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ABSTRACT Blind detection of underwater acoustic communication (UWAC) signals is challenging in 

non-cooperative reception scenarios. Difficulties include but not limited to complex underwater acoustic 

channels, diversity of signal categories, and data scarcity. To address these problems, we propose a novel 

blind detection method for UWAC signals based on deep learning (DL). First, an impulsive noise 

preprocessor and a signal denoising generative adversarial network are built to mitigate the noise in the 

received signals. Second, a convolutional neural network-based binary classification network is built to 

automatically extract features and distinguish between the UWAC signals and noise. Moreover, a transfer 

data model is presented to overcome the insufficient data issue in the target water regions. The results of 

simulation experiments and practical signal tests both demonstrate that the proposed method is robust to 

ambient noise with wide dynamic ranges and complex distributions. Our approach significantly 

outperforms conventional algorithms and existing DL-based algorithms at low signal-to-noise ratios, while 

requiring no prior information about the testing channel. 

INDEX TERMS Underwater acoustic communication signals, blind detection, generative adversarial 

network, convolutional neural network, noise reduction, transfer learning.

I. INTRODUCTION 

Blind detection of underwater acoustic communication 

(UWAC) signals involves determining whether an observed 

underwater acoustic signal is a communication signal or 

ambient noise without any prior information. This task plays 

an important role in the modulation classification and 

information recovery of UWAC signals in non-cooperative 

reception scenarios. 

Existing research on the blind detection of underwater 

acoustic signals has mainly been conducted on ship-radiated 

noise, via detecting their single-frequency linear spectrum 

[1]–[4]. However, the spectrums of different UWAC signals 

vary significantly with complex structural characteristics. 

Therefore, better detection techniques are required for 

UWAC signals. Although the likelihood ratio-based method 

[5] is not limited to the signal type, the construction of the 

likelihood function requires accurate knowledge of the noise 

distribution. Previous studies have developed a soft limiter 

detector (SLD) [6], a myriad detector [7], and a fractional 

lower-order moment detector (FLOMD) [8] for impulsive 

noise environments, but their performance depends on some 

prior information regarding the noise, such as the 

characteristic exponent and dispersion. Luo et al. [9] 

proposed a fractile-piecewise processing-based algorithm to 

estimate the above noise parameters and achieved better 

results. However, the estimation relied on the assumption 

that a pure noise segment is known in advance. The detection 

threshold also needed to be adjusted with the varying noise 

characteristics. Hence, due to the lack of prior information 

under complex marine environments, the aforementioned 

methods are inapplicable to non-cooperative UWAC signals. 

Furthermore, some approaches have been proposed for a 

particular type of signal, such as direct sequence spread 

spectrum (DSSS) [10], [11] by finding its distinct features. 

However, there are multiple UWAC signals with different 

features. This increases the complexity of the feature-based 

approach for large signal sets. 

Considering the similarities between UWAC and radio 

communication (RC) signals, some blind detection methods 

for RC signals could serve useful. Blind detection algorithms 

for RC signals have been developed in the past decades and 

can be divided into two categories: conventional statistical 
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detection theory (SDT)-based [12]–[15] and deep learning 

(DL)-based [16]–[19]. SDT-based methods require first 

designing the test statistics and then choosing appropriate 

thresholds or applying the support vector machines for 

judgement. This process relies on both the domain 

knowledge and prior information regarding the noise. 

Moreover, this approach is unstable for detection under 

marine noise characterized by wide dynamic ranges and 

complex distributions.  In comparison, the recently 

developed DL-based methods have the advantage of 

automatic feature extraction. They not only require less 

domain and prior knowledge, but also show better robustness 

under noise of varying intensity. Therefore, the DL 

techniques seem to be more promising to resolve the existing 

problems going forward. 

However, there are differences between UWAC and RC 

signals: (1) Marine ambient noise has a wider dynamic range 

and a more complex distribution. In particular, in shallow 

seas, noise usually exhibits the characteristic of impulse with 

varying intensity; (2) The multi-path effect of underwater 

acoustic channels is detrimental with long delay spreading, 

leading to significant distortion in the received signal; (3) 

UWAC signals are always transmitted in bursts, and the 

duration of a single burst might be short. Thus, it is difficult 

to acquire sufficient training data with a distribution that is 

similar to that of the testing data, to train a reliable network. 

These characteristics of UWAC signals pose new challenges 

to existing DL-based methods. Therefore, an effective weak-

signal detection network should be designed, that can work 

robustly for a large signal set given the complex ambient 

noise and scarce training data. 

In this paper, we propose a novel blind detection method 

for UWAC signals based on DL. The detection problem is 

redefined as a binary classification problem between UWAC 

signals and noise. First, an impulsive noise preprocessor 

(INP) and a signal denoising generative adversarial network 

(SDGAN) are built to mitigate the ambient noise in the 

received signal. Thereafter, the temporal waveforms of the 

denoised signals are fed to another convolutional neural 

network (CNN)-based binary classification network for 

automatic feature extraction and recognition. Furthermore, 

we adopt the idea of transfer learning and build a transfer 

data model. Based on this model, a transferred training set is 

generated to train a more stable detection network. The 

results of simulation experiments and practical signal tests 

both demonstrate the excellent performance of the proposed 

method. The detector trained on the transferred training set 

can effectively detect most common UWAC signals, 

including multiple frequency shift keying (MFSK), multiple 

phase shift keying (MPSK), orthogonal frequency division 

multiplexing (OFDM), linear frequency modulation (LFM) 

and DSSS under unknown channels. 

This paper introduces an innovative approach for the blind 

detection of UWAC signals. The advantages and 

contributions of our work are summarized as follows: 

• Most current methods require prior knowledge of the 

noise distributions and cannot adapt to time-varying 

noise environments. However, the proposed method 

does not have this dependency and is more robust to a 

large signal set under marine noise with wide dynamic 

ranges and complex distributions. 

• The proposed INP and SDGAN exhibit good noise 

reduction capability, thus significantly enhancing the 

detection performance for weak signals; In comparison, 

the performance of existing methods decreases at low 

signal-to-noise ratios (SNRs). 

• The proposed method is trained on a transferred training 

set, which requires no prior information about the 

testing channel, whereas existing DL-based methods 

require large amounts of data obtained from the testing 

channel environment. 

The remainder of this paper is organized as follows: 

Section II introduces the proposed method and details of the 

algorithm. Section III presents the experimental results and 

discussion. Finally, Section IV concludes this paper. 

