



Abstract: Ensuring the security of the software has raised

concerns from the research community which triggered

numerous approaches that tend to eliminate it. The process

of ensuring the security of software includes the

introduction of processes in the Software Development

Life Cycle where one of them is testing after the software is

developed. Manually testing software for security is a

labor-intensive task. Therefore, it is required to automate

the process of testing by generating test cases by

automated techniques. In this paper, we review various

software security test case generation approaches and

techniques. We try to explore and classify the most

eminent techniques for test case generation. The

techniques are summarized and presented briefly to covers

all researches work that has been done in the targeted

classification. Moreover, this paper aims to depict the

sound of security in the current state of the art of test case

generation. The findings are summarized and discussed

where the opportunities and challenges are revealed

narratively. Although the paper intends to provide a

comprehensive view of the research in test case generation,

there was a noticeable lack in the test case generation from

the security perspectives.

Keywords—Security Test Generation Techniques, SLR,

Techniques Weaknesses and strengths

I. INTRODUCTION

HIS document is a template for Word (doc) versions. If

you are reading a paper version of this document, so you

can use it to prepare your manuscript.

Raising the number of cyberattacks on software triggered

major concerns of software security issues for the research

community lately [3]. The well-known issues are attacks that

manipulate the data, denial of service attacks, and cyber-

attacks that reveal sensitive financial or other types of data

[16]. A tremendous amount of effort has been made to enhance

the security of software.

To ensure software security, it is been established to include

processes to deal with security issues early in the software

development lifecycle. Hence, this has initiated a new domain

of research called secure software development. The secure

design ensures secure software development. Designing

security in software has become the best practice for

developing secure and trustworthy software in a cost-efficient

manner. Security design does not ensure security in

implementation as there are still possibilities of vulnerabilities

that become part of software during the implementation

process. To ensure secure implementation design level

artifacts are used for testing the implementation. Security tests

are generated from design-level artifacts. Security attacks are

usually initiated by providing invalid inputs that are chosen by

the attacker. The challenge comes because of the complex

nature of input space, which makes testing of programs with

invalid inputs very difficult [48][49]. Therefore, there is a dire

need for automating the process of generating security test

Exploring Software Security Test

Generation Techniques: Challenges and

Opportunities

Mamdouh Alenezi1, Mohammed Akour2, Hamid Abdul Basit3

1,2,3Computer Science Department, Prince Sultan University, Riyadh 11586, Saudi Arabia
2Information Systems Department, Yarmouk University, Irbid 21163, Jordan

Corresponding author: makour@psu.edu.sa

Received: April 23, 2021. Revised: May 25, 2021. Accepted: May 28, 2021. Published: June 3, 2021.

T

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.11 Volume 15, 2021

E-ISSN: 2074-1316 106

cases. The process of detecting security vulnerabilities is

automated with cost-effective testing techniques. Thus in the

literature, we can find various efforts for automating software

security test case generation techniques [3][53]. Research on

test data generation is going on since 1970 [23][40][47]. The

automatic test case generation has received a considerable

amount of attention from researchers. Therefore, in the

literature, we find a large number of heterogeneous techniques.

There is a need to critically review existing software security

test case generation techniques to look for open problems and

sketch the future of test case generation techniques.

In this paper, we compile and discuss various software security

test case generation techniques found in the literature. In

addition, we identify research challenges and future direction.

The paper is organized as follows. Section 1 contains the

introduction. In section 2, we discuss the classification of

automated software test case generation techniques into two

major categories: type-based software test case generation

techniques and Algorithm-based software test case generation

techniques. Section 3, presents type-based software test case

generation techniques. In section 4, we discuss algorithm-

based software test case generation techniques. Section 5

focuses on security test case generation research work. Section

6, presents our analysis of the literature under the heading of

discussion and findings. In section 7, we conclude the paper.

Fig.1 Classification of Automated Software Test

Techniques

II. RESEARCH METHODOLOGY

The main goal of this research paper is to explore the available

software test case generation techniques and briefly manifest

the mechanism for each technique. Moreover, we highlighted

the test case generation where the security attribute was the

essence behind the test generation. We compare these

techniques by considering the challenges and opportunities of

the studied techniques.

The methodology steps in this review are as follows: 1. The

authors articulate the review protocol. 2. Carry out the review

(search, list and evaluate primary studies, extract and

synthesize data to produce a concrete result). 3. Analyze the

findings. 4. Report the findings. 5. Discuss the findings. In the

review protocol, we describe the research questions to be

addressed in this work. Moreover, we identify the set of

databases that are searched and specify the methods used to

identify, assemble, and assess the evidence. To minimize the

researcher bias, the protocol is developed by the first author,

reviewed by the second author, and then finalized through the

group discussion.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.11 Volume 15, 2021

E-ISSN: 2074-1316 107

A. Research Questions

The aims of this study are twofold. First, we would like to

explore and expose the diverse test case generation in the

literature. Second, we would like to find out if there are

techniques that take security as the main purpose of the test

case generation or not. The high-level question addressed by

this review is: What types of techniques and approaches for

software test case generation can be found in the literature.

This high-level research question is subdivided into three

specific research questions to better guide the literature review

process.

RQ 1: What are the common taxonomies of test case

generation techniques?

RQ 2: Are there security-oriented test case generation

techniques in the scientific literature?

RQ 3: What are the limitation and the opportunities provided

by the selected studies?

B. Database Source Selection And Search Criteria

As a preliminary step and before starting looking for research

papers, databases must be carefully chosen to improve the

possibility of obtaining the most broad and relevant resources.

In this review, the following criteria are used to select the

source databases: The database must include journals and

conference proceedings that cover: test case generation,

software security, automatic and manual test case generation,

test case prioritization, and empirical studies. To minimize the

redundancy of journals and proceedings across databases, the

list of databases is reduced where possible.

Authors determine the keywords that should be used to find

any articles that can provide an answer to the research

questions as follows: (approach or method or methodology or

technique) AND ((“Test Case generation”) OR (“Security

testing”)). Therefore, the search string was "Culture" AND

"DevOps".

The search approach includes search resources and search

steps as follows:

In order to find the sources in the literature about test case

generation and security testing, the search was conducted on

four common digital databases: 1- ACM Digital Library 2-

IEEE Xplore Digital Library, 3- ScienceDirect, 4-Wiley

Online Library. The search steps are presented in Figure 2.

Keywords

Technieques,

tools,

mothods

Test case

generation

Security

testing

Inclusion and

Exclusion

Criteria

ACM

Digita

l

Libra

ry

IEEE

Xplor

e

Digita

l

Libra

ry

Scien

ce

Direc

t

Wiley

Onlin

e

Libra

ry

retrieved Articles

(How many Article in

total 156)

Initial Step: Selected

Articles

(How many Article

used in this literature

120)

First Step: Selected

Articles

(How many Article

used in this literature

90)

Second Step:

Selected Articles

(How many Article

used in this literature

52)

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.11 Volume 15, 2021

E-ISSN: 2074-1316 108

Figure 2. Search Steps

The search strings were used and the retrieved articles 156

papers. In the Initial step, we examined the titles, abstracts,

and keywords of the articles where the irrelevant papers are

removed and shortlisted the papers to 120.

In the first step, all remained papers were checked based on

the full text, we produced two classifications here:

Relevant papers: where the papers are relevant to the study.

