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General introduction

Agents producing, manipulating, exchanging knowledge are forming as a whole a socio-
semantic complex system: a complex system made of agents who work on and are influ-
enced by semantic content, by flows of information in which they are fully immerged but, at
the same time, on which they can have an impact and leave their footprints. Social psycholo-
gists and epistemologists, inter alia, have already a long history in studying the properties of
such knowledge communities. Yet, the massive availability of informational content and the
potential for extensive interactivity has made the focus slip from single “groups of knowl-
edge” to the entire “society of knowledge”. Simultaneously, the change in scale has called for
the use of new methods, as well as the characterization of new phenomena, with knowledge
being distributed and appraised on a more horizontal basis — in a networked fashion. On
the other hand, many different “sub-societies” of knowledge co-exist, possibly overlapping
and interwoven, although usually easily distinguished by their means, methods, and people.

Reconstruction issues Therefore, the research community has taken a renewed and un-
precedented interest in studying these communities, in both a theoretical and a practical
perspective:

• theoretically, it conveys the hope of naturalizing further social sciences.

• practically, it entails several potential applications — as regards research policy in par-
ticular, since scientists themselves form a knowledge community; but also as a means
for political planning, innovation diffusion improvement, to cite a few.

The present thesis lies within the framework of this research program. Specifically, we
aim to know and be able to model the behavior and the dynamics of such knowledge com-
munities. Alongside, we address more broadly the question of reconstruction in social sci-
ence, and notably the reconstruction of the evolution of a social complex system. Reconstruc-
tion is a reverse problem consisting fundamentally in successfully reproducing several stylized
facts observed in the original empirical system. To this end, we distinguish the lower level of
microscopic objects (including agents, agent-based interactions, etc.), and the higher level of
macroscopic descriptions (communities, global structures). Thus, we wish to know whether
it is possible to:

(i) deduce high-level observations of such a system from strictly low-level phenomena;
and
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(ii) reconstruct the evolution of high-level observations from the dynamics of lower-level
objects.

For instance, social scientists are using more and more frequently social network analysis
to infer high-level phenomena which would have traditionally undergone a strictly high-
level description: qualifying the cohesion of a community, finding the roots of a crisis, ex-
plaining how roles are distributed, etc. By doing so, they are clearly carrying an analysis
related to the first issue, “(i)”: they exhibit a formal relationship between higher and lower
level objects — they reconstruct the “social structure” (Freeman, 1989), benchmarked against
classically proven high-level descriptions. In this respect they make the assumption that the
chosen lower level (for instance a social network) yields enough information about the phe-
nomenon; the benefit being often that low-level information is easier to collect and entails
more robust descriptions. In formal terms, the first issue is equivalent to the following
question: given a high-level phenomenon H , and low-level objects L, is there a P such
that P (L) = H , for any empirically valid pair L and H? — then, how to find it? This
approach must be accurate in an evolutionary framework as well: given empirical dynamics
λe and ηe on L and H respectively, such that for any time t:{

λe(Lt) = Lt+∆t

ηe(Ht) = Ht+∆t
(1)

we must find a P such that:
P ◦ λe = ηe ◦ P (2)

In other words, we must have P (Lt+∆t) = Ht+∆t: it must be possible to describe the final
observation on H from the evolution of L. The reconstruction scheme is detailed on Fig. 1,
the commutative diagram in particular is encountered in the context of dynamical systems
— see (Rueger, 2000) and references herein, and (Nilsson-Jacobi, 2005; Turner & Stepney,
2005).

Thereafter, once P is defined, the second issue, “(ii)”, is to show that a low-level dynamics
enables the reconstruction of the higher level dynamics. This approach is generally a tra-
ditional problem of modeling, although in our framework we insist on the constraint that
low-level objects, not high-level descriptions, play a central role (Bonabeau, 2002). Thus,
the second issue comes to find a dynamics λ such that it correctly reproduces the empir-
ical high-level dynamics ηe, through P . As such, the model objectives are restricted to
rebuilding high-level phenomena. Indeed, the point is not necessarily to find a dynamics
λ yielding empirically valid low-level phenomena (i.e. such that we have λ(Lt) = Lt+∆t),
but simply to find λ such that the desired high-level objects are correctly described (i.e. only
P ◦ λ(Lt) = Ht+∆t must hold). Thus, the fact that λ 6= λe or that Lt+∆t 6= λ(Lt) is not prob-
lematic, as long as P ◦λ = P ◦λe: λ needs not be a model of λe, and the knowledge of Lt needs
not be perfect; it only needs to be valid “through P .” This allows successful reconstruction
even when it is not possible to describe λe comprehensively, or when L is imperfectly known
— only reconstructed high-level descriptions have to be accurate. For instance, being unable
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Figure 1: The reconstruction problem comes to find (i) a valid P (the projection P from L onto
H is valid if, knowing the empirical dynamics ηe and λe, the above diagram commutes, i.e.
P ◦ λe = ηe ◦ P ) and (ii) a satisfying λ (i.e. such that P ◦ λ = P ◦ λe). See (Rueger, 2000;
Nilsson-Jacobi, 2005) for comprehensive discussions on this kind of diagrams.

to predict the actual number of friends of a given agent (a specific fact on L) should not pre-
vent us from rebuilding the fact that the distribution of acquaintances follows a power-law
(a specific fact on H).

Reconstructing a knowledge community We may now focus on the above-mentioned so-
cial complex system, a knowledge community, for which our thesis solves a reconstruction
problem. We will indeed rebuild several aspects of the structure of such a community —
these are high-level phenomena. Foremost among these aspects is the description of the
community in smaller, more precise sub-communities. Here an “epistemic community” is
understood as a descriptive instance only, not as a coalition of people who have some in-
terest to stay in the community: it is a set of agents who simply share the same knowledge
concerns. Epistemologists traditionally describe a whole field of knowledge by characteriz-
ing and ordering its various epistemic communities, and they basically achieve this task by
gathering communities in a hypergraph, which we call epistemic hypergraph. A hypergraph is
a graph where edges can connect groups containing more than two nodes.

We thus support the following thesis: the structure of a knowledge community, and in
particular its epistemic hypergraph, is primarily produced by the co-evolution of agents
and concepts.

In the first part, we will propose a method for exhibiting a hierarchical epistemic hy-
pergraph for any given community. More precisely, we will exhibit a P that yields H (the
community structure) from L (agent and concept-based descriptions) — this corresponds
to the first issue. Given the assumptions, an adequate and efficient method for achieving
this task consists in using Galois lattices. By checking the adequation between the resulting
hypergraph and an empirical high-level epistemological description of the knowledge com-
munity — i.e. of the kind epistemologists would produce and work on — we will confirm the
validity of the projection. Better, for any time t, P will yield Ht from Lt, and as such, given
the empirical low-level dynamics λe, we will reproduce the empirical high-level dynamics



ηe. This provides subsequently a formal way of partially defining the field of “scientomet-
rics”, which consists in describing scientific field and paradigm evolution from low-level
quantitative data.

Further, in the second part, we will micro-found the high-level phenomena in the dynam-
ics of the lower level of agents and concepts — this addresses the second issue. More pre-
cisely, we will introduce a co-evolutionary framework based on a social network, a semantic
network and a socio-semantic network; as such an epistemic network made of agents, con-
cepts, and relationships between all of them. We will then show that dynamics at the level of
this epistemic network are sufficient to reproduce several stylized facts of interest. Given H

and the empirical dynamics ηe on H , we will therefore propose methods to design λ from low-
level empirical data on L such that P ◦ λ(L) = ηe ◦ P (L). Since the dynamics will be based on
the co-evolution at the the lower level L of the epistemic network, we will substantiate our
claim that epistemic communities are produced by the co-evolution of agents and concepts.

It is nonetheless worth noting that the co-evolution occurs at the lower level of the three
networks only. We are thus within the framework of “simple emergence”: the high-level is de-
duced from the lower level, but the lower level is to be influenced by low-level phenomena
only. In addition, we will underscore the fact that exogeneous phenomena may also ac-
count for the social complex system evolution (including for instance ‘strength’ of concepts,
external policies, etc.). We will consequently moderate the thesis, arguing eventually that
reconstructing epistemic communities involves at least the dynamic co-evolution of agents
and concepts.

In the third and last part, we will defend a more general epistemological point on the
methods and achievements of this kind of reconstruction. We will notably situate our effort
within the whole apparatus of complex system appraisal. In this respect, we will suggest in
particular that a successful rebuilding is no more than a claim that some particular high-level
stylized facts, observed with high-level instruments (epistemologists and experts in our case)
can be fully deduced from low-level objects (here, the epistemic network). As such, reduction
of a high-level to a lower level should be understood as the successful full deduction of the
higher-level from a relevantly chosen lower level. This remark will eventually support our
choice of a co-evolutionary framework.



Part I

Knowledge Community Structure

Summary of Part I

In this part, we introduce a formal framework based on Galois lattices that categorizes
epistemic communities automatically and hierarchically, rebuilding a whole commu-
nity taxonomy in the form of a hypergraph of significant sub-communities. The longitu-
dinal study of these static pictures makes historical description possible, by capturing
stylized facts such as field emergence, decline, specialization and interaction (merg-
ing or splitting). The method is applied to empirical data and successfully validated
by categories and histories given by domain experts. We thus design a valid projec-
tion function P from a low-level defined by links between agents and concepts to the
high-level of epistemological descriptions.





Introduction of Part I

Scientists, journalists, political activist groups, socio-cultural communities with common ref-
erences are various instances of the so-called society of knowledge. They are in all respects
smaller, embedded “sub-societies” of knowledge, with their own norms, methods, and spe-
cific topics; as such independent to some extent, though possibly partially overlapping. Yet,
it is remarkable that any knowledge community, whatever its level of generality — the whole
society, the scientific community, biologists, embryologists, embryologists working on a par-
ticular model-animal — appears to be structured in turn in various implicit subcommunities,
with each subgroup contributing to knowledge creation in a distributed and complementary
manner. Expertise seems indeed to be heterogenously distributed over all agents, with dif-
ferent levels of specificity and distinct areas of competence: there are very few topics that all
agents are able to deal with. As specialization occurs, knowledge communities become sub-
sequently more structured: boundaries appear between subgroups, both horizontally, with
the appearance of several branches, and vertically, with different levels of generality for ap-
praising a given topic.

In this part of our thesis, we propose a method for building, ordering and apprais-
ing the epistemic hypergraph of a given knowledge community, which as a result can
be compared to high-level descriptions of the knowledge community structure. The epis-
temic hypergraph is a graph of knowledge communities, where each community gathers
both agents and concepts. At first sight, we denote by knowledge community, or epistemic
community, any kind of group of agents who are interested in some common knowledge is-
sues: a group of research for instance investigating a precise topic, a whole field of research,
a larger scientific field, a paradigm; besides, the notion is also not necessarily restricted to
academic groups. A knowledge community needs not be a community of practice (Lave &
Wenger, 1991; Wenger & Snyder, 2000) because its agents need not be acquainted or involved
in a common practical task; although a community of practice is certainly a special type of
knowledge community. On the whole, agents involved in a same epistemic community in-
teract using shared paradigms, meanings, judgments, opinions (Haas, 1992; Cowan et al.,
2000), all of which being to a certain extent publicly available concepts, especially in larger
scale communities. Therefore, in itself, an “epistemic complex system” achieves widespread
social cognition: new concepts are being introduced by some agents, others work on them,
build upon them, refine, falsify, improve, etc. This phenomenon has even been recently sen-
sibly boldened by the fact that the whole process of knowledge elaboration has slipped from
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a rather centralized, well-recognized organization to a mainly decentralized, collectively in-
teractive and networked system. Thus, while agents can potentially have access and be syn-
chronized with a large part of the knowledge produced by the whole epistemic community,
they actually have access only to a small portion of it, prominantly because of cognitive and
physical limitations. In this respect, it should be of utmost interest to have tools enabling
agents to understand the structure and the activity of their knowledge community, at any
level of specificity or generality.

More precisely, in any kind of epistemic community, agents have an implicit knowledge
of the structure of the larger global community they are participating in. Embryologists
know what molecular biology, biology, and science in general are about. Their knowledge
is thus meta-knowledge: it is knowledge on the structure of their own knowledge com-
munities. They can name several other fields, issues they know are close, related to their
knowledge concerns, or not. Agents can distinguish various levels of specificity as well,
pragmatically knowing that a given set of topics is usually a subfield of another larger field,
or has affiliations with several fields, roughly knowing when knowledge communities inter-
sect in what appears to be interdisciplinary, cross-domain enterprises.

Yet, as a matter of scalability agents have a limited and subjective knowledge of the ex-
tent of the community they are evolving in. As such their meta-knowledge resembles that
of a folk taxonomy, in the anthropological sense, that is, a taxonomy proper to an individual
(or shared by a small-sized group) and made of its own experience, as opposed to scientific
taxonomies, deemed objective and systematic (Berlin, 1992). Hence, epistemologists often
have the last word in elaborating and validating credible meta-knowledge. Expert-made
taxonomies are prodigiously more reliable than folk taxonomies, in particular because of
their tangible methodology. However, again because of scalability, elaborating this meta-
knowledge still lacks precision, takes an enormous amount of work, and rarely focuses on
precise groups of agents nor investigates comprehensively the whole community; in addi-
tion, the result may be biased by a particular approach on the field.

Here, we will thus study the large-scale structure of epistemic complex systems. In fine,
we wish to introduce a method for creating automatically a taxonomy of knowledge fields —
in other words, for producing a hierarchic epistemic hypergraph of the community structure
(a high-level description P (L) from low-level empirical data L). This hypergraph should
make clear (i) which fields, disciplines, trends, schools of thought are to be found in such an
epistemic network, and (ii) what kind of relationships they entertain. In turn, the resulting
taxonomy should prove consistant with the already-existing intersubjective perception of the
field, which will thus be the benchmark of our procedure (the empirical H , to compare to the
P (L) produced by the method). Eventually, knowing the taxonomy at any given time, we
should be able to describe the evolution of the system; and as such achieve a reconstruction
of the history of the community on objective grounds.

The outline of this part is as follows: after having presented the context and introduced
the formal framework (Chap. 1), we describe how to categorize epistemic communities in an
hierarchically structured fashion using Galois lattices (Barbut & Monjardet, 1970) (Chap. 2)



and produce a lattice-based representation of the whole knowledge community. We then
apply it to empirical data, successfully comparing our results with the expected categories
given by domain experts (Chap. 3). Chapter 4 details the way we build recuced taxonomies,
or community hypergraphs, and Chapter 5 adresses their evolution. In particular, field
progress or decline, field scope enrichment or impoverishment, and field interaction (merg-
ing or splitting) are observed in a dynamic case study. Settled both in applied epistemology
and scientometrics, this approach would ultimately provide agents with processes enabling
them to know dynamically their community structure.

Our main source of data is MedLine, a database maintained by the US National Library
of Medicine and containing more than 11 million references to health sciences articles pub-
lished in about 3,700 journals worldwide. We narrow our study to articles dealing with the
“zebrafish,” a fish whose embryo is translucent and developing fast, therefore widely used as
a model animal by embryologists.3

3Portions of this part can be found in more details in (Roth & Bourgine, 2005; Roth & Bourgine, 2006; Roth,
2006).





Chapter 1

Epistemic communities

In this chapter, we present the existing works concerning epistemic community appraisal
and representation, and we introduce a formal framework along with various definitions.

1.1 Context

Several works ranging from social epistemology to political science and economics have
given an account of the collaboration of agents within the same epistemic framework and
towards a given knowledge-related goal, namely knowledge creation or validation. For so-
cial epistemologists, it is a scientist group, or epistemic community, producing knowledge and
recognizing a given set of conceptual tools and representations — the “paradigm,” according
to Kuhn (1970) — possibly working in a distributed manner on specialized tasks (Schmitt,
1995; Giere, 2002). Considering a whole knowledge field as a huge epistemic community
(e.g. biology, linguistics), one can see subdisciplines as smaller, embedded, and more spe-
cific epistemic communities — subfields within a paradigm. Haas (1992) introduced the
notion of epistemic community as “a network of knowledge-based experts (...) with an authorita-
tive claim to policy-relevant knowledge within the domain of their expertise.” Cowan, David and
Foray (2000) added that an epistemic community must share a subset of concepts. To them,
an epistemic community is “a group of agents working on a commonly acknowledged subset of
knowledge issues and who at the very least accept a commonly understood procedural authority as
essential to the success of their knowledge activities.” The “common concern” aspect has been
emphasized by Dupouet, Cohendet and Creplet (2001) who define an epistemic community
as “a group of agents sharing a common goal of knowledge creation and a common framework allow-
ing to understand this trend.” These authors nevertheless acknowledge the need of a notion of
authority and deference.

On the other hand, scientists have shown an increasing interest for methods of knowl-
edge community structure analysis. Several conceptual frameworks and automated pro-
cesses have been proposed for finding groups of agents or documents related by common
concepts or concerns, notably in knowledge discovery in databases (KDD) (Rocha, 2002;
Hopcroft et al., 2003) and scientometrics (Leydesdorff, 1991a; Lelu et al., 2004). Dealing with
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and ordering categories automatically has indeed become central in data mining and related
fields (Jain et al., 1999), along with the massive development of informational content. Be-
sides, since a large amount of data is freely and electronically available, the study of scientific
communities in particular has attracted a large share of the interest — especially biologist
communities: biology is a domain where the need for such techniques is also the most press-
ing because article production is so high that it becomes hard for scientists to figure out the
evolution of their own community.