II.  System Model and Proposed Method 
A.  Signal Model 

The received signal can be modeled as follows: 

 ( ) ( ) ( ) ( ),=  +y t s t h t w t  (1) 

where, ( )s t represents the transmitted signals, including 

2FSK, 4FSK, 8FSK, BPSK, QPSK, 8PSK, OFDM, LFM, 

and DSSS; ( )h t is the impulse response of the underwater 

acoustic channel, ( )w t is the ambient noise, and represents 

the convolution operator. To better characterize the 

complexity of an actual marine environment, ( )w t is 

modeled as alpha-stable distributed noise.  

For an MFSK signal [20], ( )s t can be expressed as follows: 
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where, A ,  , cf , f , 0T , M and ( )cg t are the modulation 

amplitude, initial phase, carrier frequency, frequency 

deviation, symbol period, modulation order, and rectangular 

pulse-shaping filter, respectively, and 

 2 1 , 1, ,l m ms s s m M m M = − − = is the symbol 

transmitted within the lth period. The data symbols ls are 

assumed to be zero-mean independent and identically 

distributed (i.i.d.) random variables. 

For an MPSK signal [21], ( )s t is expressed as follows: 
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, and ( )rg t is 

the root-raised-cosine pulse-shaping filter. The data symbols  
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 lb are also i.i.d. random variables. 

For an OFDM signal [21], the multiple subcarriers are 

modulated with BPSK; therefore, ( )s t can be expressed as 

follows: 

 
( ) ( )

1
22

OFDM ,

0

( ) k bc

K
j k f t lTj f tj

k l r b

k l

s t Ae e a e g t lT
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where, K is the number of subcarriers, Kf is the frequency 

interval between two adjacent subcarriers, ( )rg t is the root-

raised-cosine pulse-shaping filter, bT denotes the OFDM 

symbol period, 
,k la denotes the lth transmitted symbol on 

the kth subcarrier, and the data symbols ,k la are also i.i.d. 

random variables.  

For an LFM signal [22], ( )s t is expressed as follows: 

 
2
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where 0k is the chirp rate, and 0f is the initial frequency. 

For a DSSS signal [23], taking the BPSK modulation as an 

example, we can express ( )s t as: 

 ( )2

DSSS( ) ,cj f tj

l r c
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where cT is the chip duration, ( )rg t is the root-raised-cosine 

pulse-shaping filter, and
ld is the lth value of the 

sequence ( )d t after the spreading processing: 

( )= ( ) ( )d t r t c t . ( )r t and ( )c t can be represented as 
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respectively, where  1, 1kr  + − is the kth transmitted 

symbol with the period aT ; , 0,..., 1kp k N= − is the binary 

uncorrelated pseudo-noise (PN) sequence ( 1) , and is short 

code; ( )cg t and ( )rg t are the rectangular and root-raised-

cosine pulse-shaping filters, respectively.  

The underwater acoustic channel is believed to be one of 

the most challenging channels due to the multi-path arrivals 

and complex ambient noise. Especially in shallow-water 

regions, industrial activities and shipping are frequently 

observed, not to mention the variety of marine life. These 

factors lead to the short, high-amplitude impulsive noise 

bursts [24], [25]. In [25], [26], the probability density 

functions (PDFs) of ambient noise from different shallow-

water regions were collected and analyzed. The results 

indicate that this type of noise distribution is closer to an 

alpha-stable distribution and is much sharper than a Gaussian 

distribution. Further studies showed that the alpha-stable 

distribution, which is a unique distribution satisfying the 

generalized central limit theorem, can effectively 

characterize such heavy-tail distributed impulsive noise.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

FIGURE 1.  Temporal waveforms of standard alpha-stable distributed 

noise with different values: (a) . 0 8= ; (b) . = 1 0 ; (c) . = 1 5 ; 

(d) . = 2 0 .
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FIGURE 2.  Proposed blind detection model for UWAC signals.  

 

The characteristic function of an alpha-stable distribution 

can be expressed as [27]: 
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and 0 2  , a−  , 0  , and 1 1−   . The 

characteristic exponent  measures the intensity of the 

impulse; the lower the value of  , the higher the intensity. 

The special case 2 = corresponds to a Gaussian distribution. 

The location parameter a determines the center axis of the 

PDF. The dispersion  is a measure of the distribution 

deviation around its mean value. The symmetry 

parameter  is used to describe the skewness of the PDF, and 

when = 0 , we have a symmetric alpha-stable ( S S ) 

distribution. When 0=a and 1 = , S S becomes a standard 

alpha-stable distribution. Fig. 1 shows the examples of the 

standard alpha-stable distributed noise with 

different values. 

Moreover, because there is no second-order or higher-

order statistics in a S S distribution, the mixed signal-to-

noise ratio (MSNR) is used to measure the power 

relationship between the signal and noise. The MSNR can be 

expressed as: 

 ( ) ( )2MSNR 10lg / dB ,s  =
   (10) 

where,
2

s denotes the variance of the signal. 

 

B.  Signal Detection Model 

A blind detection model for UWAC signals is proposed, as 

shown in Fig. 2. First, to avoid the unfavorable effect of 

complex ambient noise, we adopt a noise reduction 

preprocessing method. Second, automatic detection is 

conducted on the denoised signal waveforms. Moreover, to 

resolve the problem of sparse data in different water regions 

and communication scenarios, we introduce the idea of 

transfer learning. Finally, a simulated transferred training set 

is generated for training a more reliable detection network. 

As shown in Fig. 2, the detection model consists of offline 

training and online testing. Offline training includes the INP, 

SDGAN (composed of a generator ( G ) and discriminator 

( D )), and classifier( C ). First, the INP is applied to suppress 

the high-amplitude impulsive noise in the received signal rx , 

and px is obtained after normalization. Second, the SDGAN 

learns the distribution of the transmitted signal sx through 

an adversarial training between G and D . The trained G  

can eliminate the low-amplitude noise that remains in
px . 

Finally, the denoised signal ( , )p zG x x is fed to C for 

automatic feature extraction and binary classification. After 

offline training, online testing is implemented on the basis of 

the trained model. First, the INP and trained G  are applied 

to preprocess the noisy testing signals. Subsequently, the 

trained C detects whether a UWAC signal exists. 

Marine ambient noise has a wide dynamic range in 

different underwater acoustic channels. From (1), (7), and 

Fig. 1, it is evident that the impulse intensity and noise power 

vary significantly with and  . In fact, the amplitude of 

impulse can be several orders of magnitude greater than 

those of the desired signals and the non-impulse components 

of the noise given the small value of . The significant 
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numerical differences among different waveform samples 

increase the probabilities of gradient imbalance and model 

non-convergence during the training of the SDGAN. Thus, it 

will be more difficult for the SDGAN to learn a good noise-

reduction ability. To this end, it is necessary to adopt impulse 

mitigation and normalization preprocessing.  

