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Abstract: There are major problems in the field of image-based forest fire smoke detection, including
the low recognition rate caused by the changeable and complex state of smoke in the forest environ-
ment and the high false alarm rate caused by various interferential objects in the recognition process.
Here, a forest fire smoke identification method based on the integration of environmental information
is proposed. The model uses (1) the Faster R-CNN as the basic framework, (2) a component percep-
tion module to generate a receptive field of integrated environmental information through separable
convolution to improve recognition accuracy, and (3) a multi-level Region of Interest (ROI)pooling
structure to reduce the deviation caused by rounding in the ROI pooling process. The results showed
that the model achieved a recognition accuracy rate of 96.72%, an Intersection Over Union (IOU)
of 78.96%, and an average recognition speed for each picture of 1.5 ms; the false alarm rate was
2.35% and the false-negative rate was 3.28%. Compared with other models, the proposed model
can effectively enhance the recognition accuracy and recognition speed of forest fire smoke, which
provides a technical basis for the real-time and accurate detection of forest fires.

Keywords: forest fire smoke; Faster R-CNN; receptive field; anchor box; multi-level ROI pooling

1. Introduction

Forest fire is one of the major environmental disasters threatening the safety of forestry
workers and the ecological balance. From January to August 2019, a total of 1563 forest
fires occurred in China, which affected an area of 8518 hectares and resulted in substantial
ecological damage and economic losses. The effective prevention and control of forest fires
have thus become a major focus of scientific research. The early detection and warning
of fires is critically important for fire prevention. When a forest fire occurs, it is often
accompanied by smoke. Given that smoke can be more easily detected because of its wider
distribution compared to flames, it is a robust indicator for the presence of forest fires in the
early stages. By detecting smoke, forest fires can be detected so that fire-fighting measures
can be quickly implemented, and the harm caused by forest fires can be reduced.

Forest fire smoke recognition based on computer vision is the most widely used
method for detecting forest fires. Zheng Huaibing et al. [1] combined the characteristics of
smoke to design a variety of static and dynamic features and detect moving targets through
the background difference method. In normal weather and on foggy days the recognition
accuracy rates reached 92.7% and 76.3%, respectively. Surt et al. [2] proposed a digital image
processing method that detects fire smoke by using the convex hull algorithm to calculate
the area of interest and segments the changing area from the image. Zhao Min et al. [3]
developed the smoke detection algorithm based on multiple texture features and used an
SVM (Support Vector Machine) classifier for classification, which effectively improved the
detection rate of video smoke detection methods. Li Hongdi et al. [4] developed a smoke
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detection algorithm, using image pyramid texture and edge multi-scale features, which
could achieve a detection rate of more than 94%; the false alarm rate is less than 3.0% on an
image set with more than 80% smoke. Although the above fire smoke recognition methods
based on traditional technologies realize high recognition rates, they cannot effectively
use background information to identify smoke in forests with complex backgrounds and
greater interference.

2. Related Work

With the fast development of artificial intelligence technology, image recognition
technology based on machine learning has been broadly applied to smoke recognition.
Wang Tao et al. [5] used a method that combined traditional manual feature extraction
and CNN’s automatic extraction of smoke image features. The recognition accuracy of
the method reached 92% and the false alarm rate was 3.3%. Yin et al. [6] developed a
deep normalized convolutional neural network for fire smoke detection, which used a
batch of normalization methods to accelerate the training process and enhance the accuracy
of smoke detection. Various target detection models such as Denet [7], Light-Head [8],
Yolo-V3 [9], and Faster R-CNN [10] have been applied to forest fire smoke detection.
Zhang et al. [11] used Faster R-CNN to detect wild forest fire smoke by inserting both real
smoke and simulated smoke into the forest to generate synthetic smoke images, which
could not only avoid the complicated artificial feature extraction process but also ease the
training data and avoid the problem of scarcity. Lin et al. [12] developed an improved
smoke recognition model with non-maximum annexation based on Faster R-CNN and
3D CNN, which achieves fire smoke recognition by combining dynamic spatiotemporal
information. The recognition accuracy of the smoke video was 95.23%, and the false alarm
rate was 0.39%. Li et al. [13] applied Candidate Smoke Region Segmentation and the
proposed wildfire smoke dilated DenseNet (WSDD-Net) to forest fire smoke detection,
which realized a high AR of 99.20% and a low false-negative rate (MA) of 0.24%. The
above fire smoke recognition model achieved higher recognition accuracy and a lower
false-negative rate than traditional machine vision algorithms. With the rapid development
of science and technology, the field of target detection has become increasingly applied to
species recognition. However, slow recognition speed and low recognition efficiency are
still bottlenecks that need to be further resolved. With the continuous development of the
forest fire smoke recognition algorithm, it is found that the background of the image has a
certain impact on the accuracy of algorithm, but most of the current algorithms have not
incorporated more background to improve it.

