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ABSTRACT Massive multiple-input multiple-output (MIMO) is playing a crucial role in the fifth generation
(5G) and beyond 5G (B5G) communication systems. Unfortunately, the complexity of massive MIMO
systems is tremendously increased when a large number of antennas and radio frequency chains (RF)
are utilized. Therefore, a plethora of research efforts has been conducted to find the optimal precoding
algorithm with lowest complexity. The main aim of this paper is to provide insights on such precod-
ing algorithms to a generalist of wireless communications. The added value of this paper is that the
classification of massive MIMO precoding algorithms is provided with easily distinguishable classes
of precoding solutions. This paper covers linear precoding algorithms starting with precoders based on
approximate matrix inversion methods such as the truncated polynomial expansion (TPE), the Neumann
series approximation (NSA), the Newton iteration (NI), and the Chebyshev iteration (CI) algorithms. The
paper also presents the fixed-point iteration-based linear precoding algorithms such as the Gauss-Seidel
(GS) algorithm, the successive over relaxation (SOR) algorithm, the conjugate gradient (CG) algorithm,
and the Jacobi iteration (JI) algorithm. In addition, the paper reviews the direct matrix decomposition
based linear precoding algorithms such as the QR decomposition and Cholesky decomposition (CD). The
non-linear precoders are also presented which include the dirty-paper coding (DPC), Tomlinson-Harashima
(TH), vector perturbation (VP), and lattice reduction aided (LR) algorithms. Due to the necessity to deal
with a high consuming power by the base station (BS) with a large number of antennas in massive MIMO
systems, a special subsection is included to describe the characteristics of the peak-to-average power ratio
precoding (PAPR) algorithms such as the constant envelope (CE) algorithm, approximate message passing
(AMP), and quantized precoding (QP) algorithms. This paper also reviews the machine learning role in
precoding techniques. Although many precoding techniques are essentially proposed for a small-scale
MIMO, they have been exploited in massive MIMO networks. Therefore, this paper presents the application
of small-scale MIMO precoding techniques for massive MIMO. This paper demonstrates the precoding
schemes in promising multiple antenna technologies such as the cell-free massive MIMO (CF-M-MIMO),
beamspace massive MIMO, and intelligent reflecting surfaces (IRSs). In-depth discussion on the pros and
cons, performance-complexity profile, and implementation solidity is provided. This paper also provides
a discussion on the channel estimation and energy efficiency. This paper also presents potential future
directions in massive MIMO precoding algorithms.

INDEX TERMS 5G, massiveMIMO, precoding, complexity, channel estimation, CF-M-MIMO, beamspace
massive MIMO, IRS, energy efficiency.

I. INTRODUCTION
Recently, there has been a tremendous increase in demands
for faster internet access as well as instant access to
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multimedia services [1], [2]. For instance, employment of
smart healthcare, smart cities, self-driving cars, and smart
energy systems, has reached stages wherein it is portended
that there will be nearly 39 billion active devices by the end
of 2025 [3], [4]. Figure 1 shows a significant increment in
the number of active connected devices in the last few years.
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FIGURE 1. Global growth in the total number of active connected devices
in the wireless services.

The most need characteristics are high capacity, high data
rates, high spectral efficiency, and high energy efficiency are
needed [3], [4].

Therefore, the fifth generation (5G) and beyond 5G (B5G)
communication systems have employed new technologies in
the context of the multiple-input multiple-output (MIMO)
schemes. Recently, remarkable research efforts have been
done to develop the conventional multi-antenna transmis-
sion techniques to achieve high spectral efficiency and high
link reliability [5], [6]. A well-known combination and effi-
cacious technologies have been introduced in 5G such as
the ultra-dense networks (UDNs), the machine-to-machine
(M2M) communication, the centimeter wave (cmWave) or
millimeter wave (mmWave), the spectrum sharing (SS),
the internet of things (IoT), and the massive MIMO
smart cities [7]–[10].

The mmWave technology corresponds to 30-300 GHz fre-
quency band and has its own propagation characteristics [11],
[12]. It has a larger bandwidth compared to the conven-
tional sub-6 GHz massive MIMO systems, but with an extra
path-loss [11]. In the literature of massive MIMO systems,
there are many research efforts concentrating on mobile
broadband type-high rate issues with large data packets. The
other application of interest is the massive M2M commu-
nications which have become the prevailing communication
model of IoT [13].

The massive M2M communications have been deployed
swiftly in the past few years and have a large number of con-
nected machines that are only sporadically active [13]–[15].
Furthermore, several detection schemes are utilized in the
receivers of MIMO systems, where various antennas transmit
multiple interfering signals, to separate the data symbols
which are corrupted by noise and interference [16].

In massive MIMO, the base station (BS) serves a large
number of single or few antenna terminals in the same band
of frequency [1], [17]. The main characteristic of the conven-
tional sub-6 GHz massive MIMO system is that the number
of antennas in the BS is distinctly larger than the number of
antennas for all user terminals within each cell [16], [18].

In addition, each user’s equipment (UE) in the massive
MIMO systems has its own processing unit to detect the data.

Considering the large number of antennas in the BS,
the small processing ability in each UE leads to an intractable
detection process and needs a very large processing time.
Here, the amazing mission of the precoding technology is
appeared to transform the detection mechanism from the
receiver side into the transmitter side where a large processing
ability can be offered [19], [20]. Although the BS has strong
and high processing ability, the demand to find lower com-
plexity precoding algorithms is still required.

This survey focuses on the massive MIMO notion and
various types of precoding technologies for systems operating
below 6 GHz carrier frequency. It covers the algorithms of
linear precoding, non-linear precoding, the peak-to-average
power ratio precoding (PAPR), and machine learning in
precoding algorithms. In addition, it will comprehensively
describe the complexity and implementation issues of each
precoding algorithm.

A. RELEVANT PRIOR ART
In last few years, several research papers were published to
address the issues of massive MIMO systems [16], [21]–[30].
In [21], a comprehensive survey of the linear precoding algo-
rithms for massive MIMO for various cell scenarios has been
introduced. It also addressed some of the designing issues and
practical implementations of precoding algorithms. But it did
not include the issues of the non-linear precoding, the PAPR
precoding, and the machine learning role in precoding
algorithms.

In [22], the effect of the pilot contamination and impair-
ments of hardware in massive MIMO systems are discussed.
Furthermore, it reviewed the potential reasons for pilot con-
tamination, e.g. non-reciprocal transceivers and hardware
impairments. It also classified the pilot contamination accord-
ing to various mitigation techniques as a pilot-based tactic
and a subspace-based tactic. In [23], a comprehensive survey
of linear precoding techniques for massive MIMO systems
under a single-cell (SC) scenario is provided. The perfor-
mance of various linear precoding techniques is compared
and analyzed in terms of sum-rate, and spectral efficiency.

In [24], a survey of the mmWave massive MIMO system
challenges and benefits was introduced. As it addressed the
boosting in user throughput, spectral efficiency, and energy
efficiency. It also considers the effects of the modulation
scheme, the signal waveform, the multiple access tech-
nique, the user scheduling algorithm, the fronthaul design,
the antenna array architecture, and the precoding algo-
rithm. Nevertheless, it is concluded that the performance of
mmWave massive MIMO system in practical scenarios and
real-life applications still under intense research until this
moment.

In [25], the propagation channels of massive MIMO sys-
tems are extensively investigated and main differences from
the traditional MIMO systems are discussed. In addition,
it reviewed the characteristics, measurements, and channel
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models. Few futurity channels models directions for mas-
sive MIMO systems are also presented and analyzed. It is
concluded that the propagation channels will still an open
research direction in the advent few years. In [26], a com-
prehensive review of the various embodiments of digital and
analog beamforming designs by employing average chan-
nel state information (CSI) has been presented. The hybrid
beamforming design has feasible limits of the number of
radio frequency (RF) chains. In addition, it is shown that the
hybrid beamforming designs are favorable for diminishing
the cost of hardware and the overhead of training. Never-
theless, the hybrid beamforming design is considered as a
trade-off between performance and complexity in the various
applications designs and channel characteristics.

A survey in [16] introduced a detailed clarification of
the fundamentals of massive MIMO detection, and recited
the past twelve-year history of massive MIMO detec-
tion. The authors offered an extensive review and mile-
stones in the development of optimal, near-optimal, linear,
approximate inversion based massive MIMO detection algo-
rithms. Furthermore, the authors have briefly explored some
of the non-linear small-scaled MIMO detectors and their
applicability in the massive MIMO systems. In addition,
recent improvements in detection process with incorporated
machine learning

In [27], a comprehensive review of various prominent
mmWave massive MIMO systems, like multiple access tech-
nologies, hybrid precoding and combining, cell-free mas-
sive MIMO (CF-M-MIMO), non-orthogonal multiple access
(NOMA), and simultaneous wireless information and power
transfer (SWIPT) technologies is presented. In [28], a brief
overview of massive MIMO localization has been provided.
With respect of performing localization of massive MIMO
systems, user’s localization methods and refined channel esti-
mation routines have been advanced. Several spatial signa-
tures of users can be employed in massive MIMO systems
to meet the demands of 5G technology and to specify the
locations of the users.

In [29], a survey of the detection techniques in uplink (UL)
massiveMIMO systems is introduced. The authors concluded
that the research efforts on the detection techniques for UL
massive MIMO systems are still in an early phase. There
are lots of considerable and imperious issues that need to be
resolved in the future, e.g. using the deep learning algorithms
for detection techniques, and finding suitable detection tech-
niques to work in Hetnets wireless communications.

The authors in [30] over-viewed the artificial intelli-
gence (AI) implementation, and addressed several issues in
the massive MIMO systems. AI can be exploited to improve
the user experience and effectively utilize the radio resources.
The BS in massive MIMO systems needs to produce and
sense huge data for communication. Thus, the demand for
a new technology, that can learn and predict the system
requirements, has been increased. Hence, more accuracy with
lower complexity can be offered by employing an effective AI
method to massive MIMO systems.

While the above research papers discuss a number of
key issues of massive MIMO systems, none of them exten-
sively review the precoding techniques. However, most of
these techniques focus only on the linear precoding detection
algorithms.

B. CONTRIBUTION AND OUTLINE
In this paper, an extensive survey on precoding algorithms
related to the massive MIMO systems is introduced. Our
particular focus is on performance and complexity trade-off
as well as the practical implementation of general precod-
ing algorithms. Although the survey in [21] is extensive,
the primary focus of the paper was only on linear precoding
in massive MIMO systems for different cell scenarios. For
instance, the linear matrix inversion approximation precoder
and fixed-point iteration-based linear precoding algorithms
are not covered in [21]. In addition, the non-linear precoding
algorithms, the machine learning based precoders, and the
PAPR precoding algorithms are also not reviewed in [21].

To our best knowledge, this is the first survey to review
the most types of precoding algorithms considering only
massive MIMO systems. In the literature of massive MIMO
systems, there is a plethora of precoding algorithms. The
target of this survey is to offer insights on such algorithms
to a generalist of MIMO communication systems. This paper
is also demonstrating the use of massive MIMO for B5G
where promising technologies are flashing such as the CF-M-
MIMO, beamspace massiveMIMO, and intelligent reflecting
surfaces (IRSs). Table 1 compares this paper with other prior
relevant articles.
The major contributions of this paper are summarized as:
• This paper reviews the massive MIMO precoding algo-
rithms and introduces their performance-complexity
profile so that the reader can find the differences
between various precoding algorithms with a wider
range of potential solutions. It starts off with a dive
into the literature of precoders for massive MIMO sys-
tems. Then, it introduces the benefits and challenges of
precoded massive MIMO systems. It then discusses the
basic linear precoders in massive MIMO systems.

• This paper surveys the corresponding linear precoding
solutions for massive MIMO systems starting with pre-
coders with approximate matrix inversion methods such
as the truncated polynomial expansion (TPE) algorithm,
the Neumann series approximation NSA) algorithm,
the Newton iteration (NI) algorithm, and the Chebyshev
iteration (CI) algorithm.

• This paper surveys the fixed-point iteration-based linear
precoding algorithms for massive MIMO systems such
as the Gauss-Seidel (GS) algorithm, the successive over
relaxation (SOR) algorithm, the conjugate gradient (CG)
algorithm, and the Jacobi iteration (JI) algorithm.

• This paper reviews the direct algorithms-matrix decom-
position based linear precoding algorithms such as the
QR decomposition algorithm and the Cholesky decom-
position (CD) algorithm.
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TABLE 1. Prior relevant articles.

• This paper comprehensively surveys the non-linear pre-
coders such as the dirty-paper coding (DPC) algorithm,
the Tomlinson-Harashima (TH) algorithm, the vector
perturbation (VP) algorithm, and the lattice reduction
aided (LR) algorithm. Thus, due to the necessity to
deal with high consuming power by the BS with a
large number of antennas in massive MIMO systems,
we have dedicated a special subsection to describe the
characteristics of the PAPR algorithms as the con-
stant envelope (CE) algorithm, the approximate message
passing (AMP) algorithm, and the quantized precod-
ing (QP) algorithms.

• This paper reviews the precoding in promising multi-
ple antenna technologies: the CF-M-MIMO, beamspace
massive MIMO, and the IRSs.

• This paper reviews the potential of machine learning role
in precoding algorithms.

• Finally, this work is also discussing the advantages
and disadvantages of each precoder based on the
performance-complexity profile as well as the imple-
mentation solidity.

Section II presents the benefits and challenges of massive
MIMO systems. Section IV describes themassiveMIMO sys-
tem model. Section V illustrates the precoding algorithms for
massive MIMO systems. Finally, section VII concludes the
paper and introduces the open research area in the precoding
process for massive MIMO systems. For convenient reading,
the outline of the paper is depicted in Fig. 2.

II. MASSIVE MIMO SYSTEMS: AN OVERVIEW
Massive MIMO systems are an expansion of the MIMO
technology which has been introduced since the third gener-
ation (3G) communication systems. Massive MIMO involves
hundreds to thousands of antennas occupied at the BS to serve
simultaneously many user terminals [31]. Figure 3 shows a
massive MIMO scenario to create directed beams in specific
small area to serve one or few users [32] and can be employed
to obtain the following benefits:

• Spectral efficiency: Massive MIMO systems achieve a
high spectral efficiency by exploiting a large antenna
array to originate more multiplexing gain [33]. Con-
sequently, each user equipment has an individual
down-beam which leads to offering spectral efficiencies
ten times higher than that in the conventional MIMO
technology [34].

• Energy efficiency: In massive MIMO systems, the gain
of transmitted signals is increased to the position of can-
didate users by pointing the beam of the antenna array
into a small region. Consequently, the massive MIMO
systems radiate less power and are more energy-efficient
systems [1]. Moreover, the transmit power is signifi-
cantly reduced when the number of transmit antennas
is increased [35]. By dint of the huge number of anten-
nas in massive MIMO systems, a BS can make several
beams at the same time and directly pointing them to
a particular user or more [32]. Then, the resources can
be used repeatedly in the same specific area. Thus,
the throughput could be increased without increasing
the transmit power by increasing the number of transmit
antennas [36]. Massive MIMO systems have the ability
to reduce the transmitted power 1000 times below con-
ventional MIMO and to maximize the data rates at the
same time [37].

• User tracking: As massive MIMO systems point narrow
signal beams to the users; user tracking become more
reliable and accurate [32].

• Cost efficiency:MassiveMIMO systems are constructed
with cheap ultra lower power amplifiers, which abstract
the need for expensive bulky electronic equipment. Fur-
thermore, it eliminates the need for bulky coaxial cables
which connecting the BS components [1]. These are a
glance of low-cost features in massive MIMO systems
which reduce the system implementation cost [38].

• Reliability: A large number of antennas in massive
MIMO systems advances high diversity gain, which
increases the link reliability and elasticity against
fading [39].
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FIGURE 2. Outline of the paper.

FIGURE 3. Massive MIMO system beamforming and its services.

• Robustness: Massive MIMO systems are more robust
against internal jamming and unintended interference.
Also, they have the ability to avoid one or few antenna
failures as a result of large number of antennas [40].

• Enhanced security: In massive MIMO systems,
the large number of antennas can be used to cancel the
signals from wilful jammers [41]. Moreover, massive

MIMO systems are also inherently strong against hack-
ers and passive eavesdropping attacks due to the orthog-
onal channels of receivers and narrow beams [42].

• Simple signal processing: For Massive MIMO sys-
tems with large antennas array, the BS immensely
surpasses the number of received terminals. This
leads to make the column vectors of the propaga-
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tion matrix asymptotically orthogonal under the most
favorable propagation assumption and that eliminates
the interference effects, fast fading, uncorrelated noise,
and thermal noise, and hence simplifies the signal
processing [43].

III. SIGNAL PROCESSING CHALLENGES
In massive MIMO, a large number of antenna elements
leads to a utilization of random matrix theory to confirm
the approximation accuracy of large dimension settings [44].
However, the mutual orthogonality among the vector-valued
channels is one of major properties and is called as ‘‘favor-
able propagation’’. However, the channel condition number
was used to indicate whether the propagation is favorable
or not. In other words, it is a proxy for how favorable the
channel is [45].

The work in [46] shows that the condition number could
lead to a misleading conclusion when the norms of the chan-
nel vectors are not equal. The favorable propagation has a
great impact to maximize the information rate under a power
constraint [46]. In [47], the favorable propagation condition
was analysed in a generic channel model for LOS and NLOS
propagation where a general steering matrix-propagation
matrix model was employed. The energy efficiency is also
highly affected by the statistical CSI.

In [48], an iterative power allocation algorithm has been
proposed based on sequential optimization, fractional opti-
mization, and random matrix theory. However, many chal-
lenges are kick-in when a large number of arrays are utilized
such as:
• Pilot contamination: Channel estimation is crucial in
massive MIMO systems [49]. To estimate the UL chan-
nel, the received terminal sends orthogonal pilot signals
to the BS. Furthermore, thanks to the channel reci-
procity feature in massive MIMO systems, the BS esti-
mates the downlink (DL) channel towards the received
terminal [50]. When the pilot signals in the cell and
neighboring cells are orthogonal, the BS acquires the
delicate estimation of the channel. However, in specific
resources, the number of orthogonal pilot signals is
limited [49].
As a result, this imposes the reuse concept of the
orthogonal pilots. Subsequently, the inter-cell interfer-
ence appears due to the use of the same set of orthogonal
pilots, and the BS will receive a linear combination
of channel responses from the cell and its neighboring
cells. This is known as a pilot contamination [51]. The
pilot contamination reduces the achievable throughput.
The same phenomenon occurs in the DL channel, the BS
directs the beamforming signal towards the received
terminals in its cell in addition to undesired received
terminals in the neighboring cells [52], [53].

• Channel estimation: Channel state presents the channel
response realization. However, CSI refers to the knowl-
edge of the channel states at the BSs. It is assumed
that the statistical CSI of random variables are available

anywhere in the network. In addition, as the channels
change, instantaneous CSI about current realizations
need to be acquired [7]. In other words, CSI depicts
the signal propagation, and has information about the
communication link between the transmitter and the
receiver. CSI elucidates the combined effects of fading,
scattering, power decay, and so forth. The performance
of massive MIMO systems increases rapidly with the
minimum number of transmitting or receiving antennas
when the CSI is idealistic [54].
Pilot signaling is a method to acquire the CSI where
the antenna transmits a predefined pilot signal. How-
ever, the transmission can be simultaneously received by
any antenna and compared with the known pilot signal
to estimate the channel from the transmitting antenna.
In case of two transmitting antennas, two orthogonal
pilot signals are normally needed. In other words, as the
number of transmit antennas increases, the number of
orthogonal pilot signals will also increases. The receive
antennas can ‘‘listen’’ to the pilots simultaneously where
individual channels were estimated to the transmit-
ters [7]. In other words, within the UL transmission,
the channel is estimated by the BSwith thanks to orthog-
onal pilot signals which are sent by the received termi-
nals. Within the DL transmission, the BS transmits pilot
signals towards the received terminals, and the received
terminals recognize the estimated channel information
for the DL transmission. Pilot signaling could cause an
overhead because every pilot signal could have been a
signal where payload data is carried. Therefore, the over-
head based on pilot signaling should be considered and
minimized.
The CSI, in the systems using frequency division
duplexing (FDD), requires to be estimated during both
the UL and DL transmissions. FDD systems use dif-
ferent frequency bands and consider different CSI cor-
responding to each band [49]. In order to obtain the
required CSI, the BS sends training symbols to the users.
Each user estimates the channel coefficients and trans-
mits the estimated channel vector back to the BS [55].
Duplex distance is usually utilized to separate the UL
and DL channels which may lead to a performance
consideration. The required time to transmit the DL
pilot signals is proportional to the number of BS anten-
nas [49]. This is a real challenge since the complexity
scales with the number of antennas. In other words,
with a large number of BS antennas in massive MIMO
systems, the use of FDD system becomes very hard
and infeasible to be implemented in practical applica-
tions [49]. Fortunately, using the time division duplex-
ing (TDD) offers a solution for the problem within the
DL transmission by exploiting the channel reciprocity
feature. The BS can estimate the DL channel from chan-
nel information within UL [49].
In TDD, the UL and DL operate in different time slots
but in the same frequency band. At the BS, the design
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of DL precoder depends on the channel estimate that
was obtained in the previous UL slot. In TDD, channel
reciprocity is usually assumed. In high speed scenarios,
the system has to be designed carefully to avoid a degra-
dation in the precoder performance [56]. A performance
comparison between TDD and FDD systems in [57]
shows that the TDD is more suitable in massive MIMO.
The FDD suffers from a considerable degradation in
performance in many channels. FDD can achieve a satis-
factory performance in line of sight (LOS) scenario and
high Ricean factors.
However, due to a limited number of orthogonal
pilots in massive MIMO systems in a specific cell
and neighboring cells, the pilot contamination prob-
lem becomes a considerable challenge for a channel
estimation [49], [58].
The Covariance matrix plays a crucial role for resource
allocation and pilot contamination. In a plethora of
massive MIMO papers, it is commonly assumed to be
perfectly known which could lead to misleading con-
clusions because the matrix dimensions vary with the
number of antennas and other statistics based on mobil-
ity. In practical scenarios, channels are spatially corre-
lated where channel elements are correlated. In order to
apply the MMSE channel estimator, covariance matrix
is required [59]. In [59]–[61], the large-dimensional
covariance matrix was estimated using a sample covari-
ance matrix. Principles of robust precoding under
imperfect CSI was comprehensively illustrated in [55].
A model for the uncertainty of the CSI can be devel-
oped based on a precoder to minimize the transmis-
sion power subject to SINR constraints for all channel
sets [55], [62]. In [63], a design of robust hybrid ana-
log/digital beamforming systems under imperfect CSI
was proposed where a norm-bounded channel error and
the MMSE were utilized to capture the imperfect CSI
conditions.
In [64], hardware cost and power consumption of a
hybrid analog/digital beamforming systems have been
lowered by a reduction of training sequence dimension
where a limited number of RF chains were utilized.
Toeplitz distribution theorem with specific antenna con-
figurations were applied to select the training sequence
parameter. In [65], a hybrid precoding scheme based on
equal gain transmission and the ZF has been proposed
to reduce the hardware cost and processing complexity
of massive MIMO systems. Detailed explanations of
hybrid precoding with hardware architectures and meth-
ods of deployment with the impact of CSI have been
comprehensively discussed in [66]. It was shown that the
hybrid beamforming has a critical impact in minimizing
the hardware cost since a small number RF chains at
the transceivers was utilized. Hybrid beamforming is an
energy efficient scheme because it reduces the power
consumption for each mobile device without a perfor-
mance degradation.