Irrelevant papers: where the papers are not relevant to the

study, we exclude these papers.

Whenever authors have a uncertainty or conflict about the

relevancy of a paper, we pushed the paper to be in the relevant

list and make the final decision to exclude the paper or leave it

during the second step when the full texts of the papers were

studied again. The remaining papers were 90.

In the second step, we examined the remaining papers against

inclusion and exclusion criteria as shown in Table 1. The final

relevant papers were 52.

To make sure that the inclusion and exclusion criteria were

consistent, authors select some of the final list papers

randomly and re-evaluate the relevancy of these papers. Still,

completeness is not guaranteed in this study as we may not

find other relevant papers. However, to the best of our

knowledge, this is the first SLR to address the security test

case generation techniques.

Table 1 – Inclusion and Exclusion Criteria

Exclusion Criteria Inclusion Criteria

Papers that are developed only

on scholar judgment

Articles address software security

testing and test case generation.

Posters, short papers, tutorials Papers navigate security test suite

generation, prioritization, or

reduction

Studies that are not directly

related to any of the addressed

research questions

Papers explore the challenges,

advantages, disadvantages of the

current test case generation in

terms of software security.

Pre-review conference or

journal papers

Empirical studies (qualitative or

quantitative)

Studies that are written other

than the English language

Studies providing unclear and

misleading findings.

C. Data Extraction

All papers from the second step are documented and the

following data is extracted: 1) DB (Source), 2) Paper Title, 3)

Authors, 4) Publication year, 4) Test Classification, (vii) paper

abstract. The test case generation classifications are extracted

initially from the paper title, abstract, or the introduction of

each selected paper, Table 3 presents a set of taxonomies that

were depicted and assigned to the papers. The process of

classification and paper assignment was further refined,

sometimes we used sticky notes to record the classification and

paper assignment.

D. Research Quality Assessment

After assuring the relevancy of the papers, we performed the

quality assessments of the selected papers to make sure that

only high-quality papers are considered in this study. The

quality assessment criteria are presented in Table 2. Each

quality assessment criterion is evaluated as yes or no for each

paper, and papers with only yes answers for all the criteria

were included in the final list. (How many papers- used exactly

in this study 156) of the (how many papers – the result of the

second step 52) selected studies satisfied the quality

questionnaire.

TABLE 2 – QUALITY ASSESSMENT CRITERIA

S.

No

Quality Assessment Criteria

1 Is the paper based on a strong research methodology and

is not just a report promising experimental evaluation?

2 Does the paper present clear goals of the research?

3 Does the paper present an appropriate description of the

paper content?

4 Does the research methodology describe well-designed

steps that navigate the main contribution of the research?

5 Is the research methodology sound and appropriate in

terms of the main contribution of the research?

6 Is the collected data (if any) are commonly used by

researchers?

7 Does the paper build a clear result and lessons learned?

III. RESULT AND DISCUSSION

This section presents the overview answers for the addressed

research questions. The main contributing studies are 52 out of

the initial collected set 120.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.11 Volume 15, 2021

E-ISSN: 2074-1316 109

A. RQ 1: What Are The Common Taxonomies Of Test

Case Generation Techniques.

After the full review of the prime studies, the final taxonomies

were developed after conducting the data extraction and

agreement steps presented in the previous section. Table 3

summaries the main taxonomies, where column 2 presents the

main taxonomy, Column 3 presents the sub-taxonomies.

TABLE 3 – STUDY MAIN TAXONOMIES

ID # Main Taxonomy Sub-taxonomy

1

Type-Based testing

structural

functional

non- functional

gray box

2 algorithm-based
randomized

search-based

data mining

techniques

Below we discuss the classification of automated software test

case generation techniques as found in the literature. Testing

techniques can be classified along two main dimensions: one

based on the type of testing and the other based on the type of

algorithm used. The testing type-based classification consists

of four types of techniques: structural, functional, non-

functional, and gray box testing techniques. The algorithm-

based classification consists of randomized, search-based, and

data mining techniques.

These testing technique classifications are described as

follows.

i. TYPE BASED CLASSIFICATION

 Structural: Test cases are generated with the help of a

control flow graph or system source code. With a

structural testing test, adequate criteria are covered.

 Functional: System specification is used to generate

test cases. The functionality of software under test is

tested.

 Non-functional: Working in the system is tested in this

type of testing. The tests measure characteristics of

system and software which is quantified.

 Gray Box: Both structural and functional information

is used to generate test cases.

ii. ALGORITHM-BASED CLASSIFICATION

Randomized: Event sequences and test cases are

generated randomly. The best test set for the problem

is generated.

Search-Based: Test case generation is considered an

optimization problem.

Data Mining: Input/Output of a program under test is

analyzed. The number of test cases is reduced by

factoring out unimportant and infeasible test cases.

Type-Based Software Test Case Generation

Techniques

In this section, we will discuss the type-based software test

case generation techniques found in `the literature.

i. STRUCTURAL BASED SOFTWARE TEST CASE GENERATION

TECHNIQUES

The authors in [52] stress the automation of the security

testing process. An approach for generating security tests

with the use of formal threat models is presented. Attack

paths are generated from threat models. The paths are

transformed into executable test code. The approach is

applied to two real-world systems Magento and Filezilla.

Experiments demonstrate security tests we able to find

several security problems in these systems.

ii. FUNCTIONAL BASED SOFTWARE TEST CASE

GENERATION TECHNIQUES

In [15] motivated with automated validation of software

systems. The authors used test case generation to enhance

dynamic specification mining. It is claimed that this work is

the first work towards a combination of a systematic test case

and typestate mining. In an experiment, eight hundred errors

were scattered into 6 Java projects, the static typestate

verifier reports more true positives and fewer false

positives.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.11 Volume 15, 2021

E-ISSN: 2074-1316 110

The authors in [51] addressed the research on the

automatic generation of system test cases from natural

language (NL) requirements. Existing proposed approaches

require manual intervention. The authors proposed Use

Case Modeling for System Test Generation (UMTG), which

enables automatic generation of system test cases from use

case specification and domain model. Motivated by the

accepted practice of use case specification and domain

modeling, the proposed approach adopts the practice. At the

same time, behavioral modeling is considered a difficult and

expensive exercise. The feasibility of the approach is

demonstrated by an industrial case study in the automotive

domain.

In [27] the authors proposed a framework WebSob for

automated testing of web service. Manually testing web

service is a tedious job therefore there is a need for an

automated tool to test web service. Tool for automatically

generating and executing web-service requests with the

analysis of subsequent request-response pairs. At first, the

necessary Java code is automatically generated which

implements a client which is a service requestor. Unit tests

are generated using automated unit test generation tools

where the executed unit tests invoke the service. Request-

response pairs from web service invocation were analyzed and

robustness problems were identified.

The authors in [7] present the result of a case study of

generating test cases for a fragment of smart card GSM 11-11

standard. Contribution of testing environment B-Testing-Tool

in the industrial process on the real-life application is carried

out. Generated test sequences are compared with great

quality manually designed tests. The approach is validated

with this comparison.

In [54] the authors extend metamorphic testing into a

user-oriented approach of software quality assessment,

validation and verification. 4 search engines are studied

Bing, Google, Chinese Bing and Baidu. Results from the

study show that users and search engine developers can get

benefit from this study. It is demonstrated that the proposed

approach reduces the oracle problem.

