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Abstract: Distinct, alternative forms of geosemantics, whose classification is often ill-defined, emerge
in the management of geospatial information. This paper proposes a workflow to identify patterns in
the different practices and methods dealing with geoinformation. From a meta-review of the state of
the art in geosemantics, this paper first pinpoints ”keywords” representing key concepts, challenges,
methods, and technologies. Then, we illustrate several case studies, following the categorization into
implicit, formal, and powerful (i.e., soft) semantics depending on the kind of their input. Finally, we
associate the case studies with the previously identified keywords and compute their similarities
in order to ascertain if distinguishing methodologies, techniques, and challenges can be related to
the three distinct forms of semantics. The outcomes of the analysis sheds some light on the diverse
methods and technologies that are more suited to model and deal with specific forms of geosemantics.

Keywords: geosemantics; implicit semantics; formal semantics; powerful semantics

1. Introduction

Semantics is cornerstone in state-of-the-art data management, notwithstanding the
specific domain; without semantics, we would helplessly drown in a deluge of unintelli-
gible Big Data. Let aside the enormous literature on this topic in the field of Linguistics
and, even before that, in Philosophy, representing and managing semantics is frequently
regarded to as the solution to heterogeneity in data retrieval and exploitation in Computer
Science (CS) [1–3]. This paper relates to a specific domain in the landscape of semantics-
aware CS, i.e., geospatial information provided in the form of both data and metadata.
This is a particularly challenging domain as the non-textual nature of most geospatial data
means that the indexing practices of generalist search engines are ineffective; hence the
need for semantics representation and management.

Both Sheth et al. [4] and Uschold [5] provide a coarse-grained categorization of seman-
tics; the latter includes the following four categories: (i) implicit semantics, (ii) informally
expressed semantics, (iii) formally expressed semantics for human consumption, and (iv)
formally expressed semantics for machine processing. In practice, the first three levels fall
in the first category defined in [4], which proposes the following classification:

Implicit semantics is the semantics not explicitly represented, i.e., not directly usable by
machines to derive new knowledge.

Formal semantics when semantics is represented in some sort of formalism, in order to be
machine readable and processable, e.g., in the form of ontologies.

Powerful (soft) semantics when semantics is represented in forms that enable overcom-
ing crisp set-based formalisms, allowing representing degrees of memberships and
certainty, e.g., by using fuzzy approaches and contextual time-varying semantics.

In our opinion, the second classification not only includes the first one but, at the
same time, empowers the fourth level of the first by offering two distinct representation
classifications, opening towards methods that better mimic the human soft and flexible

ISPRS Int. J. Geo-Inf. 2021, 10, 330. https://doi.org/10.3390/ijgi10050330 https://www.mdpi.com/journal/ijgi

https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0002-6775-753X
https://orcid.org/0000-0003-2679-4868
https://orcid.org/0000-0002-0261-313X
https://orcid.org/0000-0001-6805-3756
https://www.mdpi.com/article/10.3390/ijgi10050330?type=check_update&version=1
https://doi.org/10.3390/ijgi10050330
https://doi.org/10.3390/ijgi10050330
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijgi10050330
https://www.mdpi.com/journal/ijgi


ISPRS Int. J. Geo-Inf. 2021, 10, 330 2 of 32

approaches to reasoning and decision making. This is the main motivation for adopting
this second classification method, exporting its concepts in the geospatial domain and
reflecting them in the forthcoming Sections of this paper. Albeit there is apparently a broad
spectrum of technologies that fall under the umbrella of each of these categories (in fact,
Almeida et al. [6] elaborate on the notion of semantic continuum), we will discuss their
common traits.

As regards high level categorization of the forms of semantics, Gärdenfors [7] distin-
guishes between “symbolic”, “associationist”, and “conceptual”, providing the latter with
a spatial characterization. His cognitive spaces feature interesting analogies with notions
that are typical of the geospatial domain (e.g., spatial intersection). Still, non-symbolic
approaches are mostly contained in the category of implicit semantics according to the
classification by Sheth.

The ultimate purpose of this work is to provide the reader with awareness of directions
on the main issues, challenges, and possible solutions to address the different categories
of semantics defined by Sheth in the domain of geoinformation. In a nutshell, this paper
outlines which technologies are more appropriate to consider when tackling a given
research problem. The importance of this topic for the geospatial community is attested
by the increasing relevance of semantics as the ”glue” between heterogeneous thematic
domains and also across their individual workflows. On the one hand, inter-disciplinary
interoperability requires mapping of the individual terminologies used for annotating data.
On the other, effective discovery and provision of geospatial data requires fine-grained
characterization of resources (i.e., semantic metadata) not only for data, but also for services,
APIs, instruments, data providers, etc.

The hypothesis behind our work is that Sheth’s three forms of semantics are also
reflected in the geosemantics context. The objective of our paper is then to identify tech-
nologies, methodologies, challenges, and solutions that are distinctive for the implicit, the
formal, and the powerful geosemantics in order to orient the reader in problem solving. To
achieve this, by analyzing recent reviews and editorial papers on geosemantics, we first
mine which are the main technologies, methodologies, research challenges, and solutions
presented by the authors, regarding them as keywords (Section 2.3).

Successively, we perform a two-step analysis by first discussing selected case studies
involving the management of implicit, formal, and powerful geosemantics. The choice of
the case studies has been performed by taking into account both their belonging to one of
the semantic categories of Sheth (depending on the characteristics of their inputs) and the
variety and representativeness of application domains as outlined in [8]. Specifically, the
varied and most representative applications to which geomatics can be put include urban
planning, disaster management, assessment of biodiversity, and land administration. We
then associate the keywords with the case studies and assess whether Sheth’s categories
are characterized by distinguishing keywords, i.e., specific methods, technologies and
solutions, thus allowing for a more distinctive clustering of the keywords with respect to
what emerged from the metareview in Section 2.3.

A contribution of this paper is also the methodological workflow we followed in order to
characterize the forms of semantics in geoinformation with their preferred/elective approaches.

2. Materials and Methods

This Section is organized as follows: Section 2.1 details our aim and the workflow we
followed to confirm our hypothesis. Section 2.2 explains the categorization of semantics in the
main reference work [4] inspiring this paper; then, Section 2.3 presents a meta-analysis of the
literature on geosemantics as discussed in recent surveys and review papers. Sections 2.4–2.6
present the case studies we selected according to the criteria expressed above.

2.1. Workflow

In this work, we aim at investigating whether the three forms of semantics by
Sheth et al. [4] can be related to distinguishing methodologies, techniques, and knowl-
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edge sources among those found in the literature on geospatial information. This is by
no means a foregone conclusion and these distinguishing methodologies may not be the
same as in other contexts. In fact, the geospatial domain sometimes diverges from current
trends because of its specificities (e.g., proposing service-oriented architectures as opposed
to resource-oriented ones).

To this aim, we define the workflow whose main phases are depicted in Figure 1:
Top-left, a meta-review of recent surveys of papers illustrating applications of geospatial
information management is performed (Section 2.3). The meta-review allows for identi-
fying topics, research challenges, and solutions; these are considered to be keywords and
represented on the right side of Figure 2. On the top-right hand side, assuming as starting
point of our analysis the aforementioned three forms of semantics (whose definitions are
clarified in Section 2.2), we select and analyze several case studies, categorizing them
according to these three forms of semantics on the basis of the characteristics of their
inputs (Sections 2.4–2.6).

Figure 1. Depiction of the workflow followed.

Finally, in order to substantiate the hypothesis behind this work—that Sheth’s cat-
egories are also reflected in the geosemantics context—the results yielded by the two
previous independent phases are cross-referenced in order to compute a similarity matrix
on the basis of the keywords associated with the case studies. Specifically, this is achieved
by verifying that the intra-similarities (similarity degrees between pairs of case studies
belonging to the same form of geosemantics) are greater than the inter-similarity degrees
between pairs of study cases classified as different forms of geosemantics. The greater the
intra-similarity with respect to the inter-similarity, the more distinctive the methods and
technologies characterizing the three forms of geosemantics.

2.2. Three Shades of Semantics

Looking at geosemantics through the lenses proposed by Sheth allows for categorizing
in a minimal set of classes the broad (and ever-growing) landscape of topics (comprising
both methods and technologies) that populate this domain. Otherwise, the implications of
information source heterogeneity (as far as genre and nature are concerned), information
multidimensionality, and domain knowledge dependency easily yield a multiplicity of
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classes that configures a semantic continuum à la Almeida [6]. Since data source het-
erogeneity, cross-domain interaction, data/process imperfection, and big data volumes
are common traits in the geospatial domain, distinguishing between implicit, formal, and
powerful semantics allows us to divide the presented case studies in three categories with a
clear solution of continuity.