The channel capacity is highly affected by the instan-
taneous CSI, perfect CSI, and imperfect CSI. In [67],
the relationship between the channel capacity and the
CSI in different scenarios was determined when the
CSI is unknown at the transmitter, the CSI is perfectly
known at the transmitter, and the CSI is imperfect at the
transmitter. The impact of CSI on energy efficiency was
demonstrated in [67]–[69]. In [68], it was shown that
the CSI has a crucial impact on the energy efficiency
when transmitting over long link distances. However, its
impact is not critical in the short link distance scenario.

• Hardware Efficiency: The high computational com-
plexity of massive MIMO receivers limits the gain
that can be obtained in real applications. Therefore,
a design of energy-efficient massive MIMO systems has
attracted the attention of the research community in both
academia and industry [70]–[81]. In [70], a resource
allocation for energy-efficient in an orthogonal fre-
quency division multiple access (OFDMA) with a mas-
sive MIMO system was considered. In this paper, circuit
power consumption, imperfect CSI, and different QoS
were taken into consideration. The resource allocation
policies were updated based on the realization of path
loss and shadowing.
Numerical results show that the large number of anten-
nas is always useful for the communication system
capacity. However, it could not be a cost effective solu-
tion for enhancing the performance. In [78], a trade-off
between energy efficiency and spectrum efficiency was
considered by utilizing the channel states, the trans-
mit power and its allocation. In [81], the selection
of optimal subcarrier rates and power allocation to
obtain an optimal energy efficiency was comprehen-
sively demonstrated using an iterative approach. The
efficiency of power amplifiers was modeled as a func-
tion of the number of subcarriers utilized for trans-
mission. The water-filling and link adaption based on
CSI could be utilized to maximize the sum rate for
a transmission power in a frequency-selective chan-
nel. However, traditional water-filling is not the best
approach to achieve efficient and reliable subcarrier
power allocation. In [79], the subcarrier availability
was taken into consideration to maximize the transmis-
sion rate and energy efficiency. The proposed approach
has outperformed the water-filling scheme. In [80],
a new energy-efficient approach was proposed to reduce
the computational complexity of [78]. Energy optimal
link adaption and resource scheduling techniques were
derived in closed formswhere time average bit-per-Joule
metrics were taken into consideration.

• Data detection: The large number of antennas in mas-
sive MIMO systems causes a high computational com-
plexity and reduces the achievable throughput within
the signal detection. Moreover, all signals which are
transmitted from received terminals superimpose at the
BS and cause interference, which reduces the throughput
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and spectral efficiency [82]. The maximum likeli-
hood (ML) detector achieves the optimum performance
and has a strong ability to minimize the probability of
error. Due to a large number of antennas in massive
MIMO systems, the ML detector has an illicit com-
plexity [21]. Comprehensive research has been done
to find the optimal data detection method for massive
MIMO systems that can achieve a preferable throughput
performance with low computational complexity.
The classical non-linear detectors such as the succes-
sive interference cancellation (SIC) [83] and the sphere
decoder (SD) [84]–[86] yield acceptable performance.
Though, a large number of antennas increases the com-
putational complexity which makes the conventional
non-linear detectors impossible for massive MIMO sys-
tems. A comprehensive presentation of detection tech-
niques for massive MIMO is presented in [16]. There
are many linear detection methods that are consid-
ered for the UL detection in massive MIMO systems,
such as the zero-forcing (ZF) and minimum-mean-
square-error (MMSE) [21], [42], [87]. In ZF detectors,
the inter-antenna interference is moderated, but the addi-
tive noise is increased for tacky conditioned channel
matrices. TheMMSE detector considers the noise power
within the detection process accordingly. The MMSE
detector performance exceeds the performance of the ZF
detector [88].
Though the ZF and the MMSE based detectors give a
good throughput performance, they comprise a matrix
inversion during the processing which makes detection
methods computationally inefficient for a large number
of antennas [89], [90]. A plethora of research methods
has been proposed to design a low complexity detection
method for massive MIMO systems [91], [92]. Itera-
tive methods to avoid the exact matrix inversion are
considered in the literature to find sub-optimal for the
UL detection in massive MIMO systems such as the
CG [92], AMP, GS [93], SOR, and least-square regres-
sion selection methods [94].

• Precoding: Precoding is a conception of beamform-
ing where the multi-antenna systems support the
multi-stream transmission [32]. Precoding performs an
imperious technique in massiveMIMO systems where it
plays a crucial role to reduce the effects of interference
and path-loss, and increases the throughput [21], [95].
In massive MIMO systems, the BS can estimate the CSI
thanks to the UL pilot signals which are sent from the
received terminals. The received CSI at the BS is imper-
fect and uncontrollable as a result of several environ-
mental obstacles on the wireless channel [21]. Though
the BS does not have a perfect CSI, nevertheless the
DL performance of the BS broadly depends on the esti-
mated CSI [32]. The massive MIMO’s BS exploits the
precoding techniques and the estimated CSI to mitigate
the interference and increase spectral efficiency [32].
The precoding techniques give a tremendous benefits

to massive MIMO systems. Unfortunately, these bene-
fits are coming with a high computational complexity
which is directly proportional to the number of antennas.
Therefore, a low complexity precoder is imperative to
exploit inmassiveMIMO systems [32], [95]. This aspect
is covered in detail in this review.

The features, advantages, and challenges of massive MIMO
systems are summarized in Table 2.

IV. SYSTEM MODEL
In this section, an overview of the DL system model for
massive MIMO is presented. It is assumed that a single
BS withM -transmitted antennas is serving N -single antenna
received terminals, where N ≤ M . A frequency-flat channel,
which indicates coefficients across N -received terminals and
M -transmitted antennas, is considered. In the TDD mode,
the DL transmission has the same channel matrix H as the
UL transmission, within the channel coherence time, due to
the channel reciprocity [49]. The channel matrix H ∈ CM×N

can be represented as

H =


h11 h12 h13 · · · h1N
h21 h22 h23 · · · h2N
...

...
. . .

...

hM1 hN2 hN3 · · · hMN

 , H ∈ CM×N .

(1)

Elements of H are drawn from complex Gaussian distribu-
tions CN (0, 1).
For the DL transmission, the upcoming data a =

[a1, a2, · · · , aN ]T , which are taken from a M -ary constel-
lation, passed into a precoding stage at the BS. The M BS
antennas form their precoded vector by converting a intoM×
1 vector as x = [x1, x2, · · · , xM ]T , and then send it separately
to each terminal ofN -received terminals through the channel.
With the assumption of perfect CSI and synchronization at
the BS, the precoder can be exploited to point the transmitted
signal to its specified received terminal. Figure 4 shows the
systemmodel of massiveMIMO systems withM -transmitted
antennas and N -received terminals which also indicates the
position of the precoding block.

The received vector at received terminals is y =

[y1, y2, · · · , yN ]T which is affected by channel effects and
noise. The N × 1 vector of the received signal at the BS can
be represented as

y = HTx+ n, y ∈ CN×1, (2)

where n is N × 1 additive white Gaussian noise (AWGN)
vector whose elements are drawn from complex Gaussian
distributions CN (0, σ 2

n ).

V. MASSIVE MIMO PRECODING TECHNIQUES
One of the main concepts in massive MIMO systems is a
precoding technology that transforms the complexity system
from the side of received terminals to the side of BS by
using a strong signal processing technology at the transmitter
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TABLE 2. Summary of massive MIMO system, its features, advantages, and challenges.

FIGURE 4. System model of massive MIMO systems with M-transmitted antennas and N-received terminals.
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FIGURE 5. Generalized block diagram of communication systems with precoding and decoding techniques.

side [19]. Usually, in a real wireless propagation environment,
it is difficult to obtain a reliable CSI where the performance
of DL transmission largely depends on CSI. The precoding
technology can be employed to deal with imperfect CSI.

Many research papers have shown that massive MIMO
precoding technology acts as a critical role to out from the
bottleneck of breaking down the system’s performance by
controlling the direction of the beams and points them into
a specific received terminal location [19]. Utilization of the
precoding technology in massive MIMO systems leads to
eliminate/cancel the effects of interference and fading, and
increasing the throughput and capacity [96] when the number
of antennas approaches infinity. The precoding algorithms
can be mainly classified into linear, non-linear, PAPR precod-
ing and machine learning based precoding algorithms, which
are covered in detail in this section.

A. LINEAR PRECODING
Fig. 5 depicts the generalized block diagrams of communica-
tion systems with precoding and decoding techniques. The
P is a feedforward matrix of linear precoding, the B is a
feedback matrix of linear precoding, the K is a feedforward
matrix of linear decoding, and the C is a feedback matrix
of non-linear precoding. These matrices specify the required
precoding technique from a linear/non-linear or hybrid tech-
nique. For instance, when B = 0 the generalized precoding
technique acts as the linear precoding technique [97]. The
Modulo arithmetic is used to adjust the average power [98].

Thus the transmitted signal for the N users in the DL
transmission, whereM > N , can be expressed as:

x =
√
ρPa, x ∈ CM×1, (3)

where P is a M × N linear precoding matrix, a is a N × 1
transmitted vector before precoding process, and

√
ρ is the

transmitted average power. The precoding matrix P is related
toH. In the TDDmode, the DL channel is the transpose of the
H [49], and theN×1 vector atN -received terminals becomes

y = HTx+ n,

=
√
ρ HTPa+ n, y ∈ CN×1. (4)

In general, the P matrix of basic precoding techniques
contains a matrix inversion operation which leads to high

computational complexity, especially, if N is not greater
enough thanM [98]. According to the manner of dealing with
the matrix inversion process, the linear precoding technique
can be classified into basic linear precoding, linear precoder
based on the matrix inversion approximation, linear precoder
based on fixed-point iterations, and linear precoder based on
matrix-decomposition.

1) Basic Linear Precoding Algorithms:
The basic linear precoder mainly depends on multiplying

the transmitted signal a with the precoding matrix P. The
basic linear precoder has O(N 3) computational complexity
which is comparable to the exact matrix inversion complex-
ity [16], [99], [100].

a) Maximum Ratio Transmission (MRT) Algorithm: The
MRT aims to maximize the gain of signal into a specific
receive terminal. It is the counterpart of the matched filter-
ing (MF) and conjugate beamforming (CB) [21]. The MRT
precoding matrix formula is

PMRT =
√
β
(
H∗
)
, (5)

where β is a scaling power factor andH∗ is the complex con-
jugate of H matrix [21]. Thus, the received signal becomes

yMRT =
√
β
√
ρ HT H∗ a+ n, y ∈ CN×1. (6)

The MRT algorithm achieves the sum capacity of a massive
MIMO system when the number of M is much larger than
N , and M grows to infinity (M � N and M → ∞).
In general, the MRT algorithm performance is close to opti-
mal when the inter-user interference (IUI) is trivial compared
to the noise (noise-limited systems). In the MRT algorithm,
when the values of M and N are comparable, the system
experiences a strong IUI. Thus, the throughput of each user
becomes low which degenerates the massive MIMO con-
cept [21]. Another amazing feature of the MRT algorithm is
that each antenna in the BS can perform its signal processing
locally [101]. That allows a decentralized construction for
the large number of antennas and leads to a great flexible
system [21], [102], [103].

b) Zero-Forcing (ZF) Algorithm: The ZF algorithm is a
common algorithm of fundamental precoding techniques. It is
the counterpart of the channel inversion. A ZF algorithm
mitigates the interference caused of other users by pointing
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the signal beam into the intended user whereas nulling the
other directions where other users are located [104]. This
nulling is performed by multiplying the user data with the
following ZF precoding matrix

P ZF =
√
βH∗

(
G−1

)
, (7)

where G = HTH∗ is a Gram matrix whose diagonal com-
ponents indicate power imbalance throw the channel, and
non-diagonal components indicate the mutual correlations
among the channels. While the number of transmit anten-
nas grows to infinity in massive MIMO systems, G goes to
become an identity matrix and the matrix inversion com-
putations can be simplified. The received signal of the ZF
algorithm can be expressed as

y ZF =
√
β
√
ρ HTH∗

(
G−1

)
a+ n, y ∈ CN×1. (8)

The ZF algorithm performance is close to optimal when the
noise is trivial compared to the IUI. The ZF algorithm is
considered to be practical when neglecting the AWGN in the
massive MIMO channel model, while the massive MIMO
precoding algorithm becomes much simpler to implement.
Unfortunately, the noise is not negligible in a real situation
and utilization of the ZF algorithm in massive MIMO sys-
tems may not give an optimal solution. The ZF algorithm
may achieve accurate results at high signal-to-noise ratio
(SNR) [21], [104], [105].

c) Minimum Mean Square Error (MMSE) Algorithm: The
MMSE algorithm exploits the benefits of the MRT and ZF
algorithms and achieves a balance between them [21]. There-
fore, it has an acceptable performance in moderate noise
and interference systems [105]. The MMSE algorithm is the
counterpart of the regularized ZF (RZF), signal-to-leakage-
and-interference ratio (SLNR) [106], eigenvalue-based
beamforming, and transmit Wiener filtering [104]. The
MMSE algorithm is created by using the mean square error
method in the signal to minimize the error filtering between
the transmitted symbols from the BS and the received
terminal.

The MMSE precoding matrix formula is

PMMSE =
√
β H∗ (G+ V+ λ IN )−1 , (9)

where λ is a positive regularizing factor which depends on
the system dimensions, the noise variance, and uncertainty
of channel at the transmitter. The matrix V is a N × N
deterministic Hermitian non-negative definite matrix. When
V = 0, a balance occurs between increasing the channel gain
toward intended received terminals (at a large value of λ )
and eliminating the IUI (at a small value of λ ). The MMSE
algorithm performs as the ZF algorithm at λ→ 0, and as the
MF algorithm at λ→∞ [21], [107]. The received signal of
the MMSE algorithm is

yMMSE =
√
β
√
ρHTH∗ (G+ V+ λ IN )−1 a+ n. (10)

However, the computation of the ZF andMMSE precoding
matrix comprises the inversion of a very large-dimension

matrix, particularly for large values of M and N [21], [108].
Therefore, it is quite important to offer a method to diminish
the complexity of the basic precoding algorithms [109].

2) Linear Precoder Based on the Matrix Inversion
Approximation:

A large number of M compared to N leads to make G as
a diagonal dominant, where the non-diagonal components go
to zero and diagonal components become close to M [82],
[110]. A matrix inversion ofG requires a high computational
complexity. There is a plethora of research to approximate
or avoid the matrix inversion of G rather than computing
it [111]. In addition to the high complexity of a matrix
inversion, a defy in matrix inversion is the inversion of nearly
singular and ill-conditioned matrix [112]. To beat the inveter-
ate noise boost, advanced precoders with approximate/avoid
matrix inversion methods are required.

a) Truncated Polynomial Expansion (TPE) Algorithm: The
TPE precoding algorithm aims to achieve a similar per-
formance of the MMSE algorithm with low computational
complexity. The TPE algorithm exploits an approximation
of known precoding matrices instead of the matrix inver-
sion in the MMSE algorithm to balance between complexity
and achievable data rate via different truncation orders [21],
[113]. The TPE precoding matrix formula is

PTPE =

J−1∑
j=0

pjH∗ (G)j , (11)

where pj is a scalar coefficient, and J is the number of terms
of the precoder polynomial. Thus, proper adjusting value
of J leads to a smooth transition between the traditional
low-complexity MRT (J = 1) and the high-complexity RZF
(J = min(M , N )) precoding. Clearly, the flexibility of the
TPE algorithm appeases in the ability to easily tailor the
hardware complexity or changed it dynamically by increasing
and reducing J depending on the high or low SNR, respec-
tively [21], [114].

b) Neumann Series Approximation (NSA) Algorithm: The
NSA algorithm can tackle the high computational complexity
by employing the Neumann series in the matrix inversion
approximation [107]. In the NSA algorithm, the inversion
process in traditional inversion algorithms such as theMMSE
algorithm is replaced by a series of matrix vector multipli-
cations (sum of powers) which has a simple flow of data
and can be highly parallelized [115]. The NSA algorithm has
more energy efficiency and low complexity than the other
traditional inversion algorithms i.e. ZF, and MMSE algo-
rithms [100], [116], [117]. This is because the fact that the
G matrix becomes diagonally dominant as the value (M/N )
ratio increases [107]. The diagonal G matrix can be used as
initial matrix in the Neumann series. When the G matrix is
non-diagonally dominant, due to low value of (M/N ) ratio
and high antenna correlation, the NSA algorithm experiences
a slow convergence of the Neumann series [113].

The NSA algorithm treats with non-diagonal matrix by
decomposed G into the sum of diagonal elements matrix
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D and non-diagonal elements matrix E, which needs more
iterations to achieve a certain performance [107], [118]. The
NSA expands the inverse matrix G−1 as

G−1 ≈
∞∑
i=0

(
IN − X−1G

)i
X−1, (12)

whereX is the matrix of an initial approximation ofG−1. The
matrix X must satisfy

lim
i→∞

(
IN − X−1G

)i
' 0N . (13)

For a reasonable convergence for the NSA algorithm,
the value of λmax must be less than one (|λmax | < 1)
where λmax is the largest magnitude of eigenvalue of the(
IN − X−1G

)
matrix [118]. For the non-diagonally matrix

G = D+ E, the G−1 can be represented as

G−1 ≈
∞∑
i=0

(
D−1E

)i
D−1, (14)

where the condition

lim
i→∞

(
−D−1E

)i
' 0N , (15)

must be satisfied. The NSA algorithm minimizes the compu-
tational complexity toO(K 2) instead ofO(K 3) at the number
of iterations lower than 2 ( i 6 2) [107], [119]. In [120],
a weighted NSA (WNS) algorithm for massive MIMO sys-
tems based on the largeWishart matrix properties is proposed
to fast up the convergence of the NSA algorithm.
The WNS algorithm offers a noteworthy increase in the

convergence and weights are not sensitive to channel investi-
gation in case of i.i.d. at a low to reasonable correlation factor.
In [121], by exploiting the properties of the WNS algorithm,
a weighted Neumann series-steepest descent (WNS-SD) iter-
ative precoder is proposed to obtain a fast convergence while
maintaining low-complexity. Also in [121], an accelerated
weighted Neumann series-steepest descent (AWNS-SD) pre-
codig algorithm is proposed. The AWNS-SD algorithm has a
remarkable increase in the convergence rates while maintain-
ing low-complexity and guaranteeing a wide range of con-
vergence. The AWNS-SD algorithm has a near performance
of the ZF algorithm in only one iterative step for identical
massive MIMO systems.
c) Newton Iteration (NI) Algorithm: The NI algorithm is

a method used in approximating the matrix inversion. It is
the counterpart of the Newton-Raphson method [122]. The
matrix inversion estimation at the ith iteration is

X(i)
= Xi−1

(
2IN −GXi−1

)
, (16)

while

G−1 = lim
n→∞

X(i) when
∥∥∥IN −GX0

∥∥∥ < 1, (17)

where X0 is an initial rough estimation. Finding the initial
value in the NI algorithm is complicated and needs extra cal-
culations. Besides that, the NI algorithm needs a significant

number of iterations to have fast convergence [116]. High
reliability with quadratic convergence can be offered in the
NI algorithm [122].
Similar to the NSA algorithm, the NI algorithm just needs

a simple computation to speed the precoding process. Though
the NI needs one extra matrix multiplication in each iteration,
it converges faster than the NSA algorithm [122]. In [118],
to accelerate the convergence, a joint NI algorithm and NSA
algorithm (NI-NSA) is proposed. The first iteration of the NI
algorithm is exploited to re-extract the NSA algorithm series,
which leads to a high probability convergence. Numerical
results show that the joint NI-NSA algorithm has a more
efficient and speed convergence rate compared to the NSA
algorithm, without increasing the computational complexity
at later iterations (i > 2). The joint NI-NSA algorithm also
derives a high probability convergence condition aboutM/N
ratio.
d) Chebyshev Iteration (CI) Algorithm: The CI algorithm

is also approximating the matrix inversion process in linear
precoding for massiveMIMO systems by employing iterative
computation [109]. The matrix inversion estimation at the ith

iteration is

X(i)
= Xi−1

(
3IN −GXi−1

(
3IN −GXi−1

))
, (18)

while

G−1 = lim
n→∞

X(i) when
∥∥∥IN −GX0

∥∥∥ < 1. (19)

However, finding the initial value in the CI algorithm, as in the
NI algorithm, is complicated and related to the eigenvalues of
thematrixG.Where, the convergence rate of the CI algorithm
is affected by iterative initial values, which are needed to
determine carefully [107]. Though the CI algorithm needs
two matrix additions and three matrix multiplications (18),
it converges faster than the NI algorithm [109].
In [109], the optimization of initial values is carried out for

the CI algorithm. Thus, the initial values become easier to be
acquired. The result of simulation shows that the optimized
CI algorithm offers the same achievable average rate as the
RZF algorithm’s rate after just two iterations. The optimized
CI algorithm offers the same performance as the CI algorithm
after just one iteration.
In [100], a precoding technique using the joint CI and NSA

(CI-NSA) algorithm is proposed to achieve the near-optimal
performance. The CI-NSA algorithm optimizes the NSA
algorithm by CI method, which converges faster than the
other existing NSA precoding algorithms. The computational
complexity of the CI-NSA algorithm is similar to the NSA
andNI-NSA algorithms. Nevertheless, the CI-NSA algorithm
offers a faster convergence rate with fewer iterations and with
the same performance. Thus, the CI-NSA algorithm offers a
trade-off between performance and complexity.
3) Fixed-Point Iteration-Based Algorithms:
The fixed-point iteration-based algorithms approach to

realizeG by solving a linear precoding equation x inGx = a
iteratively, instead of x = G−1a directly [113]. Subsequently,
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precoders based on fixed-point iteration algorithms approach
can be described as below:

a) Gauss-Seidel (GS) Algorithm: When M is very large
and M � N , the G matrix becomes diagonally dominant
and meets a symmetric positive definite condition of the GS
algorithm. The GS algorithm is mainly used to iteratively
solve a linear precoding equation without a matrix inversion.
The GS algorithm is also known as the Liebmann algorithm
or the method of successive algorithm [20]. By factorized G
matrix into diagonal matrix D, lower-triangular matrix L and
upper-triangular matrix U as G = D + L + U [117], the GS
algorithm can be presented as

x(i) = (D+ L)−1
(
a− Ux(i−1)

)
. (20)

The computational complexity of the GS algorithm
is O(K 2) as a result of using matrix-vector multiplica-
tion. Unlike the matrix inversion approximation algorithms,
the GS algorithm can be relaxed as selecting an initial vector
x0. x0 = D−1 can be a good initial estimation [123]. Where
the GS algorithm exploits the most recent values at each iter-
ation, its BER performance is better than the NSA algorithm
with lower complexity at the same number of iterations [124].
In addition, the GS algorithm converges a bit faster than
the NSA algorithm [99], [117]. In [125], a GS-based matrix
inversion approximation (GSBMIA) algorithm is proposed
which simplifies calculations by approximating the matrix
inversion process. The GSBMIA algorithm has a similar
convergence rate of the GS algorithm. In order to speed up the
convergence rate of the GSBMIA algorithm, it is combined
with the NI algorithm. Numerical results show that the GSB-
MIA algorithm and joint algorithm have a faster convergence
rate than the approximate matrix inversion algorithms like the
NSA and NI algorithms.

b) Successive Over-Relaxation (SOR) Algorithm: The
SOR algorithm is proposed to enhance the convergence rate
of the GS algorithm by employing a variable relaxation factor
of ω. Therefore, the SOR algorithm, like the GS algorithm,
offers a good performance at the starting of iteration [116].
By decomposing G matrix as G = D + L + U, the SOR
algorithm’s equation is expressed as

x(i) = (D− ωL)−1
[
(ωU+ (1− ω)D)x(i−1) + ωa

]
.

