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Abstract: This study proposes a pupil-tracking method applicable to drivers both with and without
sunglasses on, which has greater compatibility with augmented reality (AR) three-dimensional
(3D) head-up displays (HUDs). Performing real-time pupil localization and tracking is complicated
by drivers wearing facial accessories such as masks, caps, or sunglasses. The proposed method
fulfills two key requirements: low complexity and algorithm performance. Our system assesses
both bare and sunglasses-wearing faces by first classifying images according to these modes and
then assigning the appropriate eye tracker. For bare faces with unobstructed eyes, we applied our
previous regression-algorithm-based method that uses scale-invariant feature transform features. For
eyes occluded by sunglasses, we propose an eye position estimation method: our eye tracker uses
nonoccluded face area tracking and a supervised regression-based pupil position estimation method
to locate pupil centers. Experiments showed that the proposed method achieved high accuracy
and speed, with a precision error of <10 mm in <5 ms for bare and sunglasses-wearing faces for
both a 2.5 GHz CPU and a commercial 2.0 GHz CPU vehicle-embedded system. Coupled with its
performance, the low CPU consumption (10%) demonstrated by the proposed algorithm highlights
its promise for implementation in AR 3D HUD systems.

Keywords: eye tracking; eye detection; image occlusion; autostereoscopic 3D display; augmented reality

1. Introduction

Three-dimensional (3D) displays provide realistic visual experiences with an enhanced
sense of image depth [1,2]. Recent developments of holographic optical elements (HOE)
technologies have increased the possibilities for commercialization of augmented reality (AR)
devices including wearable AR glasses [3]. Additionally, autostereoscopic 3D displays offer
the full benefits of the 3D experience without requiring the observer to wear 3D glasses. This
is enabled via the eye-tracking-based autostereoscopic 3D method, which overcomes 3D
viewing zone limitations, thereby allowing users a seamless 3D experience with higher 3D-
resolved content [1,2]. The eye-tracking-based autostereoscopic 3D method can be adopted
in automobile head-up displays (HUDs) for drivers, which display realistic 3D navigation
information about the road via combiners placed on the windshield [4–6]. Eye-tracking-
based autostereoscopic 3D display systems require accurate and fast 3D measurements of
the eye positions of the viewer to display 3D images with low 3D crosstalk and high 3D
resolution. However, owing to the limited capabilities of automobile computing systems,
recent deep-learning-based algorithms are not used because they typically require heavy
graphical processing units (GPUs).

Fast and accurate eye-gaze-tracking technologies are required not only in glasses-free
3D HUDs, but also in many AR display systems [7]. Other applications such as antispoofing
in face recognition [8] and interaction systems with virtual contents [9] also utilize eye-gaze-
tracking technologies. To date, many studies of eye tracking have focused on eye-gaze-
tracking for wearable devices such as head-mounted devices. These methods calculate the
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vector between the pupil center and the corneal reflection using near-infrared (NIR) light
sources to estimate the viewer’s looking direction. In most methods, the NIR camera and
light sources must be placed in specific locations to achieve clear bright pupil and corneal
reflection images [10–16]. Remote eye-tracking methods have adopted recent computer
vision techniques to detect and track viewers’ eyes at greater distances for various consumer
electronics such as 3D televisions and monitors, gaming devices, smartphones, driver
monitoring systems, and HUDs in automobiles [17–19]. These methods usually adopt NIR
light sources to capture high-quality eye images under various light conditions [20–22].

The goal of gaze tracking is to estimate the viewer’s gaze direction, while our eye
position tracking aims to detect and track 3D eye positions using red–green–blue (RGB)
web-cameras at remote distances. In previous studies, we published real-time computation-
based eye-tracking methods for bare faces [23,24]. This accurate and fast pupil position
tracking provided clear 3D images with high 3D resolution using limited embedded
system resources, even when the head movements of the users were considered in real
time. However, localization and tracking of the real-time pupil position of a driver can be
affected by various occlusion factors, such as the driver wearing a mask, cap, or sunglasses.
If the eye-tracking precision error is larger than the 3D margin of the HUD, users can
see the 3D crosstalk and will feel 3D fatigue. As the 3D crosstalk margins of our AR 3D
HUD prototype are 12 mm [2], the eye-tracking precision must be less than this threshold
to allow users to enjoy 3D-crosstalk-free content (Figure 1). Furthermore, a user will
experience 3D crosstalk when they move their head if the overall system latency, including
eye tracking and 3D rendering, is high. Complex state-of-the-art deep-learning-based
algorithms for detecting facial features [25–29] are very accurate, but incompatible with 3D
autostereoscopic display systems, which have limited GPU capacity.
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accuracy exceeds the 3D crosstalk margin. (b) 3D rendered results corresponding to high-accuracy 