Implicit semantics refers to the kind that is implicit in data and that is not represented
explicitly in any machine-processable syntax. It is typically related to concepts and rela-
tionships between them that are not represented in a formal way but are embedded in
multimedia documents, i.e., their “meaning is conveyed based on a shared understanding
derived from human consensus” [5]. These can be natural language documents, multi-
spectral images, time series of measurements, video frame sequences, audio recordings,
undocumented tabular data, etc. The main objective of extracting implicit semantics is to
cope with the inherent ambiguity characterizing it. In fact, terms in texts, visual aspects
in images, etc., can mean different things depending on both context and knowledge of
people [9]. It should be noted that implicit does not mean missing a knowledge-based
underpinning but that the latter does not (or cannot) be given a formal representation, such
as in the assessment by a domain expert.

In more general terms, we can state that semantics that are represented in some
well-formed syntax (governed by syntax rules) is referred to as formal semantics. In 2001,
Berners-Lee et al. [10] stated that “The Semantic Web is an extension of the current web in
which information is given well-defined meaning, better enabling computers and people to
work in cooperation”. As such, the Semantic Web (SW) is the most apparent embodiment
of semantics in the field of Internet-mediated contents and applications. Here, the inflection
we give to this term is that of formal semantics, specifically those provided by decidable
fragments of First-Order Logic (FOL) [11]. In fact, “formal” is the category name that
Sheth et al. give to this kind of semantics [4], analogous to “formal semantics for machine-
processing” in Uschold’s categorization [5]. Explicit representations of formal semantics
include knowledge graphs, ontologies, and the like.

Finally, Sheth et al. introduce the concept of powerful semantics, intended as formal
semantics which is empowered with the ability to represent not only precise and well-
defined concepts and relationships, but also imprecise and uncertain concepts and gradual
relationships, whose meaning can be subjective, vague, and variable depending on several
contextual conditions [12]. The ability of formal frameworks to represent and manage
powerful semantics is indeed aimed at performing approximate and qualitative reasoning
in order to discover implicit concepts and relationships, possibly uncertain and imprecise
too, although accurate enough to be useful to solve some needed task.

2.3. A Meta-Analysis Perspective

Timothy Tambassi, in his Preface to the book “The Philosophy of GIS” [13], pointed
out that the literature on GIS is heterogeneous and scattered, primarily because of the
multiple branches of knowledge that use, manage, and create geographic information. This
is also true for geosemantics, whose literature configures a conceptual ‘forest’ of issues,
topics, technologies, methodologies, challenges, and solutions where it is easy to loose
orientation. To frame approaches in the field of geosemantics, we have taken into account
some stimulating overview papers on this subject which appeared in the last decade and
tried to examine and categorize the topics, research challenges, and solutions described. It
is a meta-analysis exercise that considered the papers described in the following.

Kokla et al. [14] offers a comprehensive review of the contributions that represent a
progress in geospatial semantics since 2015; it focuses around two main topics, i.e., informa-
tion modeling (ontologies and their development) and (latent) knowledge elicitation (from
unstructured or semi-structured content, based in particular on textual contents). This
paper reviews more than 150 works; among them are papers that present categorizations
of methods and approaches to geosemantics, such as [15–19]. Other cited contributions
report on the efforts for describing the methods at hand: [20–32]. Furthermore, in this
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review the reader can find many works that exemplify the former within a great number of
applications; among these [33–55].

Hu [56] provides an overview and a review of important contributions dealing
with six major research areas in geospatial semantics, i.e., “semantic interoperability
and ontologies” [16,24,38,57–70] , “digital gazetteers” [71–86] , “Geographic Informa-
tion Retrieval” [32,87–106], “geospatial Semantic Web and Linked Data” [43,107–114],
“place semantics” [47,115–121], “cognitive geographic concepts and qualitative reason-
ing” [70,119–124].

Janowicz et al. [125] is a rich overview of the geosemantics landscape focusing on some
selected topics that the authors deem of particular interest; the contributions reviewed are
organized according to these. With respect to the question on what kinds of Geospatial
Classes should be distinguished, they cite [16–18,63,65,66,68,126–129]; instead, the question
on how to reference Geospatial Phenomena is supported by [113,123,130–132]. Discov-
ering events and accounting for geographic change are faced and fostered in [133–136],
Handling places and moving object trajectories is dealt with in [70,77,90,133,137–143]. The
following papers are cited with reference to comparison, alignment, and translation of
Geospatial Classes [15,69,90,144–149]. Finally, the issues raised by processing, publishing,
and retrieving geodata are tackled by in [150–156].

The approach changes in [157]: Rather than reviewing papers dealing with projects
and issues related to geosemantics, it reviews ideas rooted in cognitive science and linguis-
tics for sketching their application to semantics of geographic information. It discusses
notions from 1990 to 2010 and shows why and how these ideas have been productive for
dealing with semantics.

We also considered a couple of papers that are not strictly reviews but, in our opinion,
are worth being included as they offer a landscape of trends and contributions in geoseman-
tics. Janowicz et al. [112], an editorial paper on the Semantic Web, outlines the research field
of geospatial semantics, highlights major research directions and trends, and takes a glance
at future challenges. Another editorial paper [158], considers VGI (Voluntary Geographic
Information) and claims that geospatial Linked Data and Knowledge Graphs, when used
for implementing intelligent data search, can result in precise data-sharing services.

The less recent work we considered is [159], where the author observes that the main
approaches to overcome semantic heterogeneity rely on ontologies that, having a priori
definitions, are decontextualized. On the contrary, he affirms that semantics reconciliation
needs to take into account context-based meanings. Since “meaning and context are
dynamically emergent from activity and interaction, determined in the moment and in the
doing”. He further highlights the limitations of representational approaches. In fact, the
latter assume that context is stable, delimited information that can be known and encoded
in just another information layer or another ontology in an information system. These are
the reasons why this work encourages non-representational modelling formalisms to cope
with semantic interoperability in sharing and integrating geographic information.

By analyzing the above overviews, we have extracted a list of terms that the authors
pinpointed as topics of interest, research challenges, or solutions, which we regard as
keywords. The correspondence between the keywords and the respective originating
reviews can be found in supplementary material. The keywords are listed on the right side
of the diagram in Figure 2. The list is wide enough to suggest how large is the playground
offered by geosemantics.

Still, this list may be biased, being based on authors’ views and reviews of a rapidly
evolving literature, and some terms can have overlapping meanings. For instance, more
recent reviews, such as Kokla et al. [14], produced an increase in this term list, due to the
emergence of mobile and social applications, IoT, AI, etc. in the last five years. These
research fields introduced novel concepts, such as lightweight ontologies. This increase
is also due to the paradigm shift, dating back in 2012 [20], from the general-purpose
Web to communities and their specific perspectives, pushed in turn by the movement
of Critical GIS [160]. With reference to the notion of Digital Earth, in [161] the authors
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solicited “a network of theories that fosters interoperability without giving up on semantic
heterogeneity”. As such, it is possible that more recent works may further populate the list
in Figure 2.

In the papers we examined, the authors suggested a grouping of these keywords
according to some categories, listed on the left side of the diagram. Some keywords can
be related to multiple categories as they can be good suggestions in diverse application
scenarios. As an example, term “gazetteers” has been presented in some works as dealing
with either “geospatial Semantic Web” or “elicitation of semantic information”; “domain
ontologies” have been used in works coping with “geo-semantics formalization” and
“semantic interoperability”. On the other hand, there are categories that can be tackled with
multiple strategies; for example, geosemantics issues falling under category “cognitive
geographic concepts” have been dealt with in projects on either “events-change discovery”,
“place-based GIS”, or “qualitative reasoning”.

Figure 2 makes it apparent that the categories on the left are not associated with
distinguishing topics and solutions on the right, i.e., the reviews did not succeed in letting
patterns emerge in the geosemantics “forest”, thus making order in the diverse practices.

Figure 2. Diagram connecting keywords in geosemantics (right) and their categorization (left), as
found in the reviews taken into consideration.

2.4. Implicit Geosemantics

In [14], the extraction of implicit geosemantics is named “elicitation of semantic in-
formation”. Under this interpretation, the term is used in a broader sense to encompass
processes aimed to make latent knowledge explicit from unstructured or semi-structured
contents. These processes focus on eliciting a structured representation of information
in various forms, such as semantic metadata, links to ontology concepts, collections of
topics, geotagged maps and images, etc. Sources of implicit geosemantics are multimedia
documents, in the form of unstructured and semi-structured textual documents, pictures
taken from cameras, images from remote sensing, audio and video files. In most cases,
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metadata are available but are generally insufficient to representing and understanding
the contents.