(21)

The ω acts as a decisive function in the convergence rate of
the SOR algorithm. Ifω = 1, the SOR algorithmworks as the
GS algorithm. The SOR algorithm is being convergent when
0 < ω < 2 [126]. It also outperforms the NSA algorithmwith
lower complexity [126]. The convergence rate of the SOR
algorithm is faster than the GS algorithm [127].

However, the SOR algorithm has a higher complexity than
the GS algorithm [128]. In addition, the convergence rate of
the SOR algorithm is not fast enough. In [129], a symmetric
SOR (SSOR) algorithm is proposed to reduce the complexity
of the SOR algorithm. Where each iteration in the SSOR
algorithm has two half iterations. The first half iteration is

similar to the SOR iteration and the second half iteration is
similar to the SOR algorithm with reverse order equations.
The performance of the SSOR algorithm is close to the
MMSE algorithm performance. In [130], a low-complexity
method to enhance the SOR algorithm is proposed to obtain
a fast convergence rate compared with other methods. Linear
fitting method has been used to determine the best relaxation
parameter. However, it obtains almost the same computa-
tional complexity. Numerical results show that the proposed
SOR algorithm overcomes other iterative algorithms in terms
of BER. In [116], the joint SOR matrix inverse and NI
(SORMI-NI) algorithm is proposed to get an overall advan-
tage within the iteration. The SORMI iteration is done before
the NI iteration to offer the initial value of the NI algorithm
and offer more efficient and speed searching. By doing that,
the NI algorithm achieves fast convergence at an early stage
of the iteration. Besides that, the SORMI algorithm solves the
problem of difficultly to isolate G−1a in the SOR algorithm.
In [131], four joint algorithms are proposed to find lin-

ear precoding factors in massive MIMO systems and then
obtain more speed convergence with low complexity. The
first algorithm is the joint CI and NSA algorithm (CI-NSA),
which accelerates the convergence rate of the NSA algo-
rithm with more delicate inversion. The second algorithm is
the SOR-based approximate matrix inversion (SOR-AMI),
which offers a direct simplified matrix inversion with the
same convergence rate of the traditional SOR algorithm. The
third and fourth algorithms are extension and improvement of
SOR-AMI and they are called theNI-SOR-AMI andCI-SOR-
AMI. These four proposed algorithms offer a near-optimal
BER performance of the ZF algorithm. The convergence rate
of the proposed CI-NSA algorithm is faster than the conven-
tional NSA algorithm with the same complexity. Likewise,
the convergence rates of the CI-SOR-AMI and NI-SOR-AMI
algorithms are faster than the conventional SOR algorithm.
c) Conjugate Gradient (CG) Algorithm: The CG algorithm

is another good method to solve the linear equations itera-
tively by avoiding the matrix inversion process. It can achieve
the same performance as the MMSE algorithm after a few
iterations with lower computational complexity by about one
order of magnitude. In addition, the CG algorithm has higher
BER performance, higher capacity, and lower computational
complexity than the NSA algorithm [127]. The CG algorithm
is also known as Lanczos orthogonalization algorithm [107].
The CG iterations can be described as

x(i+1) = x(i) + α(i−1)F(i), (22)

where Fi is the conjugate direction matrix related to G, as(
F(i)
)H

G F(j)
= 0, for i 6= j, (23)

where α(i−1) is a scalar factor and denotes the step size and
G must be a symmetric positive definite matrix to make
the CG algorithm convergent. The CG algorithm contains
several division processes and a large number of iterations,
and the degree of parallelism is low [91], [107], [118].
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In the CG algorithm, the zero vector is usually used as an
initial solution [107].

In [107], a new algorithm named as a three-term-recursion
conjugate gradient (TCG) algorithm is proposed. It mainly
aims to make the algorithm to have fast convergence besides
reducing the computational complexity by selecting a good
initial value. Also, the TCG algorithm has higher parallelism
than the conventional CG algorithm.

In [132], a novel low complexity algorithm for the linear
precoding in massive MIMO systems based on the CG algo-
rithm with asymmetric G matrix is proposed. The algorithm
has two versions of the CG algorithms: the first version is con-
jugate gradient squared (CGS) and the second is Bi-conjugate
gradient (Bi-CG). The two novel algorithms overcome the
conventional CG algorithm in terms of convergence speed
and BER performance.

d) Jacobi Iteration (JI) Algorithm: The JI is a simple
iterative algorithm used to find a solution of X̂ = G−1a.
By decomposingG into a diagonal matrixD and off-diagonal
matrix R, the estimated signal can be presented as

x(i) = D−1
[
a+ (D−G) x(i−1)

]
, (24)

which must satisfy

lim
i→∞

(
I− D−1G

)i
= 0. (25)

The initial matrix of the JI precoder can be presented as

x(0) = D−1a. (26)

The JI algorithm has lower performance and lower conver-
gence rate than theGS and SOR algorithms [99], [121], [124].
Conversely, the JI algorithm enjoys parallelism and effec-
tive hardware implementation and has O(K 2) computational
complexity which is lower than the complexity of the NSA,
GS, and SOR algorithms [117], [121], [128].

In [133], a joint JI and steepest descent algorithm (JI-SD)
is proposed to obtain a good direction of searching for the JI
algorithm to increase the convergence rate. The convergence
rate of the JI-SD algorithm is not met for the large number of
M in massiveMIMO systems. In [134], a new joint JI and CG
(JI-CG) algorithm is proposed to speed up the convergence
rate of the JI algorithm. In the joint algorithm, to discover a
more delicate searching direction for the JI algorithm, the CG
algorithm is employed two times. The JI-CG algorithm over-
comes the JI-SD in terms of BER or at least has similar BER
with faster convergence rate at lower complexity and latency.

4) Precoding Based on Matrix-Decomposition:
The direct algorithms-matrix decomposition precoder for

massive MIMO systems is conventionally used for the matrix
inversion process instead of using an explicit matrix inver-
sion in small-scale MIMO systems [135]. It is numerically
stable over the basic linear precoder algorithms such as the
MRT, ZF, and MMSE algorithms. Besides that, it can be
employed to offer a modular design, where the inversion pro-
cess can be dispensed between different parts [136]. However,

the employing of the direct algorithms-matrix decomposi-
tion in the massive MIMO systems has a considerable com-
putational complexity. Where the direct algorithms-matrix
decomposition needs to decompose the G matrix into a mul-
tiplication of small matrices as in the QR algorithm and the
Chelosky decomposition algorithm [136].

In spite of the significance of the direct algorithms-matrix
decomposition, their analysis of complexity for mas-
sive MIMO systems and the differentiation with exist-
ing fixed-point iteration-based algorithms and matrix
inversion approximation algorithms is lacking in the
literature [135], [137].

a) QR Decomposition Algorithm: The QR decomposition
algorithm can be applied to get the solution of (10) as

yMMSE =
√
β
√
ρHTH∗ (G+ V+ λ IN )−1 a+ n

=
√
β
√
ρHTH∗ (QR)−1 a+ n

=
√
β
√
ρHTH∗

(
R−1QH

)
a+ n, (27)

where Q is N × N unitary matrix and contains orthogonal
columns and R is an N × N upper triangular matrix.

The block diagonalization algorithm (BD) is a famous
linear precoding decomposition algorithm for DL trans-
mission in multi-user MIMO (MU-MIMO) systems [138].
The BD algorithm offers good performance but with a
high computational complexity where each user needs to
employ two singular value decomposition (SVD) operations.
In [139], the QR decomposition algorithm is used with the
BD algorithm to reduce the complexity, by using the QR
operation instead of the first SVD operation. Where this
joint algorithm known as the QR decomposition based BD
algorithm (QR-BD).

Also in [139], a new algorithm, QR decomposition and
Gram Schmidt (QR-GS) algorithm, is introduced for DL
transmission inmulti-userMIMO (MU-MIMO) systems. The
QR-GS algorithm offers similar performance as the BD and
QR-BD algorithms with a significant reduction in computa-
tional complexity.

In [140], an improved precoding algorithm for large-scale
MU-MIMO systems is proposed. This algorithm is a joint
algorithm that consists of the BD algorithm with QR decom-
position of the ZF matrix and is known as the QR-ZF-BD
algorithm. The QR-ZF-BD algorithm employs the ZF algo-
rithm and the QR decomposition algorithm instead of a
complex SVD process in the classical BD algorithm. The
QR-ZF-BD algorithm has two stages. Firstly, it uses the QR
decomposition algorithm to minify the multi-user interfer-
ence (MUI). Secondly, it uses the ZF and QR decomposition
algorithms again to increase the spectral efficiency. The result
of the simulation shows that the QR-ZF-BD algorithm offers
better spectral efficiency than other recent decomposition
algorithms.

In [141], An MMSE-based QR-BD (QR-MMSE-BD) pre-
coding algorithm was proposed which has lower complexity
than both the BD and QR-BD algorithms.
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b) Cholesky Decomposition (CD) Algorithm: The CD
algorithm can be applied to get the solution of (10) as

yMMSE =
√
β
√
ρHTH∗ (G+ V+ λ IN )−1 a+ n

=
√
β
√
ρ HTH∗

(
LLH

)−1
a+ n

=
√
β
√
ρ HTH∗

(
(LH)−1(L)−1

)
a+ n, (28)

where a matrix L is the lower triangular matrix. In [142],
utilization of the CD algorithmwith Sherman-Morrison strat-
egy (CSM) is proposed. The CSM algorithm contributes to
solving the problem of basic linear precoding algorithms in
massiveMIMO systems which need to get a large-size matrix
inversion operation and have high computational complexity.
The CSM algorithm offers a near-optimal performance of the
MMSE algorithm by iteratively decomposing the large-size
matrix inversion process. The result of simulation shows that
the CSM algorithm has better BER and sum-rate performance
than the NSA and SOR algorithms with fewer operations
and reducing the computational complexity from O(N 3)
to O(N 2).
For smooth readability and comparison, the computational

complexity of the linear precoding algorithms is presented
in Table 3 and their pros and cons are comprehensively
reviewed in Table 4.

B. NON-LINEAR PRECODING
As mentioned above, there are two main classes of signal
precoders for massive MIMO systems: linear precoders and
non-linear precoders. Though, the linear precoder algorithms
have the advantages of low complexity, their insufficiency in
precoding accuracy cannot be neglected, particularly when
M/N is close or equal to one [110]. The optimum signal
precoder is the ML precoder. Unfortunately, the ML pre-
coder’s complexity increases exponentially with the increase
M , so it is unattainable to implement in massive MIMO sys-
tems [152]. This section introduces the most used non-linear
massive MIMO signal precoding algorithms, and its related
advantages and disadvantages.

1) Dirty-Paper Coding (DPC):
The DPC algorithm was alluded by Costa in 1983, which

evidenced that the capacity of the theoretical channel can be
offered and the interference can be annulled when the inter-
ference is known at the transmitter side [153]. In MU-MIMO
systems, when the precoding matrix is designed for the nth

received terminal, the interference that comes from the first
up to (n− 1)th received terminals are deemed to be annulled.
Besides that, the DPC algorithm can offer a remarkable per-
formance without needing extra power in the transmission
side and without sharing CSI with the receiver side. However,
the DPC algorithm is impracticable, because it needs an
infinite length of codewords and sophisticated signal process-
ing [154], [155].

The DPC algorithm has been proposed to offer the opti-
mum DL sum-rate for massive MIMO systems, where the
idea of the DPC algorithm is that the sum-rate of a system

is equal to the sum-rate of a free-interference system when
the interference is known at the transmitter side [154]. The
sum-rate of the DPC algorithm can be presented as

C = maxW log2 det(IN +H∗WHT) bits/s/Hz, (29)

where W is a N × N diagonal power allocation matrix, and∑
diag(W) = 1. In [156], a novel non-linear precoding algo-

rithm known as ZF-DPC is proposed. It is a suboptimal DPC
algorithm with lower complexity. The ZF-DPC algorithm is
based on the QR decomposition of the channel where it is
assumed that users have a single receive antenna.

In [20], the performance of the ZF-DPC algorithm has been
scrutinized in the condition of the rayleigh fading model,
and QAM modulation with 100,000 Monte-Carlo trials. The
ZF-DPC algorithm can overcome the conventional MMSE
algorithm by approximately 3 dB for 64-QAM at a higher
SNR.

2) Tomlinson-Harashima (TH) Precoding:
The TH precoding algorithm is a suboptimal implementa-

tion algorithm of the DPC algorithm, which is a combination
of the DPC algorithm and the modulo arithmetic [157], [158].
The TH algorithm is proposed by Tomlinson and Harashima
in 1972 [157], [159]. The TH algorithm is originally an
equalization process proposed to repeal the ISI [160]. Besides
that, the TH algorithm can be used to clear the sub-channels
interference in MIMO systems [98]. Though the TH algo-
rithm experiences a loss of performance in contrast with the
DPC algorithm, it has a practical implementation. The TH
algorithm has more complexity when compared to linear pre-
coding algorithms but efficaciously eschew the noise ampli-
fication [98]. The TH algorithm has three prime components,
the feedforward filter, the feedback filter, and the modulo
arithmetic [98], [161].

Figure 6 shows the block diagram of the TH algorithm
where it is assumed that M is equal to N [98]. Based on
LQ decomposition, the TH algorithm can be carried out by
decomposing HT to the multiplying of a lower triangular
matrix L and a unitary matrix Q as [98]

HT
= LQ. (30)

AmatrixK is a scalar matrix which weighting a coefficient of
each sub-stream and has a diagonal format [98]. The diagonal
elements of K are the inverse of the diagonal elements of L
matrix [98]. The K matrix can be represented as

K =


l−111 0 0 · · · 0
0 l−122 0 · · · 0
...

...
. . .

...

0 0 0 · · · l−1NN

 , (31)

where the lij for i, j = 0, . . . ,N is a diagonal element of L
matrix. The matrix B is a feedback (pre-cancellation) matrix,
which is a lower triangular matrix and all diagonal elements
are ones [98]. The feedback matrix B is used to remove the
previous stream interference from the immediate stream and
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TABLE 3. Computational complexity of the linear precoding algorithms, i is the number of the required iteration.

it can be represented as [98]

B = KL. (32)

The matrix F is a feedforward matrix which is a conjugate
transpose of Q and utilized to save a transmitted power
constant and to compel the spatial causality at the transmitter
side [98], [162].

F = QH. (33)

The pre-cancellation process in the TH algorithm leads to
an increase of the power of each stream layer [98]. Modulo
arithmetic is used in the transmitter and the receiver sides to
adjust the average power [98], [162]. The modulo operation
is tightly related to the utilized constellation A. Assuming that
theM -ary square of QAM constellation is exploited to get the
a symbols [162]. Based on the concept of SIC, the elements

of pre-signal vector x̃ could be represented as

x̃n = MODM

(
an −

n−1∑
l=1

bnl x̃nl

)
, n = 1, 2, . . . ,N (34)

where bnl is the element of the matrix B and MODM is a
modular arithmetic which can be designated as

MODM (x) = x − 2
√
M
⌊
1
2
−<

{
x

2
√
M

}⌋
−

⌊
1
2
+ =

{
x

2
√
M

}⌋
. (35)

Utilization of the modulo operation in the TH algorithm
causes some losses of performance as shaping, modulo, and
power losses [163], [164]. The loss of modulo could be
avoided by exploiting the large constellation with a suitable
decoding algorithm, or by modifying the input signal by
adding a perturbation vector [163]. The TH precoder algo-
rithm has a higher computational complexity compared with
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TABLE 4. Pros and cons of the linear precoding algorithms in massive MIMO systems.
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linear precoding algorithms, where it mainly has three pro-
cessing steps precancellation matrix, LQ decomposition of
HT, and the feedforward matrix. Furthermore, the use of the
TH algorithmwith limited CSI is ambiguous [162]. However,
utilization of the TH algorithm in massive MIMO systems
has two main challenges: the high computational complex-
ity and the instability due to the CSI inaccuracies [162].
In [165], a low-complexity TH algorithm is proposed which
obtains a performance near to the conventional TH algorithm

performance. Particularly, the proposed algorithm has the
same computational complexity of the RZF algorithm for
calculating the feedforward and feedback matrix. Per contra,
the proposed algorithm may still have a high computational
complexity, especially in massive MIMO systems.

In [166], a hybrid low-complexity algorithm which com-
bines the linear and TH algorithms (HL-TH) is proposed.
In the HL-TH algorithm, users are classified into groups to
diminish the computational complexity, where each group
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FIGURE 6. The block diagram of the TH algorithm based on LQ decomposition.

has a lower size of efficacious channels than the realistic
channels. The proposed algorithm has two steps. The first step
is minimizing the inter-group interference by simply exploit-
ing CSI in an inner linear precoder. In the second step, a TH
precoding algorithm successively removes the intra-group
interference in each group. The result of simulation shows
that the HL-TH algorithm has a higher BER for each user
compared to the RZF algorithm and has a substantially lower
computational complexity than the low-complexity TH algo-
rithm proposed in [165].

In [162], a novel algorithm for the DLmassiveMU-MIMO
systems is proposed to address the challenges of the con-
ventional TH algorithm. The proposed algorithm is a special
case of the HL-TH algorithm but does not rely on grouping
and without assuming the users’ channel correlation matri-
ces. Furthermore, the proposed algorithm utilizes conven-
tional linear algorithms with a TH algorithm to offer a lower
complexity implementation, and offer more resilience for
diverse kinds of CSI while maintaining a substantial perfor-
mance rate. The proposed algorithm increases the sum-rate
over linear precoders with delayed and limited CSI and has
robustness with smaller size arrays and different propagation
conditions.

3) Vector Perturbation (VP) Precoding:
The VP algorithm is proposed in [167] to present an easy

encoding technique without explicating the dirty-paper tech-
niques, and viewed as a generalized TH algorithm [167]. The
VP algorithm offers a full diversity order with a much lower
complexity compared with the DPC algorithm [168]. The
VP algorithm offers a near-capacity performance and regu-
larizes a variation on the inversion process, where exploits
a sphere encoder to perturb the input data to mitigate the
transmitted energy, after that the vector of perturbed data is
precoded by a linear front-end precoder [167]–[170]. The
transmitter in the VP algorithm chooses the precoding matrix
to relieve the IUI and after that finds the perturbation vector
according to the criterion of minimizing the unscaled trans-
mitted power [167]. The pseudo-inverse of H matrix and its
regularized version can be used as the generator matrix of the
lattice [167].

The perturbation operation in the VP algorithm needs the
linear front-end precoding process to select the perturbing
vector of the signal to be sent to all the users, which indicates

that these two processes are required to be done jointly [167].
Whereas the TH algorithm chooses the scalar integer offset
sequentially to be used in the transmitter and it does not
execute nearly as well as the VP algorithm selection. The
VP algorithm is modifying the transmitted data, instead of
modifying the inverse process, by aligning the data sym-
bols at the transmitter to the eigenvalues of the inverse H
matrix on an instantaneous basis [167]. This modifying can
be done by discreetly inserting a scalar integer vector offset at
the transmitter and that leads to an interference cancellation
at the receiver by applying a modulo arithmetic operation.
In the VP algorithm, the CSI is assumed to be perfectly
known at the transmitter, and each receiver requires only a
single pre-arranged scalar which is regarding to the channel
SNR [171].

The VP algorithm has the unpretentious interpretation of
placement of the largest ingredients of the signal along with
the lowest singular values of the inverse channel, and the
smallest signal ingredients of the signal along the highest
singular values [167]. However, a sphere encoding technique
can be utilized in selecting the required vector perturba-
tion [172], [173]. Figure 7 shows the block diagram of the
VP algorithm and for simplicity assuming M is equal to N ,
and the perturbed data ã vector can be represented as [174]

ã = a+ τ l∗, (36)

where l∗ is the N × 1 selected perturbation vector with
complex integer entries, and τ is the absolute value of the
maximum magnitude of the constellation symbol which is
equal to [169], [172], [174]

τ = 2 |c|max +1, (37)

where 1 is the minimum Euclidean distance of the constel-
lation [169], [172]. Depend on the VP-ZF as an example,
the transmitted signal x can be represented as [174]

x =
1
√
γ
H∗

(
HTH∗

)−1
ã, (38)

where γ is the scaling factor of transmit power, and is equal
to [169], [172], [174]

γ =

∥∥∥∥H∗ (HTH∗
)−1

ã
∥∥∥∥2
F
. (39)
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FIGURE 7. Block diagram of the VP algorithm. [174].

After that, the signal symbol vector at the receiver is
scaled-back and a modulo operator is employed to clear
the perturbation affect τ l∗. The output of the receiver y is
represented as [169], [172], [174]

y = modτ

[
√
γ

(
1
√
γ

(
a+ τ l∗

)
+ n

)]
= modτ

[
a+ τ l∗ +

√
γn
]
, (40)

and with ignoring the effect of n, the received vector y
becomes [169], [170], [174],

y = a+ n. (41)

From (40),
√
γ has the prime role in the perturbation vector l∗

design. The performance of the system degrades significantly
with a large value of γ [98]. Thus, the value of γ is minimized
to find the best perturbation vector l∗ as [98], [169], [170],
[174]

l∗ = arg min1

∥∥∥∥H∗ (HTH∗
)−1

(a+ τ l∗)
∥∥∥∥2
F
. (42)

The optimization process in (42) is a 2N -dimensional real
integer lattice problem (NP-hard problem). The sphere search
algorithms are commonly exploited to do this minimization
process where the computational complexity increases expo-
nentially with N .
In [175], a block diagonalized vector perturbation

(BD-VP) algorithm that joins the BD and VP algorithms for
the MU-MIMO system is proposed. The BD-VP algorithm
avoids the needing for a global CSI like in the BD algorithm,
and hence diminishes the receiver complexity of each user.
It has a comparable performance of diversity to the BD
algorithm. However, the BD-VP algorithm has rather high
complexity at the transmitter side due to the combination of
BD and VB algorithms. In [176], a low-complexity BD-VP
algorithm and a user grouping vector perturbation (UG-VP)
are proposed to enhance the performance of the BD-VP
algorithm. However, the BD-VP and UG-VP algorithms
are sub-optimal algorithms where the perturbation process
is done independently for each user/group. To clarify the
performance loss, the authors in [169] proposed a new joint

VP algorithm (JVP) that achieves a considerable performance
with the conventional VP algorithm and can be exploited in
the adaptive modulation system.
In [177], a novel VP precoding algorithm assisted by

reactive tabu search (RTS) for the large-scale MU-MIMO
systems is proposed where the RTS is an iterative local
neighborhood search technique. The proposed algorithm has
the ability to efficiently flee from penurious local minima
and achieves a quasi-optimal performance with a signifi-
cant complexity reduction compared to the conventional VP
algorithm.
In [178], a novel thresholded VP (TVP) algorithm is pro-

posed to offer a tradeoff between performance and complex-
ity for the VP algorithm in small and large scale MU-MIMO
systems. A threshold for specific performance is exploited
to decrease the sphere search process within the perturbation
vectors. Once the threshold is achieved, the searching process
should be terminated, and hence, considerable complexity is
obtained. The sum-rate achieved by the proposed algorithm
is approximately 90% of the conventional VP sum-rate, with
at lower than 50% of the computational complexity.
In [172], a novel VP algorithm with limited feedback

is proposed for MU-MIMO systems. The proposed algo-
rithm avoids the extensive high complexity of the sphere
searching in the conventional VP algorithm by employing a
Min-Max optimization. The proposed algorithm dodges the
scaling process at the receiver by constraining the search-
ing area of perturbing vectors to the symbol constellation
areas, as denoted in Fig. 8 by the shaded areas, which are
constructive to the data symbol. Therefore, this algorithm is
known as a constructive vector perturbation (CVP). Dodg-
ing a scaling process at the receiver is the main advantage
in the CVP algorithm, especially in the limited feedback
scenarios.
In [170], a novel hybrid TH and VP algorithm (TH-VP)

is proposed. The proposed algorithm employs the TH algo-
rithm to remove the IUI. It also employs the VP algorithm
in equalizing each diversified spatial stream of the user.
In the TH-VP algorithm, the two non-linear algorithms can
be combined in one optimization process to obtain a low
computational complexity and a satisfactory performance in
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FIGURE 8. The search areas of CVP algorithm for 4-QAM.

comparison with other competitive algorithms such as the
VP, ZF-VP and BD-VB algorithms. The TH-VP performance
overcomes the ZF-VP and BD-VB algorithms, and is close to
the performance of the DPC algorithm.