The authors in [13] review the existing research on

metamorphic testing and present challenges that need to be

addressed. Further improvement in metamorphic testing and

opportunities for novel research are discussed.

In [37] the authors address mutation analysis and propose

a path selection strategy for selecting test cases that kill

mutants. 55 million program paths were investigated which is

based on a strategy to reduce the effects of infeasible paths.

iii. GRAY BOX BASED SOFTWARE TEST CASE GENERATION

TECHNIQUES

The authors in [45] present a survey that improves the

understanding of UML-based testing techniques. Authors

considered test case that was generated from: state-chart,

sequence and activity diagram. Moreover, many research

techniques that are based on, graph theory, formal

specifications, heuristic testing and direct UML specification

processing are classified.

iv. NON-FUNCTIONAL BASED SOFTWARE TEST CASE

GENERATION TECHNIQUES

In [21] automated security validation system AppInspector is

proposed. The proposed system analyzes apps and generates

reports of security and privacy violations.

The authors in [26] propose an automated test

generation for access control policies. The manual

generation of the test is tedious and manual tests are not

considered enough to employ numerous policy behaviors. A

novel framework is put forth along with that supporting tool

known as CIRG (Change Impact Request Generation) is

used to generate tests based on change impact analysis.

CIRG efficiently generates tests that help to gain high

structural coverage policies and surpasses random test

generation.

[41] proposed input generation techniques for android

based operating system apps. The techniques differ from

each other in the way the inputs are generated and the

strategy used to investigate the performance of the studied

apps. A comparison between the existing test input

generation techniques is conducted to summarize the

opportunities and the limitations of the studied approach.

Furthermore, the effectiveness of these tools is evaluated

and the techniques employed with respect to four metrics:

the ability to work on multiple platforms, ease of use, ability

to detect faults, and code coverage.

Algorithm-based Software Test Case Generation

Techniques

In this section, we will discuss the algorithm-based software

test case generation techniques found in the literature.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.11 Volume 15, 2021

E-ISSN: 2074-1316 111

i. RANDOM BASED SOFTWARE TEST CASE GENERATION

TECHNIQUES

In [20] the authors studied the effectiveness of automated

test generation techniques that produce coverage providing

tests. Their effectiveness in terms of fault detection ability is

not studied adequately. Effectiveness of test suites that

satisfy four coverage criteria with the help of

counterexample-based test generation and random

generation approach. Results yield three conclusions.

Coverage criteria are a poor sign of fault-finding

effectiveness. Secondly, the use of structural coverage as a

supplement instead of a target for test generation has a

positive impact. Random test suites are reduced to coverage

providing subset detecting up to 13.5% more faults than test

suites. Thirdly, observable Modified Condition/Decision

Coverage (MC/DC coverage), criteria that are designed to

account for program structure and selection of test oracle

caters the failings of traditional structural coverage criteria.

The results indicate risks inherent in expanding test

automation in critical systems along that highlights the areas

of research in automating tests.

ii. SEARCH-BASED SOFTWARE TEST CASE GENERATION

TECHNIQUES

The authors in [19] propose an automated technique of

software testing. The automated process helps in the

identification of bugs and errors. There are various meta-

heuristic techniques employed in removing bugs. The

artificial bee colony technique is one of them. The algorithm

intelligently synchronizes bees, which helps to discover nodes

in software code. This paper critically reviews the technique.

The proposed approach is scalable and requires less

computation time.

In [44], a novel approach to generate test paths is

proposed. By using the standard Unified Modeling

Language (UML), Activity diagram, and Activity

dependency table (ADT) test paths are generated. Test

paths are prioritized with the use of the Tabu search

algorithm. The prioritized paths are used in regression

testing, system testing, and integration testing. The

efficiency of the test scenario is evaluated using a

cyclomatic diagram.

The authors in [18] propose a research prototype

EvoSuite, which automatically generates test suites for

classes written in the Java programming language. Technical

challenges that EvoSuite should address which Java classes

coming from open source project should handle.

In [28] a survey of meta-heuristic search techniques

applied in automating test data generation for structural and

functional testing is presented. Future directions of research

in each of heterogeneous individual areas are discussed.

The authors in [1] discussed various search heuristics

which are based on OCL constraint. These techniques lead

to test data generation and automate Model-Based Testing

in industrial applications. The feasibility of the proposed

approach is evaluated using empirical analysis.

In [29] the authors proposed an approach where input

from the internet is pursued. The program identifiers are

restructured into web queries. The URLs are downloaded,

split into tokens, and then seed search-based data generation

techniques. Empirical evaluation is carried out with string

input validation code from 10 open-source projects. Valid

string inputs were retrieved from the web with 96% of

heterogeneous string types analyzed. With the approach,

coverage was improved for 75% of Java classes with an

average increase of 14%

The authors in [25] propose a security test case

derivation from design-level artifacts. An empirical study to

show the feasibility of the approach.

In [17] a novel paradigm is proposed where whole test

suites are evolved to cover all coverage goals. The total size

is kept small at the same instant. The approach is

implemented in EvoSuite. Open-source libraries and

industrial case studies of 1741 classes EvoSuite achieved 188

times the branch coverage of the conventional approach which

targets a single branch. 62% of smaller test suites were used in

the evaluation.

iii. DATA MINING BASED SOFTWARE TEST CASE

GENERATION TECHNIQUES

The authors in [2] proposed an algorithm based on concolic

testing which generates a sequence of events automatically

and systematically. The path explosion problem is removed.

The approach is implemented in android. Results

demonstrate the effectiveness of five android applications.

In [35] novel method of generating test cases for black-

box autonomous systems. As a result, a method of searching

for challenging scenarios of the autonomous system under

test is put forward. Adaptive sampling which intelligently

searches state space for test scenarios is also introduced.

With the use of unsupervised clustering techniques scenarios

are grouped according to the performance modes.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.11 Volume 15, 2021

E-ISSN: 2074-1316 112

In [32] the authors propose a framework that

automatically generates a test case for Javascript

applications. The approach called JSEFT combines

function coverage maximization and function state

abstraction algorithms that efficiently generate test cases.

Evaluation is performed by using 13 Javascript-based

applications which demonstrate that generated test cases

achieve a coverage of 68% and JSEFT detects Javascript

and DOM fault with high accuracy. JSEFT outperforms the

current Javascript test automation framework with respect

to coverage and detected faults.

The authors in [22] present two phases approach for

discovering event sequences that find the targeted line of

code in the application. The experimental studies on

numerous android applications demonstrate the technique

was able to produce the event sequences successfully.

In [8] propose a novel technique for alleviating traversed

code paths by discarding the ones having side effects similar

to a previously explored path. A mix of open source

applications and device drivers decreases the number of

paths traversed.

The authors in [39] present a white-box framework of

testing deep learning framework DeepXplore. Incorrect

corner case behaviors in state-of-the-art deep learning

models with thousands of neurons that are trained with five

popular datasets which include imagenet and udacity self-

driving challenge data.

In [12] the authors discussed the state of the art in dynamic

symbolic execution. The contribution of this work is fivefold.

The first theoretical foundation of dynamic symbolic execution

is summarized. Secondly, the challenges of turning ideas into

reality are presented. State-of-the-art solutions with

advantages and disadvantages for the challenges is discussed.

