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Abstract — High-spatiotemporal-resolution land surface 

temperature (LST) plays an important role in various 

environment applications. However, the limitation of thermal 

infrared sensors and the effect of clouds and other atmospheric 

conditions result in discontinuous daily thermal observations of 

the Moderate Resolution Imaging Spectroradiometer (MODIS). 

Annual temperature cycle (ATC) models can help to supply daily 

continuous LSTs via limited observations, but these ATC models 

seldom consider the disturbance of weather conditions or the land 

cover change. On the other hand, spatial interpolation techniques 

also limit in implementation when available data in one day or 

several days are not able to obtain enough spatiotemporal 

information for LST reconstruction. The objective of this study is 

to propose a phenology-based ATC model (termed PATC), which 

takes the phenology change and local weather change into account, 

to reconstruct daily unscanned LSTs at an annual scale. Daily 

MODIS LSTs collected in 2015 were utilized to analyze the 

performance of PATC compared with other ATC models. Results 

show that PATC improved the accuracy by 1.6 K and 0.5 K 

compared to the classic ATC model in the daytime and nighttime, 

respectively. Compared to the enhanced ATC model (ATCE), 

PATC also shows better performance with higher accuracies, 

especially during the growing season of vegetation in the daytime. 

Future research may focus on an incorporation with Landsat 

observations and diurnal temperature cycle (DTC) models to 

implement LST reconstruction at a diurnal scale. 

Index Terms—Annual temperature cycle, phenology, LST 

reconstruction, MODIS. 

I. INTRODUCTION 

and surface temperature (LST), which estimated from 

satellite thermal infrared (TIR) sensors, is a key parameter 

in monitoring evapotranspiration [1], [2], modeling surface 

energy balance [3], analyzing urban heat island (UHI) effect [4], 

[5] and detecting thermal anomaly [6]. However, those TIR 

images are low tolerant to clouds which almost bring half 

missing data to the LST time series [7-10], accordingly affects 

the applications of LSTs on environmental analysis. 

To fill out these spatiotemporal gaps, a number of spatial 

interpolation and temporal interpolation techniques were put 

forward. The spatial interpolation methods tend to be data-

driven, and focus more on the spatial details on a specific date. 

According to the source of reference information, they can be 

generally grouped into two types: (1) spatial information based 

and (2) spatiotemporal information based. With the spatial 

information, the kriging geostatistical technique [11], inverse 
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distance weighting (IDW) [12], and clustering inverse distance 

weighting (C-IDW) [13], could be applied for spatial 

interpolation. In addition, some auxiliary data such as NDVI 

and elevation were also utilized as predictors for regression to 

incorporate with the LST reconstruction process [14]. Fan et al. 

[15] even evaluated three regression tools and suggested that 

regression tree (RT) performed better than linear regression and 

artificial neural networks in flat and fragmented areas. However, 

spatial information from one day might not always be effective 

in some situations, hence, spatiotemporal information from 

adjacent dates was used to enable this interpolation. The 

spatiotemporal information based methods, such as the 

neighborhood similar pixel interpolator (NSPI) [16], 

geostatistical neighborhood similar pixel interpolator (GNSPI) 

[17], and weighted linear regression (WLR) algorithm [18] 

were proposed to make up for the insufficient of spatial 

information. These methods were not initially designed for 

LSTs so they seldom consider the characteristics of LSTs. 

Therefore, Shuai et al. [19] introduced the reflectance for 

similar pixels searching in the LST reconstruction process 

based on an assumption that the same land cover types have 

similar LST locally. Similarly, some spatiotemporal based 

interpolation methods aiming at LSTs were also implementing 

calculations via regression between multitemporal LSTs within 

similar pixels [20], [21]. 

Temporal interpolation methods are different from spatial 

interpolation methods in aims and principles, but they can be 

used for gap filling as well. Specifically, spatial interpolation 

methods designed for LSTs could utilize the spatiotemporal 

information from auxiliary data (e.g., multitemporal LSTs or 

NDVI), but they act less robustness when the gap is large [16], 

[22], [23]. On the contrary, temporal interpolation methods 

designed for LSTs (e.g., ATC models) can fully fill temporal 

gaps with several observations [23]. Some hybrid methods 

which combine temporal interpolation and spatial interpolation 

technique together, use temporal interpolation technique for gap 

filling instead, when missing data accounts for a large amount 

and the spatially interpolated result cannot meet with demand 

[24]. 