In [171], a robust VP algorithm is proposed, which can
jointly deals with the CSI imperfections and inaccurate
power-scaled factors under the criterion of the MMSE algo-
rithm. The proposed VP algorithm is less sensitive to CSI
imperfections and inaccurate power-scaled factors in contrast
to the conventional VP algorithm.

4) Lattice Reduction Aided (LR) Precoding:
Lattice theory is firstly exploited in detection and precod-

ing techniques forMIMO systems in [179]. Themain concept
of the LR algorithm is exploiting the discrete behavior of
the digital information and deal with H as a basis of a point
lattice [180]. In the LR algorithm, there are typically three
steps [180]:

• Reducing the basis for the lattice by employing a
uni-modular matrix.

• Solving precoding problem related to a reduced basis.
• Transforming back the solution into the original domain
by the uni-modular matrix.

There are sundry definitions of the LR algorithm with cor-
responding reduction criteria, like the LLL reduction [181],
[182], the Seysen reduction (SR) [183], the Brun reduction
(BR) [184], the Korkine-Zolotareff reduction (KZ) [185],
[186], the Minkowski reduction (MR) [187], and the Gauss
reduction (GR) [188]. The selecting of the optimal per-
turbed vector brings about the problem of searching the
closest point within a lattice [189], which can be done by
sphere-searching [167]. This optimal solution is computa-
tionally too costly. Solving precoding problems related to
the reduced basis displays advantages in performance and
complexity. In [168], [190]–[192], some of sub-optimum
precoding techniques can offer a full diversity when pre-
ceded by the LLL lattice reduction. However, employing
the LR algorithm in the precoding process is unlike the
LR-aided data detection, where it can avoid the shaping
problem, e.g., the relaxation from a finite to an infinite
lattice [193].

Assuming N 6 M , ZF-based precoding, and O is a right
pseudo-inverse matrix which equals to

O = H∗
(
HTH∗

)−1
(43)

the corresponding reduced matrix Õ is given by

Õ = OT, (44)

where T is an uni-modular transformation matrix. Thus,
the (42) can be reformulated in terms of O and T as∥∥O (a+ τ l∗)

∥∥2 = ∥∥∥OTT−1 (a+ τ l∗)
∥∥∥2

=

∥∥∥Õ (ã+ τ l̃∗)
∥∥∥2 , (45)

where ã = T−1a, and l̃∗ = T−1l∗ [190], [194], [195]. The
LR algorithm can be also exploited with the conventional
linear precoding algorithm. In [196], the jointly LR-SR aided
the ZF or MMSE linear precoding algorithms are proposed
(see Fig. 9). Utilization of the SR technique offers a more
orthogonal basis than that offered by the LLL technique. The
SR technique achieves 0.5 dB in BER performance at 10−5

over the LLL performance. The computational complexity of
the SR technique is about 92% of the LLL technique for 4×4
MIMO system with 4 QAM [197], [198].

In [199], the LR-aided linear precoding algorithm is
employed in the BD algorithm in lieu of the second SVD
process to parallelize each stream of users. Also, a complex
LLL (CLLL) algorithm is employed in the LR algorithm to
reduce the computational complexity of the LLL algorithm by
approximately 50% without any effect in performance [200].

In [201], the employing of the LR algorithm in theVP algo-
rithm based on a multi-branch (MB) strategy (MB-LR-
VP) for MU-MIMO systems is proposed. The MB builds a
collection of branches for transmitting information streams
depending on a pre-infectious ordering scheme. Besides that,
a development of an efficient scheme to construct the transmit
ordering patterns is also proposed to find an optimal selection
mechanism. The MB-LR-VP algorithm offers a better BER
performance than the conventional VP precoding algorithm.

In [202], a joint LR and VP algorithm is proposed for
massive MU-MIMO systems to offer reduced BER at all
SNRs with no lowering in capacity. Two types of the LR-VP
algorithm have been proposed, namely LR-VP-ZF and LR-
VP-MMSE algorithms. The LR-VP algorithms have better
BER and higher capacity than the BD, TH and VP precoding
algorithms for massive MU-MIMO systems.

In [203], a comparison between the LR and TH algorithms
is presented. The authors deduced that the TH algorithm
always overcomes the LR algorithm in a well-conditioned
channel, whilst the LR algorithm is outshined in an
ill-conditioned channel. The optimization process for stream
ordering makes the TH algorithm triumph in a broad range
number of channels, essentially in the large-scale MIMO
systems.
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FIGURE 9. The block diagram of LR aided linear precoding using SR algorithm.

TABLE 5. Computational complexity of some non-linear precoding algorithms.

For smooth readability and comparison, the computational
complexity of the non-linear precoding algorithms is pre-
sented in Table 5 and their pros and cons are reviewed
in Table 6.

C. PEAK-TO-AVERAGE POWER RATIO (PAPR) PRECODING
It is clear that a MIMO system with a large number
of antennas will considerably boost hardware cost and
power consumption when costly linear power amplifiers are
employed [212]–[215]. Thus, it was necessary to find a prac-
tical way to implement massive MIMO systems. An efficient
non-linear power amplifiers can be exploited to offer a practi-
cal implementation of massive MIMO systems [212]–[215].
Thus, the PAPR should be minimized to relieve the effect
of amplifier non-linearities. In this sub-section, the precod-
ing algorithms, which aim to reduce the PAPR, will be
reviewed.

1) Constant Envelope (CE) Precoding:
The CE precoding algorithm for massive MU-MIMO sys-

tems was proposed by Mohammed and Larsson in [212],
[213], [216] to minimize the PAPR of the transmit signal.
The CE algorithm has inexpensive and highly power-efficient
amplifiers. For a given sum-rate and a large value ofM , it can
reduce the total transmit power by about 4 dB in contrast
to an algorithm that employs highly linear power-inefficient
amplifiers. In the CE algorithm, the array power gain is
still offered on certain mild channel conditions, and the sum
capacity of the average-only total transmit power-constrained
channel can be offered [213].

Figure 10 shows the transmission process of data signals
a by the CE constraint [212], [217], [218]. Where, the trans-
mitted signal from each antenna is

xm =

√
P
M
ejθm for m = 0, 1, . . . ,M , (46)
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TABLE 6. Pros and cons of the non-linear precoding algorithms.

FIGURE 10. The transmission strategy of data signals by the CE algorithm
for the DL massive MU-MIMO systems.

where P is the total transmitted power, and θm is the phase
angles of transmitted signals and exemplifies the precoding
phase of the CE precoder signals. Then, the received signal at
the nth user can be represented as [217]

yn =
M∑
m=1

hn,m

√
P
M
ejθm + nn for n = 0, 1, . . . ,N , (47)

where hn,m is the channel coefficient between themth antenna
and the nth user, and nn is the zero mean AWGN vector of the
nth user. For simplicity, the (47) can be rewritten as [217]

yn = an + tn + nn for n = 0, 1, . . . ,N , (48)

where an = gnej8m is the PSK data symbol for the nth user,
and tn is the interfering signal for the nth user

tn =

(
M∑
m=1

hn,m

√
P
M
ejθm − gnej8n

)
. (49)

The total MUI energy can be represented as [213], [217]

EMUI =
N∑
n=1

∣∣∣∣∣
(

M∑
m=1

hn,m

√
P
M
ejθm − gnej8n

)∣∣∣∣∣
2

. (50)

The phase angles of transmitted signals {θ1, θ2, . . . , θM } are
optimized to minimize (50) [212], [219]. Therefore, the CE
precoding algorithm can be designed as follows [213], [217]

pCE : minθ


N∑
n=1

∣∣∣∣∣
(

M∑
m=1

hn,m

√
P
M
ejθm − gnej8n

)∣∣∣∣∣
2
 ,

subject to |θm| 6 π, ∀m ∈ {1, 2, . . . ,M} . (51)

In the CE algorithm, the transmitted signals are restricted by a
constant amplitude, and theMUI at all users areminimized by
optimizing the non-linear least squares (NLS) problem of the
transmit signals phase angles (51) [212], [213], [217]. Unfor-
tunately, the conventional CE precoding algorithm depends
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on gradient descent (GD) method to solve this non-convex
NLS problem which converges to a local minimum and suf-
fers from a slow convergence rate [213], [214], [219], [220].

The authors in [213] deal with the NLS problem in
the CE algorithm by proposing the sequential gradient
descent (SGD) search algorithm, but the SGD algorithm is
often stuck in the local minima when the number ofM is not
large enough to suppress theMUI [214]. In [221], the annulus
constrained (AC) precoding algorithm is proposed to relax
the lower-bound amplitude constraints of the CE algorithm.
The AC algorithm offers an additional degree of freedom by
allowing amplitudes to alter within a pre-specified interval
to further enhance the performance of the MUI suppression,
but it increases the transmit signal PAPR. The AC algorithm
employs the SGD algorithm to search for optimal precoding
weights. However, the AC precoding algorithm is higher
computational complexity than the SGD algorithm because
it has a larger searching space to find optimal precoding
weights.

In [220], a novel algorithm is proposed to enhance the
MUI suppression ability of the CE algorithm by employing a
cross-entropy optimization (CEO) algorithm. However, this
algorithm has a higher computational complexity than the
SGD algorithm. In [222], another novel algorithm known as
Riemannian conjugate gradient (RCG) algorithm, is proposed
to enhance the MUI suppression ability of the CE algorithm
by dealing with the feasible region of NLS problem in the
CE algorithm as a manifold of a complex circle. However,
the RCG algorithm has a remarkable lower computational
complexity than the SGD and CEO algorithms.

In [223], the impact of phase-angle constraints at the BS
is investigated. Where more restrictions on the transmitted
phases are utilized at different symbol times. These restric-
tions can be led to an increase in the system power effi-
ciency. While the above CE algorithms describe only the
interference minimization problem, prior researches on linear
precoding [167], [224], [225] prove that the interference min-
imization does not certainly offer the preferable performance
in a MIMO system. In general, as the interference depends
on data, the transmitter has the capability to prophesy the
MUI at the receiver and can exploit that knowledge to impact
it and profit from it [226]. In precocious researches [227],
[228], precoders are proposed to reduce the negative results
of interference while conserving its positive components.
Whereas these interference effects are defined depending
on the correlation between the sub-streams of a phase shift
keying MIMO system.

In [226], the authors proposed a novel CE precoding
algorithm for massive MIMO systems with the concept of
constructive interference (CIN) which offers a remarkable
performance enhancement compared to interference reduc-
tion algorithms [229]–[231]. In [219], a manifold-based algo-
rithm to solve the CIN problem of the CE precoding, by using
the RCG algorithm to find a local minimizer, is proposed. The
proposed CE-CIN-RCG precoding algorithm views the feasi-
ble region of NLS problem in the CE algorithm as an oblique

manifold (OM). The precoded symbols by the CE-CIN-RCG
algorithm is perfectly constant envelopes, in contrast to the
relaxed convex problem in the algorithm proposed in [226].
Furthermore, the CE-CIN-RCG algorithm has superior sym-
bol error rate (SER) performance and lower computational
complexity than the CE-CIN algorithm proposed in [226].

In [232], the continuous-time CE (CTCE) precoding
algorithm is proposed for the DL massive MU-MIMO sys-
tems. The CTCE transmits signals are transmitted to differ-
ent users from arbitrary constellations simultaneously. The
CTCE algorithm needs about 3 dB more radiated power
above the traditional linear precoders at low sum-rates. The
CTCE algorithm has less consumed power than the tradi-
tional linear precoders due to more power efficient hardware
designs, where it does not require the hardware linearity of the
BS and power amplifiers operated at maximum efficiency.

In [233], the performance of the CE algorithm is compared
with the corresponding performance of the ZF algorithm for
a large scale MU-MIMO system. The achievable SINR of the
CE algorithm overcomes the ZF algorithm by about 5-6 dB
when the power amplifier works in the saturation region.

2) Approximate Message Passing (AMP) Precoding:
Solving the non-convex NLS problem of the CE algo-

rithms is computationally intractable. Inspired by the
amazing performance of the AMP algorithm in a rapid
inference in the related of compressed sensing topic
[235], [235]–[237], the AMP precoding algorithm for mas-
sive MU-MIMO systems is proposed in [214] to offer a
practical solution for the CE precoding problem without the
need to find a global optimal solution of non-convex problem
in a computationally difficult method. In addition, the AMP
algorithm can offer a trade-off between computational com-
plexity and achievable performance.

The AMP algorithm converts the precoding problem of
massive MU-MIMO systems to a probabilistic inference
problem by recasting the non-convex NLS problem of the
CE algorithms into an estimation problem. To design the
AMP algorithm which can estimate the transmitted vector x
based on the received vector a, the following virtual model is
introduced [214], [218]

a = HTx. (52)

The conditional probability distribution function (pdf) of an
anonymous signal x given the knowledge of matrix HT and
the observations of a can be acquired by employing the
Bayes’ rule [238] and depending on (52) as

p(x | HT, a) ∝ p(a | HT, x)p(x)

∝

[
N∏
n=1

p(an | HT, x)

]
︸ ︷︷ ︸
the likelihood function

[
M∏
m=1

p(xm)

]
︸ ︷︷ ︸
the prior pdf

, (53)

where ∝ indicates the identity after normalization to unity.
The (53) can be represented by using the factor graph [239],
as shown in Fig. 11, where the likelihood function consists of
a product of N factors relative to the constraint over each an
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TABLE 7. Computational complexity of the PAPR precoding algorithms.

and the prior pdf consists of a product of M factors relative
to what is expected of each xm [214], [218]. The factor graph
consists of M + N factor nodes and M variable nodes. The
factor graph takes apart the estimation problem into a number
of simple mutually local problems. The local problems are
solved by constrained local nodes in an interactively and
parallel manner [218]. Then the signal components which
contain the pdf of the signal component are described based
on a belief propagation (BP) [218].

The BP consists of two kinds of messages: first the mes-
sages from variable nodes to factor nodes, msgm→n(xm),
and second the messages from factor nodes to variable nodes,
msgn→m(xm) [214], [218]. The messages are updated through
the local nodes by the AMP algorithm to iteratively optimize
the precoding design for massive MU-MIMO systems. The
AMP algorithm overcomes the CE-GD and CE-AC algo-
rithms in relation to the desired complex multiplication num-
bers and the required time to converge. Furthermore, theAMP
algorithm can offer a trade-off between the PAPR reduction
and MUI suppression with favorable results [214], [218].
In [218], a comparative study between the AMP algorithm,
the CE algorithm, and the linear precoding algorithms is
introduced. The AMP algorithm has a significant improve-
ment in the BER performance than the CE algorithm and
has comparable BER performance with the linear precoding
performance.

3) Quantized Precoding (QP):
In order to exploit the favorable features of massiveMIMO

systems, one needs to take into account the related negative
effects caused by employing a large number of antennas in
the BS. A high number of RF chains at the BS leads to a
considerable increase in the complexity of hardware, costs,
and power consumption [155]. One of the main causes of
power consumption in massive MIMO systems is the data
converters at the transmitter [155]. In the DL transmission,
each RF chain generates the transmit baseband signal by

FIGURE 11. Factor graph representing the probabilistic model in (53),
where the filled rectangles denotes to factor nodes, and the filled circles
denotes to variable nodes.

using a pair of digital-to-analog converters (DACs) [155].
These DACs experience a power consumption that increase
with the resolution (in bits) exponentially and with the band-
width linearly [240], [241]. In conventional MIMO systems,
RF chains employ high resolution DACs (6 10 bits) [155],
and consume approximately 40-50 % of the overall opera-
tional power consumption [213]. Subsequently, the resolu-
tion of DACs must be restricted to save power consumption
within reasonable levels. In [242], a linear QP based on the
MMSE algorithm by paying attention to the DACs distor-
tion is proposed. This proposed algorithm exploits DACs
with 4 to 6 bits resolution and overcomes the traditional
linear QP algorithms for moderate-size MIMO systems at
high SNR.

The more restricted one-bit DAC precoding is mainly
dependent on the well-known Bussgang theorem [243] and it
is a special case of constant-envelope (CE) algorithm, where
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TABLE 8. Pros and cons of the PAPR precoding algorithms.
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FIGURE 12. Previewing of the QP for the DL massive MU-MIMO systems with low resolution DACs [155].

the transmitted signal phase is restricted to only four diverse
values [213], [216].

In [244], a quantized MRT precoding algorithm with
one-bit DACs, which leads to manageable distortion levels,
is described for Massive MU-MIMO systems. Furthermore,
in [245], the performance of the quantized ZF precoding algo-
rithm with one-bit DACs is analyzed on a Rayleigh-fading
channel. The authors in [245] show that the intense dis-
tortion for each antenna resulted from one-bit DACs can
be averaged out when a large number of transmit antennas
are employed. Moreover in [246], a comparative study of
using ideal DACs and one-bit DACs in massive MU-MIMO
systems. The one-bit DACs performance loss can be compen-
sated by deducting about 2.5 times more antennas of the BS.

In [155], the issue of DL precoding for massive
MU-MIMO systems on frequency-flat channels with
low-resolution DACs at the BS is investigated. The authors
in [155] considered both quantized linear precoder, where
a precoder is succeeded by a finite resolution DAC, and
non-linear precoder where the outputs of DAC are directly
generating by jointly using the data vector with the CSI. The
performance of the MRT and ZF linear precoders according
to a coarse quantization is also analyzed. The performance
of infinite resolution DACs can be achieved by using 3 to
4 bits DACs. The authors in [155] also proposed a new
non-linear precoder with one-bit DACs which overcomes
linear precoders but with a cost of computational complexity.
The performance of the proposed non-linear precoder is
less than the performance in the infinite resolution case by
3 dB for 10−3 uncoded BER, with 128 BS antennas and
16 single-antenna users.Where the performance of linear pre-
coders is less than the performance in the infinite resolution
case by 8 dB. Figure 12 previews the QP for the DL massive
MU-MIMO systems with low-resolution DACs. Where x
∈ XM is the precoded vector and X is the set of complex
numbers C when DACs has infinite resolution [155].
In practical MIMO architectures with finite-resolution

DACs, the quantization labels can be defined as [155]

L = {`0, `1, . . . , `L} , (54)

where

`i = α4

(
i−

L − 1
2

)
, i = 0, 1, 2, . . . ,L − 1, (55)

where 4 is a step size of symmetric uniform quantizers, α
is a scaled power factor, and L is the number of quantization
levels.

The quantizer-mapping function of the one-bit DACs can
be presented as [155]

x = Q (Pa) =
√

P
2M

(sgn (< {Pa})+ jsgn (= {Pa})) ,

(56)

where P is the average power, P is the precoding matrix,
and Q(.) : CM

→ XM is the non-linear quantizer-mapping
function which characterizes the joint process of the 2M
DACs at the transmitter.

The finite quantization outputs of X are [155]

X =
{√

P
2M

(±1± j)

}
. (57)

The one-bit QR problem can be formulated as follows [155]

minimizex∈XM , β∈R

∥∥∥a− βHTx
∥∥∥2
2
+ β2Nσ 2

n ,

subject to β > 0, (58)

where β is a precoding factor. To solve the QP prob-
lem in (58) at a fixed value of β, the evaluation of
|X |M = 4M vectors is required, where the computational
complexity grows exponentially with M . In recent litera-
ture review, there is a variety of developing low-complexity
non-linear precoders which offer near-optimal performance
for the one-bit QP problem, such as semidefinite relax-
ation (SDR) [155], [247]–[249], squared-infinity norm
Douglas-Rachford splitting (SQUID) [155], [250], [251],
adaptation sphere precoding (ASP) [155], [252]. Where the
relaxed versions of the QP problem can be solved by these
non-linear algorithms.

In [234], a highly efficient non-linear precoding algo-
rithm, for massive MU-MIMO systems with one-bit DACs
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FIGURE 13. Channel estimation for precoded massive MIMO with FDD utilizing machine learning in reducing the feedback overhead.

based on an alternative direction method of multipli-
ers (ADMM) framework is proposed. The ADMM based
algorithm solves the original non-convex precoding prob-
lem directly instead of solving relaxed versions problem.
The ADMM based algorithm offers a performance of the
SDR algorithm, and it is faster than the SDR algorithm by
300 times.

For smooth readability and comparison, the computational
complexity of the PAPR precoding algorithms is presented
in Table 7 and their pros and cons are comprehensively
reviewed in Table 8.

D. MACHINE LEARNING PRECODING
Machine learning algorithms have lately shown a great
prospective in treating complex optimization problems in
the emerging wireless communications applications and set-
tings [253]. For instance, there is a plethora of detection
techniques for massive MIMO based on machine learning
[254]–[256]. There is also an extensive literature that is deal-
ing with deep learning utilization precoded mmWave MIMO
systems [257]. For example, the authors in [258] have intro-
duced a precoded massive MIMO system that is using FDD.
As mention earlier, the CSI should be known at the trans-
mitter for the precoding process. Unlike, TDD which takes
advantage of channel reciprocity in CSI estimation, FDD
needs feedback to the BSwith the CSI. Themultiuser channel
estimation and feedback problem have been considered as
a distributed source coding (DSC) problem which is solved
using generalized deep neural network (DNN) architecture
(see Fig. 13).
The overhead problem of FDDCSI is also tackled in [259],

[260] for precoded massiveMIMO in conventional frequency
bands. A two-stage decoder is a common solution to reduce
the size of the feedback information [261]. An outer decoder

reduces the large channel dimensions to be ready to be used
by the inner decoder to control the IUI similar to multiuser
MIMO precoding. To this end, a DNN architecture is devel-
oped in the outer decoder to optimize the channel dimensions.
The DNN machine-learning model is evaluated and proved
to enhance the average sum-rate and achieves near-optimal
performance.

The deep learning algorithms are also used to enhance
the problem of SIC used in massive MIMO-NOMA sys-
tems [259]. SIC in massive MIMO suffers from imperfec-
tions especially when multiple user’s real-world scenarios
is considered. A joint optimization for both MIMO-NOMA
precoding and SIC is done by minimizing the total mean
square error of the users’ signals. The superior perfor-
mance and effectiveness of the proposed scheme are demon-
strated through the numerical results. In [262], deep learn-
ing tools are exploited to optimize the biConvex 1-bit pre-
coding algorithm where per-iteration parameters are intro-
duced. The algorithm is tested in different channel models
and shows satisfactory results in vastly changing propagation
conditions.