Current smoke detection methods based on deep convolutional networks mainly
consist of one-stage and two-stage methods. The former directly outputs the location
of the smoke while the latter is divided into two steps. First, the coarse positions of all
possible locations of the smoke are located. After the possible locations are determined,
the corrected results for high-probability locations are generated. The one-stage method
is faster than the two-stage method, but there is a risk of omission. Moreover, for smoke
detection, the results of missed detection can lead to serious consequences. Therefore, the
two-stage method is more effective for forest fire smoke detection. Faster R-CNN is the
typical model of two-stage approach. Based on previous research, this article introduces
multi-scale receptive fields and multi-level ROI pooling in target detection networks that
can incorporate more environmental background information in the identification process.
This can reduce the influence of interference factors such as clouds and fog to improve the
extraction ability of fire smoke features and build a new fire smoke recognition method to
achieve high efficiency and high accuracy for fire smoke recognition.

3. Materials and Methods
3.1. Construction of the Forest Fire Smoke Image Set

A total of 24 fire smoke videos and 9899 high-definition images were obtained from fire
monitoring manufacturers, other research groups, and related governmental departments.
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The smoke images varied and ranged from far-sighted fire smoke to near-sighted fire smoke.
The selected smoke samples included 5502 high-definition images containing fire smoke,
and 2150 images including clouds, fog, and haze were also collected as non-smoke samples,
which together constituted our training dataset. Typical smoke images and interference
images are shown in Figure 1.
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Figure 1. Smoke and interference images. (a) Smoke images, (b) cloud images, (c) fog images.

3.2. Faster R-CNN

The optimized Faster R-CNN network is shown in Figure 2. We used ResNet50 as
the backbone as ResNet50 has more convolutional layers and residual structure, which
can merge more feature information and learn more effective feature information with
higher dimensions. The model uses the Region Proposal Network (RPN) [14] to generate
candidate regions that are input into the pooling layer with the feature layer to achieve
convolutional layer feature sharing. The actual candidate area was obtained by regression
of the anchor box, and the anchor box of fixed size corresponded to the receptive field
of the corresponding size. To ensure the universality of the target detection results, the
anchor box was typically set to 128 × 128, 256 × 256, and 512 × 512 to adapt to targets of
different sizes; in addition, scale ratios of 1:1, 1:2, and 2:1 were used to adapt to objects
with different shapes. After anchor boxes had pre-defined scales and aspect ratios, the
first step of the training sample generation process was to filter out the anchor boxes that
exceeded the image boundaries. For the remaining anchors, positive samples were those
with Intersection Over Union (IOU) overlap ratios with ground-truth bounding boxes
higher than 0.7. Next, 256 anchors were randomly selected from the positive and negative
samples to form a minibatch for training.
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3.3. Integration of Environmental Information into Receptive Fields

In this study, a method was proposed in which the component perception modules
are used to integrate environmental information into receptive fields. Specifically, the
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component perception module was used to extract the characteristic information of each
area block. This module can expand the receptive field and therefore capture more en-
vironmental information. Figure 3 shows the RPN structure after inserting the sensing
component, where Awareness Module (AM) is the component sensing module as shown
in Figure 4. The AM module used an attention mechanism to focus on the characteristics
of the object while considering environmental information. This study first used a 1 ×
1 convolution kernel to reduce the dimensionality. To improve the speed, a separable
convolution method was used, and the convolution kernels were hi ×1 and 1× wi respec-
tively for convolution operations. Finally, the convolution operation with the convolution
kernel of 1 × 1 was used again to increase the feature dimension to the original dimension,
and the final result was outputed by element-wise summation with the original input.
Therefore, the overall structure was residual. This enabled the environmental information
to be integrated into the expression of regional features to further enhance the network’s
ability to extract target features.