Common impulsive noise mitigation methods can be 

mainly divided into two categories: nonlinear 

transformation-based and threshold-based. In the former, a 

nonlinear transformation of the entire signal waveform is 

performed, such as logarithm transformation, Sigmoid 

transformation or arc tangent transformation [28]. Although 

the impulse can be effectively mitigated after the 

transformation, the desired signal is significantly affected. 

Hence, the nonlinear transformation-based methods are 

inapplicable for preparing the input to neural networks. In 

comparison, threshold-based methods (e.g., clipping and 

blanking) only process impulse locations with a high 

amplitude, with relatively less damage to the desired signal. 

The INP method adopted in this study can be considered a 

compromise between clipping and blanking and is proven to 

exhibit a better performance [29]. The objective of the INP is 

to nonlinearly suppress the regions where the amplitude is 

higher than the selected threshold r in the received 

signal ( )rx t . The output of the INP can be represented as 

[29]: 

 
2

( ), | ( ) |

( ) ,
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| ( )|

r r r

non r
r r r
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 0(1 2 ) ,r Q  = +  (12) 

where, 0 is a constant coefficient (e.g., 0 1.5 =  is considered 

in this work), and Q is the second quartile of the absolute 

value of the received signal. Thereafter, ( )nonx t is further 

normalized to obtain the final output of the INP (i.e., the 

input to the SDGAN): 

 
( )

( )= .
max(| ( ) |)

non

p

non

x t
x t

x t
 (13) 

After the preprocessing by the INP, the high-amplitude 

impulsive noise is significantly suppressed; however, the 

remaining noise continues to affect the detection result. 

Conventional signal processing-based approaches first 

decompose the received signals, then find the components 

belonging to noise, and finally eliminate them. Unfortunately, 

domain knowledge is always required to help identify the 

noise components. The DL-based methods, which are a 

hotspot in the areas of image denoising and speech 

enhancement, can reduce this dependency [30]–[32]. In early 

DL-based methods, the denoising performance was 

measured by artificial quantized error metrics (such as the 

mean square error), which have certain limitations during 

training. This remained the case until the application of the 

generative adversarial network (GAN) [33]. The 

discriminator of the GAN can evaluate the quality of the 

generated data automatically using the learned metric. The 

new metric offers a better updating direction for the network, 

thus significantly improving the denoising performance. 

The proposed SDGAN is derived from the standard 

generative adversarial network (SGAN), which is composed 

of a generative model and a discriminative model 

(i.e., G and D ). The main difference is that an additional 

condition of the target data is added to the inputs of G and D . 

Thus, the generated data are more targeted, and D can better 

judge the generated data on the basis of the condition as well. 

Both these features make the generated data more consistent 

with the target data distribution. Hence, if the transmitted 

signal sx and its noisy version px are considered as the target 

data and the additional condition, the trained GAN can 

project the input noisy signals onto the distribution of the 

clean target signals. This shows how the proposed SDGAN 

is used for noise reduction. However, because of the complex 

marine ambient noise, it remains challenging to conduct 

effective noise reduction for DL-based methods. Therefore, 

the network structure is further optimized by taking some 

cues from the speech enhancement relativistic generative 

adversarial network [32]. Finally, a relativistic loss 

function (RLF) with L1-norm and gradient penalty (GP) 

regularization are adopted to train the SDGAN. 

After the noise preprocessing, a CNN-based classifier C is 

built for automatic feature extraction and recognition 

between the UWAC signals and noise. Typically, a CNN has 

fewer parameters than other networks and has been widely 

used in various classification problems. With the 

characteristics of weight sharing and local receptive field, it 

has evident advantages for the extraction of local features. As 

shown in the online testing part (see Fig. 2), the proposed 

INP and SDGAN have excellent noise reduction 

performance. The noise in the received noisy signals can be 

effectively suppressed to approximately 0, while the desired 

signals are well retained. Owing to the significant 

improvement in the SNR, C can now more easily detect the 

denoised signals. 

C.  Network Structure 

Among the modules of the proposed detection model shown 

in Fig. 2, G , D , and C are built with deep neural networks. 

To learn the temporally close correlations of the input 

waveforms better, G is designed to be fully convolutional. It 

is structured similar to a denoising auto-encoder [34], 

comprising an encoder encG and a decoder decG . encG aims to 

compress the original high-dimensional input rx . During the 

compression, the useless or redundant information of rx is 

gradually discarded, while the essential features are saved 

and mapped to a low-dimensional thought vector cx . cx is  

then concatenated with a latent noise vector zx of the same 
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TABLE I 

STRUCTURES OF DIFFERENT MODULES IN THE DETECTION MODEL 

Modules Layer Parameters 
Activation  

function 
Layer Parameters 

Activation  

function 

G  

Conv1 (64, 32, 4) PReLU T-Conv1 (512, 32, 4) PReLU 

Conv2 (128, 32, 4) PReLU T-Conv2 (256, 32, 4) PReLU 

Conv3 (256, 32, 4) PReLU T-Conv3 (128, 32, 4) PReLU 

Conv4 (512, 32, 4) PReLU T-Conv4 (64, 32, 4) PReLU 

Conv5 (1024, 32, 4) PReLU T-Conv5 (1, 32, 4) None 

D  

Conv6 (64, 32, 4) Leaky ReLU Conv10 (1024, 32, 4) Leaky ReLU 

Conv7 (128, 32, 4) Leaky ReLU Conv11 (1, 1, 1) None 

Conv8 (256, 32, 4) Leaky ReLU FC1 (8, 1) None 

Conv9 （512, 32, 4) Leaky ReLU    

C  

Conv12 (16, 32, 4) Leaky ReLU Conv16 (256, 32, 4) Leaky ReLU 

Conv13 (32, 32, 4) Leaky ReLU Conv17 (1, 1, 1) Leaky ReLU 

Conv14 (64, 32,4) Leaky ReLU FC2 (8, 2) Softmax 

Conv15 (128, 32, 4) Leaky ReLU    

 

size and is used alongside to reconstruct a denoised 

output ( , )p zG x x by decG . zx is utilized to help improve the 

robustness to different inputs. Moreover, skip connections 

[35] are applied to connect each of the layer pairs 

of encG and decG . This type of identity mapping can help 

propagate information directly from the encoding layers to 

the deep decoding layers, thus preventing the fine-grained 

features (e.g., the phase information) from being lost during 

the dimension reduction. Furthermore, the gradients of the 

loss function can flow deeper, with the probability of 

vanishing gradient largely reduced. 