Yet, existing approaches in community finding are often either based on social relation-
ships only, with community extraction methods stemming from graph theory applied to
social networks (Wasserman & Faust, 1994), or on semantic similarity only, namely cluster-
ing methods applied to document databases where each document is considered as a vector
in a semantic space (Salton et al., 1975). There have been few attempts to link social and
semantic aspects, although the various characterizations of an epistemic community insist
on its duality, i.e. the fact that such a community is on one side a group of agents who, on
the other side, share common interests and work on a given subset of concepts. By contrast,
only scientometrics have developed a whole set of methods for characterizing specifically
such communities, working on both scientists and the concepts they use. Categorization
has been notably applied to scientific community representation, using inter alia multidi-
mensional scaling in association with co-citation data (McCain, 1986; Kreuzman, 2001) or
other co-occurrence data (Callon et al., 1986; Noyons & van Raan, 1998), in order to produce
two-dimensional cluster mappings and track the evolution of paradigms (Chen et al., 2002).

Along with this profusion of community-finding methods, often leaning towards AI-
oriented clustering, an interesting issue concerns the representation of communities in an or-
dered fashion. On the whole, many different techniques have been proposed for producing
and representing categorical structures including, to cite a few, hierarchical clustering (John-
son, 1967), Q-analysis (Atkin, 1974), formal concept analysis (Wille, 1982), information theory
(Leydesdorff, 1991b), blockmodeling (White et al., 1976; Moody & White, 2003; Batagelj et al.,
2004), graph theory-based techniques (Newman, 2004; Radicchi et al., 2004), neural networks
(Kohonen, 2000), association mining (Srikant & Agrawal, 1995), and dynamic exploration of
taxonomies (Sacco, 2000). Here, the notion of taxonomy is particularly relevant with respect
to communities of knowledge. A taxonomy is a hierarchical structuration of things into
categories, as such an ordered set of categories (or taxons), and is a fundamental tool for
representing groups of items sharing some properties. Taxonomies are useful in many dif-
ferent disciplinary fields: in biology for instance, where classification of living beings has
been a recurring task (Whittaker, 1969; Simpson & Roger, 2004); in cognitive psychology for
modeling categorical reasoning (Rosch & Lloyd, 1978; Barthélemy et al., 1996); as well as in
ethnography and anthropology with folk taxonomies (Berlin, 1992; Lopez et al., 1997; Atran,
1998). While taxonomies have initially been built using a subjective approach, the focus has
moved to formal and statistical methods (Sokal & Sneath, 1963; Benzécri, 1973).

However, taxonomy building itself is generally poorly investigated; arguably, taxonomy
evolution during time has been fairly neglected. Our intent here is to address both top-



ics: build a taxonomy of epistemic communities, then monitor its evolution — as such a
work which shares the aims of history of science. At the same time while taxonomies have
long been represented using tree-based structures, we wish to produce taxonomies which
deal with sub-communities affiliated with multiple communities (such as interdisciplinary
groups) or of diverse paradigmatic statuses (i.e., rendering equally communities centered
around methods, processes, fields of application, given objects, etc.); therefore introducing
lattice-based structures.

1.2 Definitions

Basically, we are first trying to know (i) which agents share the same concerns and work on
the same concepts, and (ii) which these concerns or concepts are. We are thus farther from
the epistemological point of view and need not characterize authoritative groups and their
role. Hence, the definitions of an “epistemic community” introduced in the previous section
seem to be too precise with respect to authoritative and normative properties, while they
lack the ability to formalize community boundaries and extents accurately. Obviously, an
epistemic community that is simply characterized by common knowledge concerns should
not necessarily be a social community, with agents of the same communitiy enjoying some
sort of social link: it is neither a department nor a group of research. In addition, we want
a definition that allows some flexibility in the sense that an agent or a semantic item (or
concept) can belong to several communities. Therefore, we adopt the following definition,
keeping the notion of common “knowledge issues”, to which we add maximality:

Definition EC-1 (Epistemic community). Given a set of agents S, we consider the concepts they
have in common and we call epistemic community of S the largest set of agents who also use these
concepts.

In other words, taking the epistemic community (EC) of a given agent set extends it to
the largest community sharing its concepts. This notion is to be compared with the structural
equivalence introduced in sociology by F. Lorrain and H. White (1971). Structural equivalence
describes a community as a group of people related in an identical manner to a set of other
people. When extending this concept to a group of people related identically to the same
concept set, ECs are groups of agents related in an equivalent manner to some concepts.

Definition EC-1 is based on an agent set, and we could define correspondingly an epis-
temic community as the largest set of concepts commonly used by agents who share a given
concept set. We will at first focus on agent-based epistemic communities, keeping in mind
that concept-based notions are defined strictly equivalently and in a dual manner. In order
to set up a comprehensive framework allowing to work on these notions, we now introduce
a few basic definitions:

Definition 1 (Intension). The intension of a set of agents S is the set of concepts which are used by
every agent in S.
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Figure 1.1: Sample community, and relationships between agents s1, s2, s3, s4 and concepts
“linguistics” (Lng), “neuroscience” (NS) and “prosody” (Prs) (dashed lines).

Definition 2 (Epistemic group). An epistemic group is a set of agents provided with its intension,
i.e. a group of agents and the concepts they have in common.

Consider for instance that some given agents s1, s2 and s3 work on “linguistics” (Lng),
while “neuroscience” (NS) is being used by s2, s3 and s4 (Fig. 1.1). Therefore, the intension of
{s1, s2, s3} is {Lng}, that of {s2, s3, s4} is {NS} and that of {s2, s3} is {Lng, NS}. Some epistemic
groups of this example are thus ({s1, s2, s3}; {Lng}), ({s2, s3}; {Lng, NS}) and ({s1, s4}; {∅}).

For a given set of agents S, knowing its epistemic community comes to identifying the
largest group of people who share the same knowledge issues as those of agents of S (this
largest group thereby includes S) — notably, for a group of agents prototypic of a field, this
amounts to know the whole set of agents of the field.

Definition 3 (Hierarchy, maximality). An epistemic group is larger than another epistemic group
if and only if (i) their intensions are the same and (ii) the agent set of the former contains that of the
latter.

An epistemic group is said maximal if there exists no larger epistemic group.

This statement enables us not only to compare epistemic groups but also and more signif-
icantly to expand a given epistemic group to its maximal social size. Interpreting definition
EC-1 within this framework leads to the following reformulation:

Definition EC-2 (Epistemic community). The epistemic community based on a given agent set
is the corresponding maximal epistemic group.

The epistemic community based on {s4}, for instance, is thus ({s2, s3, s4}; {NS}), and the one
based on either {s1} or {s1, s2} is ({s1, s2}; {Prs, Lng}).1

1The epistemic community based on {s2} is however ({s2}; {Prs, Lng, NS}); this accounts notably for the fact
that s2 can belong both to a generic community and to a more specific or multidisciplinary community: ({s2};
{Prs, Lng, NS}) vs. ({s1, s2}; {Prs, Lng}) — see section 2.3.2 for more details.



Notice that we can similarly define an EC based on a concept set as the largest set of concepts
sharing a given agent set. We introduce the concept-based notions, defined symmetrically to
the agent-based notions, and thus, in the remainder of the thesis we will equivalently denote
an EC by its agent set S, its concept set C or the couple (S, C).

Definition 4 (Extension, concept-based notions). The extension of a set of concepts C is the set
of agents using every concept in C. A concept-based epistemic group is a set of concepts provided
with its extension. A concept-based epistemic group is larger than another one if and only if (i) their
extension are the same and (ii) the concept set of the former contains that of the latter. A concept-
based epistemic community is a maximal concept-based epistemic group.

1.3 Formal framework

In order to work formally on these notions, we need to bind agents to concepts through a
binary relation R between the whole agent set S and the whole concept set C. R expresses
any kind of relationship between an agent s and a concept c. The nature of the relationship
depends on the hypotheses and the empirical data. In our case, the relationship represents
the fact that s used c (e.g. in some article).

Sets and relations Let us consider R ⊆ S×C binding S to C. We introduce the operation
“∧” such that for any element s ∈ S, s∧ is the set of elements of C which are R-related to
s. Extending this definition to subsets S ⊆ S, we denote by S∧ the set of elements of C
R-related to every element of S, namely:

s∧ = { c ∈ C | sRc } (1.1a)

S∧ = { c ∈ C | ∀s ∈ S, sRc } (1.1b)

Similarly, “?” is the dual operation so that ∀c ∈ C, ∀C ⊆ C,

c? = { s ∈ S | sRc } (1.2a)

C? = { s ∈ S | ∀c ∈ C, sRc } (1.2b)

By definition we set (∅)∧ = C and (∅)? = S.
Definitions 1, 2 and 4 mean that if S is a set of agents, S∧ denotes its intension, the set

of concepts used by every agent in S (“∀s ∈ S”). Similarly if C is a concept set, C? is its
extension, the set of agents who use every concept in C. Thus, epistemic groups are cou-
ples of kind (S, S∧) or (C?, C). On the sample community described on Fig. 1.1, we have
for instance {s1, s3}∧={Lng} and {NS, prs}?={s3}. As Wille (1997) points out, this formalism
constitutes a robust and rigourous way of dealing with abstract notions (in a philosophical
sense), characterized by their extension (physical implementation) and their intension (prop-
erties or internal content). Here, concepts are properties of authors who use them (they are



skills in scientific fields, i.e. cognitive properties) and authors are loci of concepts (concepts
are implemented in authors).

Properties These operations enjoy the following properties:

S ⊆ S′ ⇒ S′
∧ ⊆ S∧ (1.3a)

C ⊆ C ′ ⇒ C ′? ⊆ C? (1.3b)

which means that the intension of a larger agent set is smaller, because more agents share
less. We also have:

(S ∪ S′)∧ = S∧ ∩ S′
∧ (1.4a)

(C ∪ C ′)? = C? ∩ C ′? (1.4b)

In other words, the intension of two agent sets is the intersection of their respective inten-
sions because a group of agents has in common what its individuals share. Moreover, we
can easily derive from (1.4) the words used by a community S ∪S′ by taking the intersection
S∧ ∩ S′∧, or the authors corresponding to the union of any two sets of concepts C ∪ C ′ by
taking C? ∩ C ′?. Accordingly,

S∧ = (
⋃
s∈S

{s})∧ =
⋂
s∈S

s∧ (1.5a)

C? = (
⋃
c∈C

{c})? =
⋂
c∈C

c? (1.5b)

We can also conveniently read si
∧ on rows and cj

? on columns of a matrix R representing
relation R, as follows:

R =


1 1 0
1 1 1
0 1 1
0 0 1


where Ri,j is non-zero when si R cj . For instance, s4

∧ = {NS} and {Lng,NS}? = {s2, s3}
(see Fig. 1.1).

Closure operation More important, the following property holds:

S ⊆ S∧
? (1.6a)

C ⊆ C?∧ (1.6b)

And thus:

Proposition 1.
((S∧)?)∧ = S∧ and ((C?)∧)? = C? (1.7)



Proof. Indeed, (1.3a) applied to (1.6a) leads to (S∧?)∧ ⊆ S∧, while (1.6b) applied to S∧ gives (S∧) ⊆
(S∧)?∧

It is therefore possible to define the operation “∧?” as a closure operation (Birkhoff, 1948),
in that it is:

extensive, S ⊆ S∧? (1.8a)

idempotent (S∧?)∧? = S∧? (1.8b)

and increasing. S ⊆ S′ ⇒ S∧? ⊆ S′∧? (1.8c)

S∧? is called the closure of S. Extensivity means that the closure is never smaller, while
idempotence implies that applying ∧? more than once does not change the closure. Finally,
that ∧? is increasing corresponds to the idea that the closure of a larger set is larger.

Given two subsets S ⊆ S and C ⊆ C, a couple (S, C) is said to be closed (or complete) if
and only if C = S∧ and S = C?. Yet such a closed couple is actually an epistemic group
(S, S∧) where S∧? = S. Closed couples correspond obviously to epistemic groups closed
under ∧?, and therefore “∧?” is an operation yielding a set which cannot be enlarged further
(extensivity and idempotence). It expands an epistemic group to its boundary: the largest
possible set which is still based on a given agent set.2

Since the EC based on an agent set S is the largest agent set with the same intension as S,
it becomes obvious that this largest set is the extension of the intension of S, or S∧?: applying
∧? to S returns all the agents who use the same concepts that were common to the agents of
S, hence the largest agent set — once and for all from (1.8b). Thus, the operator “∧?” yields
the EC of any agent set, and according to definitions EC-1 and EC-2 we have:

Proposition 2. (S∧?, S∧) is the epistemic community based on S.

Proof. Indeed, (i) S∧? has the same intension as S from ((S∧)?)∧ = S∧ and (ii) it is the largest agent
set enjoying this property: consider S′ such that S′ ⊃ S∧? and S′∧ = S∧?∧, then ∀{s} ⊂ S′ ⇒ {s}∧ ⊃
S′∧ ⇒ {s}∧ ⊃ S∧?∧ ⇒ {s}∧? ⊂ S∧?, but {s} ⊂ {s}∧? ⇒ {s} ⊂ S∧?, hence S′ ⊂ S∧?

Subsequently,

Proposition 3. Any closed couple is an epistemic community.

Note that all these properties are similar and in fact dual if we consider an epistemic
community based on C, subset of C, and operators ? and ?∧. We may now define formally
what an epistemic hypergraph is:

2Note that given S∧ = {c1, ..., cn, c} and S′∧ = {c1, ..., cn, c′}, c′ 6= c, we have S′ 6∈ S∧?, S′ is not in the
closure of S. This might look strange for a human eye who would have said their domains of interest to be
similar. S and S′ anyway belong together to (S ∪ S′)∧?, or {c1, · · · , cn}?.
Another property may help understand better what this closure actually corresponds to: given S∧ = {c1, ..., cn}
and S′∧ = {c′1, ..., c′n} such that ∀(i, j) ∈ {1, ..., n}2, ci 6= c′j , we have (S ∪ S′)∧? = S: the closure of two sets of
scientists working on totally different issues is the whole community S.



Definition 5 (Graph, hypergraph). A graph G is a couple (V,E) where V is a set of vertices and
E ⊂ V × V a set of edges binding pairs of vertices. A hypergraph hG is a couple (V, hE) where V

is a set of vertices and hE a set of hyperedges connecting set of vertices. hE is thus fundamentally a
subset of P(V ), the power set of V .

Definition 6 (Epistemic hypergraph). An epistemic hypergraph is a hypergraph of epistemic com-
munities, (S, {S∧?|S ⊂ S}) with hyperedges binding groups of agents belonging to a same EC.

Each hyperedge can be labelled with the concept set corresponding to the agent set it
binds, S∧. For instance, ({s2, s3, s4}, NS) is an EC, so the hyperedge {s2, s3, s4} belongs to
the epistemic hypergraph, and may be labelled “NS”. Note that equivalently an epistemic
hypergraph could be based on concepts: (C, {C?∧|C ⊂ C}), with hyperedges binding con-
cepts of a same EC.

Cultural background Interestingly, S∧ represents the concepts the whole community shares
— as such, the “cultural background”. By contrast, C? contains authors who have used every
word in the whole concept set C — in the real world, it should be very rare to have C? 6= ∅.



Chapter 2

Building taxonomies

A relationship between the set of agents and the set of concepts is thus sufficient to capture
the underlying epistemic hypergraph of a given scientific field. However, we still need to
hierarchize the raw set of all ECs to build a taxonomy of the whole knowledge community,
assuming that they are structured into fields and subfields. By introducing Galois lattices
particularly appropriate for this purpose, we will represent ECs hierarchically. GLs are suit-
able for representing and ordering abstract categories relying on such a binary relation, and
have been therefore widely used in conceptual knowledge systems, formal concept classifi-
cation, as well as mathematical social science (Wille, 1982; Freeman & White, 1993; Godin
et al., 1995; Monjardet, 2003). More broadly, GLs can also be considered as hierarchically or-
dered epistemic hypergraphs — as such, GLs are both a categorization tool and a taxonomy
building method.

2.1 Taxonomies and lattices

The canonical approach for representing and ordering categories consists of trees, which
render Aristotelian taxonomies. In a tree, categories are nodes, and sub-categories are child
nodes of their unique parent category. A major drawback of such a taxonomy lies in its ability
to deal with objects belonging to multiple categories. In this respect, the platypus is a famous
example: it is a mammal and a bird at the same time. Within a tree, it has to be placed either
under the branch “mammal,” or the branch “bird.” Another problem is that trees make the
representation of paradigmatic categories extremely unpractical. Paradigmatic classes are
categories based on exclusive (or orthogonal) rather than hierarchical features (Vogel, 1988):
for instance urban vs. rural, Italy vs. Germany. In a tree, “rural Italy” has to be a subcategory of
either rural or Italy, whereas there may well be no reason to assume an order on the hierarchy
and a redundancy in the differenciation.