Twelve typical tools were analyzed. Finally, future research

directions are presented.

The authors in [14] propose a framework of dynamic

tainting which is flexible and customizable. Traditionally

dynamic tainting cannot be extended and adapted to a new

context. Data flow and control flow-based tainting can be

performed. The framework is called DYTAN. An

implementation of the framework which works on x86

executables along with initial studies demonstrates how

DYTAN is used to implement the different tainting-based

approach. It is demonstrated how DYTAN is used in real

software i.e. Firefox. Specific characteristics of the tainting

approach can affect the efficiency and accuracy of taint

analysis.

In [34] novel method of discovering integer bugs with the

use of dynamic test generation on x86 binaries was presented.

The method is implemented in a prototype tool SmartFuzz

which is used to analyze Linux x86 binary executables. A

reporting service metafuzz.com for reporting bugs discovered

by SmartFuzz and black-box fuzzing tool zzuf. metafuzz.com

recorded more than 2614 test runs with 2361595 test cases.

Experiments discovered 77 total bugs in 864 compute hours

which cost an average of $2.24 per bug considering current

EC2 rates.

In [9] present a technique that utilizes code to

automatically generate a test case at run time. This is done

with a combination of symbolic and concrete execution. The

technique was applied to real code and discovered numerous

errors i.e. simple memory overflow and infinite loops.

In [30] presents a genetic algorithm for the automated

generation of the test. The work is an extended form of

previous research on dynamic test data generation. GA-based

approach was implemented and its effectiveness is

demonstrated for several programs.

The novel approach of testing web services based on data

perturbation is presented in [36]. XML messages are

modified based on rules defined on message grammars which

are used as tests. Two methods are used by data perturbation

for testing web service: data value perturbation and

interaction perturbation. Experiments demonstrate the

usefulness of the proposed approach.

The authors in [50] propose a systematic technique called

scope bounded testing which develops novel specifications

for effectively generating tests for products in the software

products line. Experimental results with the use of

heterogeneous data structure products demonstrate speedup

over conventional techniques.

In [31] the authors present an approach that combines the

approach of testing web applications by writing test cases in

SELENIUM and using a crawler to explore dynamic states

of the application. The proposed approach mines human

knowledge existing in the form of input values, assertions,

event sequences, and human written test suites. The mined

knowledge is combined with automated crawling and

extends the test suite for the uncovered/unchecked portion

of the web application. The approach is implemented in

TESTILIZER. Experimental results demonstrate that the

approach outperforms random test generators and on

average generate test suites improved up to 150% in fault

detection rate and 30% in code coverage.

The authors in [4] present a novel technique of

exploiting static analysis that guides automated test

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.11 Volume 15, 2021

E-ISSN: 2074-1316 113

generation for binary programs. It also prioritized paths that

are to be explored. Initial experiments on a suite of

benchmarks from real applications demonstrate the

effectiveness of the approach.

The authors in [43] present a comprehensive survey on

metamorphic testing. In [38] state of the art trends in

symbolic execution are discussed.A comprehensive survey

of symbolic execution techniques is presented in [5].

The authors in [10] present results on the "Impact

Project Focus Area" on the subject of symbolic execution.

Classical and as well as modern symbolic execution

techniques are presented.

In [11] symbolic execution is presented along with its

illustration with example. The paper also discusses various

works in symbolic execution. The authors in [33] present a

framework called SIG-Droid for testing android apps using

automated program analysis to extract app models. SIG-

Droid is implemented and evaluated where the results show

the effectiveness of the framework.

In [46] dynamic test data generation framework which

forms its basis on genetic algorithms is proposed. The

framework has a program analyzer and test case generator

which intercommunicate to generate test cases. Efficiency is

demonstrated by running it on several programs. Empirical

results suggest that the proposed framework is better than the

current test data generation methods. The authors in [6] an

approach for the systematic selection of input test data is

presented. The model is based on key characteristics of

model transformation. The input domain is captured in a

metamodel.

 In [42] genetic algorithm based on an automatic test

pattern generation technique is proposed. The proposed

scheme achieves higher detection coverage over a greater

population of Hardware Trojan Horses (HTH) in ISCAS

benchmark circuits.

The authors in [24] present a multifaceted project which

automates security testing and robustness of android apps in

a scalable manner. An android-specific program analysis

technique is proposed which generates a huge number of test

cases for app fuzzing. Also, a testbed that generates test

cases is developed.

B. RQ 2: Are there security-oriented test case generation

techniques in the scientific literature?

The above sections show several research efforts that

address test case generation from different perspectives. This

section summarized the most work that has been done for test

case generation where security sounds like the main

perspective. Wimmel and Jurjens [55] generated a test

sequence for a transactional system based on a formal

security model. They used the specification to generate

mutants and attack scenarios to guide the security testing

efforts. The authors used mutation testing on specifications

to extract those interaction sequences that are most likely to

find security issues. Martin and Xie [26] presented a

framework and tool called CIRG that generates tests based

on change impact analysis. Their experimental results

showed that tests can be generated to achieve high structural

coverage of policies. The investigated technique is aimed at

test generation from access control policy specifications

written in XACML (OASIS XACML).

Masson, Pierre-Alain, et al. [56] utilized security policy

to compute tests that exercise security properties. Model

based testing technique is proposed for verifying if the

access control policies are correctly implemented. B

language is used to develop the functional model and used

for the security test generation. They showed how the test

purposes can be automatically computed, by modeling the

test needs as syntactic transformation rules that transform

regular expressions. Li et al. [57] adopted model-based

formal testing of security policies to propose a two-stage

approach to generate test cases from a security policy

specified in Or-BAC rules. It focuses on the generation of

test purposes from individual OrBAC rules. The authors

first generated test purposes from Or-bac rules then they

generated test cases from these test purposes.

Julliand et al. [58] proposed an approach to generating

security tests in addition to functional tests by re-using the

functional test model together with a new model of security

properties defined by a security engineer. No explicit access

control model was used. The test purpose is specified in a

language that allows the tester to describe which actions to

call and which states to reach. Darmaillacq et al. [59]

proposed a semi-automatic rule-based method to generate

tests of the conformance of a system to a given security

policy. The method generates test cases directly from a

security policy expressed as a set of security requirements,

using two relations: one between predicates appearing in the

rules and elementary test cases used to test predicates in the

system, and another one between logical operators and test

case combinators.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.11 Volume 15, 2021

E-ISSN: 2074-1316 114

Marback et al. [25] proposed a security testing approach

that derives test cases from the design level. The approach

has four activities 1) Build threat trees from threat modeling,

2) Generating security tests from threat, 3) Trees generate

test inputs contains valid and invalid inputs, and 4) Assigning

input values to parameters. The approach uses manually built

threat trees on the grounds of manually constructed data flow

diagrams for an application. Abbassi et al. [60] proposed a

framework to specify a security policy and to test its

implementation. This framework is characterized as follows:

(1) the security policy enforcement is specified through a

new modeling language, S-Promela, (2) the test criteria are

expressed by the use of a temporal logic LTL and (3) the test

cases are generated by a classical model checking technique.