Considering the bandwidth and sampling rate of UWAC 

signals, the input dimension of G is designed to be 8192. A 

previous study [36] indicated that the strided convolution and 

fractional-strided transposed convolution are more stable for 

training a GAN than general pooling structures. 

Thus, G mainly consists of five one-dimensional strided 

convolution layers (Conv1–Conv5) and five one-dimensional 

fractional-strided convolution layers (T-conv1–T-conv5) 

with a stride of 4. The parametric rectified linear unit 

(PReLU) function [37] is employed for the activation of each 

layer. 

D is built on the basis of encG , but with a few differences. 

First, D has two input channels (one for the additional 

condition px and the other for the transmitted signal sx or 

generated signal ( , )p zG x x ). Second, the output of the fifth 

convolution layer follows another one-kernel convolution 

layer and a fully connected (FC) layer with a single output. 

They are designed for the compression of feature channels 

and authenticity judgement, respectively. Third, the 

activation function is updated to a Leaky ReLU function [37] 

with a parameter value of 0.3.  

When it comes to C , a similar encoding structure is 

adopted with six strided convolution layers for feature 

extraction. There is an additional FC layer and a Softmax 

classifier for binary classification between the UWAC 

signals and noise. Let Lx be the data labels after one-hot 

encoding, then the output probability vector of the predicted 

labels can be expressed as: 

 
1

2

2

1

( = 0 | ) exp( )1
ˆ = ,

( = 1| ) exp( )
exp( )

P

L

P
i

i

P L Cout Cout
x

P L Cout Cout
Cout

=

   
=   

   
(14) 

where, 

 ( ( )),CNN p zCout f G x x= ，  (15) 

PL denotes the predicted labels, Cout denotes the input vector 

of Softmax, and CNNf is a nonlinear function formed by the 

layers before Softmax in C . 

Table I lists the primary layers and parameters of the 

above three modules. The three parameters of the 

convolution layers and the transposed convolution layers 

represent the number of convolution kernels, kernel length, 

and stride, respectively. The two parameters of the FC layer 

represent the numbers of input and output nodes.  

D.  Transfer Data Model 

The core of training the SDGAN and C is to find the 

mapping relationship from the sampled training data to the 

feature space. To ensure that this mapping relationship can 

still be realized on the testing data, the training data are 

typically expected to exhibit the same distribution as the 

testing data. However, it is always difficult to acquire 

accurate channel information in unknown water regions and 

in different communication scenes. Therefore, there are 

insufficient data from the target channel that can be used to 

train a reliable model. To this end, we adopt the idea of 

transfer learning and present a transfer data model, which 

can be expressed as follows: 

 ( ) ( ) ( ),y t s t w t= +  (16) 

where, ( )y t denotes the received signal, ( )s t denotes the 

transmitted signal, and ( )w t is also modeled as an alpha-

stable distribution, with a characteristic exponent . 

Compared with (1), (16) simplifies the influence of the 

multi-path channel. Although the distributions of the two 

data models are different, ( )y t and ( )y t still have the same 
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signal set, i.e., they contain the same components of the 

transmitted signals. Meanwhile, the output data distribution 

of G remains unchanged, which is an effective constraint on 

the input of C . Based on (16), we can simulate and generate 

signal examples with noise of different distributions and 

power. The model trained on such a data-rich training set is 

expected to be more robust to noise of wide dynamic ranges 

and complex distributions. 

E.  Joint Training of SDGAN and Classifier 

Fig. 2 shows that the effective noise reduction and detection 

is mainly achieved via the joint training of SDGAN and C . 

For the SDGAN, the key to its adversarial training is to 

construct a suitable loss function that can better measure the 

distance between the target and generated data distributions. 

The SGAN adopts the binary cross entropy (BCE) [33] as its 

loss function, which essentially measures the Jensen –

Shannon divergence (JSD) of different distributions. 

However, because the training data are always sampled from 

the low-dimensional manifold of a high-dimensional space, 

cross items seldom exist between two distributions. This 

makes the JSD more likely to remain a high value (i.e., 

vanishing gradient) and difficult to optimize. Other problems 

include non-convergence [36] and mode collapse [38].  

To resolve these issues, various improvements have been 

proposed, such as the least-squares function [39], 

Wasserstein distance [40], and GP [41]. A recent study [42] 

has shown that there is a significant drawback in the 

mechanism of the SGAN. The loss function of the SGAN 

helps increase the probability of fake data being real, 

whereas the probability of real data being real remains 

unchanged. This result contradicts the prior assumption in 

the theoretical derivation of the SDGAN, where half the data 

are real or fake in a training batch. For this assumption to 

hold, the RLF [42] is proposed for an improvement. The 

RLF estimates the probability of given real data being more 

realistic than randomly sampled fake data. This modification 

not only increases the probability of fake data being judged 

as real, but also reduces the probability of real data being real. 

Moreover, the RLF exhibits a better performance than the 

other aforementioned loss functions in the areas of image 

generation [42] and speech enhancement [32]. 

Therefore, the RLF is also utilized in this study to narrow 

the distribution distance between ( , )p zG x x and sx . The RLF 

can be denoted by ( )RSL G and ( )RSL D for G and D , 

respectively. Moreover, an L1-norm term
1
( )LL G of first 

order is added to help constrain the denoising error. Another 

GP term ( )GPL D is also introduced in D to help stabilize the 

training and avoid exploding or vanishing gradients. 

The total loss functions for G and D can be respectively 

expressed as:  

  

( , )~( )

1

( ) ( )

= E log( ( ( ( , ), ) ( , )))

( , ) ,

1

s p s p

G RS L

x x Q , Q p z p s p

L1 p z s

L L G L G

D G x x x D x x

G x x x





= +

 − − 
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where,  is the Sigmoid function, sQ  and pQ represent the 

probability distributions of sx and px , respectively, Q is the 

joint probability distribution of px and x , 

and (1 ) ( , )s p zx x G x x = + − , where  is a random real 

number between 0 and 1. 

For the classifier C , the BCE is adopted to calculate the 

distribution distance between the real category labels and the 

predicted labels 

 
2

1 1

1
ˆlog( ),

N
j j

C Li Li

j i

L x x
N = =

= −   (19) 

where, N denotes the mini-batch size. 

The network training and prediction is conducted with the 

DL library, Pytorch, on a single NVIDIA TITAN RTX GPU. 