Typically, unstructured texts, posts in social networks, and news streams may refer
to geographic names into their contents to describe events, points of interest (POIs), and
places. The discipline that extracts geographic contents from unstructured and semistruc-
tured texts in order to index them and enable the evaluation of both content and spatial
queries is Geographic Information Retrieval (GIR) [87]. Images are another potential source
of geosemantic information. Photos may depict geographic places without explicitly men-
tioning their name or geolocation. With regard to video files, we can consider TV news
reporting events relative to specific geographic areas. Finally, remote sensing images may
contain representations of the status of the environment with respect to the occurrence
of geo-temporal phenomena and events going on in a given area. The segmentation of
images in order to extract geographic footprints of places and events can be performed
by applying spatio-temporal analysis. The latter is primarily based on (i) domain experts’
knowledge; (ii) statistical and machine learning approaches, or (iii) hybrid approaches
combining the previous two [162].

Some important challenges of implicit geosemantics extraction within multimedia
documents are related to three main objectives:

(i) reconciling the place and space conceptualizations of geosemantics: while the “platial”
(based on place) perspective is usually defined within texts by textual place names,
linguistic descriptions, and the semantic relationships between places, the spatial
perspective typical of georeferenced maps explicitly represents the geometries by their
coordinates, distances, topology, and directions, but mostly lack descriptions of their
meanings. This reconciliation from platial to spatial and vice-versa requires modeling
uncertainty of the recognition process;

(ii) increasing human perception of the semantics of geoinformation by considering users’
spatial, temporal, and content needs and preferences. This amounts to identifying
and summarizing geographic contents on the basis of distinct spatial, temporal, and
content granularities;

(iii) enhancing interoperability of the geoinformation semantics representation in order
to be able to re-use it within different contexts and applications. This is achieved by
adopting standards and domain/task/application ontologies.

Basically, artificial intelligence approaches comprising different methodologies (such
as soft computing, clustering, genetic algorithms, geostatistic analysis, neural networks,
support vector machines, and the like) are applied to extract implicit semantics from
multimedia documents. Knowledge bases are used to support the analysis: These may
take the form of gazetteers, DBpedia (https://wiki.dbpedia.org/ accessed on 1 April
2021), generic and domain thesauri such as WordNet (https://wordnet.princeton.edu/
accessed on 1 April 2021), geo ontologies, and thematic geospatial information. In the
following, we present some case studies focused on to the above challenges which consider
different genres of geographic contents (basically, objects, events and moving objects’
trajectories) within distinct categories of multimedia documents (textual documents and
social media posts).

A synoptic view of the four case studies dealing with an implicit form of semantics
is reported in Table 1: Besides the identifier of the case study, its acronym, and a brief
description, the table reports the type of input, the method it applies, the type of generated
output, and its potential use. It can be noticed that the type of input is either unstructured
textual documents or social media documents, a kind of data that typically contain the
implicit form of semantics. It can be also noticed that the outputs contain more explicit
geosemantics, constituted by geofootprints of documents, spatio-temporal clusters of
events, trajectories, and georeferenced placenames.

As for the application domains that are covered by the case studies, that in
Section 2.4.1 is related to retrieval of georeferenced information, providing urban planners
with effective means for mining knowledge of territorial resources. The case study in

https://wiki.dbpedia.org/
https://wordnet.princeton.edu/
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Section 2.4.2 performs trajectory mining to support mobility planning for tourists. The
case study in Section 2.4.4 sows that disaster management can be fostered by timely event
detection and, finally, the case study in Section 2.4.4 is about geo-gazetteer creation from
VGI, in support of land administration.

2.4.1. From “Place” to “Space”: Representing Uncertainty of Geoinformation within Texts
to Support Geographic Information Retrieval

In [163], a GIR system was proposed that allows for extracting implicit geosemantics
within contents of textual documents through the identification of fuzzy geographic footprints,
i.e., the distinct locations on Earth referred to by documents.

The GIR model applies soft computing methods; specifically, the evaluation of multiple
bipolar criteria [164,165] aggregated based on a p-norm operator [166] to extract the fuzzy
footprints of documents representing their geographic focus. In a nutshell, some criteria
have a positive influence on the selection of geographic names within the text as footprints
of a document (for example, when the initial characters of the term is a capital letter, when
the term occurrence is close to positive anchor terms such as “street”, “city”, “nation”,
etc.). Others have a negative influence (for example when the term is preceded by negative
anchor terms such as “Sir”, “Mr”, “Mrs”, etc.).

The prototypical system, has the classic structure of an Information Retrieval System
(IRS) [163], consisting of two main components: the Indexing Module and the Retrieval
Module. The Indexing Module has two main sub-modules: the Full-Text Indexing and the
GeoIndexing sub-modules. The former performs full text indexing of the documents to rep-
resent their significant contents, and generates the textual inverted index to enable content
based searches. Instead, the GeoIndexing sub-module identifies the fuzzy footprints of
documents by the support of a knowledge base that comprises both a geo-ontology and a
rule-base that encodes the heuristic knowledge required to cope with geo/non-geo ambigu-
ities during geoparsing, and with geo/geo ambiguities during geocoding. An example of
geo/non-geo ambiguity is the case of a place name having also a non geographic meaning
such as “Nice” (France), “Crema, Brindisi” (Italy), and “Of” (Turkey). Instead, geo/geo
ambiguities are due to distinct locations on Earth having the same place name, such as
Rome, Paris, London, etc.). The disambiguation rules take into account both the geographic
context, based on the shared assumption that “close places are more closely related than
far places”, and the textual context, based on the consideration that distinct geographic
names appearing close in text are also closely related in geographic space. This way, place
names within documents are associated with a fuzzy footprint in the geographic space,
thus reconciling the two conceptualizations of geosemantics and enabling both content and
spatial searchers.
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Table 1. Dimensions of case studies (Implicit geosemantics).

Subsection Name Description Input Data Method Classification Output Data Potential Use

Section 2.4.1 GeoFinder

GIR extracting and
modeling uncertainty of
geofootprints in textual
documents

textual documents from
etherogeneous sources
(tested on a collection of
articles about Energy
power stations and on
CLEF2008 collection)

fuzzy computational
intelligence

uncertain geofootprints
of textual documents,
i.e., fuzzy sets of
geographic points with
uncertainty degrees in
[0,1] associated with the
index terms of textual
documents

Performing spatial
queries (expressing
metrical and topological
conditions) in
combination with
content-based queries on
textual collections

Section 2.4.2 Events spatio-temporal
footprint

footprint detection of
events’ popularity (from
Twitter)

semi-structured text
(Twitter) messages with
explìcit geotags

unsupervised learning

clusters of punctual
geo-temporal footprints
of an event or topic
identified by a set of
keywords in a given
time-lapse

geo temporal analysis of
events reported in social
networks

Section 2.4.3 Tour miner mining popular tourists’
tours (from Twitter)

semi-structured text
(Twitter) messages with
explicit geotags

knowledge-based
semi-supervised
learning

popular tours identified
by a hierarchy of clusters
containing sets of “close”
paths (a path being an
ordered lists of
geographic entity
names)

geo temporal analysis of
tourists’ mobility based
on social network
messages

Section 2.4.4 Eliciting Geographic
Gazetteer

Extracting place names
and their footprints from
social networks

images, captions and
metadata from Flickr unsupervised learning geographic gazetteer of

place names
updating or creating
geographic gazetteer



ISPRS Int. J. Geo-Inf. 2021, 10, 330 10 of 32

2.4.2. Detecting Periodic/Episodic Events from Social Networks with Desired
Spatio-Temporal Granularity

The paper by [167] proposes an approach to discover events of interest from social
media by modeling the distinct spatio-temporal granularity. The main characteristic of
this study is flexibility in detecting events characterized by either an hypothetical periodic
or episodic timestamp, thus allowing confirming a priori knowledge of their possible
geotemporal regularities. Given a set of sources of spatio-temporal information, such as
Twitter, the methodology first performs a focused crawling of the selected social media
contents to collect candidate messages related to an event of interest; successively, the
collected messages are analyzed by means of an original, density-based spatio-temporal
clustering algorithm. The latter is defined by extending the DBSCAN algorithm to group
messages densely located in the spatio-temporal domain. Its output is a set of spatio-
temporal clusters with arbitrary shapes: these identify the areas on Earth where an event
matching the keywords (i.e., the parameters used to filter the messages) occurred within a
given time span, possibly with a given periodicity.

The exploration is interactive and multi-granular, allowing analysts to customize not
only the topics of interest, i.e., the category, but also the time period and the spatial density
so as to fit different spatio-temporal scales. One can specify (i) a set of keywords of interest
to filter the messages about an event or a topic (e.g., traffic jam, hurricane, landslide, football
match), (ii) the desired granularity of the time period of analysis (such as each day, month,
year) and (iii) the desired spatial granularity needed to form a cluster, defined by spatio-
temporal density of messages. Each cluster generated by the algorithm can be identified
by the list of the most representative keywords that were found in the messages of the
cluster, thus representing the cluster’s semantics. The use of thesauri [168] helps identify
the more general terms expressing the meaning of the specific terms found in individual
messages of the cluster. As far as the representation of the geographic footprint of each
cluster is concerned, a convex hull can be computed from the geographic coordinates of
the messages in each cluster to obtain a polygon representation of the geo-footprint.