Figure 1. Eye-tracking-based 3D light field rendering results based on an input of a red right image
and a blue left image. (a) 3D crosstalk occurs when the error associated with the eye-tracking accuracy
exceeds the 3D crosstalk margin. (b) 3D rendered results corresponding to high-accuracy eye tracking
with smaller error than the 3D crosstalk margin. The 3D crosstalk margins of the AR 3D HUD
prototype are 12 mm, representing the eye-tracking precision threshold.
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The purpose of this study was to realize pupil center localization for drivers wearing
sunglasses. Our proposed system consists of face detection, eye–nose shape keypoint
alignment, a tracker checker, and tracking mode switching. For scenarios such as the user
wearing sunglasses, corresponding shape aligners are applied using an image classification
approach for pupil center localization. Occlusion, which can be exacerbated by sunlight
reflection, makes pupil localization quite challenging in such scenarios. To tackle this
problem, we use nonoccluded areas to infer the pupil center. The contributions of our
method can be summarized by the following points:

• We propose a pupil center localization system applicable to both bare faces and
sunglasses-wearing faces. We classified facial images into these two categories and
performed pupil tracking accordingly.

• For sunglasses-wearing faces, we inferred the eye position behind the sunglasses by
applying a supervised regression method to the non-occluded areas.

2. Methods

The proposed eye-tracking method, which works for bare faces and sunglasses-
wearing faces, comprises two different modes. Two different machine-learning-based
eye trackers, which include facial shape alignment and tracker checker modules, are
adopted to deduce the eye center positions. The eye-tracking mode selection is based on
an eye-area classifier, which determines whether a person is wearing sunglasses or not.

Both eye-tracking modes use the face region as their input, which can be obtained via
face detection or face region extraction using the frame-by-frame tracking of facial points.
Depending on facial classification differentiators, such as whether a person is wearing
sunglasses, corresponding shape aligners are applied to obtain the pupil center localiza-
tion. In our previous work [23,24], we developed an eye-tracking method for bare faces
that involves 11-point eye–nose shape tracking based on the supervised descent method
(SDM) [30] (for details of the algorithms for bare-face eye tracking, see References [23,24]).
For sunglasses-wearing faces, we propose an eye-position estimation method: the eye
tracker uses nonoccluded face area tracking (nose–mouth–face boundary) combined with a
supervised regression-based pupil position estimation method to identify the pupil centers.
The basic components of our proposed eye-tracking method for people wearing sunglasses
can be divided into two main stages: (1) nonoccluded face area tracking and (2) eye-center
position estimation for occluded areas. A flowchart describing the proposed eye-tracking
method for bare and sunglasses-wearing faces is presented in Figure 2.

2.1. Whole-Face Detection and Classification of Faces with Sunglasses

We utilized the error-based learning (EBL) method published in our previous work [23],
which utilizes the AdaBoost classifier [31–33] and local binary pattern (LBP) features [31–33]
for facial detection tasks. The EBL framework trains only a small fraction (less than 5%) of the
detection training image DBs in much shorter training times, while it improves the detection
rate through three stages [23]. We used a cascaded classifier with N-boosting substages for
each stage in EBL [23]. Multiscale block LBP feature space was adopted for the cascaded
AdaBoost classifier [23]. Unlike our previous method, which used an eye–nose detector,
for this study we constructed an entire face detector to address the issue of eye occlusion
by sunglasses. The cascade-AdaBoost algorithm is used extensively for facial detection
tasks. Although deep-learning-based facial detection approaches such as SqueezeDet [26],
region-based convolutional neural networks (R-CNN) [34], and multitask CNNs [27] have
been developed recently, such techniques require considerable GPU resources and, therefore,
require network lightening for integration with automobiles, for example as part of AR 3D
HUD systems, which adopt commercial vehicle-embedded computing boards with limited
GPU resources. Therefore, fast processing must be married with low complexity to maximize
the performance of the limited computational resources of AR 3D HUD systems.
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Figure 2. Flowchart of the proposed eye-tracking method for bare and sunglasses-wearing faces.