The model is optimized using the Adam algorithm [43], with 

a learning rate of 0.0001, and 128N = . The hyper-

parameters 1L and GP are set to 200 and 10, respectively, 

to reach the same order of magnitude as those 

of ( )RSL G and ( )RSL D . The training is continued until all the 

parameters of the detector Detector converge. The joint training 

algorithm is detailed in Table II. 

III.  Numerical Results and Discussion 
A.  Signal Parameters and Dataset 

All the signals are generated on the basis of the signal model 

described in Section II.A, with a sampling rate of 48 kHz. 

The center frequency of the LFM signals and the carrier 

frequencies of the other signals randomly vary in the range 

of 15 to 16 kHz. For the DSSS signal, the m-sequence is 

adopted as the PN sequence.  

Table III lists the detailed signal parameters, where, / 

implies that the parameter is not involved for the 

corresponding signal, and [ ] and { } imply that the 

parameter is randomly selected within a closed interval and 

the given items. 

The offline training is implemented on the transferred 

training set, which is based on the transfer data model 

expressed in (16). is randomly selected in the range of [1.5, 

2], with MSNR in the range of [−10, 10] dB. 
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TABLE II 

JOINT TRAINING ALGORITHM OF THE SDGAN AND CLASSIFIER 

Require: Training dataset S , learning rate rl , batch size N , loss 

function weights L1 and GP . 

1. Initialization 

⚫ All weights of different layers are initialized with the Kaiming 

uniform distribution [37], and biases initialized with zero. 

2. Training:  

WhileDetector has not converged do 

⚫ Sample N signal examples       

 1 1 1( , , ), ... , ( , , )N N N

s r L s r Lx x x x x x from S and N   noise 

examples  1, ..., N

z zx x from standard normal distribution. 

⚫ Perform INP on  1, ... , N

r rx x to obtain  1 , ... , N

p px x . 

⚫ Generate denoised signal examples 

 1 1( , ), ... , ( , )N N

p z p zG x x G x x . 

⚫ Calculate the probability vectors of the predicted 

labels  1ˆ ˆ, ..., N

L Lx x . 

⚫ Calculate the loss function of D DL and updateD using the 

Adam optimizer by gradient descent with 

1

1
( , , )

=

 d

N
i i i

D s p z

i

L x x x
N

. 

⚫ Calculate the loss function of G GL and updateG using the 

Adam optimizer by gradient descent with 

1

1
( , , )

=

 G

N
i i i

G s p z

i

L x x x
N

. 

⚫ Calculate the loss function of C CL and update C  using 

the Adam optimizer by gradient descent with 

1

1
ˆ( , )

=

 C

N
i i

C L L

i

L x x
N

. 

end while 

 

UWAC signals are transmitted in bursts, with unknown 

start and end times. Therefore, to improve the practicability 

of the method in real-world reception scenarios without prior 

information, a training signal example structure is designed, 

as shown in Fig. 3. The processing data block is composed of 

a communication data segment and two pure noise data 

segments. The duration L and location of the communication 

data block are both random, and 0 nL L  , where, nL is the  

Processing 

data block

Communication 

data block

Noise

UWAC signal

FIGURE 3.  Structure of a training signal example. 

 

length of the processing data block (i.e., the input dimension 

of G , 8192). The above signal structure is applied to generate 

2000 examples for each type of signal. Moreover, the same 

number of pure noise examples is generated as the sum of the 

UWAC signals. Thus, we build a transferred training set 

containing a total of 36000 examples to train the network. 

Different testing sets will be given in the specific 

experiments. 

B.  Simulation Experiments and Discussion 

1) PERFORMANCE COMPARISON 

To prove the effectiveness and superiority of the proposed 

method, we compared its performance with those of existing 

methods both under S S noise ( 2  ) and Gaussian noise. 

Based on (1), a typical underwater acoustic sparse channel, 

as reported in [44], is utilized to simulate the unknown 

channel ( )h t , whose transfer function is as follows: 

 
14 18( ) 1-0.5 0.4 .H z z z− −= +  (20) 

Because the detection threshold is not required for the 

presented method, the probability of false alarm (Pf) is 

independent of the MSNR and is only related to under 

the S S noise environment. First, we build two testing sets 

with =1.8 and =1.5 . Each testing set contains 2000 

noise examples, which are used to obtain the Pf values. The 

MSNR of the noisy UWAC testing signals varies from −15 

to 5 dB with an interval of 2 dB. Another 1600 signal 

examples are generated for calculating the probability of 

detection (Pd) under different MSNRs. To clearly show the 

effectiveness of the INP and SDGAN, we select a BPSK 

example under the conditions of 1.5 = , MSNR = −1 dB, 

and 4096L = . The temporal waveforms in different 

processing stages are compared in Fig. 4. 

 

TABLE III 

SIGNAL PARAMETERS 

Signal types 
Symbol rate 

(Baud) 

Modulation  

index 

Roll-off 

 factor 
Cyclic prefix 

No. 

Subcarriers 

Chirp rate 

（Hz/ms） 

m-sequence 

period 

2FSK [530, 1k] 1 / / / / / 

4FSK [320, 600] 1 / / / / / 

8FSK [170, 330] 1 / / / / / 

OFDM {100, 120, 200} / 0.25 0.25 16 / / 

MPSK {1.6k, 2k, 2.4k, 3k} / 0.25 / / / / 

DSSS {1.6k, 2k, 2.4k, 3k} / 0.25 / / / 63 

LFM / / / / / [60, 100] / 
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FIGURE 4.  BPSK temporal waveforms in different processing stages, 

including the transmitted one, received one, INP-preprocessed one, and 

SDGAN-denoised one. 

 

Fig. 4 shows that compared with the transmitted signal, the 

received signal is severely distorted due to the 

heavy S S noise. After the preprocessing by the INP, the 

high-amplitude impulse is largely suppressed. The following 

SDGAN further reduces the remaining low-amplitude noise, 

and finally the start and end times of the originally 

transmitted signal are clearly visible.  

To further perform the necessity of the INP in our method, 

Fig. 5 gives a comparison of the denoising performance of 

the SDGAN with that of the combination of the INP and 

SDGAN under the alpha-stable distributed noise. The output 

SNR is utilized to measure the denoising performance of the 

two methods, which can be expressed as [45]: 

 

2

1

2

1

( )

Output SNR = 10lg( )  (dB),

ˆ( ( ) ( ))

n

n

L

l

L

l

s l

s l s l

=

=

−




 (21) 

where, ( )s l and ˆ( )s l are the samples of a transmitted signal 

example and its denoised version, respectively. 

 
FIGURE 5.  Denoising performance of the SDGAN and the combination 

of INP and SDGAN under different values. 