VI. PRECODING IN PROMISING ANTENNA
ARCHITECTURES FOR B5G
The 5G cellular technology was implemented by several
mobile carriers. It reduces the data connections latency and
increases the data rate. However, inter-cell interference and
handover issues are remaining to limit the cell-edge perfor-
mance. In addition, a large number of antennas at the mas-
sive MIMO transceiver causes an extra computational and
implementation complexity. The design of energy-efficient
and sustainable communication systems is also still an issue
to be handled in B5G. Therefore, three promising multiple
antenna technologies/architectures are flashing up in B5G
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networks: the CF-M-MIMO, beamspacemassiveMIMO, and
the IRSs [263].

A. CELL-FREE MASSIVE MIMO
In CF-M-MIMO, the concepts of distributed MIMO and
massive MIMO are combined with no cell-boundaries, and
hence, intercell interference is mitigated [264]. The UEs are
simultaneously served by a large number of service antennas
(access points (APs)) that distributed over a wide geographic
area. In CF-M-MIMO, there is a central processing units
(CPU), but the information exchange between the CPU and
the APs is very limited to the payload data. The ZF precoding
scheme is utilized in many CF-M-MIMO systems. However,
it requires an exchange of the instantaneous CSI among all
APs which complicates the processing when a large number
of APs is utilized [265]. In [266], [267], a conjugate beam-
forming, ZF precoding scheme, and max-min power control
were utilized with the DL CF-M-MIMO to guarantee a good
service at a high spectral efficiency. Centralized ZF precod-
ing was implemented in part of APs, while the maximum-
ratio-transmission (MRT) was applied in other APs.

In [268], it has shown that increasing the number of anten-
nas per AP results in a stronger hardening effect. However,
this paper has used the MRT without taking into account
neither the pilot contamination nor the imperfect CSI. It also
omits the effect of power allocation strategies on the channel
hardening. In [269], it is shown that the degree of hardening
is highly affected by the power allocation coefficients, and
hence, it affects the specific precoding scheme. The work
in [269] has been analyzed in [270] with accounting for differ-
ent realistic channel model assumptions and different system
configurations where ZF precoding scheme was exploited.

In [271], the high power consumption in CF-M-MIMO
was tackled by a low complexity power control technique
with ZF precoding scheme to maximize the energy efficiency
of CF-M-MIMO when imperfect CSI is used. In order to
avoid instantaneous CSI exchange, local partial ZF, and local
protective partial ZF schemes were proposed to provide an
interference cancellation gain and improve the spectral effi-
ciency of the CF-M-MIMO system. Compared to the tra-
ditional ZF and MRT schemes, local partial ZF and local
protective partial ZF schemes have significantly enhanced the
spectral efficiency of the CF-M-MIMO system [272]. Unfor-
tunately, a large number of antennas at each AP is required
in local partial ZF schemes which is more challenging for
UL design [273]. In [274], a partial MMSE is proposed as
a precoding scheme. Although it is nearly optimal, the power
allocation for distributed operation was not investigated.

B. BEAMSPACE MASSIVE MIMO
A low complexity realization can be achieved by exploiting
the spatial structure of the channels and transceiver hardware
can be utilized without sacrificing the operational flexibility
or the performance. By employing designed discrete lens
array (DLA), the conventional channel in the spatial domain
can be converted to the beamspace channel [275]. The more

antennas that are used in a M-MIMO transceiver, there is a
need to rethinking the signal processing and linear precoding
where beamspace MIMO formulation is one of the most
popular approach. It is expected that the number of antennas
will continue to increase in sub-6 GHz communication net-
works. Hence, the dimensionality of M-MIMO arrays with
hybrid digital-analog, tiled arrays and sub-arraying is going
to be impractical. Therefore, utilization of subspace approach
based on effective channels will benefit the massive MIMO
processing. In case of high frequencies (i.e. millimeter wave
(mmWave)), beamspacewill bemandatory [263]. Beamspace
MIMO can significantly reduces the number of power RF
chains in mmWave communications [276].

The beamspace channel is sparse, hence, the dimension of
the massive MIMO can be reduced by selecting a small num-
ber of powerful beams [277]. In [278], a precoding scheme
in beamspace was proposed where the spatial channel spar-
sity was exploited. The beamspace techniques have a great
impact in accomplishing a satisfactory precoding with a low
complexity. In [276], optimal hybrid cross-entropy (HCE)
based hybrid precoding scheme and lens array architecture
were utilized to propose a feasible precoding scheme. The
proposed architecture has achieve a satisfactory performance
and a high energy efficiency. In [277], an optimal HCE based
hybrid precoding with machine learning was proposed. The
probability distribution of the hybrid precoder is updated by
minimizing the cross-entropy. Numerical results show that
the proposed scheme can achieve a satisfactory performance
with high energy efficiency. Figure 14 illustrates the con-
cepts of beamspace MIMO and hybrid precoding architec-
ture. In [279], the beamspace channel sparsity was exploited
for the training of the deep neural network. A deep learning
compressed sensing channel estimation and hybrid precoding
were considered and the network was trained offline to pre-
dict the beamspace channel amplitude. Then, a deep learning
quantized phase hybrid precoding method was developed to
obtain a satisfactory spectral efficiency.

C. INTELLIGENT REFLECTING SURFACES
In last few years, IRS has gained a great attention in the
research community and considered as a promising solution
to provide new degrees of freedom and hence, improve the
spectral and energy efficiency (bit/Joule) of B5G communi-
cation networks with low hardware cost. In the IRS, a large
set of low-cost elements are composed in a metasurface (a
planar array) to diffusely reflects incoming signals in a smart
controllable manner. In other words, with a pre-programmed
phase shifts and/or reflecting amplitudes, each element is able
to independently reflect the incoming signal. It is similar to
the concept of reconfigurable reflect arrays with real-time
control and reconfigurability [263]. Figure 15 shows an
IRS-aided multi-user multi-input-single-output (MU-MISO)
communication system.

In [281], [282], a symbol-level precoding (SLP) with the
assistance of IRS was proposed. In order to minimize the
worst-case symbol error probability at the BS, phase shift at
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FIGURE 14. Traditional MIMO in the spatial domain, beamspace MIMO, and hybrid precoding architecture [277].

FIGURE 15. A communication system aided with the IRS [280].

the IRS is proposed. Numerical results have shown that the
performance can be significantly improved by incorporating
the IRS. In [280], a precoding design of IRS-aided commu-
nication system was proposed where the multi-user inter-
ference (MUI) was exploited to improve the performance.
Alternating optimization (AO) algorithm was utilized to
obtain the precoding matrix and phase shift matrix. In [283],
the precoding matrix of the BS and the reflection coeffi-
cients of the IRS were optimized by the block coordinate
descent (BCD). In addition, the minorization-maximization
(MM) algorithm was utilized to reduce the computational
complexity. In [284], the Riemannian conjugate gradient,
branch-and-bound, and direct quantizationwere used to attain
a low-resolution SLE precoder for single-antenna users. For
multi-antenna receivers, decomposition of the large scale
optimization problem was applied to decompose the original
problem into several sub-problems.

D. OTHER MASSIVE MIMO PRECODERS
Full-duplex (FD) radios were incorporated into advanced
technology such as the massive MIMO [285]. In addition,
beam domain transmission has been introduced in a massive
MIMO system to further enhance the spectral efficiency.
In [286], the precoding for FD massive MIMO systems was
comprehensively discussed. A beam-domain FD (BDFD)
based on the basis expansion model is proposed to make
the co-time co-frequency UL and DL transmission possible.
Intelligent scheduling of beam-domain distribution is utilized
to mitigate the self-interference (SI) and improve the trans-
mission efficiency. This method has used the time-frequency
efficiently and hence, the spectral efficiency gain is improved.

Although numerical results show the superiority of the BDFD
scheme over the TDD/FDD massive MIMO, the beamform-
ing complexity should be taken into consideration, particu-
larly in high speed railways (HSR) scenarios [287].

In [288], a beam extraction method is utilized to eliminate
the pilot contamination using a secure beam-domain trans-
mission scheme. In [289], a beam domain hybrid time switch-
ing (TS) and power splitting (PS) simultaneous wireless
information and power transfer (SWIPT) system for FD mas-
sive MIMO is proposed for energy harvesting and channel
estimation. The SI is eliminated without using instantaneous
SI CSI. Numerical results show that the proposed hybrid
system can achieve a considerable transmission efficiency
gain. In [287], a hybrid beamforming and an angle-domain
(AD) channel tracking schemes were proposed for HSR sce-
narios where the channel has been decomposed into spatial
angular information and beam gain. In order to reduce the
computational complexity, a beam-domain precoding scheme
is utilized in the hybrid beamforming.

In [290], the optimal jamming precoding with a power
solution in DL massive MIMO was investigated where
approximate orthogonal beam domain channels of the BS
were considered. The correlation of the beam domain chan-
nels was also investigated. The ZF precoding has achieved an
optimal configuration for jamming defense. It is noteworthy
that the power consumption of the precoding in the defense
against a jammer was reduced by a proper increase in the
channel approximation error [288].

VII. OPEN RESEARCH AREA AND CONCLUSION
A. OPEN RESEARCH AREA
Most research efforts carried out on massive MIMO have
so far focused mainly on linear precoding algorithms. As it
has been illustrated throughout this survey, there are trials
to find low complexity versions of the non-linear precoders
such as the DPC and TH. However, there are great potentials
in finding more efficient and high performance non-linear
precoders with comparable complexity with linear precoders.

Moreover in [259], [260] and [261], the DNN is uti-
lized in massive MIMO systems to solve the problem of
multiuser channel estimation and feedback, tackle the over-
head problem of FDD CSI, and enhance the SIC problem.
Furthermore, there is an extensive literature that is dealing

VOLUME 9, 2021 60793



M. A. Albreem et al.: Overview of Precoding Techniques for Massive MIMO

with the precoding problem of mmWave MIMO systems by
employing the deep learning [257]. Nevertheless, the litera-
ture has a remarkable lack of employing the AI technology,
in general, in the conventional sub-6 GHz massive MIMO
systems. However, there are huge opportunities to employ
the AI technologies such as machine learning and DNN to
design a high-performance and low-complexity precoder. For
example, the AI technologies can be used to find the optimal
perturbation vector of the non-linear VP precoder instead of
using the sphere search algorithms. In addition, it can be used
to optimize the MUI in the CE precoding algorithm. Further-
more, it can be used to minimize the one-bit problem, and to
do various optimization processes in the precoder algorithms.
Also the machine learning can be exploited to choose the best
algorithm to be applied instead of the best data estimation.
Although the learning stage could severely increase the com-
putational complexity, it can be performed off-line to obtain
the optimal precoding algorithm. In addition, the employment
of the virtual channel model (VCM) is a potential direction of
new innovation for precoding algorithms in massive MIMO
systems. Although most existing precoding techniques are
proposed for centralized massive MIMO networks, they can
be exploited in the CF-M-MIMO.

The research in a high altitude platform (HAP) massive
MIMO to obtain an efficient RF precoder and a baseband
precoder with limited RF chains is also still in its infancy
where AI can be exploited to provide high efficiency.

B. CONCLUSION
Massive MIMO provides a great improvement in user
experience and mobile services. It will stay a competitive
candidate in the next decade. However, significant research
dedicated to the transmitter’s design is proposed. This paper
has surveyed the linear and non-linear precoding schemes
that pertain to massive MIMO systems. Although linear
precoders suffer from performance deterioration under cer-
tain scenarios, they still play a crucial role in the trans-
mitter design due to their relative simplicity. In this paper,
a comparison between different linear precoders is provided.
In addition, an in-depth discussion on non-linear precoders
with their performance-complexity profile is presented. It is
shown that the non-linear precoders have a high computa-
tional complexity but they are promising to obtain a satis-
factory performance. This paper also reviewed the potential
of machine learning role in precoding algorithms. Moreover,
this paper has reviewed the precoding schemes in CF-M-
MIMO, beamspace massive MIMO, and the IRS technolo-
gies. Besides that, channel estimation, collection of CSI in
TDD and FD, impact of the condition number, and energy
efficiency have been discussed.

REFERENCES
[1] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, ‘‘Massive

MIMO for next generation wireless systems,’’ IEEE Commun. Mag.,
vol. 52, no. 2, pp. 186–195, Feb. 2014.

[2] D. C. Araújo, T. Maksymyuk, A. L. F. Almeida, T. Maciel, J. C. M. Mota,
and M. Jo, ‘‘Massive MIMO: Survey and future research topics,’’ IET
Commun., vol. 10, no. 15, pp. 1938–1946, Oct. 2016.

[3] D. Mercer, ‘‘Global connected and IoT device forecast update,’’ Strategy
Analytic research services, Tech. Rep. 2019, USA, May 2019.

[4] Ericsson, ‘‘Ericsson mobility report: On the pulse of the networked
society,’’ Ericsson, Stockholm, Sweden, Tech. Rep. EAB-16:006659,
Jul. 2016.

[5] M. A. Albreem, ‘‘5G wireless communication systems: Vision and
challenges,’’ in Proc. Int. Conf. Comput., Commun., Control Technol.,
Apr. 2015, pp. 493–497.

[6] S. L. Mohammed, M. H. Alsharif, S. K. Gharghan, I. Khan, and
M. Albreem, ‘‘Robust hybrid beamforming scheme for millimeter-wave
massive-MIMO 5G wireless networks,’’ Symmetry, vol. 11, no. 11,
p. 1424, Nov. 2019.

[7] E. Björnson, J. Hoydis, and L. Sanguinetti, ‘‘Massive MIMO networks:
Spectral, energy, and hardware efficiency,’’ Found. Trends Signal Pro-
cess., vol. 11, nos. 3–4, pp. 154–655, 2017.

[8] T. L. Marzetta and H. Q. Ngo, Fundamentals of Massive MIMO.
Cambridge, U.K.: Cambridge Univ. Press, 2016.

[9] P. Gandotra, R. K. Jha, and S. Jain, ‘‘Green communication in next genera-
tion cellular networks: A survey,’’ IEEE Access, vol. 5, pp. 11727–11758,
2017.

[10] R. Ahmad, M. Asim, S. Z. Khan, and B. Singh, ‘‘Green IoT—Issues and
challenges,’’ in Proc. SSRN Electron. J., 2019, pp. 1–4.

[11] J. Huang, C.-X. Wang, R. Feng, J. Sun, W. Zhang, and Y. Yang, ‘‘Multi-
frequency mmWave massive MIMO channel measurements and charac-
terization for 5G wireless communication systems,’’ IEEE J. Sel. Areas
Commun., vol. 35, no. 7, pp. 1591–1605, Jul. 2017.

[12] S. Mumtaz, J. Rodriguez, and L. Dai, MmWave Massive MIMO:
A Paradigm for 5G. New York, NY, USA: Academic, 2016.

[13] J. Yuan, H. Shan, A. Huang, T. Q. S. Quek, and Y.-D. Yao, ‘‘Mas-
sive machine-to-machine communications in cellular network: Dis-
tributed queueing random access meets MIMO,’’ IEEE Access, vol. 5,
pp. 2981–2993, 2017.

[14] Y. Mehmood, N. Haider, W. Afzal, U. Younas, I. Rashid, and M. Imran,
‘‘Impact of massive MIMO systems on future M2M communication,’’ in
Proc. IEEE 11th Malaysia Int. Conf. Commun., Nov. 2013, pp. 534–537.

[15] L. Foschini, T. Taleb, A. Corradi, and D. Bottazzi, ‘‘M2M-based
metropolitan platform for IMS-enabled road traffic management in IoT,’’
IEEE Commun. Mag., vol. 49, no. 11, pp. 50–57, Nov. 2011.

[16] M. A. Albreem, M. Juntti, and S. Shahabuddin, ‘‘Massive MIMO detec-
tion techniques: A survey,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 4,
pp. 3109–3132, Aug. 2019.

[17] M. Pappa, C. Ramesh, and M. N. Kumar, ‘‘Performance comparison of
massive MIMO and conventional MIMO using channel parameters,’’ in
Proc. Int. Conf. Wireless Commun., Signal Process. Netw., Mar. 2017,
pp. 1808–1812.

[18] M. A. Albreem, W. Salah, A. Kumar, M. H. Alsharif, A. H. Rambe,
M. Jusoh, and A. N. Uwaechia, ‘‘Low complexity linear detectors
for massive MIMO: A comparative study,’’ IEEE Access, vol. 9,
pp. 45740–45753, 2021.

[19] Q. Hu, M. Zhang, and R. Gao, ‘‘Key technologies in massive MIMO,’’ in
Proc. ITMWeb Conf., vol. 17. Les Ulis, France: EDP Sciences, Feb. 2018,
Art. no. 01017.

[20] S. Shahabuddin, ‘‘MIMO detection and precoding architectures,’’
Ph.D. dissertation, CenterWireless Commun., Univ. Oulu, Oulu, Finland,
Jun. 2019.

[21] N. Fatema, G. Hua, Y. Xiang, D. Peng, and I. Natgunanathan, ‘‘Mas-
sive MIMO linear precoding: A survey,’’ IEEE Syst. J., vol. 12, no. 4,
pp. 3920–3931, Dec. 2018.

[22] O. Elijah, C. Y. Leow, T. A. Rahman, S. Nunoo, and S. Z. Iliya,
‘‘A comprehensive survey of pilot contamination in massive MIMO—
5G system,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 2, pp. 905–923,
2nd Quart., 2016.

[23] A. Acheampong, N. Martey, and D. A. Kumah, ‘‘A comprehensive study
of optimal linear pre-coding schemes for a massiveMU-MIMO downlink
system: A survey,’’ in Proc. Int. Joint Conf. Neur. Net, 2019, vol. 32, no. 1,
pp. 21–33.

[24] S. A. Busari, K. M. S. Huq, S. Mumtaz, L. Dai, and J. Rodriguez,
‘‘Millimeter-wave massive MIMO communication for future wireless
systems: A survey,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 2,
pp. 836–869, 2nd Quart., 2018.

[25] P. Zhang, J. Chen, X. Yang, N. Ma, and Z. Zhang, ‘‘Recent research on
massive MIMO propagation channels: A survey,’’ IEEE Commun. Mag.,
vol. 56, no. 12, pp. 22–29, Dec. 2018.

[26] A. F. Molisch, V. V. Ratnam, S. Han, Z. Li, S. L. H. Nguyen, L. Li, and
K. Haneda, ‘‘Hybrid beamforming for massive MIMO: A survey,’’ IEEE
Commun. Mag., vol. 55, no. 9, pp. 134–141, Sep. 2017.

60794 VOLUME 9, 2021



M. A. Albreem et al.: Overview of Precoding Techniques for Massive MIMO

[27] A. N. Uwaechia and N. M. Mahyuddin, ‘‘A comprehensive survey on
millimeter wave communications for fifth-generation wireless networks:
Feasibility and challenges,’’ IEEE Access, vol. 8, pp. 62367–62414, 2020.

[28] F. Wen, H. Wymeersch, B. Peng, W. P. Tay, H. C. So, and D. Yang,
‘‘A survey on 5G massive MIMO localization,’’ Digit. Signal Process.,
vol. 94, pp. 21–28, Nov. 2019.

[29] L. Li and W. Meng, ‘‘Detection for uplink massive MIMO system:
A survey,’’ in Proc. Int. Conf. Advanc. Hybrid Infor. Process. Cham,
Switzerland: Springer, Sep. 2019, pp. 287–299.

[30] B. Rajarajeswarie and R. Sandanalakshmi, ‘‘A short survey: Applications
of artificial intelligence in massive MIMO,’’ in Proc. Int. Conf. Commun.
Signal Process., Jul. 2020, pp. 1096–1100.

[31] E. Björnson, L. Sanguinetti, H.Wymeersch, J. Hoydis, and T. L.Marzetta,
‘‘Massive MIMO is a reality—What is next?: Five promising research
directions for antenna arrays,’’ Digit. Signal Process., vol. 94, pp. 3–20,
Nov. 2019.

[32] E. Ali, M. Ismail, R. Nordin, and N. F. Abdulah, ‘‘Beamforming tech-
niques for massive MIMO systems in 5G: Overview, classification, and
trends for future research,’’ Frontiers Inf. Technol. Electron. Eng., vol. 18,
no. 6, pp. 753–772, Jun. 2017.

[33] Y. Hei, C. Zhang, W. Song, and Y. Kou, ‘‘Energy and spectral effi-
ciency tradeoff in massive MIMO systems with multi-objective adap-
tive genetic algorithm,’’ Soft Comput., vol. 23, no. 16, pp. 7163–7179,
Aug. 2019.

[34] R. Chataut and R. Akl, ‘‘Massive MIMO systems for 5G and beyond
networks—Overview, recent trends, challenges, and future research
direction,’’ Sensors, vol. 20, no. 10, p. 2753, May 2020.

[35] J. Chen, H. Chen, H. Zhang, and F. Zhao, ‘‘Spectral-energy efficiency
tradeoff in relay-aided massive MIMO cellular networks with pilot con-
tamination,’’ IEEE Access, vol. 4, pp. 5234–5242, 2016.

[36] Q. He, L. Xiao, X. Zhong, and S. Zhou, ‘‘Increasing the sum-throughput
of cells with a sectorization method for massive MIMO,’’ IEEE Commun.
Lett., vol. 18, no. 10, pp. 1827–1830, Oct. 2014.

[37] M. Matalatala, M. Deruyck, E. Tanghe, L. Martens, and W. Joseph,
‘‘Optimal low-power design of a multicell multiuser massive MIMO
system at 3.7 GHz for 5G wireless networks,’’Wireless Commun. Mobile
Comput., vol. 2018, pp. 1–17, Oct. 2018.

[38] H. A. J. Alshamary, ‘‘Coherent and non-coherent data detection algo-
rithms in massiveMIMO,’’ Ph.D. dissertation, Dept. Elect. Comput. Eng.,
Univ. Iowa, Iowa City, IA, USA, May 2017.

[39] P. Popovski, Č. Stefanović, J. J. Nielsen, E. de Carvalho,
M. Angjelichinoski, K. F. Trillingsgaard, and A.-S. Bana, ‘‘Wireless
access in ultra-reliable low-latency communication (URLLC),’’ IEEE
Trans. Commun., vol. 67, no. 8, pp. 5783–5801, Aug. 2019.

[40] V. Jungnickel, K. Manolakis, W. Zirwas, B. Panzner, V. Braun,
M. Lossow, M. Sternad, R. Apelfröjd, and T. Svensson, ‘‘The role of
small cells, coordinated multipoint, and massive MIMO in 5G,’’ IEEE
Commun. Mag., vol. 52, no. 5, pp. 44–51, May 2014.

[41] T. T. Do, E. Björnson, E. G. Larsson, and S. M. Razavizadeh, ‘‘Jamming-
resistant receivers for the massive MIMO uplink,’’ IEEE Trans. Inf.
Forensics Security, vol. 13, no. 1, pp. 210–223, Jan. 2018.

[42] J. Hoydis, S. ten Brink, andM.Debbah, ‘‘MassiveMIMO in theUL/DL of
cellular networks: How many antennas do we need?’’ IEEE J. Sel. Areas
Commun., vol. 31, no. 2, pp. 160–171, Feb. 2013.

[43] S. Jin, X. Wang, Z. Li, K.-K. Wong, Y. Huang, and X. Tang, ‘‘On massive
MIMO zero-forcing transceiver using time-shifted pilots,’’ IEEE Trans.
Veh. Technol., vol. 65, no. 1, pp. 59–74, Jan. 2016.

[44] F. Rusek, D. Persson, B. Kiong Lau, E. G. Larsson, T. L. Marzetta, and
F. Tufvesson, ‘‘Scaling up MIMO: Opportunities and challenges with
very large arrays,’’ IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40–60,
Jan. 2013.