Temporal interpolation methods usually use sporadic 

observations to estimate consecutive data at different timescales 

[25]. Some of these temporal interpolation methods use singular 

spectrum analysis [26], temporal Fourier analysis [27], or a 
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principal component analysis (PCA) [28] for data 

reconstruction, of which many of them were not initially 

designed for LSTs. In addition, most of these temporal 

interpolation methods rely on the physical or statistical models 

to describe the temporal variations of temperatures [28-31]. 

Specifically, at a diurnal timescale, various diurnal temperature 

cycle (DTC) models which consist of several parameters are 

used for temperature modeling [32-38]. While at an annual 

timescale, annual temperature cycle (ATC) models [29], [31] 

play an important role in the temporal interpolation processes 

instead. Moreover, the annual predictions can also serve for 

diurnal temporal interpolations [35], thermal sharpening [39], 

[40] and analyzing of UHIs [4], [41] and public health [42]. 

The ATC models used to predict daily LSTs can be generally 

divided into two groups. The first group requires only the 

multitemporal temperature observations, which consists of one 

or two sine functions [43], [44], or even a series of harmonic 

functions [30]. There are some methods incorporating an ATC 

model with a linear trend for multi-year LST modeling can also 

be classified into this group [43], [45]. These algorithms are 

designed based on the LST without any other auxiliary data, and 

they have common in the assumption that the temporal variation 

of LSTs is primarily driven by the solar radiation [29], [30], [44]. 

The second group uses not only multitemporal LSTs, but also a 

series of auxiliary data such as the in-situ surface air 

temperature (SAT), normalized difference vegetation index 

(NDVI) and albedo [23], [46] to take the local synoptic 

conditions and land cover change into account. This kind of 

methods are combinations of multiple harmonics and a linear 

function of LST-related factors, which can help the model adapt 

to different scenarios [23]. However, existing ATC models 

seldom consider the response of vegetation to phenology in 

mixed pixels, when the observed object consists of vegetation 

which has significant phenological changes in a year (e.g., 

turning green or turning brown), single or multiple harmonics, 

even those linear regression model may not be able to simulate 

the daily temperature variation well. 

Therefore, the objective of this study is to propose a 

phenology-based ATC model (termed PATC) for time series 

LST reconstruction, which takes the response of vegetation to 

phenology into account. Here, we used daily day/night LSTs of 

the Moderate Resolution Imaging Spectroradiometer (MODIS) 

to implement this method. Study area and data are provided in 

Section II. The details of the method and implementation 

process are provided in Section III. Results and discussions are 

presented in Section IV and V, while conclusion in Section VI. 

II. STUDY AREA AND DATA 

A. Study area 

Beijing, Tianjin and Hebei province, located in the North 

China Plain with a semi-humid continental monsoon climate 

are selected as the study area. Specifically, this study area has a 

rainy and hot summer and a dry and cold winter, whose spring 

and autumn are extremely short. The study area (see in Fig. 1(b)) 

is mainly covered by cropland and grassland, and the elevation 

ranges from -6 m to 2764 m with a mean elevation of 506 m. 

Since the land cover consists of large amount of vegetation and 

the four seasons are distinct in this study area, the phenology 

changes significantly. These characteristics make this study 

area an ideal place to test the model performance at a regional 

scale. 

 
Fig. 1. Study area. (a) DEM of China; (b) Land cover map of Beijing, Tianjin and Hebei Province (obtained from MODIS yearly land cover product in 2015). 

B. Data 

The satellite data used in this study include the MODIS daily 

LST product MOD11A1, 16-day NDVI product MOD13A2, 

and the MODIS yearly land cover product MCD12Q1 in 2015 

(download from https://ladsweb.modaps.eosdis.nasa.gov/). 

Specifically, the MODIS LSTs in collection 6 were retrieved via 

the generalized split-window algorithm with a mean error 

within 1.0 K which were proved to be better than the previous 

C4.1 and C5 products [47-49]. The daytime and nighttime LSTs 

of the MOD11A1 were acquired at around 10:30 am and 10:30 

pm, respectively. In addition, the Shuttle Radar Topography 

Mission (STRM) digital elevation model (DEM) image with a 

resolution of 90 m was download from http://www.gscloud.cn/. 

The resolutions of the MOD13A2, DEM and MCD12Q1 were 

resampled to 1 km to match that of the LST product. Moreover, 

the NDVI product derived from the MOD13A2 is a 16-day 

https://ladsweb.modaps.eosdis.nasa.gov/search/
http://www.gscloud.cn/
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composite, hence, we applied a thin plate spline (TPS) 

interpolation to make it daily available. 