A straightforward way to improve the classical tree-based structure is a lattice-based
structure, which allows category overlap representation. Technically, a lattice is a partially-
ordered set such that given any two elements l1 and l2, the set {l1, l2} has a least upper
bound (denoted by l1 t l2 and called “join”) and a greatest lower bound (denoted by l1 u l2
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Figure 2.1: Trees vs. lattices. Top: Multiple categories: in a tree, the platypus needs either
to be affiliated with mammal or bird, or to be duplicated in each category — in a lattice, this
multiple ascendancy is effortless. Bottom: Paradigmatic taxonomies: in a tree, a paradigmatic
distinction (e.g. territories vs. habitat types) must lead to two different levels and cannot be
represented as a single category — in a lattice, the two paradigmatic notions may well be on
the same level, leading to mixed sub-categories.

and called “meet”):

Definition 7 (Lattice). A set (L,v,t,u) is a lattice if every finite subset H ⊆ L has a least upper
bound in L noted tH and a greatest lower bound in L noted uH under the partial-ordering
relation v.1

In a lattice, the platypus may simply be the sole member of the joint category “mammal-
bird,” with the two parent categories “mammal” and “bird.” The “mammal-bird” category
is “mammal”u“bird,” i.e. “mammal”-meet-“bird.” The parent category (“animal”) is “mam-
mal”t“bird”, or “mammal”-join-“bird”. Besides, lattices may also contain different kinds of
paradigmatic categories at the same level — see Fig. 2.1. Note that such an algebraic lattice
is not to be confused with what the term “lattice” traditionally covers in physics: a mesh, a
regular grid, a periodic configuration of points whose structure has nothing to do with our
lattices.

1In this respect the power set of a set X provided with the usual inclusion, union and intersection, (P(X),⊆
,∪,∩), is a lattice.



2.2 Galois lattices

We hence argue that a lattice replaces efficiently and conveniently trees for describing tax-
onomies.2 In order to create a lattice-based taxonomy of ECs, we first need to provide a
partial order between ECs. Namely, we say that an EC is a subfield of a field if its intension is
more precise than that of the field; in other words, if the concept set of the subfield contains
that of the field. Formally, we define the strict partial order @ such that (S, S∧) @ (S′, S′∧)
means that (S, S∧) is a subfield of (S′, S′∧), with:

(S, S∧) @ (S′, S′∧) ⇔ S ⊂ S′ (2.1)

Hence (S, S∧) can be seen as a specification of (S′, S′∧), since its concept set is larger
(S∧ ⊃ S′∧) thus defining (S, S∧) more precisely, while less agents belong to its extension
(S ⊂ S′). Conversely, (S′, S′∧) is a “superfield” or a generalization of (S, S∧). We can thus
render both generalization and specification of closed couples (Wille, 1992). For instance, if
we consider (S, S∧) as a school of thought, a subfield (S′, S′∧) @ (S, S∧) can be seen as a
trend inside the school.

Now, using the natural partial order v, gathering the set of ECs allows us to define a lat-
tice that hierarchically orders all ECs. The Galois lattice (Birkhoff, 1948) is exactly the ordered
set of all epistemic communities built from S, C and R:

Definition 8 (Galois lattice). Given a binary relationR between two finite sets S and C, the Galois
lattice GS,C,R is the set of every complete couple (S, C) ⊆ S×C under relation R. Thus,

GS,C,R = {(S∧?, S∧)|S ⊆ S} (2.2)

Proposition 4. (GS,C,R,v,t,u) is a lattice, with t and u such that ∀(S, C), (S′, C ′) ∈ GS,C,R,{
(S, C) t (S′, C ′) = ((C ∩ C ′)?, C ∩ C ′)
(S, C) u (S′, C ′) = (S ∩ S′, (S ∩ S′)∧)

Proof. Indeed, ((C ∩ C ′)?, C ∩ C ′) is closed and belongs to GS,C,R: (C ∩ C ′)?∧ = (S∧ ∩ S′∧)?∧ =
(S ∪ S′)∧?∧ = (S ∪ S′)∧ = C ∩ C ′, from (1.4) & (1.7). Suppose now (σ, σ∧) closed such that S ⊂ σ,
S′ ⊂ σ, so (S ∪ S′) ⊂ σ, (S ∪ S′)∧? ⊂ σ∧? = σ, i.e. (C ∩C ′)? ⊂ σ, thus (C ∩C ′)? is the smallest closed
σ such that S ⊂ σ and S′ ⊂ σ. The same goes for (S ∩ S′, (S ∩ S′)∧).

A graphical representation3 of a GL is drawn on Fig. 2.2 from the sample community of
Fig. 1.1: an EC closer to the top is more general: the hierarchy reproduces the generaliza-
tion/specialization relationship induced by @. It is straightforward to see that a GL can be

2We will not consider graded categories like fuzzy categories (Zadeh, 1965) and thick categories, such as
locologies (De Glas, 1992).

3We represent the GL using the Hasse diagram, which is a general method for rendering partially-ordered
sets. In a Hasse diagram, an element is linked by a line to its covers (the smallest greater elements), and no
element can be geometrically over another one if it is not greater (Davey & Priestley, 2002).
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Figure 2.2: Creating the Galois lattice corresponding to the sample community of Fig. 1.1.
The GL contains 6 ECs. Solid lines indicate hierarchic relationships, from top (most general)
to bottom (most specific); ECs are represented as a pair (extension, intension) = (S, C) with
S∧ = C and C? = S.

seen as an epistemic hypergraph. Note that Galois lattices are also called “concept lattices”
in other contexts (Wille, 1992; Stumme, 2002) — in other epistemic communities...4

2.3 GLs and categorization

Galois lattice theory offers a convenient way to group agents with respect to concepts they
share, and as such it is yet another clustering method (CM). Nonetheless, if a GL contains all
epistemic communities, ordered in a lattice-based taxonomy, we need to show why this tool
is relevant as regards a community description task. Is a GL able to capture and reveal a mean-

4Let us also mention Q-analysis (Atkin, 1974), whose principles strongly recall GLs. Again, given a relation
R between two sets, Q-analysis introduces polyhedra such that for each object s of the first set, the associated
“polyhedron” is made of vertices c such that sRc. The notion of “maximal hub / maximal star” replaces that
of closed couple (Johnson, 1986). However, while Galois lattices focus on the hierarchy between closed couples,
Q-analysis is more interested in connected paths between polyhedra, by making an extensive use of equivalence
classes of Q-connected components. In particular, two polyhedra sharing at least Q + 1 vertices are Q-near, and
polyhedra between which there is a chain of Q-near polyhedra are said to be Q-connected.



ingful structure of a given community? There are several stylized facts we would like GLs to
rebuild, primarily the existence of subfields and significant groups of agents working within
those subfields. Assuming a certain organization of scientific communities, the justification
for this method will lie (i) in the fact that it partitions a field into smaller subfields corre-
sponding to scientific communities, and (ii) in the agreement between epistemic communities
rebuilt and extracted using GLs and those explicitly given by domain experts.

2.3.1 About relevant categorization

Let us first examine what clustering methods reveal about data: from any input set of objects
provided with attributes, CMs are designed to produce an output, namely clusters of objects.
CMs regroup the data even when the objects have no attribute in common, where any clus-
tering would in fact be meaningless. In sorting objects from their size and value, clustering
algorithms give results which are unlikely to represent, say, functional categories. To be rel-
evant, CMs need to be guided by assumptions on the data structure: an obvious necessary
assumption is that it does at least exhibit a clustered structure. It is necessary to inquire and
specify what a given CM aims to rebuild: it would be unwise to trust its output without
having checked its adequacy to data and defined what constitutes a cluster or a community.
Both the choice of the CM and the choice of attributes (labelling of data) are decisive.5

The same holds for Galois lattices: one can draw a GL from any two sets of objects and a
given relationship between them, but there is no reason a priori why the lattice should reveal
a remarkable structure, even if it is built, represented or managed efficiently. There should
exist a lot of data for which this categorization is just irrelevant. In order to know whether
and why GL is an appropriate CM for producing a taxonomy of knowledge communities, it
is necessary to investigate the nature and organization of these communities.

2.3.2 Assumptions on EC structure

Our main assumption is that there are fields of knowledge which can be described by con-
cept lists (relevant labelling), and which are being implemented by sets of agents. Taking
again the first example, some people are obviously linguists: among them, some deal with
a given aspect, say prosody; some other scientists deal with neuroscience, while a few of
them are interdisciplinary and use both concepts. Knowledge fields and their corresponding
agent sets are epistemic communities, which are precisely what GLs consist of (see Prop. 3).
Moreover and also crucial, these fields are hierarchically organized: (i) a general field can be

5One might thus distinguish (i) labelling irrelevant for the kind of data studied, while using a relevant CM;
from (ii) CM irrelevant for the kind of data studied, however labelled relevantly. Take for instance a linguist who
would like to group the words light, dark, holy and evil as regards their semantic field. He might consider two
criteria: brightness and goodness, and select e.g. the following numerical representations: light: +5 (brightness),
+1 (goodness); dark: -5, -1; holy: +1, +5; evil: -1, -5. For sure an irrelevant labelling, i.e. a bad choice in the
previous criteria (say, choosing the number of vowels and the number of consonants) would obviously give him
a meaningless result. But an irrelevant clustering method, e.g. based on Euclidian distances, would also give
him inconsistent output in grouping light with holy, and dark with evil, while he wanted light with dark, and holy
with evil.
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Figure 2.3: Galois lattice of the sample community (hierarchical structure drawn in solid lines
relatively to @, i.e. “bottom”@“top”). The medium level (dashed ellipse) contains closed
couples ({s1, s2, s3}; {Lng}) and ({s2, s3, s4}; {NS}) obviously corresponding to major fields
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({s1, s2}; {Lng, Prs}) or ({s2, s3}; {Lng, NS}), possibly prototypical of more specific subfields.

divided into many subfields, themselves possibly having subcategories or belonging to vari-
ous general fields, and (ii) some fields can be multi-disciplinary or inter-disciplinary in that they
respectively involve or integrate two or more subfields (Klein, 1990). For instance, cognitive
science is a general field gathering various subfields such as cognitive linguistics and cogni-
tive neuroscience, thus being multidisciplinary. But the subfield “cognitive neurolinguistics”
is interdisciplinary because it mixes both parent disciplines.

GL relevance as regards these properties results from its natural partial orderv, which re-
flects a generalization/specialization relationship between fields and subfields as discussed
previously (see also Fig. 2.3), as well as multidisciplinarity and interdisciplinarity through
particular patterns called diamonds (see Fig. 2.4).

2.3.3 GLs and selective categorization

Thus, GLs are a relevant tool for building taxonomic lattices from simply R, S and C. More
generally, it is worth noting that we can replace authors with objects, and concepts with prop-
erties. This yields a generic method for producing a comprehensive taxonomy of any field
where categories can be described as a set of items sharing equivalently some property set.
This has been indeed a useful application of GLs in artificial intelligence (as “Formal Concept
Analysis”) (Wille, 1982; Ganter, 1984; Wille, 1997; Godin et al., 1998), and has been investi-
gated as well in mathematical sociology recently (Wasserman & Faust, 1994; Batagelj et al.,
2004), as well as mathematical social science in general (Freeman & White, 1993; Monjardet,
2003; Duquenne et al., 2003).

However, a serious caveat of GLs is that they may grow extremely large and therefore
become very unwieldy. Even for a small number of agents and concepts, GLs contain often
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significantly more than several thousands of ECs. Thus, it is still unclear why a GL would
produce a useful and usable categorization of the community under study. Indeed, by defi-
nition a GL contains all epistemic communities. This property is already restrictive: sets of
agents or sets of concepts which have nothing or nobody in common (i.e. their intension or
extension is ∅) or more generally which are not “closed”, are not epistemic communities and
hence do not appear in the GL. Yet GS,C,R contains all ECs: this includes naturally most sin-
gletons (s∧?, s∧) as well as (S,S∧), but also and especially all the intermediary ECs. Among
those, many do not correspond to an existing or relevant field of knowledge, because they
are too small or too specific. For a single scientist {s}, the closure {s}∧? will admittedly be
equal to {s}, because no other scientist than s is likely to use every concept in {s}∧ (there are
strong chances that ∀s′ ∈ S, ∃w ∈ s∧ and 6∈ s′∧). Agent s is “original”.

Consider the agents working on an actual knowledge field F (e.g. a real discipline). If
we consider only a few of these agents, there is a strong chance that they share some orig-
inal concepts other than those of F . These few agents S will thus constitute a small EC,
(S∧?, S∧ ) F ). However, the more agents working on F in S, the less likely they are to share
concepts other than those of F , and the more likely the decreasing intension S∧ reaches F .
For any agent set S whose intension S∧ reaches F , the corresponding epistemic community
S∧? is the whole community working on F . This induces a gap between (i) small ECs using
F plus some additional original concepts, and (ii) the suddenly emerging EC (S∧?, S∧ = F )
— “emerging” because it suddenly gathers many more agents than S. We conjecture that
there is a relevant level for which closed sets S∧?, and identically C?∧, are representative of a
field or a trend. This also means that some epistemic communities listed by GLs are deemed
to be prototypical of these fields. They are located between the whole agent set, too general,
and too specific communities, that is, at a medium level of size and generality which is to
be compared to the basic-level of categorization introduced by Rosch and Lloyd (1978).6 This

6Basic levels obey in particular to two principles (Barthélemy et al., 1996): (i) a principle of minimal cognitive
cost (which suggests for instance to look at largest communities), and (ii) a principle of reality (which requires to



medium level shall constitute our basic-level of epistemic categorization, in such a way that
the field would be too general above it (“superordinate categories”), and too precise under
it (“subordinate categories”).

Given these assumptions, GS,C,R is expected to exhibit significant structural properties
which could help design criteria for detecting major trends (basic-level categories) within
a more general field, in a somewhat automated manner. In particular, in the light of the
present remarks populated ECs should be remarkable ECs. We will bring empirical evidence
to support this conjecture in Chap. 3. More broadly, our objective is to use GLs in order to
extract a significant epistemic hypergraph of relevant ECs, which is in fine a taxonomy matching
empirical expert-based descriptions of the community structure.

2.4 Comparison with different approaches

Community and group detection have been investigated in both computer science (graph
theory as well as artificial intelligence) and sociology. Clustering methods originating from
computer science rely on graph theory and then on algorithms that partition graphs in a
number of clusters, fixed a priori or not (such as spectral bisection or Kernighan-Lin algo-
rithm (Newman, 2004)), or on object properties viewed as a multi-dimensional vector, where
objects are grouped according to their relative similarity (such as k-means (Hartigan, 1975),
probabilistic neural networks (Specht, 1990), Kohonen maps (Kohonen, 2000)), similarity
measures being mostly based on Euclidian distance. The main drawback of these methods
is their relevance for social science: they eventually infer communities with no particular
assumption on the nature of the social groups that these CMs are supposed to extract from
data. Thus, produced clusters have an unclear connection with what social scientists would
call communities.

Sociologists by contrast introduce hypotheses and tools proper to social networks — such
as cohesion and strong ties (Burt, 1978; Wellman et al., 1988), centrality (Freeman, 1977; Fried-
kin, 1991) or structural equivalence (Lorrain & White, 1971) — which yield CMs more ad-
equate to social group detection than generic computer science methods, including for in-
stance hierarchical clustering (Johnson, 1967), structural balance (Doreian & Mrvar, 1996),
blockmodeling (Batagelj et al., 1999) or, more recently, structural cohesion and k-components
(Moody & White, 2003), and the Girvan-Newman algorithm (Girvan & Newman, 2002) and
its improvement by Radicchi et al. (2004).

In addition, most of these methods produce hierarchically structured clusters which are
in fact more or less dendrograms. Yet a dendrogram is a cluster tree, and ascendancies cannot
be multiple: a community is bound to be embedded into a lineage of increasing communities.
It cannot have ascendancies in various “directions,” and an agent cannot be part of many
non-embedded, overlapping communities.

In any case, methods relying only on single networks of social relationships (e.g. co-
authorship) may prove to be insufficient and inefficient in order to find epistemic commu-

check that reality fits the assumptions on category structure).
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Figure 2.5: Two significantly different two-mode datasets (left) yield an identical one-mode
projection (right), when linking pairs of agents sharing at least one concept. s1, s2, s3 are
agents, c, c1, c2, c3 are concepts.

nities which, as we said before, are not necessarily socially linked. One-mode data (or pro-
jection of two-mode data onto one-mode data) also entails a loss of crucial structural infor-
mation (see Fig. 2.5). Consider for instance a one-mode concept network where links arise
between two concepts whenever they share some authors: there would be no way, here, to
distinguish a triangle of concepts sharing the same set of authors, from a triangle of con-
cepts linked through pairs of totally different author sets; this distinction is however central
in our case. Data duality brought by the reciprocal linkage of agents to concepts and the
corresponding symmetry between agent-based and concept-based notions (definitions 1, 2,
3 and EC-2, and definition 4) is moreover well rendered by a GL, being a hierarchy of closed
couples considered equivalently as agent sets or as concept sets.





Chapter 3

Empirical results

In this chapter, (i) we present a first experimental protocol, enabling us to create a static
taxonomy from bibliographic data, and (ii) we validate a basic stylized fact, the presence of
ECs having a large agent set — a feature which cannot be explained only by the popularity of some
concepts, as we will show.

3.1 Experimental protocol

To conduct our experiments on scientific communities, we need data stipulating which agents
use which concepts. We consider article collections, assuming that articles are a faithful ac-
count of what their authors are working on. However, an important point is to define what
a concept is, such that it appears in an article. Is it a paradigm such as “universal gravitation”
or a simple word like “operon”? For instance, authors provide their articles with keywords:
considering these keywords as concepts might constitute a relevant level of categorization
while being a convenient idea. Yet, keywords are poor indicators, for authors often omit
important keywords. Depending on the database, keywords for a same article may differ.