Our proposed detector is both practical and simple, requiring only a CPU. For the
bare-face training dataset, we reutilized samples constructed for our previous study [23],
which outlines the details of the EBL algorithm used for training involving the bare-
face image datasets. For sunglasses-wearing faces, we constructed a new training image
database containing 30,000 images of 37 people wearing sunglasses according to our own
capturing and labeling annotations (Figure 3a). For the final face-detection training step,
the 50,000 bare faces and 30,000 sunglasses-wearing faces from the training samples were
used. To run two different eye-tracking modes according to the presence of sunglasses,
we performed an image classification routine to separate the bare and sunglasses-wearing
faces. The region surrounding the eyes was cropped using the statistical mean shape from
our training dataset labeling (Figure 3b). In addition, the eye region classifications were
assisted by the cascade-AdaBoost classifier and LBP features.

2.2. Nose–Mouth–Face Boundary Tracking: Alignment and Tracker Checker

After the detector identifies the eye–nose region, the tracking mode starts to extract the
coordinates of the pupil centers based on eye–nose shape alignments using the SDM [30]
and the scale-invariant feature transform (SIFT) [35]. The SDM mode trains a sequence
of descent directions that minimize the mean of the nonlinear square functions from
each landmark point [30]. SIFT extracts feature description from landmark points and is
invariant to translations, rotations, and scaling transformations, and is widely used in face
recognition technologies [35]. This non-CNN-based method has the advantages of low
CPU consumption and fast speed compared to state-of-the-art CNN-based landmark point
alignment methods.

To prevent erroneous detection or tracking, we propose a novel tracker checker idea.
The proposed tracker checker guarantees that the aligned results contain the eyes. For
each frame, after the nose–mouth–face boundary points are aligned, the proposed nose–
mouth–face boundary tracker checker performs a final examination of the tracking results,
irrespective of whether it tracks eyes or not. Thus, more efficient, faster eye-tracking system
computations can be achieved.

A greedy search algorithm was performed to find the best nonoccluded area points for
estimating the eye center positions. Among the 23 candidate points from nonoccluded areas,
such as the nose–mouth–face boundary, we identified the 11 points that best suggested the
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eye position via the greedy algorithm with end-to-end eye position calculation (further
details are provided in Section 2.3). Owing to the computational complexity of the SIFT
feature extraction increasing according to the number of points involved, we only utilized
11 points to ensure reliability and manageable complexity. Among these points, the nose–
mouth and nose–mouth–face boundary points were identified as the best two positions
(Figure 4).
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Figure 3. (a) Entire-face detector, which detects both bare faces (1st row) and sunglasses-wearing
faces (2nd row). Each column shows the left and right image from the stereo camera. (b) Cropped
eye regions for the classification of bare and sunglasses-wearing faces. Cropping was performed
using the statistical mean shape determined according to training dataset labeling.
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mouth points (1st row) and nose–mouth–face boundary points (2nd row). Each column shows the
left and right images from the stereo camera.

2.3. Eye Center Position Estimation from Nose–Mouth–Face Boundary Points Using a Supervised
Linear Regression Algorithm

Using the 11 points representing nonoccluded face areas identified in Section 2.2, we
estimated the eye center positions using a supervised linear regression method, meaning
that we constructed the training image database with the ground truth of eye position
on sunglasses according to other points (Figure 5). All the ground truths of eye positions
were annotated as precisely as possible via comparison with the corresponding bare-face
images. Ultimately, 32,400 sunglasses-wearing images with a head pose less than 20◦

were constructed with eye position labeling and used for eye position estimations using a
supervised linear regression.
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In this paper, we set Ele f t as the left eye center position and let X represent the set of
points corresponding to nonoccluded areas, i.e., the nose–mouth–face boundary points
introduced in Section 2.1. If βle f t is a linear regression matrix, then we can write

Ele f t = Xβle f t. (1)

Similarly, the right eye position, Eright, can be formulated using βright:

Eright = Xβright. (2)

Solving Equations (1) and (2) leads to

β = X+Ele f t or right, (3)

where X+ is the pseudo-inverse of X when assuming a linear relationship between E and
X. Collecting more data for X and E produces a more accurate value of β. This process of
eye position estimation using a supervised linear regression method from n-samples of the
11 nose–mouth–face boundary (NMB) points is illustrated in detail below (Box 1):

Box 1. Detailed processes of eye position estimation using a supervised linear regression method.