Dadeau et al. [61] proposed a mutation based test

generation and assessment technique to check the

implementation of a security-protocol that is developed in

the high level security language. Their approach produced

mutant operators that create bug in the security protocols

and generate test cases for HLPSL models. Xu et al. [52]

proposed an approach to automated generation of security

tests formal threat models in the form of predicate/

transition nets. The proposed technique is conducted on

two open-source real systems. Their approach successfully

discover several security risks, and was showing the

capability of killing the injected security mutants injected.

 Huang et al. [62] try to combine dynamic and static

analysis in order to find security weaknesses in Java based

applications. They presented an analyzer to achieve no false

negatives and reduce false positives. Bozic et al. [63] used

IPO-family algorithm for web security testing. The authors

addressed IPOG-F and IPOG algorithms as they are freely

available in the ACTS tool. These algorithms produce test

cases for investigating and identifying injection attacks that

can introduce security breaches. The work addresses cross-

site scripting (XSS) vulnerabilities detection.

C. RQ 3: What are the limitation and the opportunities

provided by the selected studies?

We discuss our observations and findings in this section.

After having reviewed the literature we identified the

research challenges, which we discuss in the subsequent

paragraphs.

The techniques found in the literature vary according to

the techniques and approaches employed to generate test

cases. There is a need to study the suitability and feasibility

of existing software security test case generation techniques

according to the type of software applications. Also, a

relationship between the existing techniques and application

types needs to be investigated.

Automation is often enabled by AI-based techniques and

algorithms. There is a need to investigate existing AI-based

techniques and look into their application in software

security test case generation algorithms. Also, existing AI-

based techniques used in automated software testing can be

investigated and enhanced to propose software security test

case generation approaches and algorithms.

Software security in terms of test case generation as a

research area shows many research limitations and

challenges that need to be further addressed and explored.

Although we found many opportunities during conducting

this review still the challenges might motivate scholars in this

field.

 To conclude the findings of conducting this review,

Table 4 summarizes the opportunities and limitations of the

techniques, tools, algorithms found and studied in this

systematic review.

Table 4. Summary of Opportunities and Limitations of the

Studied Techniques

Technique /

Algorithm /Tool

Opportunities Limitations

[52] Structural

Based Software

Test Case

Generation

Technique

Automation of

security testing

process by generating

security test cases by

using formal threat

models

The cost of generated

attack paths is not

analyzed.

[15] Functional

Based Software

Test Case

Generation

Technique

The proposed

technique is a

combination of a

systematic test case

and typestate mining

that automates the

validation of

software. The

proposed method

incorporates the

power of both

systematic test cases

and typestate mining.

Combining systematic

test cases and typestate

mining would require a

tradeoff to achieve full

potential which is not

discussed in the paper.

[51] Functional

Based Software

Test Case

Generation

Technique

The proposed

technique

incorporates the

power of use case

specification and

domain modeling.

The behavioral model

is considered

expensive. Cost

analysis of combining

the two techniques is

not carried out by the

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.11 Volume 15, 2021

E-ISSN: 2074-1316 115

authors.

[27] Functional

Based Software

Test Case

Generation

Technique

The technique for

automating web

service testing is

proposed.

Heterogeneous

scenarios of web

service i.e. running in

the cloud, internet, and

web servers are not

considered and

analyzed in the paper.

[7] Functional

Based Software

Test Case

Generation

Technique

A case study of

generating test cases

in various

heterogeneous

scenarios is presented.

The approach can be

comprehensively

validated by

considering a

heterogeneous

industrial real-life

application. Where in

the paper only one

real-life application is

considered for

validation.

[54] Functional

Based Software

Test Case

Generation

Technique

The authors extend

metamorphic testing

into a user-oriented

approach for software

verification.

The study can be

improved by

considering more

search engines at the

moment only four

search engines are

analyzed.

[13] Functional

Based Software

Test Case

Generation

Technique

Existing research in

metamorphic testing

and its challenges are

discussed.

The authors suggest

improvement in

metamorphic testing.

Suggested

improvements can be

improved by applying

them in various

heterogeneous real-life

application

environments.

[37] Functional

Based Software

Test Case

Generation

Technique

A path selection

strategy for selecting

test cases that kill

mutants is proposed.

Cost analysis of the

path selection strategy

is not analyzed by the

authors.

[45] Gray Box

Based Software

Test Case

Generation

Technique

The authors present a

survey of UML-based

testing techniques.

Test case generation

from behavioral

specification diagrams:

sequence, statechart,

and activity diagram

were considered. Their

analysis is not

discussed in the paper

therefore which one to

choose in what kind of

scenario needs to be

analyzed.

[21] Non-

Functional Based

An automated

security validation

The classification of

apps analyzed is not

Software Test

Case Generation

Technique

system AppInspector

is proposed.

discussed in the paper.

[26] Non-

Functional Based

Software Test

Case Generation

Technique

A novel framework

for automated test

generation for access

control policies is put

forth along with that

supporting tool

known as CIRG

(Change Impact

Request Generation)

is used to generate

tests based on change

impact analysis.

Cost analysis of the

proposed CIRG tool is

presented in the paper.

[41] Non-

Functional Based

Software Test

Case Generation

Technique

Input generation

techniques for apps

that run in the android

operating system are

compared.

Evaluation of input

generation techniques

along with their

suitability in respective

application scenarios is

not analyzed and

discussed in the paper.

[20] Random

Based Software

Test Case

Generation

Technique

The effectiveness of

automated test

generation techniques

that produce coverage

providing tests are

analyzed.

Fault detection ability

is analyzed but not

quantified by the

authors in the paper.

The work can be

improved by

quantifying fault

detection ability.

[19] Search-

Based Software

Test Case

Generation

Technique

The process of

identifying bugs and

errors is automated

with an artificial bee

colony technique.

Although the technique

is critically reviewed it

will be good if the

technique is evaluated

with heterogeneous

scenarios.

[44] Search-

Based Software

Test Case

Generation

Technique

A novel approach for

generating test paths

is put forth

The proposed

technique generates a

test path where the cost

efficiency of test paths

is not considered.

[18] Search-

Based Software

Test Case

Generation

Technique

A research prototype

named EvoSuite

automatically

generates test suites

for Java programming

language is written,

classes.

The prototype needs to

be analyzed over real-

life Java-based

applications.

[28] Search-

Based Software

Test Case

Generation

Technique

A survey of

metaheuristic search

techniques for

automating test data

generation for

functional and

structural testing is

presented.

The classification of

techniques is not

discussed by the

authors.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.11 Volume 15, 2021

E-ISSN: 2074-1316 116

[1] Search-Based

Software Test

Case Generation

Technique

Model-based testing

in an industrial setting

is automated. Search

based OCL constraint

solver is proposed.

Cost analysis of the

search-based OCL

constraint solver is not

discussed.

[29] Search-

Based Software

Test Case

Generation

Technique

The input generation

technique is proposed

where the URL is

downloaded and split

into a token.

The proposed approach

is not compared and

analyzed against

existing input

generation techniques.

[25] Search-

Based Software

Test Case

Generation

Technique

Security test case

derivation from

design level artifacts

is proposed.

The suitability of

design-level artifacts

according to

application scenarios is

not analyzed.

[17] Search-

Based Software

Test Case

Generation

Technique

A novel paradigm is

proposed where

whole test suites are

evolved to cover all

coverage goals.

Cost analysis of the

proposed approach is

not performed by the

authors.