 

As shown in Fig. 5, compared with a single SDGAN, 

incorporating the INP does help improve the denoising 

performance, and the lower the value of , the greater the 

improvement. Thus, it can be concluded that the INP can 

effectively suppress the high-amplitude impulse and is 

required in our method to deal with complex marine ambient 

noise. 

Furthermore, a detection performance comparison is made 

in Fig. 6 among the proposed method (i.e., INP + SDGAN 

+ C ), the proposed method without INP (i.e., SDGAN + C ), 

the FLOMD [8], and the SLD [6] methods. The Pf values of 

the former two DL-based methods are fixed given a 

specific , i.e., 0.65% and 1.0% when 1.8 = ; and 0.8% 

and 2.4% when 1.5 = . By contrast, the Pf and Pd values of 

the latter two SDT-based methods vary with the given 

thresholds. For the sake of comparison, we select their 

detection performance when Pf = 1.0% from the receiver 

operating characteristic (ROC) curves. Moreover, some prior 

information about the impulsive noise intensity and power is 

used to obtain the ROCs under different MSNRs.  

 
(a) 

 
(b) 

FIGURE 6.   Detection performance of different methods under 

different values: (a) . = 1 8 ; (b) . = 1 5 . 

 

As shown in Fig. 6(a), the proposed method has the 

highest Pd value and the lowest Pf value when 1.8 = . Pd 

reaches approximately 99% even at a low MSNR of −10 dB. 

However, the lack of INP results in a slight increase in the Pf 
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TABLE IV 

PD AND PF OF DIFFERENT METHODS UNDER GAUSSIAN NOISE 

Methods −15 dB −13 dB −11 dB −9 dB 7 dB −5dB −3 dB 

Proposed method 

(Pf = 0.85%) 
42.9% 83.7% 99.4% 100.0% 100.0% 100.0% 100.0% 

Method in [17] 

(Pf = 5.0%) 
13.0% 18.0% 28.0% 47.5% 71.0% 93.0% 99.5% 

Method in [18] 

(Pf = 5.92%) 
23.5% 39.0% 58.5% 84.5% 99.0% 99.5% 100.0% 

 

value, and the Pd performance decreases by approximately 1 

dB. Nevertheless, there is still a gain of 3 dB compared with 

the SLD approach, indicating that the SDGAN itself has the 

capability to adapt to weak impulsive noise. 

When decreases to 1.5, the intensity of the impulse is 

largely increased. As shown in Fig. 6(b), the performance of 

the proposed method without the INP dynamically degrades, 

with the Pf value reaching to 2.4%. The overall performance 

is even worse than that of the SLD method. Although the 

performance of the proposed method also slightly declines, it 

still has a gain of approximately 3 dB compared with that of 

the SLD method. These results demonstrate the effectiveness 

and excellent performance of our method under S S noise, 

as well as the importance of the INP. 

Finally, Table IV presents a comparison of the 

performance of our method and two other DL-based methods 

under Gaussian noise. Our approach has a high Pd of 99.4% 

even when SNR = −11 dB, and a low Pf of 0.85%. Both the 

indexes are much better than those of existing DL-based 

methods. Therefore, we can conclude that the proposed 

method outperforms existing DL-based methods under 

Gaussian noise. 

In our method, the received signals are first denoised by 

the INP and SDGAN, and are then used for detection. 

However, the detection process is directly performed on the 

received noisy signals in previous methods. Thus, the 

improved SNR may be an important factor leading to a better 

performance in our method. Moreover, the filter (kernel) 

length of the convolutional layers in the proposed SDGAN 

and classifier (i.e., 32) is larger than those in existing DL-

based methods [17], [18] (i.e., 10 and 20). Typically, a larger 

filter length means a better frequency response, so the 

convolutional layers in the proposed networks may extract 

better features for detection. 

 
2) PERFORMANCE UNDER DIFFERENT CONDITIONS 

In this section, several factors that may affect the detection 

performance of the proposed method are evaluated, including 

the MSNR range of the training data (TMSNR), underwater 

acoustic channels, intensity of impulsive noise (i.e., the value 

of ), and duration of the communication data block L . 

Firstly, to obtain a relatively good performance in terms of 

Pd and Pf under different MSNRs, an appropriate TMSNR is 

required to train a reliable model. We construct four training 

sets with different TMSNRs, including [−15, 10] dB, [−10, 

10] dB, [−5, 10] dB and [0, 10] dB. Moreover, we adopt the 

testing set with 1.5 = , described in Section III.B, to obtain 

the Pd and Pf performance. Fig. 7 and Table V show the 

results. 

 
FIGURE 7.  Detection performance under different TMSNRs. 

 
TABLE V 

PF UNDER DIFFERENT TMSNRS 

[−15, 10] dB [−10, 10] dB [−5, 10] dB [0, 10] dB 

9.2% 0.8% 0.0% 0.0% 

 

As shown in Fig. 7 and Table V, the model trained under 

high TMSNR has the lowest Pf, whereas the Pd performance 

is poor under low MSNR testing data. In the training process, 

the objective of the model is to distinguish between the high 

MSNR UWAC signals and noise. Because they have a 

considerable difference, the probability of the trained model 

to judge noise as UWAC signals is very low (i.e., low Pf). As 

the testing MSNR decreases, the noisy UWAC signals 

become increasingly similar to noise. The trained model is 

unfamiliar to these signals and is more likely to misjudge 

them as noise. Thus, the trained model is unable to correctly 

recognize low MSNR UWAC signals (i.e., low Pd). 

As the low bound of the TMSNR decreases, the trained 

model has a higher Pd on the low MSNR testing signals, as 

well as an increasing Pf on noise. In fact, when the TMSNR 

is low enough, the noisy signals and noise are too similar to 

distinguish. However, in the training process, the preset data 

labels and the optimizer will constantly require the model to 

give low MSNR signals a correct prediction. Thus, the 

probability of the trained model to correctly identify the low 

MSNR signals will improve (i.e., a higher Pd). Because of 

the similarity, the probability of noise being judged as 

UWAC signals will also increase (i.e., a higher Pf). When 

the low bound of the TMSNR decreases from −10 dB to −15 
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dB, Pd on low MSNR testing signals slightly increases, 

whereas Pf significantly increase from 0.8% to 9.2%. This 

indicates that the trained model has a poor performance in 

recognizing between those low MSNR signals and noise. 

Moreover, as shown in the curve of TMSNR = [−10, 10] dB, 

the detection performance of the trained model deteriorates 

sharply when the testing MSNR is lower than −10 dB. 

Therefore, under the experiment sets adopted in this study, 

the lower bound of the TMSNR should not be lower than 

−10 dB. 