X 1-sample

: eye position from 11 NMB points
: Ele f t = Xβle f t
: e1 = a1x1 + a2y1 + . . . + a11y11
: e2 = b1x1 + b2y1 + . . . + b11y11

: [e1 e2] = [x1 y1x2y2 . . . x11y11]


a1b1
a2b2
. . .

a11b11


X n-samples

: n-samples’ eye positions from n-samples’ 11 NMB points by linear regres-sion
: Ele f t = Xβle f t

:


e11 e21
e12 e22

. . .
e1n e2n

 =


x1, 1 y1,1x2,1y2,1 . . . x11,1y11,1
x1, 2 y1,2x2,2y2,2 . . . x11,2y11,2

. . .
x1, n y1,nx2,ny2,n . . . x11,ny11,n




a1b1
a2b2
. . .

a11b11


: min

β
||E− Xβ||2

: XT(E− Xβ) = 0

: β =
(
XT X

)−1XT E
: β = X+E

3. Results

The proposed algorithm yielded successful real-time detection (~60 fps) and tracking
(~200 fps) for a range of different environments, users, and system challenges based only
on CPU computations. When the tracking mode was considered, the execution time was
approximately 2–5 ms when using a standard PC with a 2.5 GHz CPU (consumption 10%,
see Table 1) and running Windows 7. The algorithm was constructed in C++.Additionally,
when tested using a commercial embedded computing board (Samsung Exynos-auto evt1
for 3D HUD), our proposed method achieved comparable eye-tracking speed and CPU
usage results. Figure 6 shows some examples of real-time seamless pupil tracking using the
proposed method with a stereo camera. The camera image resolution was 640 × 480 pixels
with a recording speed of 60 fps and a field of view of 60◦ × 40◦. This proved effective for
capturing various images of sunglasses-wearing subjects, provided head movements had a
speed below 250 mm/s. We tested the performance of the proposed algorithm for image
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and video database entries captured inside and outside an office environment of 10 people
wearing different styles of sunglasses. The average aligner precision error was 2 mm for
the bare-face images and 10 mm for the sunglasses-wearing images.

Table 1. Performance of the proposed eye-tracking method for bare and sunglasses-wearing faces.

Bare-Face Eye Tracker Sunglasses-Wearing Face
Eye Tracker

Precision (mean error) 2 mm 10 mm
Distance between
camera and user ~50–200 cm ~50–200 cm

Speed (ms/frame) ~2–5 ms (2.5 GHz CPU) ~2–5 ms (2.5 GHz CPU)
CPU consumption 10% 10%Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 13 
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The two databases were trained using the SIFT and SDM algorithms. Moreover,
both bare-face and sunglasses-wearing-face image databases were used to inform the eye
position estimation algorithm based on the supervised linear regression algorithm. Our
method demonstrated high accuracy and speed, estimating the pupil center position with
less than 10 mm error at a speed of 9 ms for sunglasses-wearing faces.

4. Discussion

This study proposes a low complexity technique for the detection and tracking of
bare and sunglasses-wearing faces. The algorithm results showed high accuracy and
fast speed even when eyes were occluded by sunglasses, while the CPU consumption
was only 10%. In previous studies, we reported on the performance of a bare-face eye
tracker [23]. Although this tracker identified and tracked eyes with high accuracy and
speed, its performance deteriorated for users wearing sunglasses. The algorithms proposed
herein for eye position estimation using nonoccluded shape points on sunglasses-wearing
faces address this issue and showed a marked improvement. Furthermore, the proposed
algorithm retains the advantages of low complexity and high speed demonstrated by our
algorithms for analyzing bare faces [23]. Moreover, when compared to state-of-the-art
deep-learning-based methods such as the practical facial landmark detector (PFLD) [36],
which has a precision of 8 mm, our proposed method offers comparable precision (10 mm),
reduced CPU consumption (10% down from 25%), and is faster (4 ms down from 12 ms).
Figure 7 presents a performance comparison between our proposed algorithm and those
reported in other studies.
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Figure 7. Method comparison. (a) Direct eye tracking for bare faces using the SDM+SIFT algo-
rithm [23]. It showed 2 mm precision with 10% CPU consumption at a speed of 2–5 ms per frame.
(b) Direct eye tracking for sunglasses-wearing faces using the SDM+SIFT algorithm [23]. It showed
25 mm precision with 10% CPU consumption at a speed of 2–5 ms per frame (c) Direct eye tracking
using a CNN-based PFLD algorithm [36]. It showed 8 mm precision with 25% CPU consumption at
a speed of 12 ms per frame. (d) Proposed indirect pupil position estimation method, which includes
an indirect eye-tracking algorithm that estimates pupil location based on other facial feature points.
The proposed method showed 10 mm precision with 10% CPU consumption at a speed of 2–5 ms
per frame.
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One of the main advances of our method compared with previously published works
is its low complexity, with only low CPU computation required to provide real-time eye
tracking. This is particularly valuable when considering the limited system resources
of current vehicles. Additionally, our method offers different mode-switching systems
according to user conditions. In that sense, our proposed system structures are highly
compatible with other algorithms, including deep neural algorithms.