[45] H. Quoc Ngo, E. G. Larsson, and T. L. Marzetta, ‘‘Energy and spectral
efficiency of very large multiuser MIMO systems,’’ IEEE Trans. Com-
mun., vol. 61, no. 4, pp. 1436–1449, Apr. 2013.

[46] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, ‘‘Aspects of favorable
propagation inmassiveMIMO,’’ inProc. 22nd Eur. Signal Process. Conf.,
2014, pp. 76–80.

[47] X.Wu, N. C. Beaulieu, and D. Liu, ‘‘On favorable propagation in massive
MIMO systems and different antenna configurations,’’ IEEE Access,
vol. 5, pp. 5578–5593, 2017.

[48] L. You, J. Xiong, X. Yi, J. Wang, W. Wang, and X. Gao, ‘‘Energy effi-
ciency optimization for downlink massive MIMO with statistical CSIT,’’
IEEE Trans. Wireless Commun., vol. 19, no. 4, pp. 2684–2698, Apr. 2020.

[49] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang,
‘‘An overview of massive MIMO: Benefits and challenges,’’ IEEE J. Sel.
Topics Signal Process., vol. 8, no. 5, pp. 742–758, Oct. 2014.

[50] T. L. Marzetta, ‘‘Noncooperative cellular wireless with unlimited num-
bers of base station antennas,’’ IEEE Trans. Wireless Commun., vol. 9,
no. 11, pp. 3590–3600, Nov. 2010.

[51] J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vishwanath, ‘‘Pilot contam-
ination and precoding in multi-cell TDD systems,’’ IEEE Trans. Wireless
Commun., vol. 10, no. 8, pp. 2640–2651, Aug. 2011.

[52] T. Younas, J. Li, M. M. Tulu, H. M. Munir, and M. Liaqat, ‘‘Study of
single-cell massive MIMO systems with channel aging and prediction,’’
Wireless Netw., vol. 26, pp. 1–10, May 2019.

[53] N. Krishnan, R. D. Yates, and N. B. Mandayam, ‘‘Cellular systems with
many antennas: Large system analysis under pilot contamination,’’ in
Proc. 50th Annu. Allerton Conf. Commun., Control, Comput. (Allerton),
Oct. 2012, pp. 1220–1224.

[54] M. A. M. Moqbel, W. Wangdong, and A.-M.-Z. Ali, ‘‘MIMO channel
estimation using the LS and MMSE algorithm,’’ IOSR J. Electron. Com-
mun. Eng., vol. 12, no. 1, pp. 13–22, Jan. 2017.

[55] M. Medra, Y. Huang, W.-K. Ma, and T. N. Davidson, ‘‘Low-complexity
robust MISO downlink precoder design under imperfect CSI,’’ IEEE
Trans. Signal Process., vol. 64, no. 12, pp. 3237–3249, Jun. 2016.

[56] J. O. Nielsen, A. Karstensen, P. C. F. Eggers, E. De Carvalho,
G. Steinböck, and M. Alm, ‘‘Precoding for TDD and FDD in measured
massive MIMO channels,’’ IEEE Access, vol. 8, pp. 193644–193654,
2020.

[57] J. Flordelis, F. Rusek, F. Tufvesson, E. G. Larsson, and O. Edfors, ‘‘Mas-
sive MIMO performance—TDD versus FDD: What do measurements
say?’’ IEEE Trans. Wireless Commun., vol. 17, no. 4, pp. 2247–2261,
Jan. 2018.

[58] H. Q. Ngo, Massive MIMO: Fundamentals and System Designs,
vol. 1642. Linköping, Sweden: Linköping Univ. Electronic Press, 2015.

[59] E. Björnson, L. Sanguinetti, and M. Debbah, ‘‘Massive MIMO with
imperfect channel covariance information,’’ in Proc. 50th Asilomar Conf.
Signals, Syst. Comput., Nov. 2016, pp. 974–978.

[60] O. Ledoit and M. Wolf, ‘‘A well-conditioned estimator for large-
dimensional covariance matrices,’’ J. Multivariate Anal., vol. 88, no. 2,
pp. 365–411, Feb. 2004.

[61] N. Shariati, E. Björnson, M. Bengtsson, and M. Debbah, ‘‘Low-
complexity polynomial channel estimation in large-scale MIMO with
arbitrary statistics,’’ IEEE J. Sel. Topics Signal Process., vol. 8, no. 5,
pp. 815–830, Oct. 2014.

[62] T.-H. Chang, W.-K. Ma, and C.-Y. Chi, ‘‘Worst-case robust multiuser
transmit beamforming using semidefinite relaxation: Duality and impli-
cations,’’ in Proc. 45th Asilomar Conf. Signals, Syst. Comput. (ASILO-
MAR), Nov. 2011, pp. 1579–1583.

[63] A. Morsali and B. Champagne, ‘‘Robust hybrid analog/digital beam-
forming for uplink massive-MIMO with imperfect CSI,’’ in Proc. IEEE
Wireless Commun. Netw. Conf. (WCNC), Apr. 2019, pp. 1–6.

[64] S. Noh, M. D. Zoltowski, and D. J. Love, ‘‘Training sequence design for
feedback assisted hybrid beamforming inmassiveMIMO systems,’’ IEEE
Trans. Commun., vol. 64, no. 1, pp. 187–200, Jan. 2016.

[65] M. Hanif, H.-C. Yang, G. Boudreau, E. Sich, and H. Seyedmehdi, ‘‘Prac-
tical hybrid precoding for multi-user massive MIMO systems,’’ in Proc.
IEEE Can. Conf. Electr. Comput. Eng. (CCECE), May 2016, pp. 1–4.

[66] M. Rihan, T. A. Soliman, C. Xu, L. Huang, and M. I. Dessouky, ‘‘Tax-
onomy and performance evaluation of hybrid beamforming for 5G and
beyond systems,’’ IEEE Access, vol. 8, pp. 74605–74626, 2020.

[67] F. Hu, K. Wang, H. Wu, and L. Jin, ‘‘An adaptive energy consumption
optimization for massive MIMO systems with imperfect CSI,’’ in Proc.
IEEE 4th Int. Conf. Comput. Commun. (ICCC), Dec. 2018, pp. 377–381.

[68] F. Rosas and C. Oberli, ‘‘Impact of the channel state information on
the energy-efficiency of MIMO communications,’’ IEEE Trans. Wireless
Commun., vol. 14, no. 8, pp. 4156–4169, Aug. 2015.

[69] A. Zappone, P. Cao, and E. A. Jorswieck, ‘‘Energy efficiency optimization
in relay-assisted MIMO systems with perfect and statistical CSI,’’ IEEE
Trans. Signal Process., vol. 62, no. 2, pp. 443–457, Jan. 2014.

[70] D. W. K. Ng, E. S. Lo, and R. Schober, ‘‘Energy-efficient resource allo-
cation in OFDMA systems with large numbers of base station antennas,’’
IEEE Trans. Wireless Commun., vol. 11, no. 9, pp. 3292–3304, Sep. 2012.

[71] R. S. Prabhu and B. Daneshrad, ‘‘Energy-efficient power loading for a
MIMO-SVD system and its performance in flat fading,’’ in Proc. IEEE
Global Telecommun. Conf. (GLOBECOM), Dec. 2010, pp. 1–5.

VOLUME 9, 2021 60795



M. A. Albreem et al.: Overview of Precoding Techniques for Massive MIMO

[72] H. Ye, G. Lim, L. J. Cimini, and Z. Tan, ‘‘Energy-efficient scheduling and
resource allocation in uplink OFDMA systems,’’ IEEE Commun. Lett.,
vol. 19, no. 3, pp. 439–442, Mar. 2015.

[73] A. Akbari, R. Hoshyar, and R. Tafazolli, ‘‘Energy-efficient resource
allocation in wireless OFDMA systems,’’ in Proc. 21st Annu. IEEE Int.
Symp. Pers., Indoor Mobile Radio Commun., Sep. 2010, pp. 1731–1735.

[74] H. Ye, G. Lim, L. J. Cimini, and Z. Tan, ‘‘Energy-efficient resource
allocation in uplink OFDMA systems under QoS constraints,’’ in Proc.
IEEE Mil. Commun. Conf. (MILCOM), Nov. 2013, pp. 424–428.

[75] K. Illanko, M. Naeem, A. Anpalagan, and D. Androutsos, ‘‘Frequency
and power allocation for energy efficient OFDMA systems with pro-
portional rate constraints,’’ IEEE Wireless Commun. Lett., vol. 3, no. 3,
pp. 313–316, Jun. 2014.

[76] X. Xiao, X. Tao, Y. Jia, and J. Lu, ‘‘An energy-efficient hybrid structure
with resource allocation in OFDMA networks,’’ in Proc. IEEE Wireless
Commun. Netw. Conf., Mar. 2011, pp. 1466–1470.

[77] Z. Chu, W. Hao, P. Xiao, F. Zhou, D. Mi, Z. Zhu, and V. C. M. Leung,
‘‘Energy efficient hybrid precoding in heterogeneous networks with lim-
ited wireless backhaul capacity,’’ in Proc. IEEE Global Commun. Conf.
(GLOBECOM), Dec. 2018, pp. 1–7.

[78] G. Miao, N. Himayat, and G. Y. Li, ‘‘Energy-efficient link adaptation
in frequency-selective channels,’’ IEEE Trans. Commun., vol. 58, no. 2,
pp. 545–554, Feb. 2010.

[79] Z. Hasan, G. Bansal, E. Hossain, and V. K. Bhargava, ‘‘Energy-efficient
power allocation in OFDM-based cognitive radio systems: A risk-return
model,’’ IEEE Trans. Wireless Commun., vol. 8, no. 12, pp. 6078–6088,
Dec. 2009.

[80] G. Miao, N. Himayat, G. Y. Li, and S. Talwar, ‘‘Low-complexity energy-
efficient scheduling for uplink OFDMA,’’ IEEE Trans. Commun., vol. 60,
no. 1, pp. 112–120, Jan. 2012.

[81] C. Isheden and G. P. Fettweis, ‘‘Energy-efficient multi-carrier link adap-
tation with sum rate-dependent circuit power,’’ in Proc. IEEE Global
Telecommun. Conf. (GLOBECOM), Dec. 2010, pp. 1–6.

[82] A.-A. Lu, X. Gao, Y. R. Zheng, and C. Xiao, ‘‘Low complexity polyno-
mial expansion detector with deterministic equivalents of the moments of
channel gram matrix for massive MIMO uplink,’’ IEEE Trans. Commun.,
vol. 64, no. 2, pp. 586–600, Feb. 2016.

[83] A. Elghariani and M. Zoltowski, ‘‘Successive interference cancella-
tion for large-scale MIMO OFDM,’’ in Proc. IEEE Int. Conf. Elec-
tro/Information Technol. (EIT), May 2015, pp. 657–661.

[84] Y.-S. Jeon, N. Lee, S.-N. Hong, and R. W. Heath, Jr., ‘‘One-bit sphere
decoding for uplink massive MIMO systems with One-bit ADCs,’’ IEEE
Trans. Wireless Commun., vol. 17, no. 7, pp. 4509–4521, Jul. 2018.

[85] M. A. M. Albreem, ‘‘An efficient lattice sphere decoding technique
for multi-carrier systems,’’ Wireless Pers. Commun., vol. 82, no. 3,
pp. 1825–1831, Jun. 2015.

[86] M. A. M. Albreem and M. F. M. Salleh, ‘‘Regularized lattice sphere
decoding for block data transmission systems,’’Wireless Pers. Commun.,
vol. 82, no. 3, pp. 1833–1850, Jun. 2015.

[87] Y.-C. Liang, G. Pan, and Z. D. Bai, ‘‘Asymptotic performance of MMSE
receivers for large systems using randommatrix theory,’’ IEEE Trans. Inf.
Theory, vol. 53, no. 11, pp. 4173–4190, Nov. 2007.

[88] Y. Kim, J. H. Seo, H. M. Kim, and S. Kim, ‘‘Soft linear MMSE detection
for coded MIMO systems,’’ in Proc. 19th Asia–Pacific Conf. Commun.
(APCC), Aug. 2013, pp. 657–660.

[89] X. Gao, L. Dai, Y. Hu, Z. Wang, and Z. Wang, ‘‘Matrix inversion-
less signal detection using SOR method for uplink large-scale
MIMO systems,’’ 2015, arXiv:1507.04588. [Online]. Available:
http://arxiv.org/abs/1507.04588

[90] F. Rosario, F. A. Monteiro, and A. Rodrigues, ‘‘Fast matrix inversion
updates for massive MIMO detection and precoding,’’ IEEE Signal Pro-
cess. Lett., vol. 23, no. 1, pp. 75–79, Jan. 2016.

[91] B. Yin, M.Wu, J. R. Cavallaro, and C. Studer, ‘‘Conjugate gradient-based
soft-output detection and precoding in massive MIMO systems,’’ in Proc.
IEEE Global Commun. Conf., Dec. 2014, pp. 3696–3701.

[92] B. Yin, M. Wu, J. R. Cavallaro, and C. Studer, ‘‘VLSI design of large-
scale soft-output MIMO detection using conjugate gradients,’’ in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), May 2015, pp. 1498–1501.

[93] Z. Wu, C. Zhang, Y. Xue, S. Xu, and X. You, ‘‘Efficient architecture for
soft-output massiveMIMO detection with gauss-seidel method,’’ in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), May 2016, pp. 1886–1889.

[94] R. Chataut, R. Akl, and U. K. Dey, ‘‘Least square regressor selection
based detection for uplink 5G massive MIMO systems,’’ in Proc. IEEE
20th Wireless Microw. Technol. Conf. (WAMICON), Apr. 2019, pp. 1–6.

[95] V.-K. Dinh, M.-T. Le, V.-D. Ngo, and C.-H. Ta, ‘‘PCA-aided linear
precoding in massive MIMO systems with imperfect CSI,’’ in Wireless
Communications and Mobile Computing. Hoboken, NJ, USA: Wiley,
Feb. 2020.

[96] E. Bjornson, M. Bengtsson, and B. Ottersten, ‘‘Optimal multiuser trans-
mit beamforming: A difficult problem with a simple solution structure
[Lecture Notes],’’ IEEE Signal Process.Mag., vol. 31, no. 4, pp. 142–148,
Jul. 2014.

[97] O. Simeone, U. Spagnolini, and Y. Bar-Ness, ‘‘Linear and non-linear
precoding/decoding forMIMO systems using the fading correlation at the
transmitter,’’ in Proc. 4th IEEE Workshop Signal Process. Adv. Wireless
Commun. (SPAWC), Jun. 2003, pp. 6–10.

[98] Y. Chen, ‘‘Low complexity precoding schemes for massive MIMO sys-
tems,’’ Ph.D. dissertation, School Eng., Newcastle Univ., Newcastle upon
Tyne, U.K., Jun. 2019.

[99] Y. Liu, J. Liu, Q. Wu, Y. Zhang, and M. Jin, ‘‘A near-optimal iterative
linear precoding with low complexity for massiveMIMO systems,’’ IEEE
Commun. Lett., vol. 23, no. 6, pp. 1105–1108, Jun. 2019.

[100] X. Qiang, Y. Liu, Q. Feng, J. Liu, X. Ren, and M. Jin, ‘‘Approxima-
tive matrix inversion based linear precoding for massive MIMO sys-
tems,’’ in Proc. Int. Conf. Comput., Netw. Commun. (ICNC), Feb. 2020,
pp. 950–955.

[101] B. Lee, ‘‘Simplified antenna group determination of RS overhead reduced
massive MIMO for wireless sensor networks,’’ Sensors, vol. 18, no. 2,
p. 84, Dec. 2017.

[102] Y.-G. Lim, C.-B. Chae, and G. Caire, ‘‘Performance analysis of massive
MIMO for cell-boundary users,’’ IEEE Trans. Wireless Commun., vol. 14,
no. 12, pp. 6827–6842, Dec. 2015.

[103] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, ‘‘Massive MU-MIMO
downlink TDD systems with linear precoding and downlink pilots,’’ in
Proc. 51st Annu. Allerton Conf. Commun., Control, Comput. (Allerton),
Oct. 2013, pp. 293–298.

[104] M. Joham, W. Utschick, and J. A. Nossek, ‘‘Linear transmit processing in
MIMO communications systems,’’ IEEE Trans. Signal Process., vol. 53,
no. 8, pp. 2700–2712, Aug. 2005.

[105] N. Jindal, ‘‘MIMO broadcast channels with finite-rate feedback,’’ IEEE
Trans. Inf. Theory, vol. 52, no. 11, pp. 5045–5060, Nov. 2006.

[106] M. Sadek, A. Tarighat, and A. Sayed, ‘‘A leakage-based precoding
scheme for downlink multi-user MIMO channels,’’ IEEE Trans. Wireless
Commun., vol. 6, no. 5, pp. 1711–1721, May 2007.

[107] L. Liu, G. Peng, and S. Wei, Massive MIMO Detection Algorithm and
VLSI Architecture. China: Springer, Feb. 2019.

[108] J. Speidel, Introduction to Digital Communications. Cham, Switzerland:
Springer, Sep. 2018.

[109] C. Zhang, Z. Li, L. Shen, F. Yan, M. Wu, and X. Wang, ‘‘A low-
complexity massive MIMO precoding algorithm based on chebyshev
iteration,’’ IEEE Access, vol. 5, pp. 22545–22551, Oct. 2017.

[110] M. Wu, B. Yin, G. Wang, C. Dick, J. R. Cavallaro, and C. Studer,
‘‘Large-scale MIMO detection for 3GPP LTE: Algorithms and FPGA
implementations,’’ IEEE J. Sel. Topics Signal Process., vol. 8, no. 5,
pp. 916–929, Oct. 2014.

[111] H. Prabhu, J. Rodrigues, O. Edfors, and F. Rusek, ‘‘Approximative matrix
inverse computations for very-largeMIMO and applications to linear pre-
coding systems,’’ in Proc. IEEEWireless Commun. Netw. Conf. (WCNC),
Apr. 2013, pp. 2710–2715.

[112] I. Al-Nahhal, M. Alghoniemy, O. Muta, and A. B. A. El-Rahman,
‘‘Reduced complexity K-best sphere decoding algorithms for ill-
conditioned MIMO channels,’’ in Proc. 13th IEEE Annu. Consum. Com-
mun. Netw. Conf. (CCNC), Jan. 2016, pp. 183–187.

[113] K. K.-C. Lee, Y.-H. Yang, and J.-W. Li, ‘‘A low-complexity AEPDF-
assisted precoding scheme for massive MIMO systems with transmit
antenna correlation,’’ J. Signal Process., vol. 92, pp. 1–11, Jan. 2020.

[114] A. Müller, ‘‘Random matrix analysis of future multi cell MU-MIMO
networks. (Analyse des réseaux multi-cellulaires multi-utilisateurs futurs
par la théorie desmatrices aléatoires),’’ Ph.D. dissertation, Alcatel-Lucent
Chair Flexible Radio, Supélec, Gif-Sur-Yvette, France, Nov. 2014.

[115] H. Prabhu, O. Edfors, J. Rodrigues, L. Liu, and F. Rusek, ‘‘Hardware
efficient approximative matrix inversion for linear pre-coding in massive
MIMO,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Jun. 2014,
pp. 1700–1703.

[116] Y. Bai, Z. Liang, C. Zhai, Y. Xin, and W. Li, ‘‘Joint precoding using
successive over-relaxation matrix inversion and Newton iteration for
massive MIMO systems,’’ in Proc. 11th Int. Conf. Wireless Commun.
Signal Process. (WCSP), Oct. 2019, pp. 1–5.

60796 VOLUME 9, 2021



M. A. Albreem et al.: Overview of Precoding Techniques for Massive MIMO

[117] M.A.M.Albreem, A. A. El-Saleh, andM. Juntti, ‘‘LinearmassiveMIMO
uplink detector based on joint jacobi and gauss-seidel methods,’’ in Proc.
16th Int. Conf. Design Reliable Commun. Netw. (DRCN), Mar. 2020,
pp. 1–4.

[118] L. Shao and Y. Zu, ‘‘Joint Newton iteration and neumann series method
of convergence-accelerating matrix inversion approximation in linear
precoding for massive MIMO systems,’’Math. Problems Eng., vol. 2016,
pp. 1–5, May 2016.

[119] B. Kang, J.-H. Yoon, and J. Park, ‘‘Low-complexity massive MIMO
detectors based on richardson method,’’ ETRI J., vol. 39, no. 3,
pp. 326–335, Jun. 2017.

[120] B. Nagy, M. Elsabrouty, and S. Elramly, ‘‘Fast converging weighted
neumann series precoding for massive MIMO systems,’’ IEEE Wireless
Commun. Lett., vol. 7, no. 2, pp. 154–157, Apr. 2018.

[121] Q. Deng, X. Liang, X. Wang, M. Huang, C. Dong, and Y. Zhang, ‘‘Fast
converging iterative precoding for massive MIMO systems: An acceler-
ated weighted neumann series-steepest descent approach,’’ IEEE Access,
vol. 8, pp. 50244–50255, 2020.

[122] C. Tang, C. Liu, L. Yuan, and Z. Xing, ‘‘High precision low complexity
matrix inversion based on Newton iteration for data detection in the
massive MIMO,’’ IEEE Commun. Lett., vol. 20, no. 3, pp. 490–493,
Mar. 2016.

[123] Y. Lee and S.-I. Sou, ‘‘On improving gauss-seidel iteration for signal
detection in uplink multiuser massive MIMO systems,’’ in Proc. 3rd Int.
Conf. Comput. Commun. Syst. (ICCCS), Apr. 2018, pp. 268–272.

[124] J. Zeng, J. Lin, and Z.Wang, ‘‘An improved gauss-seidel algorithm and its
efficient architecture for massive MIMO systems,’’ IEEE Trans. Circuits
Syst. II, Exp. Briefs, vol. 65, no. 9, pp. 1194–1198, Sep. 2018.

[125] L. Shao and Y. Zu, ‘‘Approaches of approximating matrix inversion for
zero-forcing pre-coding in downlink massive MIMO systems,’’ Wireless
Netw., vol. 24, no. 7, pp. 2699–2704, Oct. 2018.

[126] X. Gao, L. Dai, Y. Hu, Z. Wang, and Z. Wang, ‘‘Matrix inversion-less sig-
nal detection using SOR method for uplink large-scale MIMO systems,’’
in Proc. IEEE Global Commun. Conf., Dec. 2014, pp. 3291–3295.

[127] X. Qiao, Y. Zhang, and L. Yang, ‘‘Conjugate gradient method based linear
precoding with low-complexity for massive MIMO systems,’’ in Proc.
IEEE 4th Int. Conf. Comput. Commun. (ICCC), Dec. 2018, pp. 420–424.

[128] Z. Zhang, J. Wu, X. Ma, Y. Dong, Y. Wang, S. Chen, and X. Dai,
‘‘Reviews of recent progress on low-complexity linear detection via
iterative algorithms for massive MIMO systems,’’ in Proc. IEEE/CIC Int.
Conf. Commun. China (ICCC Workshops), Jul. 2016, pp. 1–6.

[129] T. Xie, L. Dai, X. Gao, X. Dai, and Y. Zhao, ‘‘Low-complexity SSOR-
based precoding for massive MIMO systems,’’ IEEE Commun. Lett.,
vol. 20, no. 4, pp. 744–747, Apr. 2016.