2.4.3. Discovering and Summarizing Moving Object Trajectories from Twitter

The work described in [169] proposes an approach to identify, track, and analyze pop-
ular tours of tourists visiting a Region Of Interest (ROI) based on the Tweets they publish.

The solution is constituted by two main suites of tools: the FollowMe suite for tourist
identification and tracking and the TripsAnalysis suite for popular tour mining.

The FollowMe suite allows users to submit spatial queries to the Twitter API to find
hang tweets, i.e., tweets posted in the area of the monitored airports. For each user identified
by means of hang tweets, the FollowMe suite queries (through the Twitter API) his/her
timeline, i.e., the history of tweets posted by the user, to get tweets tracked.

Given a ROI, trips that occur in the ROI are reconstructed and extracted by querying
hang tweets and tracked tweets previously stored in the local data base. Reconstructed
trips are represented by a list of geographic coordinates, ordered according to message
creation time and are exported through the web service interface.

The Trip Analysis Suite performs the activities of knowledge discovery on trips col-
lected by the FollowMe Suite. A knowledge-based trajectory clustering method allows
analyzing trips based on customizable semantics. The analyst can specify both the de-
sired granularity and semantics of the analysis by providing a vector layer of geographic
slots (geo-slots) of interest. These are drawn from external interoperable sources that the
algorithm exploits to conflate the trips’ points to ease their grouping. For example, it is
possible to conflate and then analyse trips with respect to the visited municipalities, regions,
countries, city’s neighborhoods, ZIP codes, etc. This way, the algorithm first geo-partitions
the trips represented based on the ordered sequence of geographic coordinates into a
conflated trip representation consisting of an ordered sequence of geo-slot identifiers, i.e., a
string. This way, different geo-slots partitions provide different interpretations, scales, and
semantics of the analysis.
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The conflated trips can be easily clustered using a complete-link hierarchical trajectory
clustering algorithm using a string-similarity matching. Matching is applied to the con-
catenated identifiers of the geo-slots in the conflated trips’ representation. Finally, popular
tours can be identified by selecting a partition of the clusters’ hierarchy by specifying either
a threshold on the minimum desired inter-similarity of conflated trips within a popular
tour, or a minimum number of trips that a popular tour must contain.

2.4.4. Creation of Geographic Gazetteers by Volunteered Geographic Information Analysis

Constructing geographic gazetteers is very costly in terms of human effort and, once
created, they need to be constantly updated. The work [81] proposes to exploit data
science for the extraction of semantic information on toponyms, places, and POIs from
big geoinformation created by volunteers on the Web, specifically from geotagged Flickr
pictures. The aim is to enrich and update current gazetteers by automatically creating
digital gazeeteers of georeferenced place names such as “city center”, “shopping district”,
and POIs associated with keywords and geofootprints. The ultimate purpose is to support
diverse applications, such as geographic information retrieval (GIR), digital library services,
and systems using spatio-temporal knowledge. The geographic footprints are extracted
from the GPS locations of Flicker pictures while place descriptions are distilled from their
tags. Close GPS locations associated with similar textual descriptions created by distinct
volunteers are assumed as identifying the same place. These locations are generally not
perfectly matching but usually have a cluster structure in space. This suggested the authors
to use a distance-decaying function to measure the membership of candidate point locations
assigned to a place so as to present an intuitive user reputation model for trust evaluation.

2.5. Formal Geosemantics

The reason the use case in Section 2.5.1 is exemplar to the transition from implicit to
formal geosemantics is twofold. On the one hand, it upholds ontologies as the formalization
means, offering less constrained expressiveness to the modeling of geospatial entities;
on the other, it tackles a research issue, that of next generation maps, that has roots in
cartography and, as such, is typically bound to the interpretation of implicit information
mediated by the domain expertise of end users. Most applications of semantics to
geospatial information use ”lowercase” semantics, such as that of SKOS vocabularies [170]
which are not harnessing full expressiveness of ontology languages; others mistake RDF
encoding for semantics. Instead, it is important to keep in mind that far more expressive
modeling criteria (ontology languages) and inference tools (reasoners) exist. Section 2.5.1
provides both a conceptual model for geo-entities and an exemplar implementation.

Discovery, in the sense of “retrieval of geospatial information”, is largely dependent
on metadata. In turn, semantic characterization of metadata is regarded to as the pri-
mary means to achieve interoperability [171] in a domain that is otherwise fraught with
heterogeneities [14,56]. Unleashing this potential typically amounts to relating metadata
items to entities in the Web of Data (the Linked Open Data Cloud: https://lod-cloud.net/
accessed on 1 April 2021), such as terms from SKOS vocabularies, people and organizations
in FOAF representations [172], etc. Whereas this step may not be strictly necessary for
semantics-aware discovery [173], leveraging on these categories of data structures can
easily yield semantics-aware resource descriptions. The advantages of this practice are
manifold. On the one hand, these data structures may greatly improve user experience in
metadata production. On the other hand, traditional metadata can be enriched in order to
enable smarter discovery criteria. This is the focus of Section 2.5.2.

Let aside the aforementioned virtuous data structures, there is a large corpus of
web-accessible data structures that does not take advantage of ontologies expressed in
OWL/OWL2, such as those mentioned above, or schema languages compatible with them
(e.g., RDF Schema). As an example, consider the Microdata that is typically embedded in
web pages or the XML/JSON data structures that are often used in the enactment of APIs.
Section 2.5.3 proposes creation of “semantic twins” of JSON data structures to allow for

https://lod-cloud.net/
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transparently accessing heterogeneous data sources. It should be noted that although we
already considered the JSON format in the previous Section, in this context the semantics
underlying the JSON data (its implicit schema) is made explicit by the mapping to RDF,
assuming an interpretation. Some of the (augmneted) information contained in the RDF
data structures could be fed back to the original JSON ones so as to realize a JSON-LD [174]
representation of resources.

Finally, Section 2.5.4 describes a model for semantic mediation with the aim of im-
proving geospatial discovery, e.g., by exploiting the smarter metadata originating from
creation methodologies akin to those presented in Sections 2.5.2 and 2.5.3. In fact, it is
apparent that discovery constitutes a “crucial first step” in the enactment of Spatial Data
Infrastructures (SDIs) and nevertheless is “mostly neglected and approached following
old paradigms” [112]. Beside harnessing the richer information entailed by semantic char-
acterization of metadata, another key objective of this practice is to implement geospatial
data management as a machine-processable API, thus fostering FAIR access to geospatial
resources [175]. The rationale for this is that it makes little sense to strive for semantic
characterization of metadata and not accomplish the last mile toward their full exploitation
by automated agents. The synoptic view of the case studies analysed in relation to formal
geosemantics is reported in Table 2.

2.5.1. Holistic Map Representation with Geographic Scenarios

The work in [176] illustrates Geographic Scenarios [177], a notion developed on the basis
of General System Theory [178] integrating spatial, process, and relational information
related to geographical elements and georeferenced events. In contrast with reductionist
approaches (such as those dividing geo-entities into themes), Geographic Scenarios propose
a holistic view that should be better suited to represent hierarchical connections among
geo-entities. Moreover, by favoring space over time, state-of-the-art GIS may fall sort of
portraying dynamic relationships and causalities.

Basing the conceptual framework of Geographic Scenarios on an ontology allows for
expressing multi-hierarchy categorizations and fuzzy boundaries, portraying diverse and
complex entities at different scales and dimensions. Geo-characterization is the process by
means of which scenarios as well as their individual components are assigned properties
and relationships not only on the basis of traditional notions, such as regionalization and
classification, but also according to ecology and human-orientation (that are often regarded
to as mere thematic dimensions). Events are made first-class citizens in the ontological
modeling of geographic scenarios, thus allowing attribution of dynamic relationships
between geo-entities.

From a technical viewpoint, the realization that is presented combines relational
data with ontology classes and properties by applying SWRL rules [179]; the resulting
information is stored in a graph database for querying. Whereas the proposed example
does not fully demonstrate the augmented capabilities of geographic scenarios, modularity
of the possible semantic underpinning (the ontology) and the scalable solution for storage
(a graph database) suggest more extensive implementations.
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Table 2. Dimensions of case studies (Formal geosemantics).

