electronics and information process-
ing from the University of Patras, Patras, Greece,
where he is currently pursuing the Ph.D. degree
with the Department of Electrical and Computer
Engineering Department. His main research inter-
ests include digital geometry processing, 3D mod-
eling, reconstruction, feature preserving denoising
algorithms, and computer graphics.

KONSTANTINOS MOUSTAKAS received the
Diploma and Ph.D. degrees in electrical and com-
puter engineering from the Aristotle University of
Thessaloniki, Thessaloniki, Greece, in 2003 and
2007, respectively. From 2007 to 2011, he was
a Postdoctoral Research Fellow with the Centre
for Research and Technology Hellas, Information
Technologies Institute, Greece. He is currently
an Associate Professor with the Electrical and
Computer Engineering Department, University of

Patras, Patras, Greece, where he is also the Head of the Visualization and
Virtual Reality Group. He has authored or co-authored more than 120 papers
in refereed journals, edited books, and international conferences. His main
research interests include computer vision, computer graphics, computa-
tional geometry, and virtual physiological humans. He is an IEEE Senior
Member and a member of the Eurographics Society. He has participated in
more than 17 research and development projects funded by the EC and the
Greek Secretariat of Research and Technology.

KOSTAS BERBERIDIS received the Diploma
degree in electrical engineering from the Dem-
ocritus University of Thrace, Komotini, Greece,
in 1985, and the Ph.D. degree in signal processing
and communications from theUniversity of Patras,
Patras, Greece, in 1990. In 1991, he was with the
Signal Processing Laboratory, National Defense
Research Center. From 1992 to 1994 and from
1996 to 1997, he was a Researcher with the Com-
puter Technology Institute, Patras. From 1994 to

1995, he was a Postdoctoral Fellow with CCETT/CNET, Rennes, France.
Since 1997, he has been with the Computer Engineering and Informatics
Department, University of Patras, where he is currently a Professor and
the Head of the Signal Processing and Communications Laboratory. Since
2008, he has been the Director of the Signal Processing and Communications
Research Unit, Computer Technology Institute and Press Diophantus. His
research interests include adaptive signal processing, distributed processing
and learning, signal processing for communications, and wireless sensor
networks. He has been serving as a member of the Board of Directors of
EURASIP, since 2017. He is a member of the Signal Processing Theory
and Methods Technical Committee of the IEEE Signal Processing Society
and the Signal Processing for Communications and Electronics Technical
Committee of the IEEE Communications Society. Since 2010, he has been
serving as the Chair of the Greece Chapter of the IEEE Signal Processing
Society. He has served or has been serving as a member of scientific and
organizing committees of several international conferences, as an Associate
Editor for the IEEE TRANSACTIONS ON SIGNAL PROCESSING and the IEEE SIGNAL

PROCESSING LETTERS, and as the Guest Editor and the Associate Editor for the
EURASIP Journal on Advances in Signal Processing.

VOLUME 7, 2019 15803


	INTRODUCTION
	3D MESHES: BASIC DEFINITIONS AND TOOLS
	BASIC DEFINITIONS
	FILTERING MESH GEOMETRY
	FILTERING VERTEX POSITIONS
	FILTERING FACE NORMALS

	DYNAMIC GEOMETRIES: LOW-RANK APPROXIMATIONS AND PCA BASED PROCESSING

	SPARSE MODELING FOR 3D MESHES IN A NUTSHELL
	SPARSE MODELING FOR GEOMETRY PROCESSING
	OUTLIER DETECTION IN STATIC AND DYNAMIC 3D SURFACE DATA
	COMPLETION OF TIME VARYING PCs
	FEATURE-AWARE MESH DENOISING AND COMPRESSION

	SUMMARY AND OPEN ISSUES
	REFERENCES
	Biographies
	ARIS S. LALOS
	EVANGELOS VLACHOS
	GERASIMOS ARVANITIS
	KONSTANTINOS MOUSTAKAS
	KOSTAS BERBERIDIS