Apart from those satellite data, daily maximum and 

minimum SATs from 27 meteorological stations (see Fig. 1(b)) 

download from http://data.cma.cn/site/ were also used here. 

These SATs were resampled into 1 km-resolution raster images 

via IDW method to match the LST products [46]. 

III. METHOD 

In this section, we first introduce the classic ATC model and 

the enhanced ATC model (ATCE), then we provide a detailed 

description of PATC. The model diagram and flowchart of 

PATC is provided in Fig. 2. 

A. The classic ATC model 

The temporal interpolation of PATC is composed of various 

ATC models. Here, we utilize the classic ATC model which is 

consist of three parameters [29] and we term it ATC in this study. 

The equation of ATC is as follow: 

𝜑𝐴𝑇𝐶(𝑇0, 𝐴, 𝜃, 𝑑) = 𝑇0 + 𝐴 ∙ 𝑠𝑖𝑛(2𝜋𝑑/365 + 𝜃)     (1) 

where 𝜑𝐴𝑇𝐶   is the predicted LST via the ATC model, 𝑑 

represents the day of the year (DOY), 𝑇0 , 𝐴  and 𝜃  are the 

mean LST, amplitude and phase shift of the annual LST cycle, 

respectively. These parameters are obtained via a Levenberg-

Marquardt scheme [50] in the IDL platform. 

Since the ATC model tends to smooth LSTs temporally [23], 

there are always residuals remained between the observations 

and predictions. Hence, the observed LSTs can be expressed as, 

𝑇(𝑑) = 𝜑𝐴𝑇𝐶(𝑇0, 𝐴, 𝜃, 𝑑) + ∆𝑇(𝑑)          (2) 

where 𝑇(𝑑) is the observed LST on the dth day, and ∆𝑇(𝑑) 
is the residual between the observation and the prediction on the 

dth day. 

B. The enhanced ATC model (ATCE) 

The enhanced ATC model assumes that the annual surface 

temperature dynamics are mainly controlled by the solar 

radiation flux at the top of the atmosphere. In addition to solar 

radiation, the surface temperature is also controlled by the 

climatic background and local weather conditions, leading to 

short-term fluctuations of the surface temperature [46]. 

Therefore, the model can be expressed as follows: 

𝑇𝐴𝑇𝐶𝐸(𝑑) = 𝑇0 + 𝐴 ∙ 𝑠𝑖𝑛 (
2𝜋𝑑

365
+ 𝜃) + ∆𝑇𝑎𝑖𝑟(𝑑) ∙ 𝛾(𝑑)  

(3) 

where 𝑇𝐴𝑇𝐶𝐸(𝑑) is predicted LST on the dth day, ∆𝑇𝑎𝑖𝑟  is the 

temperature fluctuations caused by weather conditions, 𝛾(𝑑) 
is the phenological factor, and can be expressed by following 

equation: 

𝛾(𝑑) = 𝜆 ∙ (𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛)/[𝑁𝐷𝑉𝐼(𝑑) − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛 +
1]   (4) 

where 𝜆  is the multiplier factor, 𝑁𝐷𝑉𝐼𝑚𝑖𝑛  and 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 

are the minimum and maximum NDVI values in a year, 

respectively; 𝑁𝐷𝑉𝐼(𝑑) is the NDVI value on the dth day. In 

addition, the air temperature fluctuations can be calculated by 

following equation: 

∆𝑇𝑎𝑖𝑟(𝑑) = 𝑇𝑎𝑖𝑟(𝑑) − 𝑇𝐴𝑇𝐶,𝑎𝑖𝑟(𝑑)          (5) 

where 𝑇𝑎𝑖𝑟(𝑑) is the maximum/minimum air temperature on 

the dth day, 𝑇𝐴𝑇𝐶,𝑎𝑖𝑟(𝑑)  is the maximum/minimum air 

temperature simulated by ATC model, which can be calculated 

by Equation (1). Specifically, the maximum air temperature is 

used for calculation in the daytime while the minimum air 

temperature in the nighttime. 