We also conducted experiments involving 20 test subjects to investigate the effects
of 3D crosstalk when viewing 3D content generated by the AR 3D HUD prototype while
wearing sunglasses (Table 2). None of the users reported experiencing static 3D crosstalk
(i.e., user head movements < 250 mm/s) while wearing sunglasses. However, when user
head movements exceeded 250 mm/s (i.e., dynamic 3D crosstalk), 11 of the 20 partici-
pants reported experiencing 3D crosstalk while wearing sunglasses, while only 2 of the
20 participants reported experiencing dynamic 3D crosstalk while not wearing sunglasses.
Considering that the 3D margin of our AR 3D HUD prototype is 12 mm, the 10 mm
precision error associated with the proposed method is near the 3D margin boundaries,
which could cause delayed left and right 3D view conversion owing to limited system
latency. Therefore, further improvements to the eye-tracking precision are required in the
future to eliminate the potential for dynamic 3D crosstalk. To validate 3D crosstalk with a
large eye-tracking error of 10 mm, we added a random eye position error of <8 mm to the
bare-face eye tracker, which had an average mean error of 2 mm (Figure 8). The addition
of this random error to our bare-face eye tracker did not lead to users reporting static 3D
crosstalk when the eye-tracking precision was <10 mm.

Table 2. Experimental results for 3D crosstalk with the proposed eye-tracking algorithms for bare and
sunglasses-wearing faces. All experiments were performed using a commercial embedded system
with an AR 3D HUD prototype.

Bare-Face Eye Tracker Sunglasses-Wearing Eye
Tracker

3D crosstalk
experimental system AR 3D HUD prototype (3D margin 12 mm)

3D content 3D arrows with glow effects
Number of participants reporting

3D crosstalk (static) 0/20 0/20

Number of participants reporting
3D crosstalk (dynamic) 2/20 11/20

This study has a few limitations that we hope to address in subsequent work. Here,
we assumed that only eyes are occluded by sunglasses, leaving the nose, mouth, and face
boundaries unobstructed by other accessories such as masks or caps. To handle a greater
variety of user face-shape occlusions, the proposed system structures require multiple
different eye trackers, each trained using a separate image database, which requires en-
hanced multiclass classification capabilities. Additionally, the number of publicly available
images of drivers wearing sunglasses for use in face occlusion training image datasets is
limited, presenting an obstacle for state-of-the-art deep-learning-based algorithm training.
Therefore, data augmentation is required to construct large face occlusion datasets for the
designated eye trackers. Finally, to handle various user face occlusion cases, further study
is necessary to develop and optimize our algorithm.
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Figure 8. Participant-based experiments assessing the susceptibility of the proposed method to 3D
crosstalk for users wearing sunglasses. (a) Examples of eye-tracking precision error of 10 mm (left),
15 mm, and 25 mm (right). (b) Eye-tracking precision error was calculated using the distance between
the center of pupil center and tracked eye position (left). An example of a bare-face eye-tracking
result with a precision of 2 mm (middle). To validate 3D crosstalk with a large eye-tracking error
of 10 mm, we added a random eye-position error (right). Users experienced 3D crosstalk when the
eye-tracking precision error was >15 mm. For the current 3D HUD prototype, the 3D crosstalk was
low with an eye-tracking precision error of <10 mm.