Secondly, to evaluate the impact of impulse intensity, we 

compared the detection performance under different values. 

And a similar testing data format to the one described in 

Section III.B is adopted to obtain the Pd and Pf performance. 

Fig. 8 and Table VI show the results. 

 
FIGURE 8.  Detection performance under alpha-stable distributed noise 

with different values. 

 
TABLE VI 

PF UNDER DIFFERENT IMPULSE INTENSITIES 

0.6 =  = 0.9  1.2 =  1.5 =  1.8 =  
0.55% 0.35% 0.85% 0.80% 0.65% 

 

As shown in Fig. 8, Pd declines with the decrease in . 

When decreases from 1.8 to 0.9, Pd performance suffers a 

decline by approximately 3 dB. Nevertheless, the proposed 

method still has a Pd of approximately 75% at a low MSNR 

of –10dB. However, when continues to drop to 0.6, Pd 

declines sharply to 45% and is not applicable.  In fact, the 

high-amplitude impulse decreases the detection performance 

by making it more difficult for the INP and SDGAN to 

perform noise reduction, as shown in Fig. 5. Moreover, Table. 

VI shows that the Pf values fluctuate within the range of 

[0.35%, 0.85%] without any evident rising or falling trend 

with the change in  . This indicates that the proposed 

method is robust against false alarms. 

Thirdly, to prove that the proposed detection method is 

robust against underwater acoustic channels, we compared 

the detection performance under different channels. The 

widely used Bellhop channel simulation software was 

adopted to generate five sparse underwater acoustic channels 

(
Ah ,

Bh ,
Ch ,

Dh , and
Eh ) based on the famous Argo ocean 

database. Table VII lists the detailed channel parameters. 

Different coordinates and transmission conditions were 

utilized to ensure the diversity of the channel characteristics. 

 
TABLE VII 

PARAMETERS OF DIFFERENT UNDERWATER ACOUSTIC CHANNELS. 

Channels Coordinates 
Transmitter 

depth (m) 

Distance 

(km) 

Receiver 

depth (m) 

Ah  (80.5°E, 

30.5°S) 
50 15 50 

Bh  
(170.5°E, 

55.5°N) 
100 8 100 

Ch  
(220.5°E, 

0.5°N) 
200 10 200 

Dh  
(99.5°W, 

20.5°S) 
50 5 200 

Eh  
(39.5°W, 

30.5°N) 
200 12 50 

 

Their transfer functions are listed as follows: 
140 653 817 876( ) 0.07 0.2 0.23 0.05 ,AH z z z z z− − − −= + + + +  

541 945 1261( ) 0.7 0.6134 0.971 ,BH z z z z− − −= + + +  

3369 3581( ) 1 0.58 0.56 ,CH z z z− −= + +  

169 311( ) 0.49 0.18 ,DH z z z− −= + +  

575 746 3379 4210( ) 0.47 0.04 0.75 0.47 .EH z z z z z− − − −= + + + +  

Because the sampling rate is set to 48 kHz, the maximum 

propagation delays of these channels vary from 6.5 to 87.7 

ms. Furthermore, Fig. 9 shows the amplitude-frequency 

response curves of the different underwater acoustic channels. 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

FIGURE 9.  Amplitude-frequency response curves of the different 

underwater acoustic channels: (a)
A

h ; (b)
B

h ; (c)
C

h ; (d)
D

h ; (e)
E

h .  

 

As shown in Fig. 9, these channels have different 

frequency selective fading characteristics. The fading due to 

channels
Bh , 

Ch , and
Eh are deep at some frequencies, 

whereas that of 
Dh is shallower. Moreover, the channel

A
h has 

relatively the best frequency characteristics, and the decline 

is less than 5 dB overall. We further built five testing sets 

under each of these channels with 1.5 = . Fig. 10 shows the 

detection performance under the different underwater 

acoustic channels. 

 
FIGURE 10.   Detection performance under different underwater 

acoustic channels. 

 

As shown in Fig. 10, there is little difference in the 

detection performance under the above five channels. This 

confirms the robustness of the proposed method to different 

underwater acoustic channels. 

Eventually, given that the practical UWAC signals are 

transmitted in bursts with an uncertain duration, the detection 

performance under different burst durations is tested, 

including =1024L , = 2048L , = 4096L , and = 8192L . 

The testing dataset is generated under S S noise 

with =1.5 . Fig. 11 shows the results. 

 
FIGURE 11.  Detection performance under different burst durations. 

 

As shown in Fig. 11, with the increase in L , the detection 

performance is gradually improved, though at a decreasing 

rate. When L increases from 1024, 2048, and 4096 to 2048,  

4096, and 8192, respectively, the performance gains reach 

approximately 2.5, 2, and 1.5 dB. The improved performance 

can be attributed to the increased information available for 

detection.  

C.  Practical Signal Tests 

In this section, the performance of our method is further 

tested on practical signals. On July 18, 2019, a sea trial was 

conducted in Wuyuan Bay, Xiamen. Fig. 12(a) shows the 

experimental setup, where S1 and S2 denote the transmitter 

and receiver locations, respectively, and the transmission 

distance is approximately 545 m. Moreover, the water depth 

in this water region varies from approximately 6 to 8 m. A 

transmitting node with an omnidirectional transducer and a 

receiving node with a single hydrophone were placed 3 m 

below the water surface. The utilized broadband hydrophone, 

as depicted in Fig. 12(c), is the RB9-ETH model (Ocean 

Sonics). Furthermore, a lake trial was conducted in an 

artificial lake on campus on April 27, 2020. Fig. 12(b) shows 

the experimental setup, where S3 and S4 denote the 

transmitter and receiver locations, respectively. The same 

experimental equipment was used. During the experiments, 

the sampling rate of the utilized hydrophone was set to 64 

kHz, and the corresponding receiving frequency ranged from 

10 Hz to 25.6 kHz. However, for trained networks, the 

testing data should to be in the same format as the training 

data, i.e., their sampling rates should match. Thus, the 

received signals were resampled before testing. 

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3036883, IEEE Access

 

VOLUME XX, 2017 9 

 
(a) 

 
(b) 

 
(c) 

FIGURE 12.  Experimental setup and equipment: (a) Experimental setup 
of the sea trial in Wuyuan Bay; (b) Experimental setup of the lake trial; 
(c) Utilized hydrophone. 

 

In each experiment, 7000 low-SNR UWAC signal 

examples were collected by reducing the transmitting power. 