C. The phenology-based ATC model (PATC) 

Due to the heterogeneity of the land surface, when the 

thermal signal in an endmember is smaller than the pixel size, 

the pixel will respond to the thermal signal of multiple 

endmembers [35], and the mixing effect of the pixel will be 

enhanced with the reduction of resolution. The linear 

temperature mixing model (LTMM) assumes that the 

temperature of the mixed pixel is a weighted linear combination 

of different endmember components [51]. Therefore, 

considering the mixing effect of pixels, the PATC assumes that 

the surface temperature of a pixel is a linearly weighted 

combination of vegetated and non-vegetated fractions. In 

addition, considering the influence of local weather, the PATC 

also regresses surface temperature fluctuations caused by 

weather conditions and air temperature fluctuations for 

temperature reconstruction (see in Fig. 2). Therefore, the 

formula of PATC, which takes both phenological changes and 

local weather effects into account, is as follows: 

𝑇𝑃𝐴𝑇𝐶(𝑑) = 𝑓𝑣(𝑑) ∙ [𝑇𝑣,0 + 𝐴𝑣 ∙ 𝑠𝑖𝑛 (
2𝜋𝑑

365
+ 𝜃𝑣)] +

𝑓𝑛𝑜𝑣(𝑑) ∙ [𝑇𝑛𝑜𝑣,0 + 𝐴𝑛𝑜𝑣 ∙ 𝑠𝑖𝑛 (
2𝜋𝑑

365
+ 𝜃𝑛𝑜𝑣)] + ∆𝑇(𝑑)        

(6) 

where 𝑇𝑃𝐴𝑇𝐶(𝑑) is the predicted LST via PATC on the dth day, 

𝑓𝑣  is the fraction of vegetation in a mixed pixel, 𝑓𝑛𝑜𝑣  is 

fraction of non-vegetation in a mixed pixel, and it can be 

calculated by 𝑓𝑛𝑜𝑣 = 1 − 𝑓𝑣; 𝑇𝑣,0, 𝐴𝑣 and 𝜃𝑣 are the annual 

mean temperature, amplitude and phase of the vegetation 

fraction, respectively, 𝑇𝑛𝑜𝑣,0 , 𝐴𝑛𝑜𝑣  and 𝜃𝑛𝑜𝑣  are the annual 

mean temperature, amplitude and phase of the non-vegetation 

fraction, respectively; ∆𝑇 is the fluctuations of LST, and it can 

be obtained through the statistical regression with temperature 

fluctuations, the equation is as follow: 

∆𝑇(𝑑) = 𝑘 ∙ ∆𝑇𝑎𝑖𝑟(𝑑) + 𝑏          (7) 

where k and b are the slope and the intercept, ∆𝑇𝑎𝑖𝑟   is the 

fluctuation of air temperature, and can be calculated by 

Equation (5). 

Meanwhile, the vegetation fraction can be calculated by 

Equation (8): 

𝑓𝑣 = (
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
)           (8) 

where 𝑁𝐷𝑉𝐼𝑚𝑖𝑛  and 𝑁𝐷𝑉𝐼𝑚𝑎𝑥   are the minimum and 

maximum NDVI value, respectively.   

Since MODIS products only provide 16-day synthetic NDVI 

and are subject to weather conditions (such as cloud and 

atmospheric disturbances), NDVI products for different dates 

have different noise levels. Therefore, the changing-weight 

filter method (CWF) [52] is adopted in this study to remove 

noise of the NDVI products. After removing noise, spline 

interpolation was used to obtain daily NDVI data. The 

flowchart can be seen in Fig. 2. 

http://data.cma.cn/site/index.html
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Fig. 2. Model diagram and flowchart of PATC. (a): model diagram of PATC; (b) 
flowchart of PATC. 

IV. RESULT 

A. Spatial and temporal patterns of PATC  

In this section, we present the spatial and temporal patterns 

of PATC and compare them with the classic ATC model. The 

evaluation indicators used in this study include root mean 

square error (RMSE) and difference of RMSE (Drmse). 

Compared with classic ATC, PATC performs better in both 

daytime and nighttime with a lower RMSE of 3.1 K for the 

daytime and 2.5 K for the nighttime, while those of classic ATC 

are 4.7 K for the daytime and 3.0 K for the nighttime. The 

higher RMSEs of both PATC and ATC in the daytime compared 

to those in nighttime might due to the higher LST variations 

during daytime [46]. As shown in Fig. 3, the RMSEs of classic 

ATC are higher in the northern area of which the land cover type 

is mainly grassland and terrain is complex, and lower in the 

southern area of which the land cover type is mainly cropland 

and the terrain is flat. The spatial pattern of PATC’s RMSEs is 

similar to that of classic ATC, of which the RMSEs are slightly 

lower in the southeast of the study area and higher in the 

northwest. However, the Drmse (referenced to classic ATC) of 

PATC is higher in the northern area, which indicates a higher 

improvement in areas covered by grassland and wherein the 

terrain is complex (see in Fig. 3(c)&(f)). In addition, the 

temperature difference of vegetation and bare soil components 

in mixed pixels is larger in the daytime than that in the nighttime, 

which decreases the accuracy of the temperature cycle model in 

the daytime. The Drmse in the nighttime is also lower than that 

in the daytime with a mean value of 0.5 K, which is due to the 

more homogeneous land surface temperature in the nighttime 

(see in Fig. 3(c)&(f)). 