Word groups as concepts Getting concepts through words and nominal groups (terms)
from the title, abstract or body is safer. At first we considered that each word or nominal group
is a concept, even if we were still hampered by linguistic phenomena such as homonymy,
polysemia, synonymy (Jackendoff, 2002), syllepsis (Jacquelinet et al., 2000), and the fact that
different authors may have different definitions of the same word or understand different
concepts under an identical nominal group (Lavie, 2003). Some techniques (Wang et al., 2000)
could be used to determine the contextual meaning of nominal groups, but we assumed that
nominal groups represent sufficiently distinguishable and homogenous references to con-
cepts — we also ignored the fact that their meaning possibly evolves with time (Leydes-
dorff, 1997). This definition does not prevent us from observing higher-level concepts such
as theories or even paradigms, because we can refer to these concepts a posteriori by consid-
ering sets of words, for example interpreting {“cell,” “DNA,” “gene,” “genetics,” “molecular”}
as molecular biology.
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We proceeded with title and abstract words only, because complete article contents are
seldom available. While apparently rough, these minimal assumptions yielded significant
results anyway.

Data processing We treated the data according to the following methodology:

1. Collect and automatically process article data (title, abstract, authors) for a given com-
munity and period of time. As regards abstract and title, we apply a basic linguistic
processing consisting in:

• Excluding unsignificant words (stop-words), such as common and rhetorical En-
glish words (“often,” “then,” “we,” etc.) and irrelevant words with respect to the
domain (“demonstrate,” “postulate,” “specimen,” “study,” etc.), using a list of more
than 2,500 words, to which we add non-words such as figures, percentages, dates,
etc.

• Excluding rare words, i.e. words appearing n times or less in the whole corpus
(such as words appearing only once, also called hapax legomena or hapaxes). We
took n = 4.

• Stemming the remaining words, i.e. reducing morphological variants of words
to their stem (root form) using a slightly improved version of Porter’s stemming
algorithm (Porter, 1980), and then creating the corresponding word classes (for
example, “genetic” and “genetics” both reduce to “genet”).

2. Identify unique authors and unique words, and then create the weighted matrix R of
links between authors and words, where Rij is equal to the number of articles where
author i used concept j (see Fig.3.1).

3. Consider a representative sample of the whole community by extracting randomly and
uniformly some lines from matrix R. We chose to keep each line with probability .25
(this step aims at reducing GL computation cost by a factor 40).

4. Make R a binary matrix with respect to a given threshold α, i.e. replace Rij by 1 if
Rij > α, otherwise by 0: this means that an author will not be related to a concept
he used less than α times. We used a threshold of 0. Increasing the threshold would
critically reduce both computation costs and results significance.

5. Calculate the Galois lattice for the binary relation R built upon matrix R, using an
implementation of Ganter’s algorithm (Ganter, 1984; Lindig, 1998).

3.2 Results and comparison with random relations

We ran the process on articles published between 1990 and 1995 obtained through a search
for “zebrafish” in publicly available bibliographic data from the MedLine database, totaliz-
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ing 418 articles, 797 authors and 2129 words after step 2 of the protocol.1 After step 3, only
218 authors and 1817 concepts remained in R. This is the matrix we used for computing the
GL (steps 4 and 5).

Some authors and concepts appeared more frequently than others. There is a character-
istic distribution of links from agents to concepts and from concepts to agents: a lot of agents
(resp. concepts) are linked to few concepts (resp. agents), a small number of agents are re-
lated to many concepts, few concepts are related to many agents. We could fear GL artefacts
because frequent authors or frequent concepts are more likely to share or be shared by more
concepts or agents. Being part of bigger closed sets and increasing the number of these big
sets, they modify the GL structure, especially high-size closed sets. We could compare our
results with those from GLs calculated with random-generated relationships where this ex-
act property of the empirical data was kept. We kept the distributions of links on rows and
columns in the relationship matrix from step 3 while we reshuffled the links themselves, us-
ing an algorithm introduced by Molloy and Reed (1995). This algorithm consists in assigning
a number of outgoing links to concepts to each author, according to the desired distribution,
and identically assigning a number of outgoing links to authors to each concept; then match-
ing randomly the dangling links between authors and concepts. We call “random case” the
results obtained from computations on 40 such randomly rewired relationship matrices. We
also considered two other random cases: (i) keep the same density in the relationship (same
proportion of real links in respect of possible links), which is approximately one link out
of 30; and (ii) keep only the distribution of links from agents to concepts. Interestingly, the
corresponding GLs are dramatically small, with 16,000 epistemic communities whose sizes
do not exceed 5% of the whole community (see Fig. 3.2). Therefore, these cases were not
investigated further.

3.2.1 Empirical versus random

Fig. 3.2 represents the total number of epistemic communities versus the size of their agent
set. The empirical GL contains 214,000 closed couples, with communities ranging from 1
to 196 agents, except the epistemic community (S, ∅) containing all of the 218 agents under
study. The random case contains an average of around 207,000 closed couples in the ran-
dom case (standard deviation σ ' 64, 700), with agent set sizes ranging only from 1 to 60
(σ ' 5). While the empirical GL is approximately of the same size as random GLs, it con-
tains more high-size epistemic communities (371 communities representing more than a fifth
of the whole agent set, against a dozen communities for the random case). There is a quite
perfect fit on low-size closed couples, yet the empirical GL is denser on high-size couples.
Cumulated densities, the proportions of closed couples containing at least a given number
of agents, are shown on Fig. 3.3: 1% of the GL in the empirical case is made of epistemic com-

1This community was chosen in part because we are sure that scientists working on the zebrafish explicitly
mention the name of the animal, at least in the abstract. This would be less certain if we were looking for
scientists working on molecular biology, or quantum mechanics for instance. Of course, restricting the data to
articles present in MedLine could induce a bias, yet this database is also one of the most comprehensive for the
field.
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Figure 3.2: Raw distributions of agent set sizes.

munities containing 30 agents or more, against 0.05% in the random case. This proportion
is one thousandth against one thirty-thousandth for communities with 50 agents or over. In
the empirical case, we thus have a strongly significative discrepancy of at least one order of
magnitude more populated ECs with more than 10% of the whole agent set.

3.2.2 Rebuilding the structure

The presence of large groups of structurally equivalent agents pointing to the same groups
of concepts supports therefore the conjecture outlined in section 2.3: high-size epistemic
communities are thus a remarkable stylized fact of our empirical data. It is also of interest
to know whether these communities are significant and relevant, and if they help partition a
field into smaller subfields corresponding to real epistemic communities.

Our zebrafish expert, Nadine Peyriéras, showed that it was the case:

(i) The first and biggest community is unsurprisingly centered around the word “zebrafish”
and contains 196 agents (90% of the whole). The fact that it does not reach 100% of the



Figure 3.3: Cumulated densities of agent set sizes.



community reflects the imperfection of the empirical data collection and processing.

(ii) Then, a lot of large epistemic communities use a small set of words, namely “gene,”
“expression,” “pattern,” “embryo,” “develop” and “vertebrate.” A majority of the 218 agents
are present in at least one of these communities. This word set seems accordingly to
characterize the core paradigm of zebrafish researchers, even if each agent does not use
it entirely. According to our expert and to Grunwald and Eisen (2002), the zebrafish is
used as a vertebrate animal model for the study of gene expression and function during
embryonic development.

Similarly, another word subset of interest is made of “cloning,” “stage,” “transcription,”
“sequence,” “protein,” “region,” “encode,” which constitute the intensions of large epis-
temic communities (50 agents). According to our expert, these words are proper to
molecular biology or developmental studies, including zebrafish study, which consists
in isolating the mutated genes from a large number of mutant fish lines then in investi-
gating their effect on biological processes.

(iii) Thereafter, two major groups emerge: (i) one with the epistemic community based on
“growth” (39 agents), and (ii) the other around three epistemic communities whose
intensions are “neuron” (70 agents), “brain” (36 agents) and {“nervous”, “system”} (28
agents), with many agents in common and which altogether makes a group of 84 single
agents. With only 15 agents in common, communities (i) and (ii) represent two distinct
groups totalizing 108 agents. These groups correspond exactly to what the litterature
describes as significant subfields.2

Smaller communities help structure the field: the epistemic community based on {“tox-
icity”} is made of 23 agents with 9 shared with “growth” and only 3 with “brain”. This
latter group might be related to the study of the toxic effect of growth factors. The epis-
temic community based on words “acid” (45 agents) has an interesting descent, {“acid,”
“amino”} (22 agents) and {“acid,” “retino”} (21 agents), with only 3 agents in common
in the extension of {“acid,” “amino,” “retino”}, so this is a diamond with no relation-
ship between people working on amino acid and retinoic acid. Also, the closed couple
with intension {“spinal,” “cord”} (28 agents) includes the one based on {“spinal,” “cord,”
“neural,” “ventral”} (20 agents) with almost as many agents, suggesting that (i) “spinal”
and “cord” cannot be dissociated and (ii) people working on spinal cord are also very
familiar with concepts “neural” and “ventral.”

These findings summed up on Fig. 3.4 show that GLs are efficient both for determining
the community paradigm (or common background) and for finding prevailing communities

2At the beginning of the 90’s, according to Grunwald and Eisen (2002), “among the first mutants to be isolated
was one that was later discovered to be deficient in a growth factor needed for axis determination, a second
deficient in myofibril organization, and a third in which a specific portion of its nervous system failed to form”.

According to the program of the first conference on zebrafish development and genetics at the CSH Laboratory
in 1994, there were seven theme-based sessions, including two on nervous system and one on growth control.
Approximately, these two fields represented half the sessions and half the community.
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are various possible partitions of the whole agent set, depending on what one is looking at:
objects, processes, methods. Note that on this figure we ignored communities containing
paradigmatic words (“develop,” “gene,” etc.), thus focusing on more discriminating ECs.

as well as basic-level subcommunities. This first partition is made from data of the period
1990-1995 and is supposed to be a static picture of the community structure in December
1995. Methods for studying the community evolution through the dynamics of the GL will
be described in section 5.

These results also show the usefulness of binding agents to concepts networks and taking
into account data of both types, since detected communities here are not necessarily socially
grounded: agents who belong to the same EC are likely for example to have never collab-
orated. It would have been certainly uneasy, if not impossible, to detect them with single-
network based methods. Moreover, distributions of links between agents and concepts do
not account alone for the particular clustered structure of ECs. There is more structure in the
empirical network than distributions of links would suggest.



Chapter 4

Community selection

So far, from a low-level L made of a relation R between agents and concepts, Galois lattices
helped us define a projection P (L) which matches two high-level phenomena: (i) the pres-
ence of ECs gathering many agents, and (ii) an expert-based description of the community.
Now, we would like to improve taxonomies produced by GLs, so that we are also able to
provide an history of the field that matches an expert-based history.

To this end, a critical issue relates to the design of better criteria for distinguishing basic-
level epistemic communities: what makes an epistemic community be a “basic-level” com-
munity? Which ECs should we extract from the GL to build a reduced and meaningful
hypergraph of ECs? The property of gathering an important proportion of agents is a good
yet insufficient first estimate. This quite simple criterion bears some major drawbacks, such
as the fact that small communities are ignored, even if they correspond to well-defined but
isolated fields. In this respect taking communities close to the top is more relevant.1 These
communities are indeed just more specific than the whole community. Hence, a more de-
tailed set of selection properties may include distance from the top epistemic community,
distance from the empty epistemic community (∅, C), and concept set size. In this section
we explore the reduction of the GL to a manageable taxonomy.

4.1 Rationale

As we previously noticed GLs are usually very large, thus, considering only useful and
meaningful patterns instead of manipulating whole lattices becomes crucial (in particular
in an epistemological thus dynamic perspective, it would be significantly harder to track a
series of GLs than just examining a static lattice). This means selecting from a possibly huge
GL which ECs are relevant to taxonomy rebuilding, and excluding a large number of irrele-
vant ECs that could blur the picture of the community. In other words, we consider a partial,
manageable view of the whole GL which we choose in order to reflect the most significant
part and patterns of the taxonomy. Formally, the partial view is not anymore a lattice as

1In other words, those belonging to the maximal antichain, which is the subset of the ECs of GS,C,R which are
not comparable one to each other, and which are maximal (each one of them is not included in any other EC).
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Figure 4.1: From the original GL to a selected poset, or partial epistemic hypergraph.

defined previously: it is a partially-ordered set, or poset; nonetheless it overlays on the lattice
structure and still enjoys the taxonomical properties we are interested in (see Fig. 4.1). For
the sake of clarity, we will name “partial epistemic hypergraph” such a poset.

Selection preferences This selection process has so far been an underestimated topic in the
study of GLs, with an important part of the effort focused on GL computation and represen-
tation (Dicky et al., 1995; Godin et al., 1998; Ferré & Ridoux, 2000; Kuznetsov & Obiedkov,
2002). Nevertheless, some authors insist on the need for semantic interpretations and ap-
proximation theories in order to cope with GL combinatorial complexity (Van Der Merwe &
Kourie, 2002; Duquenne et al., 2003). In our case, we need to specify selection preferences,
i.e. which kind of ECs are relevant for a concise taxonomy description.

At first, we would certainly focus on the largest ECs while ignoring either too small or too
specific closed sets, as we did so far: if a set of properties, attributes or concepts corresponds
to a field, one can expect that the corresponding extension is of a significant size. Since fields
tend to be made of large groups of agents, and also because a GL mostly consists of small
communities, size proved to be a segregating and efficient criterion, categorizing a large
portion of the whole community — however still an unsufficient criterion. Indeed, using
only this criterion may be over-selective or under-selective, notably in the following cases:

• Small yet significant sets. One should not pay attention to very small closed sets, for
instance those of size one or two: in general they cannot be considered representative
of any particular EC. There is thus a pertinent threshold for the size criterion. However,
this may still exclude some small ECs that could actually be relevant, notably those
prototypical of a minority community. If so, some other criteria might apply as well:

(i) such ECs indeed, while being small, are unlikely to be subsets of other ECs and are



more likely to be located in the surroundings of the lattice top;

(ii) alternatively, they may be unusually specific with respect to their position in the
lattice;

(iii) finally, being outside the mainstream may make them less likely to mix with other
ECs, thus having fewer descendants.

• Large yet less significant sets. Large contingent ECs may augment the GL uselessly. This
is the case:

(i) when two ECs are large: it is likely that their intersection exists and has fortuitously
a significant size — we could discriminate ECs whose size is not significant enough
with respect to their smallest ascendant.

(ii) when empirical data fails to mention that some agents are linked to some properties:
two or more very similar ECs appear where only one exists in the real world2 — we
could avoid this duplicity by excluding ECs whose size is too close to that of their
smallest ascendant.

4.2 Selection methodology

Extending preferences and criteria Hence, agent set size does not matter alone and selec-
tion preferences cannot be based on size only. For instance, small ECs distant from the top are
likely to be irrelevant, and certainly the most uninteresting ECs are the both smaller and less
generic ones. To keep small meaningful ECs and to exclude large unsignificant ones, some
more criteria are required to design the above preferences. For a given epistemic community
(S, C), we may propose the following criteria:

1. size (agent set size), |S|;

2. level (shortest distance to the top3), d;

3. specificity (concept set size), |C|;

4. sub-communities (number of descendants), nd;

5. contingency / relative size (ratio between the agent set and its smallest ascendant), λ.

2Indeed, let s1, s2, s3, s4 and s5 work on c1, c2, c3, c4 and c5, in reality. Suppose now that some data for s5 is
missing and that we are ignorant of the fact that s5 works on c5. Then there will be two distinct communities:
({s1, s2, s3, s4}, {c1, c2, c3, c4, c5}) and ({s1, s2, s3, s4, s5}, {c1, c2, c3, c4}), which cover a single real EC.

3We take here the shortest length of all paths leading to the top EC (S, ∅) (the whole community). Indeed,
paths from a node to the top are not unique in a lattice; we could also have chosen, for instance, the average
lengths of all paths.



Selection heuristics Then, we design several simple selection heuristics adequately ren-
dering selection preferences. Selection heuristics are functions attributing a score to each EC
by combining these criteria, so that we only keep the top scoring ECs. We may not neces-
sarily be able to express all preferences through a unique heuristic. Therefore, the selection
process involves several heuristics: for instance one function could select large communities,
while another is best suited for minority communities. We ultimately keep the best nodes
selected by each heuristic (e.g. the 20 top scoring ones).

Notice that agent set size |S| remains a major criterion and should take part in every
heuristic. Indeed, a heuristic that does not take size into account could assign the same score,
for example, to a very small EC with few descendants (like those at the lattice bottom) and
to a larger EC with as many few descendants (possibly a worthy heterodox community).
In other words, given an identical size, heuristics will favor ECs closer to the top, having
less descendants, etc. In general we need heuristics that keep the significant upper part of
the lattice. Hence distance to the top d is important as well and should be used in many
heuristics.

While we can possibly think of many more criteria and heuristics, we must yet make a
selection among the possible selection heuristics, and pick out some of the most convenient
and relevant ones. In this respect, the following heuristics are a possible choice:

1. |S| : select large ECs,

2.
|S|
d

: select large ECs close to the top,

3. |S| |C|
d

: select large ECs unusually specific,

4.
|S|
dnd

: select large ECs close to the top and having few descendants,

5.
|S|
d

(λ− λ+)(λ− − λ): select large non-contingent ECs close to the top.4

Fine tuning these heuristics eventually requires an active feedback from empirical data.
For instance, one could prefer to consider only the first heuristics, and accordingly to focus
on taxonomies including only large, populated, dominant ECs. Exploring further the ade-
quacy and optimality of the choice and design of these heuristics would also be an interesting
task — heuristics yielding e.g. a maximum number of agents for a minimal number of ECs —
however unfortunately far beyond reach in the present effort. We will thus authoritatively
keep and combine these few heuristics to build the partial epistemic hypergraph from the
original GL, as shown on Fig. 4.1. In any case, correct empirical results with respect to the
rebuilding task will acknowledge the validity of this choice.