[130] D. Liu and W. Zhou, ‘‘A low-complexity precoding algorithm based on
improved SOR method for massive MIMO systems,’’ in Proc. 11th Int.
Conf. Wireless Commun. Signal Process. (WCSP), Oct. 2019, pp. 1–6.

[131] S. Hashima and O. Muta, ‘‘Fast matrix inversion methods based on
Chebyshev and Newton iterations for zero forcing precoding in massive
MIMO systems,’’ EURASIP J. Wireless Commun. Netw., vol. 2020, no. 1,
pp. 1–12, Feb. 2020.

[132] D. Subitha, J. Mathana, J. Jasmine, and R. Vani, ‘‘Modified conjugate
gradient algorithms for Gram matrix inversion of massive MIMO down-
link linear precoding,’’ Int. J. Recent Technol. Eng., vol. 8, no. 2S11,
pp. 2277–3878, Sep. 2019.

[133] X. Qin, Z. Yan, and G. He, ‘‘A near-optimal detection scheme based
on joint steepest descent and jacobi method for uplink massive MIMO
systems,’’ IEEE Commun. Lett., vol. 20, no. 2, pp. 276–279, Feb. 2016.

[134] W. Song, X. Chen, L. Wang, and X. Lu, ‘‘Joint conjugate gradient and
jacobi iteration based low complexity precoding for massive MIMO sys-
tems,’’ in Proc. IEEE/CIC Int. Conf. Commun. China (ICCC), Jul. 2016,
pp. 1–5.

[135] S. Rahaman, S. Shahabuddin,M. B. Hossain, and S. Shahabuddin, ‘‘Com-
plexity analysis of matrix decomposition algorithms for linear MIMO
detection,’’ in Proc. 5th Int. Conf. Informat., Electron. Vis. (ICIEV),
May 2016, pp. 927–932.

[136] S. Shahabuddin, M. H. Islam, M. S. Shahabuddin, M. A. Albreem,
and M. Juntti, ‘‘Matrix decomposition for massive MIMO
detection,’’ Sep. 2020, arXiv:2009.11172. [Online]. Available: http://
arxiv.org/abs/2009.11172

[137] M.Wu, B. Yin, K. Li, C. Dick, J. R. Cavallaro, and C. Studer, ‘‘Implicit vs.
explicit approximate matrix inversion for wideband massive MU-MIMO
data detection,’’ J. Signal Process. Syst., vol. 90, no. 10, pp. 1311–1328,
Oct. 2018.

[138] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, ‘‘Zero-forcing meth-
ods for downlink spatial multiplexing in multiuser MIMO channels,’’
IEEE Trans. Signal Process., vol. 52, no. 2, pp. 461–471, Feb. 2004.

[139] J.Wu, S. Fang, L. Li, and Y. Yang, ‘‘QR decomposition and gram Schmidt
orthogonalization based low-complexity multi-user MIMO precoding,’’
in Proc. 10th Int. Conf. Wireless Commun., Netw. Mobile Comput.
(WiCOM ), 2014, pp. 61–64.

[140] J. Singh and D. Kedia, ‘‘Improved precoding algorithm design for down-
link large scale MU-MIMO system,’’ Int. J. Intell. Eng. Syst., vol. 13,
no. 3, pp. 143–153, Jun. 2020.

[141] J. Singh and D. Kedia, ‘‘Spectral efficient precoding algorithm for large
scale MU-MIMO communication system,’’ in Proc. 5th Int. Conf. Image
Inf. Process. (ICIIP), Nov. 2019, pp. 391–396.

[142] Y. Xu, W. Zou, and L. Du, ‘‘A fast and low-complexity matrix inversion
scheme based on CSM method for massive MIMO systems,’’ EURASIP
J. Wireless Commun. Netw., vol. 2016, no. 1, pp. 1–6, Dec. 2016.

[143] S. Pramono, E. Triyono, and B. B. Subagio, ‘‘Performance of leak-
age based precoding scheme for minimizing interference,’’ J. Commun.,
vol. 15, no. 2, pp. 214–220, Feb. 2020.

[144] X. Gao, Z. Lu, Y. Han, and J. Ning, ‘‘Near-optimal signal detection
with low complexity based on gauss-seidel method for uplink large-scale
MIMO systems,’’ in Proc. IEEE Int. Symp. Broadband Multimedia Syst.
Broadcast., Jun. 2014, pp. 1–4.

[145] X. Wei, L. Xiang, L. Cottatellucci, T. Jiang, and R. Schober, ‘‘Cache-
aided massive MIMO: Linear precoding design and performance analy-
sis,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2019, pp. 1–7.

[146] J. Minango and C. de Almeida, ‘‘A low-complexity linear precoding
algorithm based on jacobi method for massive MIMO systems,’’ in Proc.
IEEE 87th Veh. Technol. Conf. (VTC Spring), Jun. 2018, pp. 1–5.

[147] A. Thanos and V. Paliouras, ‘‘Hardware trade-offs for massive MIMO
uplink detection based on Newton iteration method,’’ in Proc. 6th Int.
Conf. Modern Circuits Syst. Technol. (MOCAST), May 2017, pp. 1–4.

[148] L. Dai, X. Gao, S. Han, C.-L. I, and Z. Wang, ‘‘Near-optimal lin-
ear precoding with low complexity for massive MIMO,’’ Nov. 2014,
arXiv:1411.4141. [Online]. Available: http://arxiv.org/abs/1411.4141

[149] Z. Wang, ‘‘Massive MIMO detection algorithms based on MMSE-SIC,
ZF-MIC, neumann series expansion, gauss-seidel, and jacobi method,’’
in Proc. J. Phys., Conf., vol. 1438, no. 1. Bristol, U.K.: IOP Publishing,
Jan. 2020, Art. no. 012006.

[150] J. Minango and C. de Almeida, ‘‘Low-complexity MMSE detector based
on refinement gauss-seidel method for massiveMIMO systems,’’ in Proc.
IEEE 9th Latin-American Conf. Commun. (LATINCOM), Nov. 2017,
pp. 1–5.

[151] Å. Björck, Numerical Methods in Matrix Computations, vol. 59. Cham,
Switzerland: Springer, 2015.

[152] X. Gao, L. Dai, Y. Hu, Y. Zhang, and Z. Wang, ‘‘Low-complexity
signal detection for large-scale MIMO in optical wireless communica-
tions,’’ IEEE J. Sel. Areas Commun., vol. 33, no. 9, pp. 1903–1912,
Sep. 2015.

[153] M. Costa, ‘‘Writing on dirty paper (Corresp.),’’ IEEE Trans. Inf. Theory,
vol. IT-29, no. 3, pp. 439–441, May 1983.

[154] V. L. Babu, L. Mathews, and S. S. Pillai, ‘‘Performance analysis of linear
and nonlinear precoding in MIMO systems,’’ Int. J. Adv. Res. Comput.
Commun. Eng., vol. 4, no. 6, pp. 373–376, Jun. 2015.

[155] S. Jacobsson, G. Durisi, M. Coldrey, T. Goldstein, and C. Studer, ‘‘Quan-
tized precoding for massiveMU-MIMO,’’ IEEE Trans. Commun., vol. 65,
no. 11, pp. 4670–4684, Nov. 2017.

[156] A. D. Dabbagh and D. J. Love, ‘‘Precoding for multiple antenna Gaussian
broadcast channels with successive zero-forcing,’’ IEEE Trans. Signal
Process., vol. 55, no. 7, pp. 3837–3850, Jul. 2007.

[157] P. Thakor and R. Sathvara, ‘‘Performance of Tomlinson-Harashima pre-
coding and dirty paper coding for broadcast channels in MU-MIMO,’’
Int. Res. J. Eng. Techno., vol. 3, no. 4, pp. 2458–2462, Apr. 2016.

[158] V. Stankovic and M. Haardt, ‘‘Generalized design of multi-user MIMO
precoding matrices,’’ IEEE Trans. Wireless Commun., vol. 7, no. 3,
pp. 953–961, Mar. 2008.

[159] H. Harashima and H. Miyakawa, ‘‘Matched-transmission technique
for channels with intersymbol interference,’’ IEEE Trans. Commun.,
vol. COM-20, no. 4, pp. 774–780, Aug. 1972.

[160] M. Tomlinson, ‘‘New automatic equaliser employingmodulo arithmetic,’’
Electron. Lett., vol. 7, nos. 5–6, pp. 138–139, Mar. 1971.

[161] H. Yan, T. Tian, L. Chen, and J. Qiu, ‘‘A physical layer solution for
Tomlinson-Harashima precoding in the framework of LTE-advanced,’’ in
Proc. IEEE Globecom Workshops, Dec. 2012, pp. 291–296.

VOLUME 9, 2021 60797



M. A. Albreem et al.: Overview of Precoding Techniques for Massive MIMO

[162] S. Begashaw, X. Shao, E. Visotsky, F. Vook, andA. Ghosh, ‘‘Evaluation of
Tomlinson-Harashima precoding for 5G massive MU-MIMO,’’ in Proc.
IEEE 5G World Forum (GWF), Jul. 2018, pp. 77–82.

[163] E. C. Y. Peh and Y.-C. Liang, ‘‘Power and modulo loss tradeoff with
expanded soft demapper for LDPC coded GMD-THP MIMO systems,’’
IEEE Trans. Wireless Commun., vol. 8, no. 2, pp. 714–724, Feb. 2009.

[164] W. Yu, D. P. Varodayan, and J. M. Cioffi, ‘‘Trellis and convolutional pre-
coding for Transmitter-based interference presubtraction,’’ IEEE Trans.
Commun., vol. 53, no. 7, pp. 1220–1230, Jul. 2005.

[165] K.Kusume,M. Joham,W.Utschick, andG. Bauch, ‘‘Efficient Tomlinson-
Harashima precoding for spatial multiplexing on flat MIMO channel,’’ in
Proc. IEEE Int. Conf. Commun. (ICC), vol. 3. Seoul, South Korea: IEEE,
May 2005, pp. 2021–2025.

[166] S. Zarei, W. Gerstacker, and R. Schober, ‘‘Low-complexity hybrid
Linear/Tomlinson-Harashima precoding for downlink large-scale MU-
MIMO systems,’’ in Proc. IEEE Globecom Workshops (GC Wkshps),
Dec. 2016, pp. 1–7.

[167] B. M. Hochwald, C. B. Peel, and A. L. Swindlehurst, ‘‘A vector-
perturbation technique for near-capacity multiantenna multiuser
communication—Part II: Perturbation,’’ IEEE Trans. Commun., vol. 53,
no. 3, pp. 537–544, Mar. 2005.

[168] M. Taherzadeh, A.Mobasher, andA.K.Khandani, ‘‘Communication over
MIMO broadcast channels using lattice-basis reduction,’’ IEEE Trans.
Inf. Theory, vol. 53, no. 12, pp. 4567–4582, Dec. 2007.

[169] A. Li and C. Masouros, ‘‘A constellation scaling approach to vector
perturbation for adaptive modulation in MU-MIMO,’’ IEEE Wireless
Commun. Lett., vol. 4, no. 3, pp. 289–292, Jun. 2015.

[170] R. Chen, M. Moretti, and X. Wang, ‘‘Hybrid TH-VP precoding
for multiuser MIMO,’’ IEEE Trans. Veh. Technol., vol. 66, no. 12,
pp. 11399–11403, Dec. 2017.

[171] A.-A. Lu, X. Gao, W. Zhong, C. Xiao, and X. Meng, ‘‘Robust trans-
mission for massive MIMO downlink with imperfect CSI,’’ IEEE Trans.
Commun., vol. 67, no. 8, pp. 5362–5376, Aug. 2019.

[172] C. Masouros, M. Sellathurai, and T. Ratnarajah, ‘‘Limited feedback
vector perturbation precoding by MinMax optimization,’’ in Proc. IEEE
Global Commun. Conf., Dec. 2014, pp. 3349–3353.

[173] L. Du, L. Li, P. Zhang, D. Miao, and Z. Liu, ‘‘Vector perturbation
precoding under imperfect CSI and inaccurate power scaling factors,’’
IEEE Access, vol. 7, pp. 89162–89171, 2019.

[174] C. Masouros, M. Sellathurai, and T. Ratnarajah, ‘‘Computationally effi-
cient vector perturbation precoding using thresholded optimization,’’
IEEE Trans. Commun., vol. 61, no. 5, pp. 1880–1890, May 2013.

[175] C.-B. Chae, S. Shim, and R. W. Heath, Jr., ‘‘Block diagonalized vector
perturbation for multiuser MIMO systems,’’ IEEE Trans. Wireless Com-
mun., vol. 7, no. 11, pp. 4051–4057, Nov. 2008.

[176] R. Chen, C. Li, J. Li, and Y. Zhang, ‘‘Low complexity user group-
ing vector perturbation,’’ IEEE Wireless Commun. Lett., vol. 1, no. 3,
pp. 189–192, Jun. 2012.

[177] W. Ding, T. Lv, and Y. Lu, ‘‘A low-complexity vector perturbation pre-
coding approach based on reactive tabu search for large multiuser MIMO
systems,’’ inProc. Int. Conf. Trustworthy Comput. Serv.Berlin, Germany:
Springer, May 2012, pp. 317–324.

[178] C. Masouros, M. Sellahurai, and T. Ratnarajah, ‘‘Bridging he gap
between linear and non-linear precoding in small- and large-scale MIMO
downlinks,’’ in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2014,
pp. 4483–4487.

[179] H. Yao and G. W. Wornell, ‘‘Lattice-reduction-aided detectors for MIMO
communication systems,’’ in Proc. Global Telecommun. Conf. (GLOBE-
COM), vol. 1, Nov. 2002, pp. 424–428.

[180] D. Wübben, D. Seethaler, J. Jaldéén, and G. Matz, ‘‘Lattice reduction,’’
IEEE Signal Process. Mag., vol. 28, no. 3, pp. 70–91, May 2011.

[181] A. K. Lenstra, H. W. Lenstra, and L. Lovász, ‘‘Factoring polynomials
with rational coefficients,’’ Mathematische Annalen, vol. 261, no. 4,
pp. 515–534, Dec. 1982.

[182] P. Q. Nguyen and B. Vallée, The LLL Algorithm. Berlin, Germany:
Springer, 2010.

[183] M. Seysen, ‘‘Simultaneous reduction of a lattice basis and its reciprocal
basis,’’ Combinatorica, vol. 13, no. 3, pp. 363–376, Sep. 1993.

[184] V. Brun, ‘‘En generalisation av kjedebrøken II,’’ Skr. Vidensk. Selsk.
Kristiana, Mat. Nat. Klasse, vol. 6, no. 1, pp. 1–24, 1919.

[185] C. Hermite, ‘‘Extraits de lettres de M. Ch. Hermite à m. Jacobi sur
différents objects de la théorie des nombres,’’ J. für Die Reine und
Angewandte Mathematik, vol. 1850, no. 40, pp. 261–278, Jul. 1850.

[186] A. Korkine and G. Zolotareff, ‘‘Sur les formes quadratiques,’’Mathema-
tische Annalen, vol. 6, no. 3, pp. 366–389, Sep. 1873.

[187] H. Minkowski, ‘‘Ueber positive quadratische Formen,’’ J. für die Reine
und Angewandte Mathematik, vol. 1886, no. 99, pp. 1–9, Jan. 1886.

[188] C. F. Gauss, Untersuchungen Über Höhere Arithmetik, vol. 191. USA:
American Mathematical Society, 2006

[189] X. Ma, W. Zhang, and A. Swami, ‘‘Lattice-reduction aided equalization
for OFDM systems,’’ IEEE Trans. Wireless Commun., vol. 8, no. 4,
pp. 1608–1613, Apr. 2009.

[190] M. Taherzadeh, A. Mobasher, and A. K. Khandani, ‘‘LLL reduction
achieves the receive diversity in MIMO decoding,’’ IEEE Trans. Inf.
Theory, vol. 53, no. 12, pp. 4801–4805, Dec. 2007.

[191] X. Ma and W. Zhang, ‘‘Performance analysis for MIMO systems
with lattice-reduction aided linear equalization,’’ IEEE Trans. Commun.,
vol. 56, no. 2, pp. 309–318, Feb. 2008.

[192] J. Jalden and P. Elia, ‘‘LR-aided MMSE lattice decoding is DMT optimal
for all approximately universal codes,’’ in Proc. IEEE Int. Symp. Inf.
Theory, Jun. 2009, pp. 1263–1267.

[193] C. Studer, D. Seethaler, and H. Bolcskei, ‘‘Finite lattice-size effects in
MIMO detection,’’ in Proc. 42nd Asilomar Conf. Signals, Syst. Comput.,
Oct. 2008, pp. 2032–2037.

[194] C. Windpassinger and R. F. H. Fischer, ‘‘Low-complexity near-
maximum-likelihood detection and precoding for MIMO systems using
lattice reduction,’’ in Proc. IEEE Inf. Theory Workshop, Mar. 2003,
pp. 345–348.

[195] C. Windpassinger, R. F. H. Fischer, and J. B. Huber, ‘‘Lattice-reduction-
aided broadcast precoding,’’ IEEE Trans. Commun., vol. 52, no. 12,
pp. 2057–2060, Dec. 2004.

[196] H. An, M. Mohaisen, and K. Chang, ‘‘Lattice reduction aided pre-
coding for multiuser MIMO using Seysen’s algorithm,’’ in Proc. IEEE
20th Int. Symp. Pers., Indoor Mobile Radio Commun., Sep. 2009,
pp. 2479–2483.

[197] B. A. LaMacchia, ‘‘Basis reduction algorithms and subset sum prob-
lems,’’ MIT Tech. Intell. Library, USA, Tech. Rep. 1283, 1991.

[198] D. Seethaler, G. Matz, and F. Hlawatsch, ‘‘Low-complexity MIMO data
detection using Seysen’s lattice reduction algorithm,’’ in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process. (ICASSP), vol. 3, Apr. 2007.

[199] K. Zu, R. C. de Lamare, and M. Haardt, ‘‘Low-complexity lattice
reduction-aided channel inversion methods for large-dimensional multi-
user MIMO systems,’’ Apr. 2013, arXiv:1304.6470. [Online]. Available:
http://arxiv.org/abs/1304.6470

[200] Y. Hung Gan, C. Ling, andW. HoMow, ‘‘Complex lattice reduction algo-
rithm for low-complexity full-diversity MIMO detection,’’ IEEE Trans.
Signal Process., vol. 57, no. 7, pp. 2701–2710, Jul. 2009.

[201] L. Zhang, Y. Cai, R. C. de Lamare, and M. Zhao, ‘‘Multi-branch vector
perturbation precoding design using lattice reduction for MU-MIMO sys-
tems,’’ in Proc. IEEE 83rd Veh. Technol. Conf. (VTC Spring), May 2016,
pp. 1–5.

[202] S. Markkandan and N. Venkateswaran, ‘‘A lattice reduction-aided infor-
mation precoder for multiuser communication system,’’ Int J. Adv Eng.
Tech., vol. 136, p. 141, Mar. 2016.

[203] M. Guenach, ‘‘Comparison of lattice-reduction-aided vector perturbation
and Tomlinson-Harashima precoding,’’ in Proc. IEEE Wireless Commun.
Netw. Conf. (WCNC), Apr. 2019, pp. 1–5.

[204] S. Sobana and P. Thirumurugan, ‘‘Low complexity lattice reduction aided
block diagonalization pre-coding for MU-MIMO,’’ Swansea Printing
Technol., India, Tech. Rep. 14, 2018.

[205] C. An, ‘‘The advanced progress of precoding technology in 5G sys-
tem,’’ IOP Conf. Ser., Mater. Sci. Eng. MS E, vol. 231, Sep. 2017,
Art. no. 012059.

[206] M. Mazrouei-Sebdani and W. A. Krzymien, ‘‘Vector perturbation
precoding for network MIMO: Sum rate, fair user scheduling, and
impact of backhaul delay,’’ IEEE Trans. Veh. Technol., vol. 61, no. 9,
pp. 3946–3957, Nov. 2012.

[207] M. Joham, J. Brehmer, and W. Utschick, ‘‘MMSE approaches to mul-
tiuser spatio-temporal Tomlinson-Harashima precoding,’’ in Proc. Int.
ITG Workshop Smart Antannas (WSA), Jan. 2004, pp. 387–394.

[208] X. Chen, M. Huang, M. Zhao, S. Zhou, and J. Wang, Analysis and
Design of Tomlinson-Harashima Precoding for Multiuser MIMO Systems
(MIMO Systems, Theory and Applications), H. K. Bizaki, Ed. China:
IntechOpen, Apr. 2011, pp. 237–264.

[209] D. Darsena, G. Gelli, and F. Verde, ‘‘Beamforming and precoding
techniques,’’ Wiley 5G Ref, Essential 5G Reference Online, vol. 2020,
pp. 1–29, Oct. 2019.

[210] M. H. A. Khan, J.-G. Chung, and M. H. Lee, ‘‘Lattice reduction aided
with block diagonalization for multiuser MIMO systems,’’ EURASIP J.
Wireless Commun. Netw., vol. 2015, no. 1, p. 254, Dec. 2015.

60798 VOLUME 9, 2021



M. A. Albreem et al.: Overview of Precoding Techniques for Massive MIMO

[211] R. Chen, J. Li, C. Li, and W. Liu, ‘‘Lattice-reduction-aided MMSE
precoding for correlated MIMO channels and performance analysis,’’
J. Syst. Eng. Electron., vol. 23, no. 1, pp. 16–23, Feb. 2012.

[212] S. K. Mohammed and E. G. Larsson, ‘‘Single-user beamforming in large-
scale MISO systems with per-antenna constant-envelope constraints: The
doughnut channel,’’ IEEE Trans. Wireless Commun., vol. 11, no. 11,
pp. 3992–4005, Nov. 2012.

[213] S. K. Mohammed and E. G. Larsson, ‘‘Per-antenna constant envelope
precoding for large multi-user MIMO systems,’’ IEEE Trans. Commun.,
vol. 61, no. 3, pp. 1059–1071, Mar. 2013.

[214] J.-C. Chen, C.-J. Wang, K.-K. Wong, and C.-K. Wen, ‘‘Low-complexity
precoding design for massive multiuser MIMO systems using approx-
imate message passing,’’ IEEE Trans. Veh. Technol., vol. 65, no. 7,
pp. 5707–5714, Jul. 2016.

[215] M. Shao, Q. Li, W.-K. Ma, and A. M.-C. So, ‘‘A framework for one-
bit and constant-envelope precoding over multiuser massive MISO chan-
nels,’’ IEEE Trans. Signal Process., vol. 67, no. 20, pp. 5309–5324,
Oct. 2019.

[216] S. K. Mohammed and E. G. Larsson, ‘‘Constant-envelope multi-user pre-
coding for frequency-selective massive MIMO systems,’’ IEEE Wireless
Commun. Lett., vol. 2, no. 5, pp. 547–550, Oct. 2013.

[217] J.-C. Chen, ‘‘Low-complexity constant envelope precoding using finite
resolution phase shifters for multiuser MIMO systems with large antenna
arrays,’’ IEEE Trans. Veh. Technol., vol. 67, no. 8, pp. 7784–7789,
Aug. 2018.

[218] M. Meng, X. Li, Y. Liu, and Y. Hei, ‘‘Low-PAPR approximate message
passing precoding algorithm in massive MIMO systems,’’ IEICE Trans.
Commun., vol. E101.B, no. 4, pp. 1102–1107, Apr. 2018.

[219] F. Liu, C. Masouros, P. V. Amadori, and H. Sun, ‘‘An efficient man-
ifold algorithm for constructive interference based constant envelope
precoding,’’ IEEE Signal Process. Lett., vol. 24, no. 10, pp. 1542–1546,
Oct. 2017.