[2] Data mining

Based Software

Test Case

Generation

Technique

The algorithm based

on concolic testing is

proposed which

generates test cases.

Cost analysis of the

algorithm is not

performed by the

authors.

[35] Data mining

Based Software

Test Case

Generation

Technique

A novel method of

generating test cases

based on a black-box

autonomous system is

proposed. The

algorithm involves

intelligent searching

of state space.

Evaluation and Cost

analysis of the

searching algorithm is

not performed.

[32] Data mining

Based Software

Test Case

Generation

Technique

A framework for

generating test cases

for Javascript-based

applications is

introduced.

The proposed

framework is only

applicable to the

Javascript-based

application. Moreover,

the working of the

proposed framework

should be compared

and analyzed with the

existing test

automation framework.

Although some

analysis is presented

the functionality of the

framework is not

analyzed.

[22] Data mining

Based Software

Test Case

Generation

Technique

A two-phase

technique for

discovering event

sequences that reach a

given target line in

application code.

Cost evaluation and

analysis of the

discovery process are

not presented.

[8] Data mining

Based Software

Test Case

Generation

Technique

A novel technique for

alleviating traversed

code paths by

discarding the ones

having side effects

similar to a previously

explored path.

Evaluation and cost

analysis of the

technique is not

presented and

discussed.

[39] Data Mining

Based Software

Test Case

Generation

Technique

The white box

framework for testing

a deep learning

framework is put

forth.

Empirical evaluation

and comparison of the

framework with

existing frameworks

are not presented.

[12] Data Mining

Based Software

Test Case

Generation

Technique

The state of the art in

dynamic symbolic

execution is compiled

by the authors.

Classification and

comparison of existing

symbolic execution

techniques are not

presented.

[14] Data Mining

Based Software

Test Case

Generation

Technique

A customizable and

flexible dynamic

tainting technique is

proposed.

The proposed

framework is not

compared with existing

tainting techniques.

[34] Data Mining

Based Software

Test Case

Generation

Technique

A novel method of

discovering integer

bugs is put forth.

Cost evaluation and

analysis of the

discovery process are

not presented.

[9] Data Mining

Based Software

Test Case

Generation

Technique

The technique is

proposed which

automatically

generates test cases by

utilizing the code.

Cost evaluation and

analysis of discovering

bugs are not discussed.

[30] Data Mining

Based Software

Test Case

Generation

Technique

A genetic algorithm

for the automated

generation of test

cases is put forth.

A comparison and

evaluation of the

proposed technique

with counterpart

algorithms is not

presented.

[50] Data Mining

Based Software

Test Case

Generation

Technique

Scope bounded

testing which

develops novel

specifications for

effectively generating

tests for products in

the software products

line.

The cost evaluation of

the proposed technique

is not presented.

[31] Data Mining

Based Software

Test Case

Generation

Technique

An approach for

testing a web

application that

combines a web

crawler and

SELENIUM test

cases is put forth.

Analysis of mining

knowledge is not

presented.

[4] Data Mining

Based Software

Test Case

A technique for

automated test

generation for binary

Cost evaluation of the

proposed techniques is

not discussed.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.11 Volume 15, 2021

E-ISSN: 2074-1316 117

Generation

Technique

programs by

exploiting static

analysis is presented.

[43] Data Mining

Based Software

Test Case

Generation

Technique

A comprehensive

survey on

metamorphic testing

is presented.

Comparison and

classification are not

presented.

[38] Data Mining

Based Software

Test Case

Generation

Technique

A state of the art in

symbolic execution is

put forth.

The classification of

symbolic execution

techniques is not

presented.

[5] Data Mining

Based Software

Test Case

Generation

Technique

A comprehensive

survey of symbolic

execution techniques

is presented.

Evaluation and

comparison of

techniques are not

presented.

[10] Data Mining

Based Software

Test Case

Generation

Technique

Results from a real-

life project of

symbolic execution

are put forth.

Classification and

comparison of

techniques are not

discussed.

[11] Data Mining

Based Software

Test Case

Generation

Technique

Various efforts in

symbolic execution

are presented.

A comparison of the

techniques is not

discussed.

[33] Data Mining

Based Software

Test Case

Generation

Technique

Automated android

apps testing

framework is

proposed.

Evaluation of the

proposed framework

against the existing

android testing

framework is not

discussed.

[46] Data Mining

Based Software

Test Case

Generation

Technique

A genetic algorithm-

based dynamic test

data generation

technique is

proposed.

Cost evaluation of the

framework is not

presented.

[6] Data Mining

Based Software

Test Case

Generation

Technique

An approach for

intelligently selecting

the input test data is

presented.

Cost evaluation and

analysis of proposed

techniques are not

presented.

[42] Data Mining

Based Software

Test Case

Generation

Technique

An automatic test

pattern generation

technique based on a

genetic algorithm is

proposed.

A comparison with

existing techniques is

not discussed.

Evaluation of the

proposed algorithm is

also lacking.

[24] Data Mining

Based Software

Test Case

Generation

Technique

Automated security

testing of android

apps is proposed.

Analysis and

evaluation of the

proposed testing

technique are lacking.

IV. CONCLUSION

In this paper, we have comprehensively reviewed existing

work in software security test case generation approaches and

classified them. Existing approaches and techniques are

classified into two major categories: Test Type-based

software test case generation techniques and Type of

algorithms used for software test case generation. Further Test

type-based software test case generation techniques are

subdivided into four types: Structural based, Functional based,

Gray box based, Non-functional based techniques. Also, the

category type of algorithms used for software test case

generation techniques is subdivided into Random based,

Search-based, and Data mining-based techniques. We discuss

related work under the discussed classification. In the end, we

present our observations and findings based on our review of

the literature. We discuss future research challenges.

References

[1] Shaukat Ali, Muhammad Zohaib Iqbal, Andrea

Arcuri, and Lionel Briand. A search-based ocl

constraint solver for model-based test data generation.

In 2011 11th International Conference on Quality

Software, pages 41–50. IEEE, 2011.

[2] Saswat Anand, Mayur Naik, Mary Jean Harrold, and

Hongseok Yang. Automated concolic testing of

smartphone apps. In Proceedings of the ACM

SIGSOFT 20th International Symposium on the

Foundations of Software Engineering, pages 1–11,

2012.

[3] Abdulbaki Aydin, Muath Alkhalaf, and Tevfik Bultan.

Automated test generation from vulnerability

signatures. Proceedings - IEEE 7th International

Conference on Software Testing, Verification and

Validation, ICST 2014, pages 193–202, 03 2014.

[4] Domagoj Babic´, Lorenzo Martignoni, Stephen

McCamant, and Dawn Song. Statically-directed

dynamic automated test generation. In Proceedings of

the 2011 International Symposium on Software

Testing and Analysis, pages 12–22, 2011.

[5] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia,

Camil Demetrescu, and Irene Finocchi. A survey of

symbolic execution techniques. ACM Computing

Surveys (CSUR), 51(3):1–39, 2018.

[6] Benoit Baudry. Testing model transformations: a case

for test generation from input domain models. Model-

Driven Engineering for Distributed Real-Time

Systems, pages 43–72, 2013.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.11 Volume 15, 2021

E-ISSN: 2074-1316 118

[7] Eddy Bernard, Bruno Legeard, Xavier Luck, and

Fabien Peureux. Generation of test sequences from

formal specifications: Gsm 11-11 standard case study.