Electronics 2021, 10, 566 4 of 11 
 

3.3. Integration of Environmental Information into Receptive Fields 
In this study, a method was proposed in which the component perception 

modules are used to integrate environmental information into receptive fields. 
Specifically, the component perception module was used to extract the character-
istic information of each area block. This module can expand the receptive field 
and therefore capture more environmental information. Figure 3 shows the RPN 
structure after inserting the sensing component, where Awareness Module (AM) is 
the component sensing module as shown in Figure 4. The AM module used an 
attention mechanism to focus on the characteristics of the object while considering 
environmental information. This study first used a 1 × 1 convolution kernel to 
reduce the dimensionality. To improve the speed, a separable convolution 
method was used, and the convolution kernels were hi ×1 and 1× wi respectively 
for convolution operations. Finally, the convolution operation with the convolu-
tion kernel of 1 × 1 was used again to increase the feature dimension to the original 
dimension, and the final result was outputed by element-wise summation with 
the original input. Therefore, the overall structure was residual. This enabled the 
environmental information to be integrated into the expression of regional fea-
tures to further enhance the network's ability to extract target features. 

 

Figure 2. Structure of Faster R-CNN. 

 
Figure 3. Overall structure diagram. Figure 3. Overall structure diagram.

Electronics 2021, 10, 566 5 of 11 
 

 
Figure 4. Component awareness module. 

3.4. Multi-level ROI Pooling Layer 
We used the idea of the spatial pyramid pooling structure [15]. In Faster R-

CNN algorithm, the multi-level ROI Pooling layer optimization is applied after 
the convolutional layer and before classification and regression, and its function 
is to generate a recommended feature map with fixed size and obtain fixed output 
data as the input of the fully connected layer. As there are two rounds in the ROI 
pooling layer, pixels are lost in some areas, which causes deviation in the position 
of the suggestion frame and affects the accuracy of the fire smoke detection re-
sults. A spatial pooling pyramid was introduced to divide the candidate frame 
into regions (such as 1 × 1, 2 × 2, and 3 × 3) in different spaces and then connect 
them into a single vector for output. Figure 5 is a schematic diagram of spatial 
pyramid pooling. Spatial pyramid pooling can take both coarse-scale and fine-
scale information into account simultaneously, thus avoiding the deviation 
caused by the double rounding of the single-level ROI pooling layer and improv-
ing the accuracy of fire smoke detection. At the same time, the spatial pooling 
pyramid is more robust to deformable and variable-scale features. 

Figure 5. Multi-level ROI pooling layer. 

Although the multi-level ROI pooling layer improves the accuracy of fire and 
smoke detection, it also increases the network parameters and the network train-
ing time. Therefore, a suitable division scheme needs to be used for ROI pooling 
at all levels. Table 1 lists three different three-level ROI pooling layer division 
schemes and the number of grid parameters selected in this article. Table 1 is a 
single-level ROI pooling division scheme. It can be seen from Table 1 that the pre-
cision of scheme 3 is 96.72%, which is superior to schemes 1 and 2, so Scheme 3 
was selected to meet the requirements of detection speed and recognition accu-
racy simultaneously. 

 
 

Figure 4. Component awareness module.

3.4. Multi-Level ROI Pooling Layer

We used the idea of the spatial pyramid pooling structure [15]. In Faster R-CNN
algorithm, the multi-level ROI Pooling layer optimization is applied after the convolutional
layer and before classification and regression, and its function is to generate a recommended
feature map with fixed size and obtain fixed output data as the input of the fully connected
layer. As there are two rounds in the ROI pooling layer, pixels are lost in some areas,
which causes deviation in the position of the suggestion frame and affects the accuracy
of the fire smoke detection results. A spatial pooling pyramid was introduced to divide
the candidate frame into regions (such as 1 × 1, 2 × 2, and 3 × 3) in different spaces and
then connect them into a single vector for output. Figure 5 is a schematic diagram of
spatial pyramid pooling. Spatial pyramid pooling can take both coarse-scale and fine-scale
information into account simultaneously, thus avoiding the deviation caused by the double
rounding of the single-level ROI pooling layer and improving the accuracy of fire smoke
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detection. At the same time, the spatial pooling pyramid is more robust to deformable and
variable-scale features.
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Although the multi-level ROI pooling layer improves the accuracy of fire and smoke
detection, it also increases the network parameters and the network training time. There-
fore, a suitable division scheme needs to be used for ROI pooling at all levels. Table 1
lists three different three-level ROI pooling layer division schemes and the number of grid
parameters selected in this article. Table 1 is a single-level ROI pooling division scheme.
It can be seen from Table 1 that the precision of scheme 3 is 96.72%, which is superior to
schemes 1 and 2, so scheme 3 was selected to meet the requirements of detection speed
and recognition accuracy simultaneously.