To evaluate the improved accuracy of PATC evaluated via 

Drmse (referenced to classic ATC) response to land cover types, 

the classified Drmses are provided in Fig. 4. Results show the 

improvements over grassland are higher than over other land 

covers in both daytime and nighttime. In the daytime, the 

grassland presents the largest mean Drmse of 2.0 K, while the 

urban area presents the lowest with 1.2 K, and the mean Drmses 

of cropland, forest and savanna are 1.4 K, 1.8 K and 1.7 K, 

respectively. In the nighttime, the difference of Drmses of 

various land cover types is smaller, that almost of them are at 

around 0.5 K, wherein the Drmses of grassland is slightly higher. 

The lower Drmses in the nighttime is because the temperature 

difference between vegetation and non-vegetation fractions is 

larger in the daytime than that in the nighttime, accordingly, the 

superiority of the application of LTMM in the nighttime is not 

as obvious as that in the daytime. 

 
Fig. 3. RMSEs of classic ATC and PATC, and Drmse of PATC (referenced to 

classic ATC) in daytime and nighttime, respectively. 

 
Fig. 4. Drmse of PATC (referenced to classic ATC) over different land cover 

types in daytime and nighttime, respectively. 

Above results show the spatial pattern of the performance of 

PATC. To evaluate the performance of PATC temporally, three 

pixels located in three different land cover types are selected to 

show the results of PATC, the land covers of which are 

grassland, cropland and forest, respectively. Here, we also 

supply NDVI variation corresponding to the LSTs to explain the 

fluctuation of LST observations. As show in Fig. 5, the 

predicted LST via PATC can reliably catch the short-term 

variations of LSTs caused by the weather change and phenology 

change, while that via classic ATC tends to smooth these 

fluctuations. For example, as shown in Fig. 5(a2), the 

vegetation fraction in the mixed pixel increases when the 

grassland starts growing, hence, the temperature of the mixed 

pixel decreases by the transpiration of vegetation in the daytime 

[53]. Meanwhile, the ATC curve cannot totally catch the 

variations of observations and the RMSE of which is 6.3 K, 

while PATC curve fits these observations quite well and the 

RMSE of which is 3.2 K (Fig. (5a)). As shown in Fig. 5(c), in 
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the cropland, the vegetation fraction starts to decrease when the 

vegetation enters its first end of season (EOS), hence, the LST 

of the mixed pixel is improved due to the highly reflected 

sunlight in the daytime. Meanwhile, the temperature 

fluctuations are well simulated by PATC of which the RMSE is 

improved by 1.3 K compared with the classic ATC model. On 

the contrary, the vegetation fraction will not cool the surface 

[54], but increases the LST [55] in the nighttime. Specifically, 

the decreased vegetation fraction of the cropland decreases the 

LST in the nighttime during its first EOS. The temperature 

fluctuation is not as evident as that in the daytime, but it still 

can be caught by PATC (see in Fig. 5(d1)). As shown in Fig. 

5(e), in the forest, the LST decreases due to the cooling effect 

of vegetation when the vegetation fraction reaches to 1, the 

temperature fluctuation of which is well predicted by PATC 

model, while is overestimated by the classic ATC model. The 

effect of phenology changes on LST is smaller in the nighttime 

than in the daytime, therefore, the PATC model improves less 

RMSE compared with classic ATC at night, the improved 

RMSEs of grassland, cropland and forest are 0.7 K, 0.6 K and 

0.3 K, respectively (see in Fig. 5). In addition to the LST 

variations caused by the phenology change, PATC can also 

catch the short-term LSTs fluctuation caused by local weather 

change. As shown in Fig. 5(a1), PATC model better simulates 

the temperature fluctuations caused by local weather changes, 

the temperature fluctuations at night are smaller but can also be 

captured by PATC (see in Fig. 5(b)). 