Subsection Name Description Input Data Method Classification Output Data Potential Use

Section 2.5.1
Holistic map
representation with
Geographic Scenarios

Ontology-based
ingestion of geo-entities
into graph databases.

relational databases rule-based system graph databases

express diacronic
relations and causalities
with respect to
traditional GIS

Section 2.5.2 EDI/Liftboy semantic augmentation
of geospatial metadata

structured text
(metadata documents,
XML Schema-based)

information retrieval in a
graph database

metadata enriched (aka
annotated) with links to
RDF entities (often
defined by authoritative
sources) in semantic-web
(RDF) resources
(organized in graphs)

semantic discovery
(e.g., multilingualism,
semantic expansion);
disambiguation and
preservation of
information meaning (in
the future and with
respect to different
audiences)

Section 2.5.3 Semantic twins

augmentation of
geospatial metadata
based on heterogeneous
sources

structured and
semi-structured data,
JSON- and
HTML-based)

information retrieval in a
graph database

metadata enriched (i.e.,
annotated) with links to
json entities (exploiting
semantic twins that
grant consistency of
metadata items)

same as previous

Section 2.5.4 Semantic mediation for
FAIR access to resources

machine-actionable
search of geospatial
resources [once
geospatial service
interfaces (e.g., standard
CSW) has been extended
to semantic machine
actionable API]

REST service interface
(API) definitions
enriched with semantics

information retrieval
based on a task-ontology

machine-actionable
semantic augmentation
of REST API definitions
expressed in Hydra

enablement of semantic
agent
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2.5.2. Ex-Ante and Ex-Post Semantic Characterization of Metadata

In the last decade, our work group has been tasked with the development of the SDI
for a national flagship project on marine research. The key approaches were (i) creation of a
decentralized network of nodes providing data [180] and (ii) the extensive use of semantics-
aware technologies in metadata management [181]. The latter entailed development of a
metadata editor that could easily adapt to the ever-changing landscape of metadata formats
and profiles [182].

Since no tool in the state-of-the-art allowed for this degree of flexibility, we decided
to develop EDI, a brand new metadata editor [183]. Beside allowing for an extremely
user-friendly interface for metadata provision, the tool allows for both compliance with any
XML or text-based metadata format as well as pluggability of heterogeneous RDF-based
resources (made available as SPARQL [184] endpoints) as the reference data sources for
providing auto-completion functionalities. This feature allows for the integration of a broad
range of third-party data structures (e.g., code lists, controlled vocabularies, gazetteers,
and registries) in the Web of Data.

Field values can also be generated on demand, can duplicate the content of another
field, and even use generic XPath functions in order to mix-and-match values taken from
the output XML document. Finally, this output document can be fed into an arbitrary chain
of XSLT transformations (e.g., to generate a text-based output, such as JSON). All these
functionalities are governed by a template, expressed in XML, that regulates production
of the output document, defines the external data sources to be accessed via SPARQL, etc.
Please refer to [185] for a comprehensive description of the template language.

Addressing semantic augmentation of metadata at editing-time (i.e., ex-ante) leaves an
enormous amount of resource descriptions not featuring this important characteristic. As a
consequence of this, important capabilities enabled by semantically enriched metadata (e.g.,
multilingualism, query expansion) could not be implemented by geoportals in discovery
workflows. Then, we started working on offline, ex-post semantic lift of metadata records
and realized it was possible to employ templates the other way around to search traditional
XML metadata for correspondences in RDF data sources. The resulting application, named
Liftboy, is described in [186] and made available on GitHub (https://github.com/IREA-
CNR-MI/liftboy-python accessed on 1 April 2021) in its newer, improved implementation.

As a final note, we want to stress the importance of semantic characterization of
metadata. Typically, this is seen as a solution to semantic heterogeneity and an opportu-
nity for applying query expansion in information retrieval (in [186] the authors provide
examples for both of these). In our opinion, semantic metadata can serve a higher purpose,
that of “normalizing” resource description by conflation into a kind of pointer instead
of repeatedly duplicating metadata property values (such as keywords, names, e-mail
addresses of people, etc.) that frequently lead to inconsistencies, a practice we named
metadata delegation [187]. It would be easier if all references to a keyword provided by
a well-known controlled vocabulary were tagged with a unique identifier for that term
(the URI of a skos:Concept [170]), if all references to a researcher pointed to her FOAF
record [172], creating a web of decentralized metadata.

2.5.3. Exploiting Non-Rdf Data Structures for Semantic Metadata Creation

This case study builds on a software named SPARQL-Generate (https://ci.mines-
stetienne.fr/sparql-generate/ accessed on 1 April 2021) [188] that extends the syntax of
SPARQL 1.1 [189] with constructs that allow for extracting data from heterogeneous data
structures and generating RDF descriptions. The application to the geospatial domain we
describe is production of metadata for samples (also called specimens) in the International
Geo Sample Number (IGSN) format [190]. The target data structures are the entities made
available by the European Long Term Ecological Research Network (eLTER) in its Sites and
Data Registry (DEIMS-SDR) [191,192] (specifically, the entities representing activities, sites,
and sensors).

https://github.com/IREA-CNR-MI/liftboy-python
https://github.com/IREA-CNR-MI/liftboy-python
https://ci.mines-stetienne.fr/sparql-generate/
https://ci.mines-stetienne.fr/sparql-generate/
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We wanted to build on EDI, the metadata editor presented in the previous Section,
but the originating sources are in JSON format and thus could not be directly integrated
in the autocompletion functionalities provided by the former. We then decided to create
RDF descriptions as signpost for the aforementioned entities and relate samples to them by
plugging-in these RDF “semantic twins” in a custom EDI template. Then, the metadata
maintainer can access the HTML5 interface generated by the EDI client and select the
entities in the originating data structures via the many widgets made available by the
software, drawing information from external data structures.

2.5.4. Semantic Mediation for FAIR Access to Resources

This case study considers the articulation of geospatial discovery as a web API in order
to make catalogs accessible by automated agents. One may argue that the Catalogue Service
for the Web (CSW) by OGC [193] serves this purpose and, of course, when the automated
agent knows where the endpoint is and which protocol to use, resource harvesting and
search are straightforward. Still, when the agent only knows the homepage of the data
provider and no information on the protocol applying, these operations may get difficult
to achieve.

The problem (and the link to the subject of this paper, i.e., semantics) is that the
Web, as experienced by human agents, is unlike web APIs in that there is a semantic gap
to be bridged [194] before machines can fully participate. Overcoming this gap requires
internalizing the key principles of REST (REpresentational State Transfer) as expressed by
Roy Fielding in his Ph.D. dissertation [195]; specifically:

1. identification of resources
2. self-descriptive messages
3. hypermedia as the engine of application state

Please refer to Chapter 5 of the dissertation for an explanation of these. The attentive
reader may already have spotted how the breadth of this research topic can be extended so
as to encompass FAIR (Findable, Accessible, Interoperable, and Reusable) practices [175].

Since their inception, the FAIR principles have been deeply rooted in the notion of
machine-actionability. Among the technologies for a machine-actionable Web, it is generally
acknowledged that, despite the apparent differences, there is a broad overlapping between
REST principles and FAIR practices (FORCE11 Guiding Principles for Findable, Accessible,
Interoperable and Re-usable Data Publishing: https://www.force11.org/fairprinciples 1
April 2021). In fact [196], the machine-actionable behaviors of REST match the requirements
of (at least) the first three letters in “FAIR”, as both recur to specification of semantics for
their enactment and both rely on resolvable identifiers.

In order to achieve machine-actionability for geospatial services, the European Plate
Observing System research infrastructure [197,198] exploits Hydra [199], an RDF vocabu-
lary that is capable of expressing the mechanics of APIs in a way that is both intelligible
to automated agents and also semantically rich. Please refer to the Hydra Core Vocab-
ulary (https://www.hydra-cg.com/spec/latest/core 1 April 2021) for a more thorough
descriptions of the features of this formalism.

The potential of this characterization of APIs is apparent. As an example, search for
processing services matching a given set of parameters, such as the Normalized Differ-
ence Vegetation Index (NDVI) for a specific bounding box can greatly take advantage of
semantics-aware service description [200]. Moreover, automated workflow composition
on the basis of more precisely defined inputs and outputs can be easier than with other
technologies [201].

2.6. Powerful Geosemantics

There are concepts and relationships in the real world that are intrinsically imprecise
and fuzzy, due to their gradual nature. This characteristic is particularly evident in the
geographic context, in which natural entities and spatio-temporal phenomena are charac-
terized by blurred and time-varying contours. For instance, it is impossible to encode in a

https://www.force11.org/fairprinciples
https://www.hydra-cg.com/spec/latest/core
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classic ontology based on OWL vague concepts like “most streets in Naples center are very
narrow”, which involve some fuzziness for which a crisp definition does not make sense.
What is the size of a street that makes it “narrow”? This is a matter of degrees depending
on a subjective interpretation and, certainly, there is not a crisp transition between a street
being large and narrow that may be agreed upon by all observers. The term most means that
there are exceptions, i.e., a few streets are large, but its hard to quantify a crisp percentage.
Furthermore there may be cases in which one needs to define a fuzzy concept hierarchy, a
fuzzy taxonomy, in which a class is a specialization to a degree of several super classes such
as “In Italy churches, beside being (1) places of worship, are often (0.8) historical buildings”.
Furthermore, it may be necessary to define fuzzy relationships between concepts such as
in “bell towers are very close to churches”.