4That is, of a moderate size relatively to their parents: λ ∈ [λ−; λ+] — we could thus expect to exclude fortu-
itous EC intersections when λ < λ−, and duplicate ECs when λ > λ+.



Chapter 5

Taxonomy evolution

To monitor taxonomy evolution we monitor partial epistemic hypergraph evolution. To this
end, we create a series of partial epistemic hypergraphs from GLs corresponding to each
period, and we capture some patterns reflecting epistemic evolution by comparing successive
static pictures. In other words, we proceed to a longitudinal study of this series.

Interesting patterns include in particular:

• progress or decline of a field: a burst or a lack of interest in a given field;

• enrichment or impoverishment of a field: the reduction or the extension of the set of con-
cepts related to a field;

• reunion or scission of fields: the merging of several existing fields into a more specific
subfield or the scission of various fields previously mixed.

In terms of changes between successive partial epistemic hypergraphs, the first pattern
simply translates into a variation in the population of a given EC: the agent set size increases
or decreases.

The second pattern reduces in fact to the same phenomenon. Indeed, suppose “linguis-
tics” is enriched by “prosody”, i.e. {Lng} is enriched by {Prs}, thus becoming {Lng, Prs}.
This means that the population of {Lng, Prs} is increasing. Since this EC is still a subfield of
{Lng}, the enrichment of {Lng} by {Prs} translates into an increase of its subfield. Similarly,
the decrease of {Lng, Prs} would indicate an impoverishment of the superfield {Lng}.1

Finally, the union of various fields into an interdisciplinary subfield as well as the scis-
sion of this interdisciplinary field comes in fact to an increase or a decrease of a joint subfield
— geometrically, this means that a diamond bottom is emerging or disappearing (see Fig.
5.1–bottom). Obviously a merging (respectively a scission) is also an enrichment (resp. im-
poverishment) of each of the superfields.

1More formally, say a field (S, C1) is enriched by a concept c, becoming (S′, C1 ∪ c). This means that the
subfield (S′, C1 ∪ c) is increasing — as it is a subfield of (S, C1), it is a subfield increase. In the limit case, when
all agents working on C1 are also working on c, the superfield (S, C1) becomes exactly (S, C1 ∪ c). In all other
cases, it is (S′, C1 ∪ c), a strictly smaller subfield of (S, C1), with S′ ⊂ S. Conversely, if a field (S′, C1 ∪ c) is to
lose a specific concept c, the subcategory (S′, C1 ∪ c) is going to decrease relatively to (S, C1).
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Figure 5.1: Top: progress or decline of a given EC (S1, C), whose agent set is growing (above)
or decreasing (below) to S2. Middle: enrichment or impoverishment of (S, C1) by a concept
c, through a population change of the subfield (S′, C1 ∪ c). Bottom: emergence or disappear-
ance of a joint community (diamond bottom) based on two more general ECs, (S, C) and
(S′, C ′). Disk sizes represent agent set sizes.



Hence, each of these three kinds of patterns corresponds to a growth or a decrease in
agent set size. The interpretation of the population change ultimately depends on the EC
position in the partial epistemic hypergraph, and should vary according to whether (i) there
is simply a change in population, (ii) the change occurs for a subfield and (iii) this subfield is
in fact a joint subfield. These patterns, summarized on Fig. 5.1, describe epistemic evolution
with an increasing precision. More precise patterns could naturally be proposed, but as we
shall see, these ones are nevertheless sufficiently relevant for the purpose of our case study.

5.1 Empirical protocol

We complete here the empirical protocol presented in Chap. 3 to make it suitable for this
method. To describe the community evolution over several periods of time, as previously
we use data telling us when an agent s uses a concept c. Accordingly, we divide the database
into several time-slices, and build a series of relation matrices aggregating all events of each
corresponding period. Before doing so, we need to specify the way we choose the time-slice
width (size of a period), the time-step (increment of time between two periods) and the way
we attribute a concept to an agent, thus to an article.

Time-slice width We must choose a sufficiently wide time-slice in order to take into ac-
count minority communities (who publish less) and to get enough information for each au-
thor (especially those who publish in multiple fields).2 Doing so also smoothes the data by
reducing noise and singularities due to small sample sizes.

However, when taking a longer sample size, we take the risk of merging several peri-
ods of evolution into a single time-slice. There is arguably a tradeoff between short but too
unsignificant time-slices, and long but too aggregating ones. This parameter must be em-
pirically adapted to the data: depending on the case, it might be relevant to talk in terms of
months, years or decades.

Time-step The time-step is the increment between two time-slices, so it defines the pace
of observation. We need to consider overlapping time-slices, since we do not want to miss
developments and events covering the end of a period and the beginning of the next one.
Therefore, we need to choose a time-step strictly shorter than the time-slice width, as shown
on Fig. 5.2.

Moreover, the time-step is strongly related to the community time-scale: seeing almost no
change between two periods would indicate that we are below this time-scale. We need to
pick out a time-step such that successive periods exhibit sensible changes.3

2For instance, extremely few authors publish more than one paper during a 6-month period, so obviously
6-month time-slices are not sufficient.

3We may nevertheless suggest a more objective method for choosing time-step and overlap sizes. Consider
indeed the density of evolution patterns “d(i) = #patterns during i/time-slice width”, for a given time-slice i.
To this end we need to define clearly when a pattern is present: we have to define a threshold µ such that we
consider a pattern to be present as soon as a given EC size changes by µ% between two periods. The goal is thus
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Figure 5.2: Series of overlapping periods P1, P2 and P3.

5.2 Case study, dataset description

We considered the same particular community of embryologists working on the model an-
imal “zebrafish”, but extended the set of articles to the whole period 1990–2003. Thus, we
covered what experts of the field call the beginning of the major growth of this community,
up to recent times. As such, this timespan corresponds to a recent and important period
of expansion for this community, which gathered approximately 1, 000 agents at the end of
1995, and reached nearly 10, 000 people by end-2003. We chose a time-slice width of 6 years,
with a time-step of 4 years — that is, a 2 years overlap between two successive periods. We
thus splitted the database in three periods: 1990-1995, 1994-1999 and 1998-2003.

To limit computation costs, we restricted the dictionary to the 70 most used and signifi-
cant words in the community, selected with the help of our expert. We also considered for
each period a random sample of 255 authors. Besides, we used a fixed-size author sample so
as to distinguish taxonomic evolutions from the trend of the whole community. Indeed, as
the community was growing extremely fast, an EC could become more populated because
of the community growth, while it was in fact becoming less attractive. With a fixed-sized
sample, we could compare the relative importance of each field with respect to others within
the evolving taxonomy.

5.3 Rebuilding history

5.3.1 Evolution description

Few changes occured between the first and the second period, and between the second and
the third period: the second period is a transitory period between the two extreme periods.
This seems to indicate that a 4-year time-step is slightly below the time-scale of the commu-

to get the maximum uniformity in time-slice significance, which is equivalent to have the smallest variance for
d. We could finally draw the variance σd for various values of time-step and overlap, and select values that yield
the smallest variance.



nity, while 8 years can be considered a more significant time-scale.4

We hence focus on two periods: the first one, 1990-1995, and the third one, 1998-2003.
The two corresponding partial epistemic hypergraphs are drawn on Fig. 5.3 (page 50). We
observe that:

• First period (1990-1995), first partial epistemic hypergraph: {develop} and {pattern} strongly
structure the field: they are both large communities and present in many subfields.

Then, slightly to the right of the partial hypergraph, a large field is structured around
brain5 and ventral along with dorsal. Excepting one agent, the terms spinal and cord
form a community with brain; this dependance suggests that the EC {spinal, cord} is
necessarily linked to the study of brain. Subfields of {brain} also involve ventral and
dorsal. In the same view, {brain, ventral} has a common subfield with {spinal, cord}.

To the left, another set of ECs is structured around {homologous}, {mouse} and {vertebrate},
and {human}, but significantly less.

• Third period (1998-2003), second partial epistemic hypergraph: We still observe a strong
structuration around {develop} and {pattern}, suggesting that the core topics of the field
did not evolve.

However, we notice the strong emergence of three communities, {signal}, {pathway} and
{growth}, and the appearance of a new EC, {receptor}. These communities form many
joint subcommunities together, as we can see on the right of this lattice, indicating a
convergence of interests.

Also, there is a slight decrease of {brain}. More interestingly, there is no joint community
anymore with {ventral} nor {dorsal}. The interest in {spinal cord} has decreased too, in a
larger proportion.

Finally, {human} has grown a lot, not {mouse}. These two communities are both linked
to {homologous} on one side, {vertebrate} on the other. While the importance of {homolo-
gous} is roughly the same, the joint community with {human} has increased a lot. The
same goes with {vertebrate}: this EC, which is almost stable in size, has a significantly
increased role with {mouse} and especially {human} (a new EC {vertebrate, human} just
appeared).

5.3.2 Inference of an history

To summarize in terms of dynamic patterns: some communities were stable (e.g. {pat-
tern}, {develop}, {vertebrate, develop}, {homologous, mouse}, etc.), some enjoyed a burst of interest
({growth}, {signal}, {pathway}, {receptor}, {human}) or suffered less interest ({brain} and {spinal

4Kuhn (1970) asserts that old ideas die with old scientists — equivalently new ideas rise with new scientists.
In this community, 8 years could represent the time required for a new generation of scientists to appear and
define new topics; e.g. the time between an agent graduation and his first students graduation.

5We actually grouped brain, nerve, neural and neuron under this term.
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Legend: All: the whole community, Hom: homologue/homologous, Mou: mouse, Hum: human, Ver:
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Figure 5.3: Two partial epistemic hypergraphs representing the community at the end of 1995
(top) and at the end of 2003 (bottom). Figures in parentheses indicate the number of agents
per EC. Lattices established from a sample of 255 agents (out of 1, 000 for the first period vs.
9, 700 for the third one).



cord}). Also, some ECs merged ({signal}, {pathway}, {receptor} and {growth} altogether; and {hu-
man} both with {vertebrate} and {homologous}), some splitted ({ventral-dorsal} separated from
{brain}). We did not see any strict enrichment or impoverishment — even if, as we noted
earlier, merging and splitting can be interpreted as such.

We can consequently suggest the following story: (i) research on brain and spinal cord
depreciated, weakened their link with ventral/dorsal aspects (in particular the relationship
between ventral aspects and the spinal cord), (ii) the community started to enquire relation-
ships between signal, pathway, and receptors (all actually related to biochemical messaging),
together with growth (suggesting a messaging oriented towards growth processes), indicat-
ing new very interrelated concepts prototypical of an emerging field, and finally (iii) while
mouse-related research is stable, there has been a significant stress on human-related topics,
together with a new relationship to the study of homologous genes and vertebrates, under-
lining the increasing role of {human} in these differential studies and their growing focus on
human-zebrafish comparisons (leading to a new “interdisciplinary” field).

Point (ii) entails more than the mere emergence of numerous joint subcommunities: all
pairs of concepts in the set {growth, pathway, receptor, signal} are involved in a joint subfield.
Put differently these concepts form a clique of joint communities, a pattern which may be
interpreted as paradigm emergence (see Fig. 5.3–bottom).

5.3.3 Comparison with real taxonomies

We compared these findings with empirical taxonomical data, coming both from:

1. Expert feedback: Our expert, Nadine Peyriéras, confirms that points (i), (ii) and (iii)
in the previous paragraph are an accurate description of the field evolution. For in-
stance, according to her, the human genome sequencing in the early 2000s (Interna-
tional Human Genome Sequencing Consortium, 2001) opened the path to zebrafish
genome sequencing, which made possible a systematic comparison between zebrafish
and humans, and consequently led to the development described in point (iii). In ad-
dition, the existence of a subcommunity with brain, spinal cord and ventral but not dorsal
reminded her the initial curiosity around the ventral aspects of the spinal cord study,
due to the linking of the ventral spinal cord to the mesoderm (notochord), i.e. the rest
of the body.

2. Litterature: The only article yet dealing specifically with the history of this field seems
to be that of Grunwald & Eisen (2002). This paper presents a detailed chronology of the
major breakthroughs and steps of the field, from the early beginnings in the late 1960s
to the date of the article (2002). While it is hard to infer the taxonomic evolution until
the third period of our analysis, part of their investigation confirms some of our most
salient patterns: “Late 1990s to early 2000s: Mutations are cloned and several genes that
affect common processes are woven into molecular pathways” — here, point (ii). Note that
some other papers address and underline specific concerns of the third period, such as
the development of comparative studies (Bradbury, 2004; Dooley & Zon, 2000).



3. Conference proceedings: Finally, some insight could be gained from analyzing the evo-
lution of the session breakdown for the major conference of this community, “Zebrafish
Development & Genetics” (Cold Spring Harbor Laboratory, 1994, 1996, 1998, 2000,
2001, 2002, 2003). Topic distribution depends on the set of contributions, which reflects
the current community interests; yet it may be uneasy for organizers to label sessions
with a faithful and comprehensive name — “organogenesis” for instance covers many
diverse subjects. Reviewing the proceedings roughly suggests that comparative and
sequencing-related studies are an emerging novelty starting in 1998, at the beginning
of the third period, which agrees with our analysis. On the contrary, the importance
of issues related to the brain & the nervous system, as well as signaling, seem to be
constant between the first and the third period, which diverges from our conclusions.

The expert feedback here is obviously the most valuable, as it is the most exhaustive and
the most detailed as regards the evolving taxonomy — the other sources of empirical valida-
tion are more subject to interpretation and therefore more questionable. A more comprehen-
sive empirical protocol would consist in including a larger set of experts, which would yield
more details as well as a more intersubjective viewpoint, thus objective.



Chapter 6

Discussion and conclusion

We presented here a method for extracting a meaningful taxonomy of any knowledge com-
munity, in the form of hypergraphs, and successfully validated it with empirical expert-
based descriptions for a given scientific community. In other words, we designed a valid
projection function P from the low-level of relations between agents and concepts to the
high-level of epistemological descriptions. In particular, in Sec. 5.3, the two partial epistemic
hypergraphs can be seen as P (L1995) and P (L2003), which match expert-based H1995 and
H2003. More, the transition from H1995 to H2003 (ηe) is also reproduced: we provide a valid
high-level dynamics η by describing the taxonomy evolution description.

The computer programs we created to achieve data processing, empirical experiments
and Galois lattice computations will also be made available shortly, as open source soft-
ware. It will thus be possible to reuse them in potentially any other similar case. We are
hopeful that the process can be widely used for representing and analyzing static and dy-
namic taxonomies: in the first place, it could be helpful to historians of science, in domains
where historical data is lacking — notably when examining the recent past. Studies such
as the recent history of the zebrafish community, written by scientists themselves from this
community (Grunwald & Eisen, 2002), could profit from such non-subjective analysis. In
this particular case the present study might be considered the second historical study of the
“zebrafish” community. At the same time, with the growing number of publications, some
fields produce thousands of articles per year. It is more and more difficult for scientists to
identify the extent of their own community: they need efficient representation methods to
understand their community structure and activity.

More generally, unlike many categorization techniques, community labelling here is straight-
forward, as agents are automatically bound to a semantic content. Additionally, these cat-
egories would have been hard to detect using single-network-based methods, for instance
because agents of a same EC are not necessarily socially linked. Moreover, projection of such
two-mode data onto single-mode data often implies massive information loss (see Sec. 2.3).
Finally, the question of overlapping categories — hardly addressed when dealing with den-
drograms — is easily solved when observing communities through lattices.

Also, using this method is possible in at least any practical case involving a relation-
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ship between agents and semantic items. As stated by Cohendet, Kirman & Zimmermann
(2003), “a representation of the organization as a community of communities, through a system of
collective beliefs (...), makes it possible to understand how a global order (organization) emerges from
diverging interests (individuals and communities).”1 In addition to epistemology, scientomet-
rics and sociology, other fields of application and validation include economics (start-ups
dealing with technologies, through contracts), linguistics (words and their context, through
co-appearance within a corpus), marketing (companies dealing with ethical values, through
customers cross-preferences), and history in general (e.g. evolution of industrial patterns
linked to urban centers (White & Spufford, 2006)). Having significant results in many dis-
tinct fields would support the overall robustness of GL-based taxonomy building.

Lattice manipulation On the other hand, our method could enjoy several improvements.
Practically, note that computing the whole GL then selecting a partial epistemic hypergraph
is certainly not the most efficient option. Rather, computing the upper part and its “valuable”
descendance (computing a fixed number of ECs, starting from the top) should perform better
— similarly to what is done with “iceberg lattices” (Stumme et al., 2002). Thus GL computa-
tion complexity, which is theoretically exponential, is limited upfront by the number of ECs
which should be computed. This requires however to use monotonic selection heuristics, i.e.
heuristics respecting the lattice partial order: if (S, N) @ (S′, N ′), then h(S, N) < h(S′, N ′).
Similarly, selection heuristics must allow for significant child nodes to appear. Indeed, when
two fields do not seem to form a joint subfield in the partial hypergraph, it is hard to know
whether they actually form a joint subfield but are below the threshold. In the second lattice
for instance, although of similar importance as {spinal cord} (17 vs. 18 agents), the EC {brain,
spinal cord} is excluded by the selection threshold and does not appear, possibly leading us
to wrongly deduce that {brain} does not mix with {spinal cord}.