 
Fig. 5. Comparisons of model performances of PATC and classic ATC at daily scale in daytime and nighttime. (a1), (a2), (b1), (c1), (d1) and (e1) are the subfigures 

from the first and second columns. The RMSEATC and RMSEPATC represent the RMSEs of classic ATC and PATC, respectively. 

B. Accuracy improvement compared with ATCE 

PATC and ATCE model take the same data as input, and both 

take the effects of phenology change and weather condition on 

LSTs into account. The main difference between two models is 

that PATC is based on a LTMM [35], [51], which separates the 

effects of phenology change and weather conditions, while 

ATCE combines the effects of phenology change and weather 

conditions together [46]. Here, we compare PATC with ATCE 

via the evaluation indicator of Drmse (referenced to ATCE) to 

explore whether the LTMM-based PATC model is superior to 

ATCE, wherein a higher Drmse value indicates better 

performance of PATC compared with ATCE. In this section, we 

calculate different Drmses among different NDVI ranges. 

Specifically, time series observations are classified by different 

NDVI ranges to calculate Drmses.  

Different Drmses corresponding to different NDVI ranges 

indicate that PATC performs better than ATCE, with a mean 

Drmse value of 0.3 K and 0.1 K in the daytime and nighttime, 

respectively. As shown in Fig. 6(a), in all land covers types, the 
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predicted LSTs of which the corresponding NDVI values 

ranging from 0.8 to 1.0 have higher Drmses than other 

predictions in the daytime, the mean Drmses of urban, cropland, 

grassland, forest and savanna are 2.4 K, 2.2 K, 1.3 K, 0.7 K and 

0.8 K, respectively. When the NDVI values range from 0.6 to 

0.8, the Drmses of urban, cropland and grassland are still higher 

than predictions of which the corresponding NDVI values are 

less than 0.6. When the NDVI value ranges from 0 to 0.2, the 

Drmses of cropland and grassland are lower than those of which 

the NDVI is larger than 0.6 but are still slightly higher than 

those of which the NDVI value is ranging from 0.2 to 0.6. 

Therefore, we can summarize that a higher NDVI value 

indicates a higher improvement of PATC compared with ATCE 

in the daytime, however, when the NDVI value is less than 0.2, 

PATC still performs better than ATCE with a mean Drmse of 

0.5 K.  

The superiority of PATC compared with ATCE in the 

nighttime is not as obvious as that in the daytime. As shown in 

Fig. 6(b), the mean Drmse of all land cover types is only 0.1 K, 

and the Drmses of all land cover almost keep the same in 

different NDVI ranges. However, when the NDVI values are 

less than 0.2, forest and savanna have a higher Drmse than other 

land cover types, which might due to the proportions of these 

two types are quite low. Moreover, the lower improvement of 

PATC compared with ATCE in the nighttime is because both 

PATC and ATCE consider the effect of local weather, so they 

can simulate the local fluctuations caused by weather 

conditions in nighttime. However, the difference of LST 

between nocturnal vegetation and bare soil is small, so the 

mixed pixel LST is less affected by vegetation phenology 

changes. 

 
Fig. 6. Drmse (referenced to ATCE) of PATC over different land cover types in daytime and nighttime, respectively. (a): Drmse in daytime; (b) Drmse in nighttime. 

To explore the spatial distribution of Drmses in different 

NDVI ranges in the daytime, we also supply the spatial patterns 

of Drmse. As shown in Fig. 7(f), the mean Drmse of all 

predictions is 0.3 K, and the higher Drmse occurs in the 

northwest and southwest of the study area of which the land 

cover types are mainly grassland and cropland. As shown in Fig. 

7(a), when the NDVI value is less than 0.2, there are some 

pixels that lack of observations and these pixels are mainly 

cropland and forest. The mean Drmse is 0.5 K which indicates 

a satisfying improvement of PATC compared with ATCE, 

moreover, the higher Drmses locate in the northwest of this 

study area are mainly grassland, the maximum even reaches to 

6.1 K (see in Fig. 7(a)). When the NDVI values range from 0.2 

to 0.4, the improvement of PATC is unobvious, the mean Drmse 

is only 0.1 K, and higher Drmses mainly occur in cropland, the 

maximum Drmse is only 2.1 K (see in Fig. 7(b)). When the 

NDVI values range from 0.4 to 0.6, PATC even performs poorer 

than ATCE, the mean Drmse is -0.1 K (see in Fig. 7(c)). 