Another possible source of imperfection occurs when an ontology is used for quality
assurance to tag observations such as in Citizen Science (CS) projects. Such projects are
at present a common practice to collect geospatial data in many domains such as natural
sciences by involving volunteers to create georeferenced observations of objects of interest.
A volunteer may be not completely sure about his/her observation, which is the case of
epistemic uncertainty. This may happen because (s)he does not have adequate knowledge
of the problem or because of deficiencies in the means of observation. This may also happen
when the domain knowledge is precise.

Finally, there are more complex situations that may involve both ill-defined knowledge
and epistemic uncertainty [202].

To cope with the above issues, powerful semantics approaches are needed which
“extend” classic ontologies with the ability to represent and manage uncertainty and
imprecision: To this end, the literature proposes soft ontologies [12]. In particular, there are
three main groups defined on the basis of the probabilistic, the fuzzy, and the possibilistic
or evidential frameworks. They have been adopted for extending propositional logic with
probability, possibility, belief, or truth of a statement.

Fuzzy ontologies have been defined to model ill-defined knowledge with several
purposes, depending on the kind of imperfection they need to represent and manage in the
application [202]. Although a standard representation of a fuzzy ontology is still to come,
a lot of researches have fuzzified the existing Description Logics (DL) and have defined
fuzzy DL reasoners. The most up-to-date and complete fuzzyDL ontology reasoner has
been proposed in [203].

To model epistemic uncertainty, fuzzy ontologies have been defined within a possi-
bilistic framework that deals with certainty and possibility degrees of truth thus modeling
the epistemic uncertainty characterizing experts’ subjective knowledge and the evaluation
of the certainty of this knowledge. To this end, several possibilistic DL reasoners have been
defined [204], which allow for representing and reasoning on uncertain statements such as
“It is possible that this town is an Historic Area”. To this end, each concept, relation, and
axiom is associated with a real value u in (0, 1] representing its certainty level.

Nevertheless, fuzzy ontologies do not allow to model the time varying nature of
concepts and their context-dependent meaning. Specifically, most geographic concepts are
represented by prototypes that vary with time: The prototypical modern city to an Italian
person has changed during centuries, and it different for Chinese people. Fuzzy set theory
cannot completely model how humans use concepts, in particular the fact that their mean-
ing is influenced by context and states that vary with human knowledge in time. To this
end, the framework known as state-context-property (SCOP) based on quantum mechan-
ics [205] has been defined to map elements taken from operational foundations of quantum
mechanics (like states, measurements, and observables) onto concepts and contexts.

In the following Subsections, we recap three case studies exploiting powerful semantics.
Their synoptic view is reported in Table 3. They have been selected as representative of distinct
application domains such as the creation of biodiversity observations (Section 2.6.1), remote
sensing to aid disaster management (Section 2.6.2), and dynamic urban planning (Section 2.6.3).
The first two of them exploit a fuzzy ontology enconding epistemic uncertainty of volunteers
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when creating georeferenced observations (i.e., VGI) and the vague and incomplete knowledge
of experts when interpreting a phenomenon from remote sensing evidence, respectively. By
representing epistemic uncertainty and vagueness of knowledge, it is possible to model the
distinct quality of the results of a decision process.

The last case study illustrates the application of the SCOP framework to model
retrieval of maps within a GIR with increasing precision, achieved by exploiting the
varying states of knowledge of user needs.

2.6.1. A Fuzzy Ontology to Support Volunteered Geographic Information Creation
and Search

Within the Space4agri [206] project, agronomists surveyed agronomic fields by tagging
the observed crops and their phenological growth stages based on an agronomic ontol-
ogy [207]. In this process, texts or pictures were added to report a difficulty or doubt of the
agronomists when selecting a phenological growth stage from the ontology. This is due to
different reasons:

• doubt in interpreting the meaning of the descriptions in the ontology;
• difficulty to distinguish the characteristic aspects of a phenological stage in the ob-

served crop sample, because of a deficiency of the observation means (e.g., a far point
of view);

• hesitancy to select a unique growth stage for several observed crop samples close in
space within the same parcel, because of variability of their characteristics.

This suggested the need for extending the classic ontology-based reasoning by rep-
resenting the epistemic uncertainty of the agronomists in creating VGI items (i.e., when
selecting tags from the ontology [207]). Specifically, volunteers can create georeferenced
annotations of crops they are observing in situ with the support of a fuzzy ontology. They
are bound to select linguistic predicates, possibly fuzzy, to tag the observed crops and
with each selected predicate they can associate a degree d in [0,1] representing the overall
deficiency of their observation. This way, they can represent epistemic uncertainty due
to both limitations of the means of observation (e.g., a far point of view, low resolution
of the means of observation) and difficulty of precisely quantifying some properties of
the observed crops. The linguistic predicates such as “crop has large leaf”, “crop has long
stamen”, “crop has many branches” describe possibly fuzzy properties of the distinct kinds
of crops: For example, a rice crop during its germination can appear with “elongated and
thin branches” and “very small seeds”. The semantics of these linguistic predicates can
be defined by level-1 fuzzy sets (whose membership degrees are numeric in the range
[0,1]). The fuzzy ontology can then explicitly represent linguistic concepts in both symbolic
form (encoded by the linguistic terms “large”, “long”, “many”) and quantitative form.
The latter is expressed by the membership functions defined on the numeric domains of
the properties: For example, “large” is defined with a membership function on numeric
values in cm. In the fuzzy ontology, compatibility between linguistic predicates is rep-
resented by Level-2 fuzzy relations, i.e., fuzzy sets on multidimensional basic domains
whose membership degrees are not numbers but linguistic values. Fuzzy relations between
linguistic predicates are used to perform approximate reasoning in the fuzzy ontology to
automatically classify the crops, possibly into distinct types with different membership
degrees. The defect degrees are interpreted as minimum thresholds, i.e., uncertainty levels,
on the compatibility degrees between the linguistic predicates so that the final membership
to a type of crop is modified by epistemic uncertainty. When formulating queries to the
database of georeferenced crop observations, for example, requesting to map ”rice crop
fields”, the stored observations can be mapped Onto different shades of color depending
on their membership degrees to type “rice crop”, thus accounting for both fuzziness and
observation uncertainty.
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Table 3. Dimensions of case studies (Powerful geosemantics).

Subsection Name Description Input Data Method Classification Output Data Potential Use

Section 2.6.1 Fuzzy ontology
supporting VGI

VGI quality assurance
and assessment by
modeling both
imprecision/vagueness
of domain knowledge
and uncertainty of
volunteer’s perceptions

VGI items created by
selecting linguistic
predicates from a fuzzy
ontology and by
associating uncertainty
of observations

fuzzy computational
intelligence

VGI quality assessment
based on qualitative
reasoning (level-based
uncertainty reasoning)

quality assurance and
assessment; ontology
enrichment

Section 2.6.2 Environmental status
indicator mapping

fuzzy classification of
standing water from
remote sensing images

remote sensing images
and in situ observations
plus incomplete (fuzzy)
ontology (contributing
factors and their (soft)
constraints to derive
partial evidence of
watered water)

fuzzy computational
intelligence+ machine
learning

identification of watered
areas and the fuzzy
ontology enrichment

monitoring water bodies;
ontology enrichment

Section 2.6.3 Modeling user
interaction in GIR

modeling user intention
and concepts’ status

State-Context-Property
representation of
concepts and user
queries

context-sensitive
measurement of
conceptual distance

identification of
collapsed states
representing answers to
the user intention

modeling evolving and
context dependent
geographic concepts
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2.6.2. Fuzzy Ontology to Support Remote Sensing Image Interpretation

In remote sensing, Geographic Object-Based Image Analysis (GEOBIA) groups tech-
niques aiming at segmenting and classifying objects and phenomena (represented by
groups of pixels sharing common properties) in satellite images based on image analysis
procedures that rely on a priori expert knowledge [35]. In recent years, application of on-
tologies enconding experts’ knowledge is emerging [14]. Ontologies are used to associate
some perceived concepts with their data representation [35]. A widely applied approach
to detect the geographic footprint of environmental phenomena is to compute spectral
indexes (SI) maps. SI values integrate reflectance measurements at different wavelengths
into a synthetic feature that can highlight some perceived aspects of the phenomenon in
each pixel. SI maps are then segmented to identify target phenomena, such as vegetation
presence and vigor (biomass presence, Leaf Area Index, Chlorophyll content, etc.), bare soil
condition, and soil properties composition, burned areas, water presence, and so on. The
segmentation consists of thresholding the pixel SI values by different thresholds specified
in the ontology to define the different environmental phenomena.