Softw. Pract. Exper., 34(10):915–948, August 2004.

[8] Peter Boonstoppel, Cristian Cadar, and Dawson

Engler. Rwset: Attacking path explosion in

constraint-based test generation. In International

conference on Tools and Algorithms for the

Construction and Analysis of Systems, pages 351–

366. Springer, 2008.

[9] Cristian Cadar and Dawson Engler. Execution

generated test cases: How to make systems code crash

itself. In International SPIN Workshop on Model

Checking of Software, pages 2–23. Springer, 2005.

[10] Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid,

Corina S Pasareanu, Koushik Sen, Nikolai Tillmann,

and Willem Visser. Symbolic execution for software

testing in practice: preliminary assessment. In 2011

33rd International Conference on Software

Engineering (ICSE), pages 1066–1071. IEEE, 2011.

[11] Cristian Cadar and Koushik Sen. Symbolic execution

for software testing: three decades later.

Communications of the ACM, 56(2):82–90, 2013.

[12] Ting Chen, Xiao-song Zhang, Shi-ze Guo, Hong-yuan

Li, and Yue Wu. State of the art: Dynamic symbolic

execution for automated test generation. Future

Generation Computer Systems, 29(7):1758–1773,

2013.

[13] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok

Poon, Dave Towey, T. H. Tse, and Zhi Quan Zhou.

Metamorphic testing: A review of challenges and

opportunities. ACM Comput. Surv., 51(1), January

2018.

[14] James Clause, Wanchun Li, and Alessandro Orso.

Dytan: a generic dynamic taint analysis framework. In

Proceedings of the 2007 international symposium on

Software testing and analysis, pages 196–206, 2007.

[15] V. Dallmeier, N. Knopp, C. Mallon, G. Fraser, S.

Hack, and A. Zeller. Automatically generating test

cases for specification mining. IEEE Transactions on

Software Engineering, 38(2):243–257, 2012.

[16] Albert Einstein. Zur Elektrodynamik bewegter

Körper. (German) [On the electrodynamics of moving

bodies]. Annalen der Physik, 322(10):891–921, 1905.

[17] Gordon Fraser and Andrea Arcuri. Whole test suite

generation. IEEE Transactions on Software

Engineering, 39(2):276–291, 2012.

[18] Gordon Fraser and Andrea Arcuri. Evosuite: On the

challenges of test case generation in the real world. In

2013 IEEE Sixth International Conference on

Software Testing, Verification and Validation, pages

362–369. IEEE, 2013.

[19] Disha Garg and Abhishek Singhal. A critical review

of artificial bee colony optimizing technique in

software testing. In 2016 International Conference on

Innovation and Challenges in Cyber Security

(ICICCS-INBUSH), pages 240–244. IEEE, 2016.

[20] Gregory Gay, Matt Staats, Michael Whalen, and Mats

PE Heimdahl. The risks of coverage- directed test case

generation. IEEE Transactions on Software

Engineering, 41(8):803–819, 2015.

[21] Peter Gilbert, Byung-Gon Chun, Landon Cox, and

Jaeyeon Jung. Vision: Automated security validation

of mobile apps at app markets. Proceedings of the

Second International Workshop on Mobile Cloud

Computing and Services, 01 2011.

[22] Casper S Jensen, Mukul R Prasad, and Anders Møller.

Automated testing with targeted event sequence

generation. In Proceedings of the 2013 International

Symposium on Software Testing and Analysis, pages

67–77, 2013.

[23] Mohammad Keyvanpour, Hajar Homayouni, and

Hossein Shirazi. Automatic software test case

generation: An analytical classification framework.

International Journal of Software Engineering and its

Applications, 6:1–16, 01 2012.

[24] Riyadh Mahmood, Naeem Esfahani, Thabet Kacem,

Nariman Mirzaei, Sam Malek, and Angelos Stavrou.

A whitebox approach for automated security testing of

android applications on the cloud. In 2012 7th

International Workshop on Automation of Software

Test (AST), pages 22–28. IEEE, 2012.

[25] Aaron Marback, Hyunsook Do, Ke He, Samuel

Kondamarri, and Dianxiang Xu. Security test

generation using threat trees. In 2009 ICSE Workshop

on automation of software test, pages 62–69. IEEE,

2009.

[26] E. Martin and T. Xie. Automated test generation for

access control policies via change-impact analysis. In

Third International Workshop on Software

Engineering for Secure Systems (SESS’07: ICSE

Workshops 2007), pages 5–5, 2007.

[27] Evan Martin, Suranjana Basu, and Tao Xie.

Automated testing and response analysis of web

services. pages 647–654, 07 2007.

[28] Phil McMinn. Search-based software test data

generation: a survey. Software testing, Verification

and reliability, 14(2):105–156, 2004.

[29] Phil McMinn, Muzammil Shahbaz, and Mark

Stevenson. Search-based test input generation for

string data types using the results of web queries. In

2012 IEEE Fifth International Conference on

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.11 Volume 15, 2021

E-ISSN: 2074-1316 119

Software Testing, Verification and Validation, pages

141–150. IEEE, 2012.

[30] Christoph C. Michael, Gary McGraw, and Michael A

Schatz. Generating software test data by evolution.

IEEE transactions on software engineering,

27(12):1085–1110, 2001.

[31] Amin Milani Fard, Mehdi Mirzaaghaei, and Ali

Mesbah. Leveraging existing tests in auto- mated test

generation for web applications. In Proceedings of the

29th ACM/IEEE international conference on

Automated software engineering, pages 67–78, 2014.

[32] Shabnam Mirshokraie, Ali Mesbah, and Karthik

Pattabiraman. Jseft: Automated Javascript unit test

generation. In 2015 IEEE 8th International

Conference on Software Testing, Verification and

Validation (ICST), pages 1–10. IEEE, 2015.

[33] Nariman Mirzaei, Hamid Bagheri, Riyadh Mahmood,

and Sam Malek. Sig-droid: Automated system input

generation for android applications. In 2015 IEEE

26th International Symposium on Software Reliability

Engineering (ISSRE), pages 461–471. IEEE, 2015.

[34] David Molnar, Xue Cong Li, and David A Wagner.

Dynamic test generation to find integer bugs in x86

binary linux programs. In USENIX Security

Symposium, volume 9, pages 67–82, 2009.

[35] Galen E Mullins, Paul G Stankiewicz, and Satyandra

K Gupta. Automated generation of diverse and

challenging scenarios for test and evaluation of

autonomous vehicles. In 2017 IEEE international

conference on robotics and automation (ICRA), pages

1443–1450. IEEE, 2017.

[36] Jeff Offutt and Wuzhi Xu. Generating test cases for web

services using data perturbation.

ACM SIGSOFT Software Engineering Notes, 29(5):1–

10, 2004.

[37] Mike Papadakis and Nicos Malevris. Mutation based

test case generation via a path selection strategy. Inf.

Softw. Technol., 54(9):915–932, September 2012.

[38] Corina S Pa˘sa˘reanu and Willem Visser. A survey of

new trends in symbolic execution for software testing

and analysis. International journal on software tools

for technology transfer, 11(4):339, 2009.