However, when the NDVI value is larger than 0.6, the 

superiority of PATC compared with ATCE is obvious. As shown 

in Fig. 7(d)-(e), when the NDVI values range from 0.6 to 0.8, 

the mean Drmse is 0.7 K, and the maximum Drmse reaches to 

7.1 K; when the NDVI values range from 0.8 to 1.0, the mean 

Drmse is 1.3 K, and the higher Drmses mainly occur in cropland 

and grassland. In summary, PATC performs better than ATCE 

in most situations, especially when the NDVI is larger than 0.6, 

but slightly poorer when the NDVI value ranges from 0.4 to 0.8. 

 
Fig. 7. Drmse (referenced to ATCE) of PATC in the daytime. (a)-(e) are the 

Drmses corresponding to different NDVI ranges. 

In addition to comparing Drmses among different NDVI 

ranges, we also want to explore the relationship between Drmse 

and annual change rate of NDVI. Here, we use the annual mean 

derivate of NDVI (NDVI’) to represent the annual change rate 

of NDVI, of which a larger value indicates a more complex 
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annual change of NDVI. As shown in Fig. 8, Drmse is 

positively correlated with the annual mean derivate of NDVI in 

both daytime and nighttime. However, the slope of their 

relationship is larger in the daytime and smaller in the nighttime, 

with value of 0.99 for the daytime and 0.03 for the nighttime. 

The results indicate that the phenology change has a larger 

influence on PATC in the daytime than in nighttime. Moreover, 

the more complex the phenology change, the superior the 

performance of PATC compared with that of ATCE. 

 
Fig. 8. Scatter plot between Drmse (referenced to ATCE) and the annual mean derivative of NDVI in the daytime and nighttime, respectively. 

 
Fig. 9. Comparisons of model performances of PATC and ATCE in daytime. (a)-(d): cropland; (e)-(f): urban; (g)-(h): grassland. 

To compare PATC and ATCE temporally, we selected eight pixels with different phenology changes to show their daily 
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absolute error (AE). As shown in Fig. 9(a), when the cropland 

enters its start of season (SOS) in the early summer, the 

difference between the AEs of ATCE and PATC begins to 

increase; and when the cropland enters its EOS in autumn, the 

difference between the AEs of ATCE and PATC begins to 

decrease, which indicates a better performance of PATC in 

densely vegetation covered seasons. Moreover, when the 

growing season lasts longer, the superiority of PATC lasts 

longer (see in Fig. 9(b)). When there are two growing seasons 

in one year, the difference of the performances of PATC among 

different NDVI values is similar to those in Fig. 9(a)&(b), i.e., 

the superiority of PATC is obvious in densely vegetation 

covered seasons and unobvious in sparsely vegetation covered 

seasons (see in Fig. 9(c)&(d)). In the urban area, the annual 

change rate of NDVI is small. Even though PATC sometimes 

performs better than ATCE in summer, it also performs poorer 

than ATCE sometimes, which indicates a less robustness of 

PATC over urban area (see in Fig. 9(e)&(f)). These pixels are 

all obtained from plain of which the elevations are all lower 

than 100 m. Hence, we also selected two pixels of grassland 

which located in complex terrain, the elevations of which are 

higher than 100 m. As shown in Fig. 9(g)&(h), the superiority 

of PATC lasts during the growing season of vegetation. In 

addition, PATC also performs better than ATCE in winter of 

which the NDVI is low, which indicates the better performance 

of PATC is because that PATC can well simulates the 

temperature fluctuations caused by local weather change. 

In summary, above results indicate a superior performance of 

PATC compared with ATCE, especially during the growing 

season of vegetation in the daytime. Moreover, PATC can also 

well simulate the temperature fluctuations caused by local 

weather change when the vegetation is sparsely covered. 

V. DISCUSSION 

This section aims to discuss the performance of PATC under 

different observations and the influence of filtered NDVI on the 

model performance. In this section, six pixels are randomly 

selected from different land cover types, of which two pixels 

are cropland, and other four pixels are forest, grassland, 

savanna and urban, respectively. For each pixel, we randomly 

selected 12, 16, 20, 40, 80 and 160 observations, then used the 

least squares fitting to compute model parameters of the 

temperature cycle model with the selected observations. To 

prevent that almost observations are in same month that leads 

to the ATC models cannot catch the variation of LSTs at annual 

scale, we made sure that every seasons all have randomly 

selected observations, especially when the observations are less 

than 20. According to the simulation results, the fitting accuracy 

of the temperature cycle model is gradually improved with the 

increase of observations. As shown in Fig. 10, the RMSE of 

PATC is smaller than that of ATCE and ATC under different 

observations wherein the ATC model has the lowest accuracy. 