Nevertheless, using the same ontology to segment a given phenomenon such as ”green
areas” in a new image may cause inaccuracies with many omissions and commission errors,
since the value of the threshold must be tuned depending on several factors, such as the
context and observation conditions. In fact, accurate calibration is needed to set a proper
threshold for each study area. Thus uncertainty and imprecision must be represented
since the kind of knowledge is perceptual by very nature [35]. These are the reasons why
powerful semantics approaches are appealing. In fact, these techniques allow for explicit
representation of perceptual characteristics of phenomena in images by means of fuzzy
ontologies. Thus, they can cope with the limitations of both traditional GEOBIA solutions
using ontologies and machine learning techniques requiring huge amounts of training data
often unavailable.

In [162], an approach based on powerful semantics was proposed to map standing
water areas from optical multispectral remote sensing images. Ill-defined knowledge of
experts on the perceptual characteristics of standing water within optical images is repre-
sented by defining fuzzy sets on spectral indexes identified as features. The membership
functions of these fuzzy sets relax the crisp segmentation thresholds defined in the vast
literature on standing water mapping so as to tolerate imprecision and uncertainty. A
fuzzy ontology is thus defined describing standing water in terms of fuzzy sets on spectral
indexes. For each spatial unit with given values of spectral indexes, partial evidence de-
grees of standing water are computed by evaluating the membership degrees to the fuzzy
sets in the fuzzy ontology. Finally, the partial evidence degrees in each spatial unit are
combined by applying a fuzzy aggregation operator, learnt by a shallow machine learning
algorithm trained on a small reference data set. Beside not requiring big training data,
the approach offers the advantage of explicating the criteria used to map standing water,
allowing discovering how many spectral indexes, which of them, and to which extent they
contributed to map standing water in each spatial unit. The fuzzy ontology with new fuzzy
relationships between fuzzy concepts.

2.6.3. State-Context-Property Framework to Model Human Interaction within a
Geographic Information Retrieval System

According to [208], human-computer interaction is based on the exchange of words
(or graphical tokens on maps) which are interpreted in the context of the conversation.
The words used may originally have a broad meaning; through conversation the context
becomes more precise and the concepts obtain more specific meanings. The authors present
a proof of concept that shows the selection of several predetermined map types (e.g., street
map, political map, map for hiking, ski routes) in a GIR by formalizing their approach in
SCOP [205]. Specifically, SCOP is applied to predict an answer to the question: “Which
map is appropriate for a given context?” where the context is declined as the intended
purpose of the user.
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A concept and a context serve as input parameters to the inference model that cal-
culates the collapsed state and returns it. In this collapsed state, probability values for
prototypes of the concept can be calculated. A use case is illustrated, in which a user states
to a GIR query interface that she needs a map, without stating the kind of map. So far the
concept ”map” is in ground state, where all maps have some non-zero probability to be
relevant. The user then states the intended usage that is to go on a bicycling trip. Now
the state of the concept “map” collapses into a bicycling map. The user interaction may
continue to indicate the region where the trip is planned, and this new information further
restricts the map to an area. The application of SCOP is still at its early stage; it needs
further developments and investigations to be practically applied, but its potential is great
as far as prototypical modeling of contexts and states is concerned.

3. Results and Discussion

To organize the material, we started from the notion of semantics as a function that
maps the world of syntax onto the world of meaning, in analogy with the studies on
denotational semantics [209]. Once put on these lenses, we analyzed the presented case
studies considering the original information they dealt with (syntactic objects with a
certain amount of semantics), the meaning that is extracted and formalized (the new
semantic objects), and the techniques that are applied to map the former onto the latter
(the incremental semantic mapping function). This analysis of the case studies is presented
in Table 4, where each row resumes one of them.

The first two columns identify the case study by indicating the corresponding sub-
section and a short name. In the columns that follow, one can find information about the
mapping of the input information onto the new semantic objects: Specifically, column
3 contains the description of the input information pertaining the case study; column 4
provides the incremental semantic function that is used to map the original information
with partial semantics onto the output with augmented meaning; finally, column 5 indicates
the final information, i.e., the semantic domain of the case study. Column 6 indicates
the delta between the input and output information; finally, column 7 enumerates the
keywords, among those on the right side of Figure 2, that can be related to the case study:
The more relevant keywords are in bold font and are assigned a weight w = 2 in the analysis
that follows.

Here, complexity degree is intended as the level at which semantics is made explicit
in either the input or the output data structures considered by the specific case study.
Specifically, the complexity degree is an integer in the range 1–7, following the principle
of indiscernibility of Miller [210]. The general criterion for attributing this value is that
complexity lower than 4 accounts for objects presenting scarce or no machine understand-
able information about their meaning; values between 4 and 7 indicate that meaning is
more and more machine understandable and processable. For instance, the most simple
case is that of unstructured text (complexity = 1), such as in case study 3.1 where input
is constituted by free text keywords. The degree increases when more information is
added such as in case study 3.2 and 3.3 (complexity = 2) where input is enriched both by
the presence of structure (JSON documents) and by geographic coordinates. When the
previous information is further augmented, complexity increases (complexity = 3) such
as in the output data of case study 3.1 where uncertainty degrees are added. The next
step in explication of semantics may involve schema information or categorization of data
(complexity = 4). Then, when relationships among the entities (topological, order, metric,
broader/narrower) are taken into account, complexity increases to 5. Complexity is 6 when
vague and uncertain concepts and relationships are represented. Finally, when information
can be generated by approximate reasoning or has fully reached semantic interoperability,
complexity is 7.
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Table 4. Dimensions of case studies.

Subsection Name
Complexity Degree

of Input Data Explicit
Semantics

Incremental Semantic
Function (Methods,

Techniques)

Complexity Degree
of Output Data

Explicit Semantics
Added Semantic

Value Keywords in Geosemantics (cfr.Sankey Diagram in Figure2)

Section 2.4.1 GeoFinder 1
euristic rules and explicit
geographic information in

gazetteer
3 2

Geographic Information Retrieval; semantic enrichment/tagging/annotation;
gazetteer; geoparsing; geonames; place-based information systems;

geo-comparison; extraction of spatio-temporal information

Section 2.4.2 Events spatio-temporal
footprint 2 clustering 4 2

semantic enrichment/tagging/annotation; geo-comparison; extraction of
spatio-temporal information; events, change discovery; thematic/spatial and

temporal perspective

Section 2.4.3 Tour miner 2 knowledge-based clustering 5 3

geo-comparison; folksonomies; semantic enrichment/tagging/annotation;
extraction of spatio-temporal information; events, change discovery;

thematic/spatial and temporal perspective; (Geographic) Knowledge graph;
geospatial statistics

Section 2.4.4 Eliciting Geographic
Gazetteer 2 statistic analysis and clustering 4 2

Geographic Information Retrieval; semantic
enrichment/tagging/annotation; gazetteer; place-based information systems;

folksonomies; geo-comparison; extraction of spatio-temporal information;
Place location, identity, meaning; geospatial statistics; top-level ontologies

Section 2.5.1
Holistic map
representation with
Geographic Scenarios

4 SWRL rules combining
relational data and ontologies 5 1

Ontology for modeling; Domain ontologies; Ontology-based info extraction;
Semantic enrichment/tagging/ annotation; Thematic, spatial, and temporal

perspectives; Knowledge representation languages (OWL)

Section 2.5.2 EDI/Liftboy 5

entity annotation. Specific
metadata profile specifying
where and how to find the

Semantic Web (RDF) resources

7 2

Domain ontologies; Linked Geo Data/LOD/Linked Sensor Data; Gazetteers
(GeoNames)/temporal gazetters; Spatial RDF and SPARQL; Ontology-based

info extraction; Semantic enrichment/tagging/ annotation; Knowledge
representation languages (OWL); Semantics-driven user

interfaces/interaction paradigms/Semantic engineering of human
communications

Section 2.5.3 Semantic twins 4

same as example EDI/Liftboy,
but to grant consistency of

metadata items the semantic
twins of JSON entities is

exploited

7 3

Domain ontologies; Linked Geo Data/LOD/Linked Sensor Data; Gazetteers
(GeoNames)/temporal gazetters; Spatial RDF and SPARQL; Ontology-based

info extraction; Semantic enrichment/tagging/ annotation; Knowledge
representation languages (OWL)