5. Conclusions

In this paper, we propose a new pupil center detection system that is capable of
analyzing both bare faces and those obstructed by sunglasses. The proposed method
deploys different eye-tracking mode-switching systems according to the user conditions.
For bare faces, we propose an SDM-based pupil segmentation method and utilize a coarse-
to-fine strategy for multiclass shape detection. For sunglasses-wearing faces, pupil centers
are located indirectly by estimating the pupil positions based on the nose–mouth–face
boundary points using a supervised linear regression algorithm. The proposed system
is fast, accurate, robust, and computationally undemanding compared to state-of-the-
art CNN-based algorithms. Our system has the potential to accelerate AR 3D HUD
commercialization, with simplicity and low processing power demands compatible with
the limited computing resources of commercial embedded systems. Further study is
necessary to extend our algorithm to handle various user face occlusion cases such as
masks or caps with multiclass classification and training data augmentation.
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8. Killioğlu, M.; Taşkiran, M.; Kahraman, N. Anti-spoofing in face recognition with liveness detection using pupil tracking. In

Proceedings of the 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI), Herl’any,
Slovakia, 26–28 January 2017; pp. 000087–000092.

9. Spicer, C.; Khwaounjoo, P.; Cakmak, Y.O. Human and Human-Interfaced AI Interactions: Modulation of Human Male Autonomic
Nervous System via Pupil Mimicry. Sensors 2021, 21, 1028. [CrossRef]

10. Santini, T.; Fuhl, W.; Kasneci, E. PuRe: Robust pupil detection for real-time pervasive eye tracking. Comput. Vis. Image Underst.
2018, 170, 40–50. [CrossRef]

11. Mompeán, J.; Aragón, J.L.; Prieto, P.M.; Artal, P. Design of an accurate and high-speed binocular pupil tracking system based on
GPGPUs. J. Supercomput. 2018, 74, 1836–1862. [CrossRef]

12. Ou, W.-L.; Kuo, T.-L.; Chang, C.-C.; Fan, C.-P. Deep-Learning-Based Pupil Center Detection and Tracking Technology for
Visible-Light Wearable Gaze Tracking Devices. Appl. Sci. 2021, 11, 851. [CrossRef]

13. Bozomitu, R.G.; Păsărică, A.; Tărniceriu, D.; Rotariu, C. Development of an Eye Tracking-Based Human-Computer Interface for
Real-Time Applications. Sensors 2019, 19, 3630. [CrossRef]

14. Li, B.; Fu, H.; Wen, D.; Lo, W. Etracker: A Mobile Gaze-Tracking System with Near-Eye Display Based on a Combined Gaze-
Tracking Algorithm. Sensors 2018, 18, 1626. [CrossRef] [PubMed]

15. Wang, J.; Zhang, G.; Shi, J. Pupil and Glint Detection Using Wearable Camera Sensor and Near-Infrared LED Array. Sensors 2015,
15, 30126–30141. [CrossRef] [PubMed]

16. Lee, J.W.; Heo, H.; Park, K.R. A Novel Gaze Tracking Method Based on the Generation of Virtual Calibration Points. Sensors 2013,
13, 10802–10822. [CrossRef]

17. Kim, S.; Jeong, M.; Ko, B.C. Energy Efficient Pupil Tracking Based on Rule Distillation of Cascade Regression Forest. Sensors 2020,
20, 5141. [CrossRef] [PubMed]

18. Su, M.-C.; U, T.-M.; Hsieh, Y.-Z.; Yeh, Z.-F.; Lee, S.-F.; Lin, S.-S. An Eye-Tracking System based on Inner Corner-Pupil Center
Vector and Deep Neural Network. Sensors 2020, 20, 25. [CrossRef]

19. Lopez-Basterretxea, A.; Mendez-Zorrilla, A.; Garcia-Zapirain, B. Eye/Head Tracking Technology to Improve HCI with iPad
Applications. Sensors 2015, 15, 2244–2264. [CrossRef]

20. Brousseau, B.; Rose, J.; Eizenman, M. Hybrid Eye-Tracking on a Smartphone with CNN Feature Extraction and an Infrared 3D
Model. Sensors 2020, 20, 543. [CrossRef]

21. Lee, D.E.; Yoon, H.S.; Hong, H.G.; Park, K.R. Fuzzy-System-Based Detection of Pupil Center and Corneal Specular Reflection for
a Driver-Gaze Tracking System Based on the Symmetrical Characteristics of Face and Facial Feature Points. Symmetry 2017, 9, 267.
[CrossRef]

22. Gwon, S.Y.; Cho, C.W.; Lee, H.C.; Lee, W.O.; Park, K.R. Gaze Tracking System for User Wearing Glasses. Sensors 2014, 14,
2110–2134. [CrossRef]

23. Kang, D.; Heo, J. Content-Aware Eye Tracking for Autostereoscopic 3D Display. Sensors 2020, 20, 4787. [CrossRef]
24. Kang, D.; Heo, J.; Kang, B.; Nam, D. Pupil detection and tracking for AR 3D under various circumstances. In Proceedings of the

Electronic Imaging, Autonomous Vehicles and Machines Conference; Society for Imaging Science and Technology, San Francisco,
CA, USA, 13 January 2019; pp. 55-1–55-5.