The testing set is formed along with 7000 more noise 

examples. Figs. 13 and 14 show the temporal waveforms and 

short-time Fourier transformation (STFT) of several signal 

examples collected from Wuyuan Bay and the artificial lake, 

respectively. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

FIGURE 13.  Temporal waveforms and STFT of different UWAC 

signals and noise examples collected from Wuyuan Bay: (a) 2FSK; (b) 

4FSK; (c) 8FSK; (d) BPSK; (e) LFM; (f) Noise. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e)   

 
(f) 

FIGURE 14.  Temporal waveforms and STFT of different signal 

examples collected from the artificial lake: (a) 2FSK; (b) 4FSK; (c) 8FSK; 

(d) BPSK; (e) LFM; (f) Noise. 

 

As shown in Fig. 13, the UWAC signals collected from 

Wuyuan Bay are contaminated with intense impulsive noise, 

and the SNR is low. The characteristic exponent  is 

estimated to be in the range of [1.16, 1.95] with the method 

of sample fractiles proposed in [46]. For the signals collected 

in the artificial lake, is estimated to be in the range of [1.54, 

2.0]. Fig. 15 shows the power spectrum images of the BPSK 

signal examples shown in Figs. 13(d) and 14(d). It is evident 

that the signal collected from the artificial lake has a lower 

SNR, and the corresponding ambient noise has a wider 

dynamic range. 

 
(a) 

 
(b)   

FIGURE 15.  Power spectrum images of BPSK signal examples 

collected from: (a) Wuyuan Bay; (b) Artificial lake. 

 

To prove the effectiveness of the proposed method, the 

detection performance is compared with that of the FLOMD 

and SLD methods. The fractional moment’ order of the 

FLOMD is set to 0.3. The threshold parameter of the SLD is 

set to be the median of the absolute values of the observed 

signal samples. Fig. 16. shows the ROC curves of the two 

methods in the different water regions. 

 
        (a) 
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  (b) 

FIGURE 16.  ROC curves of the FLOMD and SLD in different water 

regions: (a) Wuyuan Bay; (b) Artificial lake. 

 

As shown in Fig. 16, the detection performance of the two 

methods in the artificial lake experiment is much worse than 

that in the Wuyuan Bay experiment. This result can be 

attribute to the lower SNR and wider dynamic range of noise, 

as shown in Fig. 15. Moreover, because no decision 

threshold is required for the proposed method, the Pf and Pd 

values are fixed given a certain testing set. Therefore, for the 

sake of comparison, we choose the Pd value when the same 

Pf value as in our approach is obtained for the FLOMD and 

SLD. Table VIII lists the detection results for the signals 

collected from Wuyuan Bay and the artificial lake. 

 
TABLE VIII 

DETECTION PERFORMANCE ON PRACTICAL SIGNALS 

Methods 
Wuyuan Bay 

(Pf = 8.357%) 

Artificial lake 

(Pf = 0.286%) 

Proposed method 99.943% 99.857% 

FLOMD 60.44% 2.8% 

SLD 63.15% 1.9% 

 

As listed in Table VIII, the proposed method has a high Pd 

value of 99.943% in the Wuyuan Bay experiment, whereas 

those of the FLOMD and SLD are only 60.44% and 63.15%, 

respectively. However, the Pf value reaches 8.357%, i.e., a 

small number of noise examples is misjudged as UWAC 

signals. Fig. 17 shows the temporal waveforms and STFT of 

two typical false-alarm noise examples.  

As shown in Fig. 17, in addition to the heavy alpha-stable 

distributed noise, the two noise examples have another 

common aspect. The STFT images show that there are both 

intense interferences in the frequency range of approximately 

14–17 kHz, which is within the communication frequency 

band (i.e., 13 to 18 kHz) of our dataset. Moreover, these 

interferences last almost the entire duration of the examples, 

which can be easily distinguished from Fig. 13(f). These 

characteristics make them similar to the noisy UWAC signal 

examples. Thus, the Pf value is increased. 

 
(a) 

 
(b) 

FIGURE 17.  Temporal waveforms and STFT of two typical false-alarm 

noise examples: (a) Example one; (b) Example two. 

 

When it comes to the artificial lake experiment, Table VIII 

shows that our method retains a high Pd value and a low Pf 

value of 99.857% and 0.286%, respectively. However, the 

detection performance of the two statistical detection theory-

based methods decreases significantly, because of the low 

SNR and intense noise of a wider dynamic range. The Pd 

values of the FLOMD and SLD are 2.8% and 1.9%, 

respectively. The above results indicate that the proposed 

method is more effective and robust in practical underwater 

acoustic environments. 

Furthermore, to prove that the proposed C can extract 

effective features for detection, the t-SNE technique [47] is 

adopted to visualize the output of the intermediate layer. 

Typically, the convolution layers of a CNN are considered 

feature extractors, and the deeper the layer, the more 

advanced the learned features. For the proposed C , the final 

convolution layer (i.e., Conv17) is designed for the 

compression of the feature channels. Thus, we selected the 
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output of the penultimate convolution layer (i.e., Conv16), 

which is a vector of dimension 256×8. The learned features 

are then mapped to a 2D plane. Fig. 18 shows the 

visualization. 

 
(a) 

 
(b) 

FIGURE 18.  T-SNE plot for the detection features of practical 

signals collected from: (a) Wuyuan Bay; (b) Artificial lake. 

 

As shown in Fig. 18, the features extracted from the 

signals collected in Wuyuan Bay are mainly distributed in 

two clusters. The noise cluster has a relatively narrow 

distribution, whereas the signal cluster is made of several 

small clusters, because of category diversity. Moreover, a 

small number of noise features is mistakenly distributed in 

the signal cluster, which well corresponds with the results 

listed in Table VIII. When it comes to the artificial lake 

experiment, the margin of the two clusters is more evident, 

and fewer features are incorrectly distributed. These results 

demonstrate that the proposed C can steadily extract the 

essential features of the denoised signals for detection. 

IV.  Conclusions 

In this study, we developed a blind detection method for 

UWAC signals based on DL. First, an INP and SDGAN 

were built to mitigate the noise in the received signals. The 

denoised signals were then fed to a CNN-based classifier for 

feature extraction and binary classification. Moreover, a 

transfer data model was proposed to address the data scarcity 

problem. The results of simulation experiments and practical 

signal tests both demonstrated that the proposed method is 

robust against ambient noise with wide dynamic ranges and 

complex distributions. Moreover, our approach significantly 

outperformed existing methods under low-SNR conditions, 

while requiring no prior information about the testing 

channel. 

In the future, we intend to extend this method to the 

detection of other underwater acoustic signals and improve 

the existing blind detection algorithms for RS signals under 

complex environments. 
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