Table 1. ROI pooling layer division scheme.

Methods Classification Method Mesh Parameter Precision Speed (ms)

1 Original 7 × 7 7 × 7 × 512 × 4096 96.07% 0.018
2 1 × 1+2 × 2+4 × 4 21 × 512 × 4096 96.37% 0.020
3 2 × 2+4 × 4+8 × 8 84 × 512 × 4096 96.72% 0.026

4. Results
4.1. Experimental Platform

Tensorflow1.0 was used as the deep learning framework in this experiment, and dual
GPUs were used to accelerate the training process. The hardware configuration consisted
of an Intel Core i5-3210M processor and NVIDIA GeForce GTX 1080Ti graphics card; the
software environment included ubuntu 16.04LTS and python3.6.0. The GPU acceleration
library used CUDA8.0 and CUDNN5.1.

4.2. Image Annotation

The types and numbers of image used in the study are shown in Table 2.

Table 2. Forest fire smoke dataset.

Dataset Smoke
Image

Interference
Image Total Application

PART 1 3332 1290 4622 training
PART 2 1110 430 1540 validation
PART 3 1110 430 1540 test
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The identification of fire smoke was realized by target detection, and the label image
tool was used to make the Visual Object Classes (VOC) dataset file.

4.3. Evaluation Index

To better evaluate the accuracy of forest fire smoke recognition, four indicators were
used herein, including pixel accuracy, category average accuracy, average intersection
ratio, and frequency-weighted average intersection ratio for model performance evaluation.
Larger values of the four indicators corresponded to superior recognition effects.

Precision (P) and Recall (R) are the two simplest evaluation indicators, which represent
the proportion of correctly classified images out of the total number of images and the
number of correctly classified images out of the images that should be correctly classified.
The specific equations are shown bellow.

P =
TP

TP + FN
(1)

R =
TP

TP + FP
(2)

The Mean Average Precision (MAP) provides a comprehensive measure of the average
accuracy of the detected target, and it indicates the average of each category of Average
Precision (that is, the average accuracy of all categories is summed and divided by all
categories). The specific equation for MAP is as follows:

MAP =
∑ AveragePrecision

N(Classes)
(3)

Intersection Over Union (IOU) is the most commonly used evaluation index in the
object detection field and is used as a standard for measuring the accuracy of detecting
corresponding objects in a specific dataset. IOU represents the overlap rate between the
candidate box and the ground-truth bound, namely the ratio of their intersection and
union. Higher intersection ratios correspond to higher correlations. Figure 6 illustrates the
cross-to-bin ratio.
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The equation for the cross-to-bin ratio is as follows:

Iou = area(C) ∩ area(G)− area(C) ∪ area(G) (4)

In addition, two indicators were specifically used to evaluate fire detection perfor-
mance, namely the false-negative rate and the false alarm rate.

The false-negative rate (MA) is the number of unrecognized images divided by total
number of images.

MA =
FN

TP + FN
(5)
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The false alarm rate (FA) is the number of incorrectly recognized images divided by
the total number of images.

FA =
FP

FP + TN
(6)

In the equations, TP and TN are the number of true positives and true negatives,
respectively, and FP and FN are the number of false positives and false negatives, respec-
tively.

4.4. Forest Fire Smoke Detection Results

The results of ablation experiments are as described in Table 3. The recognition accu-
racy of Faster R-CNN is 94.48%, the recognition accuracy of Faster R-CNN + Component
awareness module is 96.07%, and Faster R-CNN + Multi-level ROI Pooling is 95.23%, and
the recognition accuracy of Faster R-CNN + Component awareness module + Multi-level
ROI Pooling is 96.72%.

Table 3. Ablation Study.

Model Faster
R-CNN

Faster R-CNN +
Component

Awareness Module

Faster R-CNN +
Multi-level ROI

Faster R-CNN +
Component

Awareness Module +
Multi-level ROI

Precision 94.48% 96.07% 95.23% 96.72%

After comparison, it can be seen that after adding the Component awareness module,
the recognition accuracy rate increased by 1.59% compared with Faster R-CNN, which
proves the effectiveness of the Component awareness module.