[39] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman

Jana. Deepxplore: Automated whitebox testing of

deep learning systems. In proceedings of the 26th

Symposium on Operating Systems Principles, pages

1–18, 2017.

[40] M. Naga Prasanna, S. N. Sivanandam, Rajesh

Venkatesan, and R. Sundarrajan. A survey on

automatic test case generation. 2011.

[41] Shauvik Roy Choudhary, Alessandra Gorla, and

Alessandro Orso. Automated test input generation for

android: Are we there yet? (e). pages 429–440, 11

2015.

[42] Sayandeep Saha, Rajat Subhra Chakraborty, Srinivasa

Shashank Nuthakki, Debdeep Mukhopadhyay, et al.

Improved test pattern generation for hardware trojan

detection using genetic algorithm and boolean

satisfiability. In International Workshop on

Cryptographic Hardware and Embedded Systems,

pages 577–596. Springer, 2015.

[43] Sergio Segura, Gordon Fraser, Ana B Sanchez, and

Antonio Ruiz-Cortés. A survey on metamorphic

testing. IEEE Transactions on software engineering,

42(9):805–824, 2016.

[44] AVK Shanthi, G MohanKumar, et al. A novel

approach for automated test path generation using tabu

search algorithm. International Journal of Computer

Applications, 48(13):28–34, 2012.

[45] Mahesh Shirole and Rajeev Kumar. Uml behavioral

model based test case generation: A survey. SIGSOFT

Softw. Eng. Notes, 38(4):1–13, July 2013.

[46] Anastasis A Sofokleous and Andreas S Andreou.

Automatic, evolutionary test data generation for

dynamic software testing. Journal of Systems and

Software, 81(11):1883–1898, 2008.

[47] Hitesh Tahbildar and Bichitra Kalita. Automated

software test data generation: direction of research.

International Journal of Computer Science and

Engineering Survey, 2(1):99–120, 2011.

[48] H. H. Thompson. Why security testing is hard. IEEE

Security Privacy, 1(4):83–86, 2003.

[49] Herbert H Thompson and James A Whittaker. Testing

for software security. Dr. Dobb’s Journal: Software

Tools for the Professional Programmer, 27(11):24–28,

2002.

[50] Engin Uzuncaova, Sarfraz Khurshid, and Don Batory.

Incremental test generation for software product lines.

IEEE transactions on software engineering,

36(3):309–322, 2010.

[51] Chunhui Wang, Fabrizio Pastore, Arda Goknil, Lionel

Briand, and Zohaib Iqbal. Automatic generation of

system test cases from use case specifications. In

Proceedings of the 2015 International Symposium on

Software Testing and Analysis, ISSTA 2015, page

385–396, New York, NY, USA, 2015. Association for

Computing Machinery.

[52] D. Xu, M. Tu, M. Sanford, L. Thomas, D. Woodraska,

and W. Xu. Automated security test generation with

formal threat models. IEEE Transactions on

Dependable and Secure Computing, 9(4):526–540,

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.11 Volume 15, 2021

E-ISSN: 2074-1316 120

2012.

[53] Dianxiang Xu, Manghui Tu, Michael Sanford, Lijo

Thomas, Daniel Woodraska, and Weifeng Xu.

Automated security test generation with formal threat

models. IEEE transactions on dependable and secure

computing, 9(4):526–540, 2012.

[54] Z. Q. Zhou, S. Xiang, and T. Y. Chen. Metamorphic

testing for software quality assessment: A study of

search engines. IEEE Transactions on Software

Engineering, 42(3):264–284, 2016.

[55] Wimmel, Guido, and Jan Jürjens. "Specification-based

test generation for security-critical systems using

mutations." In International Conference on Formal

Engineering Methods, pp. 471-482. Springer, Berlin,

Heidelberg, 2002.

[56] Masson, Pierre-Alain, Jacques Julliand, Jean-

Chritophe Plessis, Eddie Jaffuel, and Georges Debois.

"Automatic generation of model based tests for a class

of security properties." In Proceedings of the 3rd

international workshop on Advances in model-based

testing, pp. 12-22. 2007.

[57] Li, Keqin, Laurent Mounier, and Roland Groz. "Test

generation from security policies specified in or-bac."

In 31st Annual International Computer Software and

Applications Conference (COMPSAC 2007), vol. 2,

pp. 255-260. IEEE, 2007.

[58]] Julliand, Jacques, Pierre-Alain Masson, and Regis

Tissot. "Generating security tests in addition to

functional tests." In Proceedings of the 3rd

international workshop on Automation of software

test, pp. 41-44. 2008.

[59] Darmaillacq, Vianney, Jean-Luc Richier, and Roland

Groz. "Test generation and execution for security rules

in temporal logic." In 2008 IEEE International

Conference on Software Testing Verification and

Validation Workshop, pp. 252-259. IEEE, 2008.

[60] Abbassi, Ryma, and Sihem Guemara El Fatmi.

"Towards a test cases generation method for security

policies." In 2009 International Conference on

Telecommunications, pp. 41-46. IEEE, 2009.

[61] Dadeau, Frédéric, Pierre-Cyrille Héam, and Rafik

Kheddam. "Mutation-based test generation from

security protocols in HLPSL." In 2011 Fourth IEEE

International Conference on Software Testing,

Verification and Validation, pp. 240-248. IEEE, 2011.

[62] Huang, Yu-Yu, Kung Chen, and Shang-Lung Chiang.

"Finding security vulnerabilities in Java Web

applications with test generation and dynamic taint

analysis." In Proceedings of the 2011 2nd

International Congress on Computer Applications and

Computational Science, pp. 133-138. Springer, Berlin,

Heidelberg, 2012.

[63] Bozic, Josip, Bernhard Garn, Dimitris E. Simos, and

Franz Wotawa. "Evaluation of the IPO-family

algorithms for test case generation in web security

testing." In 2015 IEEE Eighth International

Conference on Software Testing, Verification and

Valid

Dr. Mamdouh Alenezi is currently the Dean of Educational Services at

Prince Sultan University. Dr. Alenezi received his MS and Ph.D. degrees

from DePaul University and North Dakota State University in 2011 and 2014,

respectively. He has extensive experience in data mining and machine

learning where he applied several data mining techniques to solve several

Software Engineering problems. He conducted several research areas and

development of predictive models using machine learning to predict fault-

prone classes, comprehend source code, and predict the appropriate developer

to be assigned to a new bug.

Dr. Mohammed Akour is an associate Professor in Software Engineering at

Yarmouk University (YU). He got his Bachelor (2006) and Master (2008)

degree from Yarmouk University in Computer Information Systems with

Honor. He joined Yarmouk University as a Lecturer in August 2008 after

graduating with his master in Computer Information Systems. He joined

Yarmouk University again in April 2013 after graduating with his PhD in

Software Engineering from NDSU with Honor. He serves as Key Note

Speaker, Organizer, a Co-chair and publicity Chair for several IEEE

conferences, and as ERB for more than 10 ISI indexed prestigious journals.

He is a member of the International Association of Engineers (IAENG).

Dr. Akour at Yarmouk University served as Head of accreditation and Quality

assurance for two years and then was hired in 2017 as director of computer

and Information Center. In 2018, Dr. Akour has been hired as vice Dean of

Student Affairs at Yarmouk University.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.11 Volume 15, 2021

E-ISSN: 2074-1316 121