Section 2.5.4 Semantic mediation for
FAIR access to resources 5 information retrieval based on

an application ontology 7 2

Ontology for encoding; Application ontologies; Geographic Information
Retrieval; Linked Geo Data/LOD/Linked Sensor Data; Semantic

enrichment/tagging/ annotation; Knowledge representation languages
(OWL); Semantics-driven user interfaces/interaction paradigms/Semantic

engineering of human communications; Semantic markups for Web services

Section 2.6.1 Fuzzy ontology
supporting VGI 6 fuzzy rule based inference

engine 7 1

task-ontology; ontology for modeling; ontology for encoding; sensor and
observation ontology; qualitative reasoning; application ontologies; ontology
design pattern; ontology-based information extraction; semantics-driven user

interfaces

Section 2.6.2 Environmental status
indicator mapping 5

incomplete (fuzzy) ontology +
machine learning exploiting in

situ classified data
7 2

task ontology; ontology for modeling; ontology for encoding; qualitative
reasoning; application ontologies; ontology design pattern; ontology-based

information extraction

Section 2.6.3 Modeling user interaction
in GIR 5 inference in SCOP framework 7 2 conceptual space; semantic engineering of human communications;

qualitative reasoning; Non-representational formalisms
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The four case studies presented in Section 2.4 share the same type of input geoinfor-
mation, which is essentially not explicit, being dispersed within unstructured and loosely
structured texts. In the output geoinformation of these case studies, semantics is made
explicit but not always in a standard, interoperable format; because of this, it may be
difficult or even impossible to reuse the results in different contexts.

The first case study in Section 2.5 portrays a model exploiting semantics at its full
potential, via ontologies. The second applies to semi-structured geoinformation in the form
of metadata, possibly compliant with OGC standards. The third case study involves struc-
tured (JSON) and semi-structured (HTML) information that lacks the relations between
the entities involved (e.g., between descriptions of sensors and the corresponding points
of contact) and, in general, can not be easily reused in a Web of Data context. Finally, the
fourth case study applies to unstructured information intended to the human agent (i.e., the
specification of computer interaction protocols). For each of these, the output is information
that can be shared and reused in an interoperable way by enabling querying and retrieval
in a Linked Data perspective. The first two case studies in Section 2.6 involve explicit and
rich geoinformation in the form of soft ontologies, while the last case study uses the SCOP
formalism. All these case studies enable qualitative and approximate reasoning to deduce
novel geoinformation automatically.

A preliminary observation that can be made is that complexity of the inputs is lower
for the case studies in Section 2.4, medium for those in Section 2.5, and maximum for
the case studies in Section 2.6. The same for the outputs. More insights come from cross-
referencing of the case studies and the keywords listed on the right of Figure 2, yielding the
representation in Figure 3. This last figure illustrates the weighted associations between case
studies and keywords: Case studies within the same Section (i.e., associated with the same
form of geosemantics) are characterized by shades of the same color (yellow for implicit,
blue for formal, and grey for powerful geosemantics). On the x axis, the length of the bar
represents the different importance of the method/technique in the case study while the
pair hue-color uniquely identifies both the case study and its belonging semantic category. It
can be visually noticed that the case studies classified in the same form of geosemantics are
mostly associated with distinctive keywords. For example, the case studies in Section 2.6
(powerful geosemantics) are associated with “Non-representational formalisms”, “Task
ontologies”, and “Qualitative reasoning”. Nevertheless, some keywords (e.g., “Semantic
enrichment/tagging/annotation”) are associated with case studies classified in ”adjacent”
forms of semantics.

To confirm the conjecture suggested by Figure 3, i.e., that the three geosemantics
forms are good categorizations for the keywords, we also computed the similarity measure
known as Jaccard coefficient between any pair of case studies on the basis of the afore-
mentioned weighted keywords, as shown in Figure 4. The figure clearly shows that the
intra-similarities (regarding pairs of case studies belonging to the same form of geoseman-
tics, grouped within the colored rectangles) are greater than the inter-similarity degrees
between pairs of case studies classified as different forms of geosemantics (i.e., appearing
outside the colored rectangles).

It can be noticed that all case studies have greatest intra-similarity with another case
study of the same geosemantics form. Only case studies in the yellow group share some
inter-similarity with those of the blue group, which is anyway an order of magnitude lower
than the intra-similarity. Specifically, as far as the case studies dealing with the implicit
form of geosemantics are concerned, their overall intra-similarity, computed as percentage
of shared keywords among all the case studies of the same category, reaches 54.3%, while
their overall inter-similarity with any other case study of the others two categories is only
1.7%; as far as the case studies dealing with the explicit form are concerned, they have
an overall intra-similarity of 58% and an overall inter-similarity of 2.6%; finally the case
studies dealing with the powerful form have overall intra-similarity of 37% and an overall
inter-similarity of only 0.9%. These findings confirm our hypothesis that the three forms
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of semantics are characterized by distinguishing techniques, methods, and knowledge
sources in the geospatial domain.

Figure 3. Case studies and the keywords representing their main activities and technologies.

Figure 4. Jaccard similarity between study cases represented as fuzzy sets of keywords

Besides revealing the distinguishing features of the geosemantics forms, we also found
in this analysis that case studies related to implicit and formal semantics have many activi-
ties in common, identified by the shared keywords “Thematic spatial and temporal perspec-
tives”, “semantic enrichment/tagging/annotation”, “Gazetteers (GeoNames)/temporal
gazetteers”, and “Geographic Information Retrieval”. Formal and powerful semantics
share “Semantics-driven user interfaces/interaction paradigms/...”, “ontology based infor-
mation extraction”, “Application ontologes”, “Ontology for encoding”, and “Ontology for
modeling”. This means that there is not a clear-cut partition between the forms of semantics.
This shows that a “semantic continuum” is present, gently blending the groups, moving
from implicit to powerful semantics. Conversely, the approaches related to powerful and
implicit semantics share no keywords. These findings reveal that the ordering of categories
introduced by Sheth [4] also seems to emerge from our analysis even in the context of
geographic information.
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Figure 5 provides an even more synoptic view on the relations between the keywords
and the three forms of semantics, complementing Figure 2 with the findings described
in this section. In fact, the figure clearly visualizes that, once the keywords are grouped
according to the forms of semantics that are associated with the case studies presented
in this paper, they are much more clustered. This means that patterns emerge in the
geosemantics “forest”, thus making order among the diverse practices.

Figure 5. Comparison between the grouping of keywords in Figure 2 (on the right-hand side) and
the grouping induced by the three forms of geosemantics (via the case studies) makes it apparent
their greater distinguishing power.

Of course, this analysis can be enriched both by extending the meta-review to encom-
pass more methodologies, techniques, and knowledge bases and by analyzing other case
studies in the literature. Nevertheless we think that this contribution has the merit of setting
a methodological workflow to characterize the forms of semantics in geoinformation and
their preferred/elective approaches.

4. Conclusions

This paper applied the categories of semantics defined by Sheth to the domain of
geoinformation in order to orient the reader in problem solving. We first analyzed recent
reviews and editorial papers on geosemantics, mining which are the main technologies,
methodologies, research challenges, and solutions presented by the authors. Then, we
discussed selected case studies for the implicit, formal, and powerful geosemantics, re-
spectively. The two-step analysis culminates with cross-referencing these two sources in
order to confirm that the three forms of geosemantics are characterized by distinguishing
techniques, methods, and knowledge sources.
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The subsistence of this conjecture is attested by the Jaccard distances computed
between members of the same/different categories of semantics (see Figure 4). This can
also be visually assessed by looking at Figures 3 and 5. In the latter, it is also apparent that
there are fringe keywords associated with ”adjacent” categories (i.e., categories with similar
semantics explicitation degrees). This paper contributes to structuring the approaches
to semantics in geoinformation, partitioning the semantic continuum suggested in [6] in
discrete, distinguishing techniques and methods.

Further insight may come from categorizing in the three forms of semantics the papers
considered in the meta-review (Section 2.3) according to the associated keywords. Future
work will also investigate scaling-up of the workflow by applying content representa-
tion methods used in information retrieval. In fact, these can automatically identify the
keywords from the text of the reviewed literature.
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The following abbreviations are used in this manuscript:

CS Citizen Science
CSW Catalogue Service for the Web
eLTER European Long-Term Ecological Research
FAIR Findable, Accessible, Interoperable, and Reusable
FOAF Friend Of A Friend
FOL First-Order Logic
GEOBIA GEographic Object-Based Image Analysis
GIR Geographic Information Retrieval
IGSN International Geo-Sampling Number
IRS Information Retrieval System
NDVI Normalized Difference Vegetation Index
NER Named Entity Recognition
PID Persistent IDentifier
POI Point Of Interest
REST REpresentational State Transfer
ROI Region Of Interest
SEM Simple Event Model
SI Spectral Indexes
WKT Well-Known Text
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