[220] J.-C. Chen, C.-K. Wen, and K.-K. Wong, ‘‘Improved constant envelope
multiuser precoding for massive MIMO systems,’’ IEEE Commun. Lett.,
vol. 18, no. 8, pp. 1311–1314, Aug. 2014.

[221] C. Mollén, ‘‘Low-PAR precoding for very-large multi-user MIMO sys-
tems,’’ Dept. Elect. Eng., Commun. Syst., Linköping Univ., Linköping,
Sweden, 2013.

[222] J.-C. Chen, ‘‘Low-PAPR precoding design for massive multiuser MIMO
systems via Riemannian manifold optimization,’’ IEEE Commun. Lett.,
vol. 21, no. 4, pp. 945–948, Apr. 2017.

[223] S. Mukherjee and S. K. Mohammed, ‘‘Constant-envelope precoding with
time-variation constraint on the transmitted phase angles,’’ IEEEWireless
Commun. Lett., vol. 4, no. 2, pp. 221–224, Apr. 2015.

[224] V. K. Nguyen and J. S. Evans, ‘‘Multiuser transmit beamforming via
regularized channel inversion: A large system analysis,’’ in Proc. IEEE
Global Telecommun. Conf. (IEEE GLOBECOM), Dec. 2008, pp. 1–4.

[225] C. Masouros, T. Ratnarajah, M. Sellathurai, C. B. Papadias, and
A. K. Shukla, ‘‘Known interference in the cellular downlink: A perfor-
mance limiting factor or a source of green signal power?’’ IEEECommun.
Mag., vol. 51, no. 10, pp. 162–171, Oct. 2013.

[226] P. V. Amadori and C. Masouros, ‘‘Constant envelope precoding by inter-
ference exploitation in phase shift keying-modulated multiuser trans-
mission,’’ IEEE Trans. Wireless Commun., vol. 16, no. 1, pp. 538–550,
Jan. 2017.

[227] C. Masouros and E. Alsusa, ‘‘Dynamic linear precoding for the exploita-
tion of known interference in MIMO broadcast systems,’’ IEEE Trans.
Wireless Commun., vol. 8, no. 3, pp. 1396–1404, Mar. 2009.

[228] C. Masouros and E. Alsusa, ‘‘Soft linear precoding for the downlink of
DS/CDMA communication systems,’’ IEEE Trans. Veh. Technol., vol. 59,
no. 1, pp. 203–215, Jan. 2010.

[229] E. Alsusa and C. Masouros, ‘‘Adaptive code allocation for interference
management on the downlink of DS-CDMA systems,’’ IEEE Trans.
Wireless Commun., vol. 7, no. 7, pp. 2420–2424, Jul. 2008.

[230] C. Masouros, M. Sellathurai, and T. Ratnarajah, ‘‘Vector perturbation
based on symbol scaling for limited feedback MISO downlinks,’’ IEEE
Trans. Signal Process., vol. 62, no. 3, pp. 562–571, Feb. 2014.

[231] C. Masouros and G. Zheng, ‘‘Exploiting known interference as green
signal power for downlink beamforming optimization,’’ IEEE Trans.
Signal Process., vol. 63, no. 14, pp. 3628–3640, Jul. 2015.

[232] C. Mollen and E. G. Larsson, ‘‘Multiuser MIMO precoding with per-
antenna continuous-time constant-envelope constraints,’’ in Proc. IEEE
16th Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC),
Jun. 2015, pp. 261–265.

[233] A. Brihuega, L. Anttila, and M. Valkama, ‘‘Performance comparison
of constant envelope and zero-forcing precoders in multiuser mas-
sive MIMO,’’ in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC),
Apr. 2018, pp. 1–6.

[234] L. Chu, F.Wen, L. Li, and R. Qiu, ‘‘Efficient nonlinear precoding for mas-
sive MIMO downlink systems with 1-Bit DACs,’’ IEEE Trans. Wireless
Commun., vol. 18, no. 9, pp. 4213–4224, Sep. 2019.

[235] D. L. Donoho, A. Maleki, and A. Montanari, ‘‘Message passing algo-
rithms for compressed sensing: I. Motivation and construction,’’ in Proc.
IEEE Inf. Theory Workshop (ITW), Jan. 2010, pp. 1–5.

[236] D. L. Donoho, A. Maleki, and A. Montanari, ‘‘Message passing algo-
rithms for compressed sensing: II. Analysis and validation,’’ in Proc.
IEEE Inf. Theory Workshop (ITW ), Jan. 2010, pp. 1–5.

[237] A. Mahmood, J. Kang, and H. Lee, ‘‘Sparse or dense—Message passing
(MP) or approximate message passing (AMP) for compressed sensing
signal recovery,’’ in Proc. IEEE Pacific Rim Conf. Commun., Comput.
Signal Process., Aug. 2013, pp. 259–264.

[238] H. Bao, J. Fang, Z. Chen, H. Li, and S. Li, ‘‘An efficient Bayesian
PAPR reduction method for OFDM-based massive MIMO systems,’’
IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 4183–4195, Jun. 2016.

[239] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, ‘‘Factor graphs and
the sum-product algorithm,’’ IEEE Trans. Inf. Theory, vol. 47, no. 2,
pp. 498–519, Feb. 2001.

[240] R. H. Walden, ‘‘Analog-to-digital converter survey and analysis,’’ IEEE
J. Sel. Areas Commun., vol. 17, no. 4, pp. 539–550, Apr. 1999.

[241] B. Murmann. (Aug. 2017). ADC Performance Survey 1997-2016.
[Online]. Available: http://www.stanford.edu/murmann/adcsurvey.html

[242] D. W. K. Ng, E. S. Lo, and R. Schober, ‘‘Robust beamforming for
secure communication in systems with wireless information and power
transfer,’’ IEEE Trans. Wireless Commun., vol. 13, no. 8, pp. 4599–4615,
Aug. 2014.

[243] J. J. Bussgang, ‘‘Crosscorrelation functions of amplitude-distorted Gaus-
sian signals,’’ Res. Lab. Electron., Massachusetts Inst. Technol., Cam-
bridge, MA, USA, Tech. Rep. 216, 1952.

[244] J. Guerreiro, R. Dinis, and P. Montezuma, ‘‘Use of 1-bit digital-to-
analogue converters in massive MIMO systems,’’ Electron. Lett., vol. 52,
no. 9, pp. 778–779, Apr. 2016.

[245] A. K. Saxena, I. Fijalkow, and A. L. Swindlehurst, ‘‘On one-bit quantized
ZF precoding for the multiuser massive MIMO downlink,’’ in Proc. IEEE
Sensor Array Multichannel Signal Process. Workshop (SAM), Jul. 2016,
pp. 1–5.

[246] Y. Li, C. Tao, A. L. Swindlehurst, A. Mezghani, and L. Liu, ‘‘Downlink
achievable rate analysis in massive MIMO systems with one-bit DACs,’’
IEEE Commun. Lett., vol. 21, no. 7, pp. 1669–1672, Jul. 2017.

[247] M. Bengtsson and B. Ottersten, ‘‘Optimal downlink beamformingusing
semidefinite optimization,’’ in Proc. Annu. Allerton Conf. Commun.,
Control, Comput., 1999, pp. 987–996.

[248] Z.-Q. Luo, W.-K. Ma, A. So, Y. Ye, and S. Zhang, ‘‘Semidefinite relax-
ation of quadratic optimization problems,’’ IEEE Signal Process. Mag.,
vol. 27, no. 3, pp. 20–34, May 2010.

[249] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization.
Cambridge, U.K.: Cambridge Univ. Press, Mar. 2004.

[250] J. Eckstein and D. P. Bertsekas, ‘‘On the Douglas—Rachford splitting
method and the proximal point algorithm for maximal monotone opera-
tors,’’Math. Program., vol. 55, nos. 1–3, pp. 293–318, Apr. 1992.

[251] O. Castañeda, T. Goldstein, and C. Studer, ‘‘POKEMON: A non-
linear beamforming algorithm for 1-bit massive MIMO,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Mar. 2017,
pp. 3464–3468.

[252] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, ‘‘Closest point search
in lattices,’’ IEEE Trans. Inf. Theory, vol. 48, no. 8, pp. 2201–2214,
Aug. 2002.

[253] T. Erpek, T. J. O’Shea, Y. E. Sagduyu, Y. Shi, and T. C. Clancy, ‘‘Deep
learning for wireless communications,’’ in Development and Analysis
of Deep Learning Architectures. Cham, Switzerland: Springer, 2020,
pp. 223–266.

[254] H. He, C.-K. Wen, S. Jin, and G. Y. Li, ‘‘A model-driven deep learning
network for MIMO detection,’’ in Proc. IEEE Global Conf. Signal Inf.
Process. (GlobalSIP), Nov. 2018, pp. 584–588.

[255] N. Samuel, T. Diskin, and A. Wiesel, ‘‘Learning to detect,’’ IEEE Trans.
Signal Process., vol. 67, no. 10, pp. 2554–2564, May 2019.

[256] M. Goutay, F. A. Aoudia, and J. Hoydis, ‘‘Deep hypernetwork-
based MIMO detection,’’ 2020, arXiv:2002.02750. [Online]. Available:
http://arxiv.org/abs/2002.02750

VOLUME 9, 2021 60799



M. A. Albreem et al.: Overview of Precoding Techniques for Massive MIMO

[257] H. Huang, Y. Song, J. Yang, G. Gui, and F. Adachi, ‘‘Deep-learning-based
millimeter-wavemassiveMIMO for hybrid precoding,’’ IEEE Trans. Veh.
Technol., vol. 68, no. 3, pp. 3027–3032, Mar. 2019.

[258] F. Sohrabi, K. M. Attiah, andW. Yu, ‘‘Deep learning for distributed chan-
nel feedback and multiuser precoding in FDD massive MIMO,’’ 2020,
arXiv:2007.06512. [Online]. Available: http://arxiv.org/abs/2007.06512

[259] J.-M. Kang, I.-M. Kim, and C.-J. Chun, ‘‘Deep learning-based MIMO-
NOMA with imperfect SIC decoding,’’ IEEE Syst. J., vol. 14, no. 3,
pp. 3414–3417, Sep. 2020.

[260] Y.-S. Jeon andM.Min, ‘‘Large system analysis of two-stage beamforming
with limited feedback in FDD massive MIMO systems,’’ IEEE Trans.
Veh. Technol., vol. 67, no. 6, pp. 4984–4997, Jun. 2018.

[261] D. Kim, G. Lee, and Y. Sung, ‘‘Two-stage beamformer design for massive
MIMO downlink by trace quotient formulation,’’ IEEE Trans. Commun.,
vol. 63, no. 6, pp. 2200–2211, Jun. 2015.

[262] A. Balatsoukas-Stimming, O. Castañeda, S. Jacobsson, G. Durisi,
and C. Studer, ‘‘Neural-network optimized 1-bit precoding for
massive MU-MIMO,’’ 2019, arXiv:1903.03718. [Online]. Available:
http://arxiv.org/abs/1903.03718

[263] J. Zhang, E. Björnson, M. Matthaiou, D. W. K. Ng, H. Yang, and
D. J. Love, ‘‘Prospective multiple antenna technologies for beyond 5G,’’
IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1637–1660, Aug. 2020.

[264] L. Du, L. Li, H. Q. Ngo, T. C. Mai, and M. Matthaiou, ‘‘Cell-free
massive MIMO: Joint maximum-ratio and zero-forcing precoder with
power control,’’ IEEE Trans. Commun., early access, Feb. 12, 2021, doi:
10.1109/TCOMM.2021.3059300.

[265] J. Zhang, Y. Wei, E. Björnson, Y. Han, and S. Jin, ‘‘Performance analysis
and power control of cell-free massive MIMO systems with hardware
impairments,’’ IEEE Access, vol. 6, pp. 55302–55314, 2018.

[266] H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta,
‘‘Cell-free massive MIMO versus small cells,’’ IEEE Trans. Wireless
Commun., vol. 16, no. 3, pp. 1834–1850, Mar. 2017.

[267] E. Nayebi, A. Ashikhmin, T. L. Marzetta, H. Yang, and B. D. Rao, ‘‘Pre-
coding and power optimization in cell-free massive MIMO systems,’’
IEEE Trans. Wireless Commun., vol. 16, no. 7, pp. 4445–4459, Jul. 2017.

[268] Z. Chen and E. Björnson, ‘‘Channel hardening and favorable propaga-
tion in cell-free massive MIMO with stochastic geometry,’’ IEEE Trans.
Commun., vol. 66, no. 11, pp. 5205–5219, Nov. 2018.

[269] A. A. Polegre, F. Riera-Palou, G. Femenias, and A. G. Armada, ‘‘New
insights on channel hardening in cell-free massive MIMO networks,’’ in
Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), Jun. 2020,
pp. 1–7.

[270] A. A. Polegre, F. Riera-Palou, G. Femenias, and A. G. Armada, ‘‘Channel
hardening in cell-free and user-centric massiveMIMOnetworks with spa-
tially correlated ricean fading,’’ IEEE Access, vol. 8, pp. 139827–139845,
2020.

[271] L. D. Nguyen, T. Q. Duong, H. Q. Ngo, and K. Tourki, ‘‘Energy efficiency
in cell-free massive MIMO with zero-forcing precoding design,’’ IEEE
Commun. Lett., vol. 21, no. 8, pp. 1871–1874, Aug. 2017.

[272] G. Interdonato, M. Karlsson, E. Björnson, and E. G. Larsson, ‘‘Local
partial zero-forcing precoding for cell-free massiveMIMO,’’ IEEE Trans.
Wireless Commun., vol. 19, no. 7, pp. 4758–4774, Jul. 2020.

[273] M. Matthaiou, O. Yurduseven, H. Q. Ngo, D. Morales-Jimenez,
S. L. Cotton, and V. F. Fusco, ‘‘The road to 6G: Ten physical layer chal-
lenges for communications engineers,’’ IEEE Commun. Mag., vol. 59,
no. 1, pp. 64–69, Jan. 2021.

[274] E. Björnson and L. Sanguinetti, ‘‘Scalable cell-free massive MIMO sys-
tems,’’ IEEE Trans. Commun., vol. 68, no. 7, pp. 4247–4261, Jul. 2020.

[275] A. Sayeed and J. Brady, ‘‘Beamspace MIMO for high-dimensional mul-
tiuser communication at millimeter-wave frequencies,’’ in Proc. IEEE
Global Commun. Conf. (GLOBECOM), Dec. 2013, pp. 3679–3684.

[276] T. Ding, Y. Zhao, L. Li, D. Hu, and L. Zhang, ‘‘Energy-efficient hybrid
precoding for beamspace MIMO systems with lens array,’’ in Proc. IEEE
19th Int. Conf. Commun. Technol. (ICCT), Oct. 2019, pp. 628–632.

[277] T. Ding, Y. Zhao, L. Li, D. Hu, and L. Zhang, ‘‘Hybrid precoding for
beamspace MIMO systems with sub-connected switches: A machine
learning approach,’’ IEEE Access, vol. 7, pp. 143273–143281, 2019.

[278] M. Abdelghany, U. Madhow, and A. Tolli, ‘‘Efficient beamspace down-
link precoding for mmWave massive MIMO,’’ in Proc. 53rd Asilomar
Conf. Signals, Syst., Comput., Nov. 2019, pp. 1459–1464.

[279] W. Ma, C. Qi, Z. Zhang, and J. Cheng, ‘‘Sparse channel estimation
and hybrid precoding using deep learning for millimeter wave mas-
sive MIMO,’’ IEEE Trans. Commun., vol. 68, no. 5, pp. 2838–2849,
May 2020.

[280] X. Meng, F. Liu, J. Zhou, and S. Yang, ‘‘Interference exploitation precod-
ing for intelligent reflecting surface aided communication system,’’ IEEE
Wireless Commun. Lett., vol. 10, no. 1, pp. 126–130, Jan. 2021.

[281] S. Wang, Q. Li, and M. Shao, ‘‘One-bit symbol-level precoding for
MU-MISO downlink with intelligent reflecting surface,’’ IEEE Signal
Process. Lett., vol. 27, pp. 1784–1788, 2020.

[282] M. Shao, Q. Li, and W.-K. Ma, ‘‘Minimum symbol-error probability
symbol-level precoding with intelligent reflecting surface,’’ IEEE Wire-
less Commun. Lett., vol. 9, no. 10, pp. 1601–1605, Oct. 2020.

[283] Z. Peng, Z. Zhang, C. Pan, L. Li, and A. L. Swindlehurst, ‘‘Multiuser
full-duplex two-way communications via intelligent reflecting surface,’’
IEEE Trans. Signal Process., vol. 69, pp. 837–851, 2021.

[284] R. Liu, H. Li, M. Li, and Q. Liu, ‘‘Symbol-level precoding design
for intelligent reflecting surface assisted multi-user MIMO systems,’’
in Proc. 11th Int. Conf. Wireless Commun. Signal Process. (WCSP),
Oct. 2019, pp. 1–6.

[285] A. Mohammadian, C. Tellambura, and M. Valkama, ‘‘Analysis of self-
interference cancellation under phase noise, CFO, and IQ imbalance in
GFDM full-duplex transceivers,’’ IEEE Trans. Veh. Technol., vol. 69,
no. 1, pp. 700–713, Jan. 2020.

[286] X. Xia, K. Xu, D. Zhang, Y. Xu, and Y.Wang, ‘‘Beam-domain full-duplex
massive MIMO: Realizing co-time co-frequency uplink and downlink
transmission in the cellular system,’’ IEEE Trans. Veh. Technol., vol. 66,
no. 10, pp. 8845–8862, Oct. 2017.

[287] K. Xu, Z. Shen, Y. Wang, and X. Xia, ‘‘Location-aided mMIMO chan-
nel tracking and hybrid beamforming for high-speed railway commu-
nications: An angle-domain approach,’’ IEEE Syst. J., vol. 14, no. 1,
pp. 93–104, Mar. 2020.

[288] Z. Shen, K. Xu, X. Xia, W. Xie, and D. Zhang, ‘‘Spatial sparsity based
secure transmission strategy for massive MIMO systems against simulta-
neous jamming and eavesdropping,’’ IEEE Trans. Inf. Forensics Security,
vol. 15, pp. 3760–3774, 2020.

[289] K. Xu, Z. Shen, Y. Wang, X. Xia, and D. Zhang, ‘‘Hybrid time-switching
and power splitting SWIPT for full-duplex massive MIMO systems:
A beam-domain approach,’’ IEEE Trans. Veh. Technol., vol. 67, no. 8,
pp. 7257–7274, Aug. 2018.

[290] Z. Shen, K. Xu, and X. Xia, ‘‘Beam-domain anti-jamming transmission
for downlink massive MIMO systems: A stackelberg game perspective,’’
IEEE Trans. Inf. Forensics Security, vol. 16, pp. 2727–2742, 2021.

MAHMOUD A. ALBREEM (Senior Member,
IEEE) received the B.Eng. degree in electri-
cal engineering from the Islamic University of
Gaza, Palestine, in 2008, and the M.Sc. (EE) and
Ph.D. (EE) degrees fromUniversiti SainsMalaysia
(USM), Malaysia, in 2010 and 2013, respectively.
From 2014 to 2016, he was a Senior Lecturer with
Universiti Malaysia Perlis. Since February 2016,
he has been an Assistant Professor of communica-
tions engineeringwith theDepartment of Electron-

ics and Communications Engineering, A’SharqiyahUniversity, Oman, where
he chairs the department. He is also a Visiting Assistant Professor with the
Centre for Wireless Communications (CWC), University of Oulu, Finland.
He is the author of more than 70 journal and conference papers. His research
interests include multiple-input multiple-output detection and precoding
techniques, spatial modulation, machine learning applications for wireless
communication systems, and green communications. He received several
scholarships and grants, such as the Nokia Foundation Centennial Grant,
in 2018, the USM Fellowship, from 2011 to 2013, and the Best Master’s
Thesis Award of the School of Electrical and Electronics Engineering, USM,
in 2010. He served on the Editorial Board forWireless Communications and
Mobile Computing journal.

60800 VOLUME 9, 2021

http://dx.doi.org/10.1109/TCOMM.2021.3059300


M. A. Albreem et al.: Overview of Precoding Techniques for Massive MIMO

ALAA H. AL HABBASH (Member, IEEE) was
born in Riyadh, Saudi Arabia, in 1985. He received
the B.Sc. and M.Sc. degrees in telecommunica-
tion engineering from the Islamic University of
Gaza, Palestine, in 2008 and 2013, respectively.
He is currently working as a Junior Researcher
in wireless communications with the Palestinian
ICT Research Agency (P-ICTRA), Gaza, Pales-
tine, as a Research Assistant at A’Sharqiyah Uni-
versity, Oman, and as a Communication Engineer

at the Ministry of Telecommunication, Gaza. His current research interests
include space-time coding, turbo codes, spatial modulation, and deep learn-
ing. He was a co-recipient of the 2018 IEEE ICEPT Best Paper Awards.

AMMAR M. ABU-HUDROUSS (Senior
Member, IEEE) was born in Khan-Younis,
Palestine, in 1977. He received the B.Sc. degree
from the Islamic University of Gaza, Palestine,
in 2000, and the M.Sc. degree in telecommunica-
tion engineering and the Ph.D. degree in communi-
cation engineering from Birmingham University,
Birmingham,U.K., in 2003 and 2007, respectively.
From 2012 to 2013, he was a Visiting Researcher
with the University of York, as a holder of a

Distinguished Scholar Award from the Arab Fund for Social and Economic
Development. He is currently a Professor of Communications at the Islamic
University of Gaza (IUG), Palestine. He is also a member of the Palestinian
ICT Research Agency (P-ICTRA). During his work at IUG, he has been
granted to presume several scientific visits to international universities in
Europe and Canada. His current research interests include localization,
digital signal processing for wireless communications, software defined
radio, index modulation, and coding.

SALAMA S. IKKI (Senior Member, IEEE)
received the Ph.D. degree in electrical engineering
fromMemorial University, St. Johns, NL, Canada,
in 2009. From February 2009 to February 2010,
he was a Postdoctoral Researcher with the Uni-
versity of Waterloo, ON, Canada. From Febru-
ary 2010 to December 2012, he was a Research
Assistant with INRS, University of Quebec, Mon-
treal, QC, Canada. He is currently an Asso-
ciate Professor and Lakehead University Research

Chair inWireless Communications. He is the author of more than 100 journal
and conference papers and has more than 5000 citations and an H-index
of 33. His research interests include cooperative networks, multiple-input-
multiple-output, spatial modulation, andwireless sensor networks. He served
on the Editorial Board for IEEE COMMUNICATIONS LETTERS and IET Commu-
nications. Furthermore, he also served as a Technical Program Committee
member for various conferences, including the IEEE International Confer-
ence on Communications, the IEEE Global Communications Conference,
the IEEE Wireless Communications and Networking Conference, the IEEE
Spring/Fall Vehicular Technology Conference, and the IEEE International
Symposium on Personal, Indoor, and Mobile Communications. He received
the Best Paper Award for what he published in the EURASIP Journal on
Advances in Signal Processing. He also received the IEEE COMMUNICATIONS

LETTERS, IEEE WIRELESS COMMUNICATIONS LETTERS, IEEE TRANSACTIONS ON

VEHICULAR TECHNOLOGY, and IEEE TRANSACTIONS ON COMMUNICATIONS exem-
plary reviewer certificates in 2012 and 2014, respectively.

VOLUME 9, 2021 60801