In the same direction, we could endeavor to exclude false positives such as fortuitous
intersections (as discussed in section 4.1) and merge clusters of ECs into single multidisci-
plinary ECs (like for instance “signal,” “pathway,” “receptor”). This would lead to reduced
partial hypergraphs containing merged sublattices. Questions arise however regarding the
best way to define a cluster of ECs without destroying overlapping communities, one of the
most interesting feature of GLs. Accordingly, it could also be profitable to disambiguate and
regroup terms in the lattice using for instance Natural Language Processing (NLP) tools (Ide
& Véronis, 1998): certainly not everyone assigns the same meaning to “pattern;” we would
thus have to introduce “pattern–1,” “pattern–2,” etc.

More generally, improving linguistic processing could be very informative, and could
first include the use of:

• Lemmatizers: algorithms giving the root of a word, instead of using a stemmer like
the one used here (the “Porter stemmer,” though it is also a quite simple yet efficient

1“Une représentation de l’organisation comme une communauté des communautés, à travers un système de croyances
collectives (...), permet (...) de comprendre comment émerge un ordre global (organisation) à partir d’intérêts divergents
(individus et communautés).”



lemmatizer);

• Taggers: algorithms detecting word grammatical status in context, e.g. “subject,” “verb,”
etc.;

• Morphological analyzers: algorithms recognizing the shape of a word actually com-
posed of two or more words, like “molecular biology,” “positon emission tomogra-
phy,” etc.;

• Dictionaries: ontologies of the domain, returning classes of words considered as equiv-
alent (as stated in Chap. 3), like “zebrafish” and “rerio brachydanio,” the former being
the common name of the latter;

• Disambiguators: algorithms determining the meaning of words by examining the con-
text in which they are used (Wang et al., 2000).

Most of these tools already exist, although their joint use would require a judicious work
of integration. Alternatively, it could be useful to compare these results with those from
data processed by human experts, where all linguistic processing problems become quite
obsolete. For instance, (i) by providing them with a fixed list of concepts and making them
classify agents according to this list, or (ii) by making them identify a restricted list of words
they know to be sufficiently descriptive for a given set of articles (e.g. protein nomenclature
consisting of very specific names (Lelu et al., 2004)).

Lastly, considering that some authors are more or less strongly related to some concepts,
the binary relationship may seem too restrictive. To this end, we could use a weighted rela-
tion matrix together with fuzzy GLs (Belohlavek, 2000).

Dynamics study Another major class of improvements is related to the study of the dy-
namics. Indeed, we are now able to represent an evolving taxonomy but we ignore whether
individual agents have fixed roles or not. In particular, the stability of the size of an EC does
not imply the stability of its agent set. Fortunately, even if our random agent samples are
not consistant across periods, it would be easy to rebuild the whole community taxonomy
by filling the partial ECs with their corresponding full agent sets. In this case, field scope en-
richment or impoverishment could be described in a better way: by monitoring an identical
agent set, and by watching whether its intension increases or not.

More generally, we could address this topic by considering the lattice dynamics, instead
of adopting a longitudinal approach. A dynamic study would yield a better representation of
field evolution at smaller scales, nevertheless saving us the empirical discussion about the
right time-step.

Conclusion of Part I

In this part, we proposed a method for describing and categorizing knowledge communities
as well as capturing essential stylized facts regarding their structure. After having reviewed



the definitions in use in social science for knowledge communities, or “epistemic communi-
ties,” we formally defined an epistemic community as the largest group of agents who share
and work on the same concepts — as such, a conception close to structural equivalence.
We showed next that the Galois lattice structure was an adequate clustering method with
respect to this definition. Assuming that such communities are structured in fields and sub-
fields of common concerns, a GL faithfully represents epistemic community taxonomies by
automatically partitioning the community into hierarchic fields and subfields. In addition,
it accurately renders overlaps among epistemic communities, commonly called interdisci-
plinary fields. Finally, because it relies on the very duality of epistemic communities (agents
having common interests), our method diverges from single-network-based methods using
for instance relationships or semantic proximity.

Yet, it was unclear whether this was sufficient to make it a useful method for appraising
so-produced taxonomies, because the set of all epistemic communities could possibly prove
really huge and intractable. GLs organize the data but they do not reduce it much. To this end, we
conjectured the existence of criteria enabling us to discriminate within the lattice between
“uninteresting” communities and interesting ones; among which EC size and position in
the lattice were of particular interest. With respect to heuristics based on these criteria, se-
lecting the most relevant epistemic communities produced a partial epistemic hypergraph
providing a manageable representation of the hierarchical structure.

Empirical results on an embryologist community centered around the model animal ze-
brafish confirmed this expectation even with imperfect data quality, mostly because of an
approximative linguistic processing. More generally, we managed to reproduce a partition
of the community assessed by domain experts. Consequently, the longitudinal study of such
partial taxonomies made possible an historical description. In particular, we proposed to
capture stylized facts related to epistemic evolution such as field progress, decline and in-
teraction (merging or splitting). We ultimately applied our method to the subcommunity
of embryologists working on the “zebrafish” between 1990 and 2003, and successfully com-
pared the results with taxonomies given by domain experts.



Part II

Micro-foundations of epistemic
networks

Summary of Part II

The main purpose of this part is to micro-found the high-level features we observed
in the Part I — exhibit L and λ such that P ◦ λ(L) = ηe(H). In particular, we aim to
know which processes at the level of agents may account for the emergence of epis-
temic community structure. To achieve a morphogenesis model reproducing this phe-
nomenon, we first need to build tools that enable the estimation of interaction and
growth mechanisms from past empirical data. Then, assuming that agents and con-
cepts are co-evolving, we successfully reconstruct a real-world scientific community
structure for a relevant selection of high-level stylized facts.





Introduction

“Des Esseintes (...) faisait l’exégèse de ces textes; il se complaisait à jouer pour sa satisfaction personnelle, le
rôle d’un psychologue, à démonter et à remonter les rouages d’une œuvre”2

A rebours, J.-K. Huysmans.

In the preceding part, we characterized EC structure as a high-level stylized fact for a
socio-semantic complex system. Here, we will endeavor to “micro-found” these features.
In other words, we would like to rebuild this phenomenon from a lower-level perspective,
starting from the local behavior of agents immerged in such an epistemic network. This task
is threefold:

• First, define formally the framework of epistemic networks,

• Second, design measurement tools and proceed with the observation of relevant em-
pirical facts of the networks, both high- and low-level,

• Third, reconstruct the real-world structure with the help of a dynamic network mor-
phogenesis model.

On the whole, this amounts to find the solution of a reverse problem: given an evolving
epistemic network, what kind of (possibly minimal) dynamics allow to rebuild its structure?
To bind this problem to our general reconstruction framework, this comes to find λ such that
given ηe and P , we have P ◦ λ = ηe ◦ P .

We make the following assumption: modeling interactions at the level of agents who
co-evolve with the concepts they manipulate is sufficient to carry the micro-founded re-
construction of this social complex system. This question relates more broadly to a current
issue in structural social science. Modeling social network formation has indeed constituted
a recent challenge for this area of research. Social networks are usually interaction networks
— nodes are agents and links between nodes represent interactions between agents. In this
respect, proposing morphogenesis models for these networks has involved several disci-
plines linked both to mathematical sociology, graph theory (computer science and statistical
physics) and economics (Skyrms & Pemantle, 2000; Albert & Barabási, 2002; Cohendet et al.,
2003). Most of the recent interest in this topic has stemmed from the universal empirical ob-
servation that the structure of real networks — including social networks — strongly differ

2“Des Esseintes (...) expounded these texts; he took a delight, for his own personal satisfaction, in playing the
part of psychologist, in unmounting and remounting the machinery of a work” (Huysmans: Against the Grain).
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from that of uniform random graphs a la Erdős-Rényi (1959), where links between agents are
present with a constant probability p. The discrepancy is particularly sensible with respect to
two particular statistical parameters: the local topological structure, which has been found
to be abnormally clustered and dense in real networks (Watts & Strogatz, 1998), and the
node connectivity distribution (or degree distribution), which empirically follows a power-
law (Barabási & Albert, 1999) instead of a Poisson law in Erdős-Rényi’s model (ER). These
phenomena suggested that link formation does not occur randomly but rather depends on
node and network properties — that is, agents do not interact at random but instead accord-
ing to heterogenous preferences for other nodes. While this fact was already well-documented
in social science (Lazarsfeld & Merton, 1954; Touhey, 1974; McPherson & Smith-Lovin, 2001),
general network models had been limited for long to ER-like random graphs (May, 1972; Bar-
bour & Mollison, 1990; Wasserman & Faust, 1994; Zegura et al., 1996).

Subsequently, much work has been focused on novel non-uniform interaction and growth
mechanisms, in order to determine processes explaining and reconstructing complex net-
work structures consistent with those observed in the real world (Dorogovtsev & Mendes,
2003). The consistency, in turn, has been validated through a rich set of statistical parame-
ters measured on empirical networks, and not limited to degree distributions and clustering
coefficients.

After a brief overview of existing network growth models — and particularly in relation
with social networks — the goal of this part is twofold. Firstly, we design tools for measur-
ing empirically micro-level phenomena at work in evolving networks, in order to infer and
design the interaction behavior of agents. Indeeed, even when cognitively, sociologically or
anthropologically credible, most of the hypotheses driving these models are mathematical
abstractions whose empirical measurement and justification are dubious, if any. We hence
apply these instruments to the epistemic network of scientists working on the zebrafish, and
eventually suggest significant implications for morphogenesis models. Secondly, we use this
knowledge to introduce a model that successfully rebuilds relevant stylized facts observed
in this epistemic network.3

3Some portions of this part, concerning in particular the epistemic network framework and the measurement
of interaction propensions, can be found in more details in (Roth, 2006; Roth, 2005; Roth, n.d.). Besides, Sec. 9.3
is linked to a preliminary study of basic dynamic parameters published in (Latapy et al., 2005).



Chapter 7

Networks

7.1 Global overview

Measuring and modeling Formally, as noted in Ch. 1, a network (or equivalently a graph)
is a set of nodes (or vertices) with connections between them: links (or edges), possibly di-
rected (going explicitly from a node to another node) or undirected (symmetric, without any
orientation). Networks are omnipresent in the real world: from the lowest levels of physical
interaction, in the study of mean fields and spin glasses for instance (Parisi, 1992; Fischer
& Hertz, 1993), to higher levels of description such as biology (Yuh et al., 1998; D’Haeseleer
et al., 2000; Hasty et al., 2001), sociology (White et al., 1976; Granovetter, 1985; Wasserman
& Faust, 1994; Degenne & Forse, 1999; Pattison et al., 2000; Doreian et al., 2005), economics
(Kirman, 1997; Cowan et al., 2002; Deroian, 2002; Goyal, 2003; Carayol & Roux, 2004) and
linguistics (Quillian, 1968; Fellbaum, 1998). Along with the empirical investigation of real-
world networks, scientists need models for both descriptive and explanatory purposes —
either to study processes immerged in a network structure, or to exhibit network creation
processes deemed key for the explanation or reproduction of several stylized facts observed
in the real world.

For long however, the appraisal of networks had been restricted to theoretical approaches
in graph theory and small scale empirical studies on a case-by-case basis. In this respect,
network models were mostly limited to the seminal work of Erdős-Rényi (1959) and their
“random network model”, based on a random wiring process where each pair of nodes has
a constant probability p to be bound by a link. Random networks generated by the Erdős-
Rényi (ER) model are often denoted by GN,p, because the only parameters of their model are
p and the number of nodes N .

The assumption that the ER model was an accurate description of reality had remained
unchallenged for a long time. Yet, the empirical study of networks is a sibling task of the
design of models: new measurement tools reveal caveats of former models, thus pushing
towards the introduction of new, more accurate models. In this respect, the recent availability
of increasingly larger computational capabilities has made possible the use of quantitative
methods on large networks, which yielded surprising results and consequently precipited an
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unprecedented interest in networks (Barabási, 2002; Dorogovtsev & Mendes, 2003; Newman,
2003). Three statistical parameters in particular appeared to provide an enormous insight on
the topological structure of networks:

• the clustering coefficient — that is, the proportion of neighbors of a node who are also
connected to each other, averaged over the whole network;

• the average distance — i.e. the length of the shortest path between two nodes, averaged
over all pairs of nodes;

• the degree distribution — the degree (or the connectivity) of a node is basically the
number of nodes this node is connected to.1

A new turn These novel instruments opened the way to the distrust of the ER model. In
1998 indeed, Watts and Strogatz (1998) discovered that clustering coefficients for many real-
world networks were in flagrant contradiction with those predicted by the ER model. They
subsequently introduced a new model, “the small-world network” model, consisting of a
ring of nodes each connected to their closest neighbors, with a proportion p of these links
being randomly rewired (p is thus a rewiring probability). Empirical values for the cluster-
ing coefficient were in close adequation with those of the Watts-Strogatz model (WS), which
like the ER model respects a realistic shortest path length. The “small-world” metaphor was
striking and compelling, as these two features recalled intuitions about real-world networks,
especially social networks. A high clustering coefficient suggests that many agents are form-
ing dense, local areas of strongly connected nodes; in sociology, this relates to the concept
of transitivity (Wasserman & Faust, 1994). On the other hand, a low shortest length path
indicates that a node is generally not “far” from any other node in the network, when con-
sidering the number of intermediate agents needed to travel from a given node to another
one — a feature observed in real social networks as well (Milgram, 1967; Dodds et al., 2003).

At about the same time, Redner (1998) empirically measured the distribution of degrees
in a citation network and found it to be scale-free — that is, it follows a power law with
P (degree = k) ∝ kα. This fact contradicted the expectations of both ER and WS models:
with ER, the degree distribution can be approximated by a Poisson law (P (k) ∝ exp(αk)/k!)
(Bollobás, 1985), with an exponentially low probability of finding high-degree nodes. Nearly
the same goes for WS (Barabási et al., 1999). Shortly thereafter, Faloutsos et al. (1999) discov-
ered that the physical topology of the Internet network was nothing but a scale-free network
and Barabasi & Albert (1999) discovered the same feature in the world wide web, and collab-
oration networks. At this point, the ER model had been totally discredited as a way to render
the topology of real-world networks. Simultaneously, dynamical processes were highlighted
as an efficient feature for designing accurate models, yielding at the same time a significant
and realistic insight on the self-organizing processes at work during morphogenesis.

1In a directed network, we have to distinguish the number of outgoing links from the number of incoming
links, respectively denoted by outcoming degree vs. incoming degree.



7.2 A brief survey of growth models

History More specifically, Barabasi & Albert (BA) insisted on the point that such topology
could be due to two very particular phenomena that models were so far unable to take into
account: network growth, and preferential attachment of nodes to other nodes. They thus pi-
oneered the use of these two features to successfully rebuild a scale-free degree distribution.
In their network formation model, new nodes arrive at a constant rate and attach to already-
existing nodes with a likeliness linearly proportional to their degree. This model was a great
success and has been widely spread and reused. As a consequence, the term “preferential
attachment” has been often understood as degree-related preferential attachment only, in
reference to BA’s work.

Since then, many other authors introduced network morphogenesis models with diverse
modes of preferential link creation depending on various node properties (attractiveness
(Dorogovtsev et al., 2000; Krapivsky et al., 2000), age (Dorogovtsev & Mendes, 2000), com-
mon neighbors (Jin et al., 2001), fitness (Caldarelli et al., 2002), centrality, euclidian distance
(Manna & Sen, 2002; Fabrikant et al., 2002), hidden variables and “types” (Boguna & Pastor-
Satorras, 2003; Söderberg, 2003), bipartite structure (Peltomaki & Alava, 2005), etc.) and var-
ious linking mechanisms (stochastic copying of links (Kumar et al., 2000), competitive trade-
off and optimization heuristics (Fabrikant et al., 2002; Berger et al., 2004; Colizza et al., 2004),
payoff-biased network reconfiguration (Carayol & Roux, 2004), two-steps node choice (Ste-
fancic & Zlatic, 2005), group formation (Ramasco et al., 2004; Guimera et al., 2005), Yule pro-
cesses (Morris, 2005), to cite a few). On the other side, growth processes (if any) were often
reduced to the regular addition of nodes which attach to older nodes — sometimes growth
is absent and studies are focused on the evolution of links only.

Following BA’s initial model, most of these studies aimed first and before all at repro-
ducing degree distributions, which had obviously to be scale-free.2 Depending on the ap-
plication field of the model — WWW (Kumar et al., 2000), protein networks (Eisenberg &
Levanon, 2003), social networks (Newman, 2001d), citation networks (Vázquez, 2001), etc.
— various other stylized facts can be selected, used and compared with real-world values.
Statistical parameters include notably clustering coefficient, mean distance (shortest path
length), largest connex component size (giant component), assortative mixing,3 existence of
feedback circuits (or cycles), number of second neighbors, and one-mode community struc-
ture (Pattison et al., 2000; Newman, 2001d; Caldarelli et al., 2002; Watts et al., 2002; Guelzim
et al., 2002; Girvan & Newman, 2002; Latapy & Pons, 2004; Boguna et al., 2004; Guimera et al.,
2005).