In addition, the accuracies of ATC and ATCE change slightly 

with the observation counts. The difference between the highest 

and lowest accuracy of ATC is 0.3 K, and that of ATCE is 0.4 

K, while that of PATC is 1.0 K. When the observation count is 

12, the accuracy of PATC is close to that of ATCE, with a 

difference of 0.05 K. However, when the observation count 

increases to 16, the accuracy of PATC is significantly higher 

than that of ATCE, with a difference of 0.7 K. However, with 

the subsequent increase of the observations, the accuracy of 

PATC only fluctuates slightly. Even though more observations 

can bring better performance of PATC, sixteen observations are 

sufficient to present the performance of PATC. 

 
Fig. 10. RMSE of different ATC models with different observations. 

In addition, we also discuss the influence of filtered NDVI 

on the model performance. In this section, in addition to using 

the filtered NDVI sequence to test the performance of 

temperature cycle model, we also use unfiltered NDVI as 

control group. As shown in Fig. 11, the influences of filtered 

NDVI and not filtered NDVI on PATC vary with different 

observation counts. As shown in Fig. 11(a), when the 

observation count is small, the filtered NDVI can slightly 

improve PATC’s accuracy, but when the observation count 

increases, the filtered NDVI has a poorer accuracy than the 

unfiltered NDVI. In addition, when the NDVI change is 

complex in a year, the filtered NDVI losing too much 

information will lead to a poorer performance of PATC 

compared with the unfiltered NDVI (see Fig. 11(b)). Although 

whether the NDVI is filtered or not has a small influence on 

PATC totally, when the observations reach to sixteen, the 

filtered NDVI can increase the accuracy by 0.14 K on average 

compared with the unfiltered NDVI. 

Compared with PATC, the filtered NDVI has a greater 

influence on ATCE model. As shown in Fig. 12, the filtered 

NDVI can improve the accuracy of ATCE by 0.1 K on average 

compared with the unfiltered NDVI, while for the PATC, the 

filtered NDVI even reduce the accuracy of PATC by 0.02 K 

compared with the unfiltered NDVI. This is because the ATCE 

puts the influence of NDVI on temperature into the local 

fluctuation of temperature, so the local fluctuation of NDVI has 

a greater influence on the ATCE. On the contrary, the PATC puts 

the influence of NDVI on temperature into the annual 

oscillation of the temperature cycle model, so the local NDVI 

fluctuation has less influence on the PATC. 

In conclusion, above model tests suggest that PATC is robust 

to the filtered or not filtered NDVI sequences. Moreover, a 

limited observation with a count reaches to sixteen can well 

present the performance of PATC, which indicates a promising 

application of PATC in LSTs of polar satellites, such as Landsat. 
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Fig. 11. RMSEs of PATC with different observations. (a): cropland 1; (b): 
cropland 2; (c): forest; (d): grassland; (e) savanna; (f): urban. 

 
Fig. 12. RMSEs of ATCE and PATC with different observations. 

VI. CONCLUSION 

In this study, we propose a phenology-based ATC model 

(PATC) that takes the impacts of vegetation phenology and local 

weather changes into account. This model is based on a linear 

hybrid model of temperature. It is assumed that the temperature 

of the mixed pixel is composed of linear mixture of vegetation 

fractions and non-vegetation fractions, as well as short-term 

fluctuations caused by local weather conditions.  

Here, we use MODIS LSTs to evaluate the performance of 

PATC and compare it with the classical ATC model and ATCE 

model. Compared with the classic ATC model, PATC can 

improve the accuracy by 1.6 K and 0.5 K in the daytime and 

nighttime, respectively. Compared with ATCE model, PATC 

can improve the mean accuracy by 0.3 K and 0.1 K in daytime 

and nighttime, respectively. Specifically, the superiority of 

PATC compared with ATCE is especially obvious during the 

densely vegetation covered seasons in the daytime, the Drmse 

of which the corresponding NDVI ranging from 0.8 to 1.0 is 1.3 

K. Comparisons with ATC and ATCE suggest the superiority of 

PATC in modeling daily LSTs. 

In addition, with the selected samples, we find the 

performance of PATC is robust when the number of 

observations reaches to sixteen, and the filtered NDVI can also 

slightly improve the performance of PATC when the 

observation count is sixteen. Future research may incorporate 

Landsat observations and diurnal temperature cycle (DTC) 

models to implement temporal interpolation of LSTs at diurnal 

scale. 
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