25. Liu, Z.; Luo, P.; Wang, X.; Tang, X. Deep learning face attributes in the wild. In Proceedings of the IEEE International Conference
on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3730–3738.

http://doi.org/10.1109/JPROC.2017.2686445
http://doi.org/10.1364/OE.26.020233
http://www.ncbi.nlm.nih.gov/pubmed/30119336
http://doi.org/10.1002/adpr.202000049
http://doi.org/10.1364/OE.404318
http://doi.org/10.1364/OL.422559
http://doi.org/10.3390/s21041028
http://doi.org/10.1016/j.cviu.2018.02.002
http://doi.org/10.1007/s11227-017-2193-5
http://doi.org/10.3390/app11020851
http://doi.org/10.3390/s19163630
http://doi.org/10.3390/s18051626
http://www.ncbi.nlm.nih.gov/pubmed/29783738
http://doi.org/10.3390/s151229792
http://www.ncbi.nlm.nih.gov/pubmed/26633416
http://doi.org/10.3390/s130810802
http://doi.org/10.3390/s20185141
http://www.ncbi.nlm.nih.gov/pubmed/32916968
http://doi.org/10.3390/s20010025
http://doi.org/10.3390/s150202244
http://doi.org/10.3390/s20020543
http://doi.org/10.3390/sym9110267
http://doi.org/10.3390/s140202110
http://doi.org/10.3390/s20174787


Appl. Sci. 2021, 11, 4366 13 of 13

26. Wu, B.; Iandola, F.; Jin, P.H.; Keutzer, K. SqueezeDet: Unified, small, low power fully convolutional neural networks for real-time
object detection for autonomous driving. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, HI, USA, 21–26 July 2017; pp. 129–137.

27. Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE
Signal Process. Lett. 2016, 23, 1499–1503. [CrossRef]

28. Wu, W.; Qian, C.; Yang, S.; Wang, Q.; Cai, Y.; Zhou, Q. Look at boundary: A boundary-aware face alignment algorithm. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 2129–2138.

29. Dong, X.; Yan, Y.; Ouyang, W.; Yang, Y. Style aggregated network for facial landmark detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 379–388.

30. Xuehan, X.; De la Torre, F. Supervised descent method and its applications to face alignment. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 532–539.

31. Viola, P.; Jones, M.J. Robust real-time face detection. Int. J. Comput. Vis. 2004, 57, 137–154. [CrossRef]
32. Viola, P.; Jones, M.J. Rapid object detection using a boosted cascade of simple features. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Kauai, HI, USA, 8–14 December 2001; pp. 511–518.
33. Freund, Y.; Schapire, R.E. Experiments with a new boosting algorithm. In Proceedings of the International Conference on Machine

Learning, Bari, Italy, 28 June–1 July 1996; pp. 148–156.
34. Ranjan, R.; Patel, V.M.; Chellappa, R. Hyperface: A deep multi-task learning framework for face detection, landmark localization,

pose estimation, and gender recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 121–135. [CrossRef]
35. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 2004, 60, 91–110. [CrossRef]
36. Guo, X.; Li, S.; Yu, J.; Zhang, J.; Ma, J.; Ma, L.; Liu, W.; Ling, H. PFLD: A practical facial landmark detector. arXiv 2019,

arXiv:1902.10859.

http://doi.org/10.1109/LSP.2016.2603342
http://doi.org/10.1023/B:VISI.0000013087.49260.fb
http://doi.org/10.1109/TPAMI.2017.2781233
http://doi.org/10.1023/B:VISI.0000029664.99615.94

	Introduction 
	Methods 
	Whole-Face Detection and Classification of Faces with Sunglasses 
	Nose–Mouth–Face Boundary Tracking: Alignment and Tracker Checker 
	Eye Center Position Estimation from Nose–Mouth–Face Boundary Points Using a Supervised Linear Regression Algorithm 

	Results 
	Discussion 
	Conclusions 
	References