2There is a long history of models generating all sorts of power-law distributions (size of cities, incomes, etc.),
dating back to the early twentieth century (from Pareto, Lotka, Zipf and Yule, to Simon and Mandelbrot) (Mitzen-
macher, 2003; Newman, 2005). The significant difference in this “network-based paradigm” is that present net-
work models are node-based (agent-based), not anymore relying on global differential equations (Bonabeau,
2002).

3This term denotes the fact that neighbors of a node have a similar degree or not: high-degree nodes connected
to high-degree ones (like in social networks) or to low-degree ones (like in other kinds of networks) (Newman,
2002).



Methodology In such approaches, the idea is generally to exhibit high-level statistical pa-
rameters and to suggest low-level network processes, such that the former could be deduced,
or recreated, from the latter. Obviously, after having selected a set of relevant stylized facts
to be explained or reconstructed, designing network morphogenesis models consists of two
subtasks: it requires to define the way agents are bound to interact with each other, as well
as to specify how the network grows. However and even in recent papers, hypotheses on
such mechanisms are often arbitrary and at best supported by qualitative intuitions. This
is particularly true for the definition of the preferential attachment (PA) which rarely enjoys
empirical verification, in spite of the rich diversity of propositions. While this attitude is
still convenient for normative models, this is clearly unsufficient for descriptive models —
although even normative models should be able to suggest means to reach the “norm” they
introduce.

In the remainder of this part, we will thus endeavor to (i) exhibit high-level stylized
facts characteristic of epistemic networks, notably the EC structure observed in the previous
part, (ii) point out relevant low-level features that may account for these high-level facts, (iii)
design measurement tools to appraise these low-level features, and (iv) design a reconstruc-
tion model based on the observed low-level dynamics that rebuilds the high-level one. In
fine, the goal of this model is to reproduce the morphogenesis of epistemic networks, and to
show consequently that these networks are produced by the dynamic co-evolution of agents
and concepts. Before that, we formally introduce the objects we deal with.

7.3 Epistemic networks

In the first part, we studied ECs with the help of a single relation linking agents to concepts
— as such creating a bipartite graph: a socio-semantic network. A bipartite graph (or two-
mode network) is a graph whose vertices can be decomposed into two disjoint sets, such that
no link exists between pairs of vertices belonging to the same set (as opposed to a monopar-
tite graph, also called one-mode network). In addition to the socio-semantic network, we
introduce two related networks: a social network, involving links between agents, and a se-
mantic network, with links between concepts. As a result, an epistemic network is made of these
three networks.

Definitions

Definition 9 (Social network). The nodes in the social network S are agents, and links represent
the joint appearance of two agents in an event.

Thus S = (S, ES), where S denotes the set of agents and ES denotes the set of undirected
links. As time evolves, new events occur (e.g., new articles are published), new nodes are
possibly added to S and new links are created between each pair of interacting agents. We
actually consider the temporal series of networks St with t ∈ N (events are dated with an
integer), in order to observe the dynamics of the network.

The semantic network is very similar to the social network:



Definition 10 (Semantic network). The semantic network C is the network of joint appearances of
concepts within events, where nodes are concepts and links are co-occurrences.

Identically to S, we have C = (C, EC). When a new event occurs, new concepts are
possibly added to the network, and new links are added between co-appearing concepts. As
the social network is the network of joint appearances of agents, so is the semantic network
with concepts. In the same way we did with the previous networks, we link scientists to
the words they use, i.e. we add a link whenever an author and a concept co-appear within
an event, establishing an obvious duality between the two networks. This duality has been
exploited in the previous part for the sole purpose of describing epistemic communities, yet
it is also key for explaining the reciprocal influence and co-evolution of authors and concepts.

Definition 11 (Socio-semantic network). The socio-semantic network GSC is made of agents of
S, concepts of C, and links between them, ESC, representing the usage of concepts by agents.

Weighted networks An important issue relative to networks in general concerns the na-
ture of links. Depending on the model goals and the desired precision, we may want to take
into account the fact that two nodes have interacted more than once (thus introducing link
strength), or that their interactions are more or less recent (thus introducing link age). Rela-
tionships should consequently be different according to whether agents have interacted only
once and a long time ago, or they have recently interacted on many occasions. An easy and
practical way for dealing with these notions is to use a weighted network:

• in a non-weighted network, we say that two nodes are linked as soon as they interact, i.e.
they jointly appear in at least one event. Links can only be active or inactive.

• in a weighted network, links are provided with a weight w ∈ R+, possibly evolving in
time. We can therefore easily represent multiple interactions by increasing the weight
of a link, as well as render the age of a relationship by decreasing this weight — for
instance by applying an aging function.

This latter framework is more general as it makes it possible to model a non-weighted
network (by assigning weights of 1 or 0 respectively to active or inactive links), while it also
leaves room for creating ex post a non-weighted network from a weighted network by setting
a threshold on link weight (such that a link is active when its weight exceeds the threshold,
otherwise inactive). Besides, the design and choice of w depends on the objectives of the
modeling.

Relations Considering the three networks S, C and GSC, we deal with three kinds of simi-
lar links: (i) between pairs of agents ES, (ii) between pairs of concepts EC, and (iii) between
concepts and agents ESC; we thus set up three kinds of binary relations:

(i) a set of binary symmetrical relations RS
α ⊂ S × S from the set of agents to the set of

agents, and such that given α ∈ R and two agents s and s′, we have s RS
α s′ iff the link

between s and s′ has a weight w strictly greater than the threshold α.
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Figure 7.1: Sample epistemic network with S = {s, s′, s′′}, C = {c, c′, c′′}, and relations RS,
RC (solid lines) and R (dashed lines).

(ii) a set of binary symmetrical relations RC
α ⊂ C × C from the set of concepts to the set

of concepts, and such that given α ∈ R and two concepts c and c′, c RC
α c′ iff the link

between c and c′ has a weight w > α.

(iii) a set of binary relations Rα ⊂ S × C from the set of agents to the set of concepts, and
such that given α ∈ R, an agent s and concept c, s Rα c iff the link between s and c has
a weight w > α.

Noticing that α < α′ ⇒ R(.)
α′ ⊂ R(.)

α , thus giving ∀α > 0,R(.)
α ⊂ R(.)

0 , we infer that the re-
lations R(.)

0 are maximal: two nodes are related whenever there exists a link binding them,
whatever its weight.

In the remainder of this part, to make the things simpler we choose to assign weights
equal to the number of interactions, with no aging; and we focus on the special case α = 0,
which corresponds to non-weighted networks. Consequently, we do not pay attention to
weights and related phenomena: as long as there has been any interaction, a link is estab-
lished between two nodes. More details on weighted networks can nonetheless be found in
e.g. (Barrat et al., 2004). In addition, we only consider growing networks, that is, neither nodes
nor links may disappear. R0 is identical to what R designates in Part I. To ease the nota-
tion, we will denote RS

0 and RC
0 by RS and RC, respectively. Note that social, semantic and

socio-semantic networks are fully characterized by S, C and RS, RC and R — see Fig. 7.1.



Chapter 8

High-level features

In this chapter, we endeavor to describe a few high-level statistical parameters particularly
appropriate for epistemic networks. We thus enrich the high-level description of Part I, con-
sisting in the epistemic hypergraph, with these new features. Translated in the above frame-
work, events are articles, agents are their authors, and concepts are made of expert-selected
abstract words.

8.1 Empirical investigation

While we could have looked at many single-network parameters (such as assortativity (New-
man & Park, 2003), giant component size (Guimera et al., 2005), single-network communities
(Girvan & Newman, 2002; Latapy & Pons, 2004), etc.), we focused instead on features specific
to this epistemic network (thus, mostly bipartite parameters) — many results and models are
already available for most traditional statistical features.

As previously, empirical data comes from the bibliographical database Medline concern-
ing the well-defined community of embryologists working on the zebrafish, this time during
the period 1997-2004. The dataset contains around 10, 000 authors, 6, 000 articles and 70 con-
cepts. The 70 concepts are the same as those selected for Part I — in addition, we consider
this set to be given a priori: in the semantic network, only links appear, not nodes. The ra-
tionale is twofold: first, this is consistent with assumptions used for the preceding dynamic
taxonomy study; second, it dramatically reduces computational complexity.

8.2 Degree distributions

In an epistemic network, ties appear in the social, semantic, and socio-semantic networks;
hence, four degree distributions are of interest:

1. The degree distribution for the social network of coauthorship, P (k), shown on Fig. 8.1. This
distribution has been extensively studied in the litterature, notably by Newman (2001b;
2001c; 2001d) and Barabasi et al. (2002), among others. It is traditionally said to follow
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a power law, although often only the tail of the distribution actually follows a power-
law. It is indeed easy to see that the distribution shape is not constant: for low degrees,
the distribution is sensibly flatter. Instead of a power-law, some may suggest that this
distribution follows a log-normal law (Redner, 2005). This observation is very natural
as the log-log plot exhibits a parabolic shape, for which the best fitting function is of a
log-normal kind.1

Note that various other shapes may address this fitting problem equally well, such as q-
exponential functions (White et al., 2006). In any case, it appears that a strict power-law
is not the most accurate description of this degree distribution.

2. The distribution of degrees kconcepts for the semantic network. Since there are only 70 concepts
the data are very sparse, we considered cumulated distributions (plotted on Fig. 8.2 for
all eight periods). Obviously all concepts are progressively connected to each other,
with almost every concept having a degree of 69 at the end of the last period.

3. The distribution of degrees from agents to concepts (kagents→concepts). It follows a power-
law: few agents use many concepts, many agents use few concepts. The exponent is
similar to that of the social network and constant across periods as well (see Fig. 8.3 —
a detailed report on similar phenomena can be found in (Latapy et al., 2005)).

4. The degree distribution for links from concepts to agents (kconcepts→agents). Again, cumulated
distributions were considered to bridge data sparsity. With time, more and more con-
cepts are becoming popular (used by numerous agents), yet the repartition is still het-
erogeneous, with few concepts being used by a lot of agents, and most concepts being
used by an average number of agents (see Fig. 8.3).

Considerations on bipartite graphs The socio-semantic network is obviously a bipartite
graph, with agents on one side and concepts on the other. It is also possible to consider the
social network itself as a bipartite graph (Wilson, 1982; Wasserman & Faust, 1994; Ramasco
et al., 2004; Kossinets, 2005), made of agents on one side, events on the other, and links from
agents to events they participate in. Projecting this two-mode graph on a one-mode network
(such that two agents are linked in the one-mode network iff they are linked to the same
event in the two-mode network) yields in turn the classical social network. In this respect, it
can be expected that some properties of the bipartite graph and the one-mode projection are
strongly correlated: Guillaume and Latapy (2004b) for instance showed that the one-mode
projection of a bipartite network preserves scale-free degree distributions. In other words, if
the degree distribution from one side of a bipartite graph to the other side follows a power-
law, then the projection follows a power-law of the same exponent.

Yet, such bipartite graphs “agents–events” are another (richer) way of considering the
social network, by keeping events apart instead of losing some of the information embed-
ded in events. For instance, by doing so the fact that some agents participated in the same

1The interested reader may find in (Mitzenmacher, 2003) a comprehensive comparison of processes underly-
ing the emergence of power-law and log-normal distributions.
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Figure 8.1: Degree distribution for the social network. Dots: N(k), proportional to P (k) =
N(k)P
k′ N(k′) . Solid line: power-law fit of P (k) with kγ , here γ = −3.39. Inset: evolution of

the exponent γ for 8 periods (mean exponent is −3.19±.10). Dashed line: Lognormal fit —
indeed, the distribution has a parabolic shape: this suggests that log N(k) = p2(log k)2 +
p1 log k + p0, thus P (k) ∝ kp2 log k+p1 . This deviates from a strict power law because of the
term in kp2 log k (here, p2 = −0.61±.06, p2 = 1.45±.22).
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Figure 8.2: Cumulated degree distribution for the semantic network, for all 8 periods — from
top (1997, light blue) to bottom (2004, black).
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Figure 8.3: Degree distributions for the socio-semantic network. Top: Degree distribution
from agents to concepts (dots), power-law fit (solid line), and evolution of the exponent γ for
all 8 periods (from 1997 to 2004), mean γ is−2.96± .02 (see inset). Bottom: Cumulated degree
distribution from concepts to agents, for 8 periods (1997-2004, from light blue to black).



event is not lost. More generally, any one-mode network can be considered bipartite, if one
expands the underlying event structure to a new network of events — to this end, Guillaume
& Latapy (2004a) even try to recompose events from a one-mode network.

Nonetheless, this bipartite graph is special: events are bound to appear only once, agents
cannot attach to old events; as such, the side of events is merely historical. Here, the social
network is not the one-mode projection of the socio-semantic network. Agents can bind to
old concepts, so can concepts to old agents. In spite of this, social and semantic networks
could enjoy some of the properties of a one-mode projection from a bipartite graph, if we
consider that these networks are created by using the co-appearance of agents and concepts
in common events. Thus, there are two underlying bi-partite graphs made of events: agents
and events, and concepts and events. The social and semantic networks are respectively
one-mode projections of each of these bipartite graphs. Because of their strictly historical
structure, we nonetheless discard the ‘artificial’ networks of events.

8.3 Clustering

The clustering coefficient is another valuable parameter, introduced by Watts & Strogatz (1998).
It is basically a measure of the transitivity in one-mode networks: in other words, it expresses
the extent to which neighbors of a given node are also connected — the sociological metaphor
translates into: “friends of friends are friends”. This coefficient is usually found to be abnor-
mally high in social networks, when compared to random networks such as those produced
by ER, BA models. By contrast, it is successfully reconstructed by the WS model. Along with
degree distribution, this stylized fact has been the target of many more recent models (Jin
et al., 2001; Ebel et al., 2002; Ravasz & Barabási, 2003; Newman & Park, 2003).

Two competing formal definitions have been proposed, potentially yielding significantly
different values (Ramasco et al., 2004):

• either a local coefficient, c3(i), measuring the proportion of neighbors of node i who
are connected together,

c3(i) =
[number of pairs of connected neighbors]

ki · (ki − 1)/2
(8.1a)

where ki is the degree of node i.

• or a global measure C3 (proportion of connected triangles in the whole network with
respect to connected triplets),

C3 =
3 · [number of triangles]

[number of broken triangles]
(8.1b)

The factor three comes from the fact that for each triangle there are three “broken tri-
angles” (triplets where only two pairs are connected, see Fig. 8.4).
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Figure 8.4: Left: Comparison between a transitive triplet, or triangle (top), and a broken trian-
gle, or simply connected triplet (bottom). One-mode clustering coefficients measure the pro-
portion of triangles vs. broken triangles, either globally (C3) or locally (c3). Right: Compar-
ison between a diamond and a broken diamond, with pairs (s′, s′′) both connected to (c′, c′′)
(top) or not (bottom). Similarly, C4 and c4 provide a measure of the proportion of diamonds
with respect to broken diamonds.

We focus on the local coefficient for it makes it possible to examine the clustering struc-
ture with respect to node properties, in particular node degrees. Here, each article adds
complete subgraphs of authors, or cliques, to the social network: all authors of a given article
are linked to each other. In a network where events are addition of cliques, the clustering
coefficient is very likely to be close to one, since each event adds an overwhelming quantity
of triangles. Therefore, only nodes participating in multiple events can have neighbors who
are not themselves connected to each other. Empirically, the local clustering coefficient is
close to 1 and decreases rather slowly with node degree (Fig. 8.5).

As such, in the case of event-based networks, c3 seems to be a trivial, very poorly infor-
mative criterion as regards the clustering structure. Indeed, c3 is virtually bound by definition
to be high. More generally, networks built with an underlying event structure are shown to
naturally exhibit a high c3 (Guillaume & Latapy, 2004b; Ramasco et al., 2004).2

Bipartite clustering Very recently, bipartite clustering coefficients have been proposed as a
means to have a meaningful clustering measure in spite of this caveat. In a strictly bipartite
graph, clearly triangles are impossible: the bipartite socio-semantic network does not render
links between agents. To bridge this, a sensible idea consists in measuring the proportion of
diamonds; that is, measuring how many pairs of nodes from one side, who are connected

2Assuming that the number of agents per event is higher than 2 — otherwise events reduce to simple dyadic
interactions, and we fall back onto classical models of single links addition (Catanzaro et al., 2004). This may also
explain why many dyadic-interaction models fail to reproduce real-world high clustering coefficients.



together to a node of the other side, are also connected to another node of the other side (see
Fig. 8.4).3 In other words, are two agents connected to a same concept likely to be connected
to other concepts? Like for the monopartite clustering coefficient, there exists both a global
version C4 (Robins & Alexander, 2004) and, latterly, a local one c4 (Lind et al., 2005):

• locally, c4 is the proportion of common neighbors among the neighbors of a node:

c4(i) =

ki∑
i1=1

ki∑
i2=i1+1

κi1,i2

ki∑
i1=1

ki∑
i2=i1+1

[(ki1 − κi1,i2)(ki2 − κi1,i2) + κi1,i2 ]

(8.2a)

where κj1,j2 is the number of nodes which the j1-th & j2-th neighbors of i have in
common (leaving out i).

• globally, C4 evaluates the proportion of diamonds with respect to potential diamonds:

C4 =
4 · [number of diamonds]

[number of broken diamonds]
(8.2b)

For one diamond there are four broken diamonds (i.e., couples of connected pairs of
nodes where one node from one side is not connected to one node of the other side).