After adding Multi-level ROI Pooling, the recognition accuracy rate increased by 0.75%
compared with Faster R-CNN, which proves the effectiveness of Multi-level ROI Pooling.

After adding the Component awareness module and Multi-level ROI Pooling, the
model had an accuracy of 96.72%, which proves that the module strengthens important
features and attenuates unimportant features; multi-level ROI can detect and recognize
targets more effectively.

The results of the method used in this article to identify forest fire smoke are shown in
Figure 7. Figure 7 shows that the recognition accuracy of this method can be greater than
96% for both far-sighted fire smoke and near-sighted fire smoke.
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5. Discussion
5.1. Comparative Experiment of Different Recognition Models

To verify the superiority of the forest fire smoke recognition model proposed in this
article and compare it with the recognition effects of two commonly used target detection
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models (Yolo-V3 and SSD) and the latest target detection models (FCOS and EfficientDet)
with Faster R-CNN, 1110 images of fire smoke at different viewing distances in the dataset
PART 3 were selected. The focal image and 430 interfering images, such as clouds and
fog, were used as identification objects. Figure 8 shows the comparison of the recognition
effects of these three models. Several of the relevant findings are detailed below.

1. The model proposed in this article achieved a higher recognition accuracy and MAP,
while the Yolo-V3 model had the lowest recognition accuracy and MAP. The recogni-
tion accuracy difference between the two was 17.36%, and the MAP difference was
6.81%.

2. The model proposed in this article realized good performance in terms of cross-
combination, but the differences among the five models were not large. This finding
likely stems from the fact that smoke has various shapes and the accurate marking of
the smoke area is difficult. Consequently, the intersection ratio is generally not high.

3. The Yolo-V3 model had the lowest performance in terms of the false-negative rate
and false alarm rate. The false alarm rate exceeded 10% and the false-negative rate
exceeded 20%. For the proposed model, the false-negative and false alarm rates
were both less than 4%, and the false-negative rate was lower (3.28%). Thus, the
performance of fire smoke detection was higher.

4. We chose FCOS and EfficientDet methods for comparison, which are representative.
The recognition accuracy of FCOS and EfficientDet is 97.03% and 97.65%, respectively.
Although these two latest algorithms perform a little better than our recognition in ac-
curacy (except for smoke image recognition with unclear smoke contour features and
a small proportion of smoke images) FCOS and EfficientDet have the phenomenon of
underreporting, while our algorithm can effectively detect the smoke in images.

As mentioned previously, Faster R-CNN based on a two-stage algorithm not only has
a higher recognition accuracy than Yolo-V3, but also achieves comparable performance
with the recent FCOS and EfficientDet methods. In addition, the improvement proposed
in this article can better extract the features of smoke, which performs better than the
unimproved Faster R-CNN and achieves a robust recognition effect.
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5.2. Evaluation of Recognition Speed

The speed of fire smoke detection is one of the most important indicators for evaluating
a recognition model. The samples in the verification set were used for testing, and the
average recognition time of each image was calculated (Table 4). The recognition speed of
the model proposed in this article was 0.041 ms faster than the Faster R-CNN algorithm
before optimization. The average speed of smoke recognition was 0.003 ms, which is slower
than that of the Yolo-V3 algorithm; nevertheless, in the actual process of forest fire smoke
recognition, the recognition speed of the model proposed in this article has already met the
target detection requirement.

Table 4. Single image running time for each algorithm.

Model Speed (ms)

Yolo-V3 0.023
SSD 0.021

FCOS 0.019
EfficientDet 0.016

Faster R-CNN(ResNet) 0.067
Our algorithm 0.026

6. Conclusions

In this study, the anchor box generation mechanism in the model RPN network was
optimized by circumventing the limitations associated with the fixed anchor box receptive
field size and the inability to accurately sense the target. The perception component module
was set to automatically generate an anchor box with a suitable receptive field size. At
the same time, a multi-level ROI pooling layer was used to enhance the accuracy of fire
smoke detection. For actual fire smoke images, the recognition accuracy rate was over 96%,
the false-negative rate was reduced to 3.28%, and the detection speed reached 0.026 ms.
The optimized smoke recognition method did not require a specific candidate box search
algorithm. The entire network model can complete end-to-end detection tasks. Multi-
level pooling can enhance the feature extraction ability of the network and improve the
accuracy of forest fire smoke recognition. Reducing the rate of underreporting improves
the informatization level of forest fire monitoring and increases its utility.
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