Again we focus on the local coefficient c4, which appears to be one order of magnitude
larger compared to that measured in random networks with a power-law degree-distribution
— see Fig. 8.5. Therefore, the real socio-semantic network enjoys an abnormally high level
of bipartite clustering: many pairs of agents linking together to certain concepts are more
likely to share other concepts than in a random network. Note that, as such, the bipartite
coefficient is a measure of a very local kind of structural equivalence (quantifying a “limited
structural equivalence” restricted to groups of size 2).

8.4 Epistemic community structure

A key high-level stylized fact characteristic of epistemic networks is the particular distri-
bution of ECs obtained through GLs, as presented in the previous part. An adequate epis-
temic network model should ultimately yield the same EC profile as in the real-world, which
shows a significantly larger proportion of high-size ECs — see Fig. 8.6.

Semantic distances Besides, just as we observed the bipartite clustering between agents
and concepts, we may want to know whether agents in the network are semantically close to
each other. Likewise, and more specifically, in which manner are they semantically close to

3Obviously, many other shapes could also be worth considering; we focused on this one because it is very
basic yet insightful.
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their social neighborhood? To this end, we need to introduce a semantic distance. By seman-
tic distance we mean a function of a dyad of agents that enjoys the following properties: (i)
decreasing with the number of shared concepts between the two agents, (ii) increasing with
the number of distinct concepts, (iii) equal to 1 when agents have no concept in common,
and to 0 when they are linked to identical concepts. Given (s, s′) ∈ S2, we build a semantic
distance δ(s, s′) ∈ [0; 1] satistying the previous properties:4

δ(s, s′) =
|(s∧ \ s′∧) ∪ (s′∧ \ s∧)|

|s∧ ∪ s′∧|
(8.3)

Note that this kind of distance, based on the Jaccard coefficient (Batagelj & Bren, 1995), has
been extensively used in Information Retrieval, as well as recently for link formation predic-
tion in (Liben-Nowell & Kleinberg, 2003) — however, we need not focus on this particular
similarity measure.

Discretizing δ Written in a more explicit manner, with s∧ = {c1, ..., cn, cn+1, ..., cn+p} and
s′∧ = {c1, ..., cn, c′n+1, ..., c

′
n+q}, we have δ(s, s′) = p+q

p+q+n ; n and p, q representing respectively
the number of elements s∧ and s′∧ have in common and have in proper. We also verify that
if n = 0 (disjoint sets), δ(s, s′) = 1; if n 6= 0, p = q = 0 (same sets), δ(s, s) = 0; and if s∧ ⊂ s′∧

(included sets), δ(s, s′) = q
q+n . It is moreover easy though cumbersome to show that δ(., .) is

also a metric distance.
As δ takes real values in [0, 1] we need to discretize δ. To this end, we use a uniform par-

tition of [0, 1[ in I−1 intervals, to which we add the singleton {1}. We thus define a new dis-
crete distance d taking values inD = {d1, d2, ..., dI} such that: D =

{
[0, 1

I−1 [, [ 1
I−1 , 2

I−1 [, ...[ I−2
I−1 , 1[, {1}

}
.

Then, we look at the distribution of semantic distances in the network, both on a global
scale (by computing the distribution for all pairs of agents) and on a more local scale (by
carrying the computation for pairs of already-connected agents only). Results are shown on
Fig. 8.7, and suggest that while similar nodes are usually rare in the network, the picture is
radically different when considering the social neighborhood: acquaintances are at a strongly
closer distance.5

4Recall that s∧ denotes the set of concepts s is linked to (cf. Part I).
5Although part of the phenomenon is biased by the fact that co-authors receive by definition the same concepts

when they write an article (especially for distance 1, which is obviously over-represented because of, at first,
co-authors who write only one paper), this fact alone is not sufficient to explain the distribution of distances
restricted to the social neighborhood.
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Figure 8.7: Left: Distribution of semantic distances on the whole graph. Right: Distribution
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Chapter 9

Low-level dynamics

Designing a credible social network morphogenesis model requires to understand both low-
level interaction and growing mechanisms, as noted earlier in Sec. 7.2. The aim of the present
chapter is thus to show how we design such low-level dynamics λ from empirical data.

9.1 Measuring interaction behavior

Formally, the preferential attachment (PA) is the likeliness for a node to be involved in an in-
teraction with another node with respect to node properties. Existing quantitative estimations
of PA and subsequent validations of modeling assumptions are quite rare, and are either:

• related to the classical degree-related PA (Barabási et al., 2002; Eisenberg & Levanon,
2003; Jeong et al., 2003; Redner, 2005), sometimes extended to a selected network prop-
erty, like common acquaintances (Newman, 2001a); or

• reducing PA to a scalar quantity: for instance using direct mean calculation (Guimera
et al., 2005), econometric estimation approaches (Powell et al., 2005) or Markovian mod-
els (Lazega & van Duijn, 1997; Snijders, 2001).1

In addition, the extent to which distinct properties correlatively influence PA is widely ig-
nored. Thus, while of great interest in approaching the underlying interactional behaviorial
reality of social networks, these works may not be able to provide a sufficient empirical basis
and support for designing trustworthy PA mechanisms. Yet in this view we argue that the
following points are key:

1. Node degree does not make it all — and even the popular degree-related PA (a linear
“rich-get-richer” heuristics) seems to be inaccurate for some types of real networks
(Barabási et al., 2002), and possibly based on flawed behavioral fundations, as we will
suggest below in Sec. 9.2.1.

1Let us also mention link prediction from similarity features based on various strictly structural properties
(Liben-Nowell & Kleinberg, 2003), obviously somewhat related to PA.

77



2. Strict social network topology and derived properties may not be sufficient to account
for complex social phenomena — as several above-cited works insinuate, introducing
“external” properties (such as e.g. node types) may influence interaction; explaining
for instance homophily-related PA (McPherson & Smith-Lovin, 2001) requires at least
to qualify nodes with the help of non-structural data. In reference networks, the prob-
ability for citing a paper decreases with time, since papers are gradually forgotten or
obsolete (Redner, 1998; Dorogovtsev & Mendes, 2000).

3. Single scalar quantities cannot express the rich heterogeneity of interaction behavior
— for instance, when assigning a unique constant parameter to preferential interaction
with closer nodes, one misses the fact that such interaction could be significantly more
frequent for very close nodes than for loosely close nodes, or discover that for instance
it might be quadratic instead of linear with respect to the distance, etc.

4. Often models assume properties to be uncorrelated which, when it is not the case,
would amount to count twice a similar effect;2 knowing correlations between distinct
properties is necessary to correctly determine their proper influence on PA.

To summarize, it is crucial to conceive PA in such a way that (i) it is a flexible and
general mechanism, depending on relevant parameters based on both topological and non-
topological properties; (ii) it is an empirically valid function describing the whole scope of
possible interactions; and (iii) it takes into account overlapping influences of different prop-
erties.

In order to measure PA, we now have to distinguish between (i) single node properties,
or monadic properties (such as degree, age, etc.) and (ii) node dyad properties, or dyadic prop-
erties (social distance, dissimilarity, etc.). When dealing with monadic properties indeed, we
seek to know the propension of some kinds of nodes to be involved in an interaction. On
the contrary when dealing with dyads, we seek to know the propension for an interaction to
occur preferentially with some kinds of couples. Note that a couple of monadic properties
can be considered dyadic; for instance, a couple of nodes of degrees k1 and k2 considered as
a dyad (k1, k2). This makes the former case a refinement, not always possible, of the latter
case.

9.1.1 Monadic PA

Suppose we want to measure the influence on PA of a given monadic property m taking
values inM = {m1, ...,mn}. We assume this influence can be described by a function f of m,
independent of the distribution of agents of kind m. Denoting by “L” the event “attachment
of a new link”, f(m) is simply the conditional probability P (L|m) that an agent of kind m is
involved into an interaction.

Thus, it is f(m) times more probable that an agent of kind m receives a link. We call f

the interaction propension with respect to m. For instance, the classical degree-based PA used
2Like for instance in (Jin et al., 2001) where effects related to degree and common acquaintances are combined

in an independent way.



in BA and subsequent models — links attach proportionally to node degrees (Barabási &
Albert, 1999; Barabási et al., 2002; Catanzaro et al., 2004) — is an assumption on f equivalent
to f(k) ∝ k.

P (m) typically denotes the distribution of nodes of type m. The probability P (m|L)
for a new link extremity to be attached to an agent of kind m is therefore proportional to
f(m)P (m), or P (L|m)P (m). Applying the Bayes formula yields indeed:

P (m|L) =
f(m)P (m)

P (L)
(9.1)

with P (L) =
∑

m′∈M
f(m′)P (m′).

Empirically, during a given period of time ν new interactions occur and 2ν new link
extremities appear. Note that a repeated interaction between two already-linked nodes is not
considered a new link, for it incurs acquaintance bias. The expectancy of new link extremities
attached to nodes of property m along a period is thus:

ν(m) = P (m|L) · 2ν (9.2)

As
2ν

P (L)
is a constant of m we may estimate f through f̂ such that:

 f̂(m) =
ν(m)
P (m)

if P (m) > 0

f̂(m) = 0 if P (m) = 0
(9.3)

Thus 1P (m)f(m) ∝ f̂(m), where 1P (m) = 1 when P (m) > 0, 0 otherwise.

9.1.2 Dyadic PA

Adopting a dyadic viewpoint is required whenever a property has no meaning for a single
node, which is mostly the case for properties such as proximity, similarity — or distances in
general. We therefore intend to measure interaction propension for a dyad of agents which
fulfills a given property d taking values in D = {d1, d2, ..., dn}. Similarly, we assume the
existence of an essential dyadic interaction behavior embedded into g, a strictly positive
function of d; correspondingly the conditional probability P (L|d). Again, interaction of a
dyad satisfying property d is g(d) times more probable. In this respect, the probability for a
link to appear between two such agents is:

P (d|L) =
g(d)P (d)

P (L)
(9.4)

with P (L) =
∑
d′∈D

g(d′)P (d′).



Here, the expectancy of new links between dyads of kind d is ν(d) = P (d|L)ν. Since
ν

P (L)
is a constant of d we may estimate g with ĝ: ĝ(d) =

ν(d)
P (d)

if P (d) > 0

ĝ(d) = 0 if P (d) = 0
(9.5)

Likewise, we have 1P (d)g(d) ∝ ĝ(d).

9.1.3 Interpreting interaction propensions

Shaping hypotheses The PA behavior embedded in f̂ (or ĝ) for a given monadic (or dyadic)
property can be reintroduced as such in modeling assumptions, either (i) by reusing the exact
empirically calculated function, or (ii) by stylizing the trend of f̂ (or ĝ) and approximating f

(or g) by more regular functions, thus making possible analytic solutions.
Still, an acute precision when carrying this step is often critical, for a slight modification

in the hypotheses (e.g. non-linearity instead of linearity) makes some models unsolvable
or strongly shakes up their conclusions. For this reason, when considering a property for
which there is an underlying natural order, it may also be useful to examine the cumulative

propension F̂ (mi) =
mi∑

m′=m1

f̂(m′) as an estimation of the integral of f , especially when the

data are noisy (the same goes with Ĝ and ĝ).

Correlations between properties Besides, if modelers want to consider PA with respect to
a collection of properties, they have to make sure that the properties are uncorrelated or that
they take into account the correlation between properties: evidence suggests indeed that for
instance node degrees depend on age. If two distinct properties p and p′ are independent,
the distribution of nodes of kind p in the subset of nodes of kind p′ does not depend on p′,

i.e. the quantity
P (p|p′)
P (p)

must theoretically be equal to 1, ∀p,∀p′. Empirically, it is possible to

estimate it through:  ĉp′(p) =
P (p|p′)
P (p)

if P (p) > 0

ĉp′(p) = 0 if P (p) = 0
(9.6)

in the same manner as previously. For computing the correlation between a monadic and a
dyadic property, it is easy to interpret P (p|d) as the distribution of p-nodes being part of a
dyad d.

Essential behavior As such, calculated propensions do not depend on the distribution of
nodes of a given type at a given time. In other words, if for example physicists prefer to
interact twice more with physicists than with sociologists but there are three times more
sociologists around, physicists may well be apparently interacting more with sociologists.



Nevertheless, f̂ remains free of such biases and yields the “baseline” preferential interaction
behavior of physicists.

However, f̂ could still depend on global network properties, e.g. its size, or its average
shortest path length. Validating the assumption that f̂ is independent of any global property
of the network — i.e., that it is an entirely essential property of nodes of kind p — would
require to compare different values of f̂ for various periods and network configurations. Put
differently, this entails checking whether the shape of f̂ itself is a function of global network
parameters.

9.1.4 Activity and events

Additionally, as regards monadic PA, f̂ represents equivalently an attractivity or an activity.
Indeed, if interactions occur preferentially with some kinds of agents, it could as well mean
that these agents are more attractive or that they are more active. If more attractive, the
agent will be interacting more, thus being apparently more active. To distinguish between
the two effects, it is sometimes possible to measure independently agent activity, notably
when interactions occur during events, or when interaction initiatives are traceable (e.g. in a
directed network).

In such cases, the distinction is far from neutral for modeling. Indeed, when considering
evolution mechanisms focused not on agents creating links, but instead on events gathering
agents (Ramasco et al., 2004; Guimera et al., 2005), modelers have to be careful when integrat-
ing back into models the observed PA as a behavioral hypothesis. Some categories of agents
might in fact be more active and accordingly involved in more events, not enjoying more
attractivity. This would eventually lead the modeler to refine agent interaction behavior by
including both the participation in events and the number of interactions per event, rather
than just preferential interactions.

Detailing interaction propensions In other words, for a given property m, this means
breaking down interaction propensions into:

(i) activity a(m): the conditional probability of taking part in an event:

a(m) = P (E|m) (9.7)

where “E” denotes “involvement in an event”;

(ii) interactivity ι(m, ·): the conditional distribution of the number of links during an event,
such that:

ι(m, l) = P (LE = l|m) (9.8)

where “LE” denotes the random variable “number of link extremities received in an
event”. The interactivity is thus directly linked to the distribution of the size of events



in which agents of kind m participate. We denote by ῑ(m) the mean of ι(m, ·):

ῑ(m) =
∑
l∈N

(ι(m, l) · l) (9.9)

Hence, we now have:

Proposition 5. f is fully decomposable into ῑ and a:

f(m) ∝ a(m)ῑ(m) (9.10)

Proof. ν(m) is the product of (i) the mean number of link extremities received by a node of kind m

per event, and (ii) the number of nodes of kind m involved in events:

ν(m) = ῑ(m) · P (m|E)νE (9.11)

where νE is the number of events for a period. Recall from (9.1) & (9.2) that ν(m) = 2ν
f(m)P (L)

P (m)
,

then Eq. 9.11 yields:

f(m) =
νEP (L)
2νP (E)

ῑ(m) · a(m) (9.12)

As ν, νE, P (L) and P (E) are constants of m, we have f(m) ∝ a(m)ῑ(m).

For instance, very active agents (large a(m)) involved in events with few participants
(small ῑ(m)) could appear to have the same interaction propension f as moderately active
agents (mean a(m)) with a moderate number of co-participants (mean ῑ(m)). Consequently,
when considering monadic PA, event-based modeling requires the knowledge of both a and
ῑ, for f alone would not be in general a sufficient characterization of agent interaction behav-
ior.

9.2 Empirical PA

We now apply the above tools to the study of the epistemic network. We examine therein
particularly two kinds of PA: (i) PA related to a monadic property: the node degree; and (ii)
PA linked to a dyadic property: semantic distance d, rendering homophily, i.e. the propen-
sion of individuals to interact more with similar agents. In order to have a non-empty and
statistically significant network for computing propensions, we first build the network on
an initialization period of 7 years (from 1997 to end-2003), then carry the calculation on new
links appearing during the last year; 1, 000 new articles appear during the last year.

9.2.1 Degree-related PA

We use Eq. 9.3 and consider the node degree k as property m (thus M = N): in this manner,
we intend to compute the real slope f̂(k) of the degree-related PA and compare it with the
assumption “f(k) ∝ k”. This hypothesis classically relates to the preferential linking of
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Figure 9.1: Left: Degree-related interaction propension f̂ , computed on a one-year period,
for k < 25 (confidence intervals are given for p < .05); the solid line represents the best linear
fit. Right: Cumulated propension F̂ . Dots represent empirical values, the solid color line is
the best non-linear fit for F̂ ∼ k1.83, and the gray area is the confidence interval.
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Figure 9.2: Left Activity a(k) during the same period, in terms of articles per period (events
per period) with respect to agent degree; solid line: best linear fit. Right: Cumulated activity
A(k) =

∑k
k′=1 a(k), best non-linear fit is k1.88 ±0.09.

new nodes to old nodes. To ease the comparison, we considered the subset of interactions
between a new and an old node.

Empirical results are shown on Fig. 9.1. Seemingly, the best linear fit corroborates the
data and tends to confirm that f(k) ∝ k. The best non-linear fit however deviates from this
hypothesis, suggesting that f(k) ∝ k0.97. However, the confidence interval on this exponent
is [0.6, 1.34] thus dramatically too wide to determine the precise exponent, which may be
critical. When the data is noisy like in the present situation, since there is a natural order on
k it is very instructive to plot the cumulated propension ˆF (k) =

∑k
k′=1 f̂(k) on Fig. 9.1. In

this case, the best non-linear fit for F̂ is F̂ (k) ∝ k1.83 ±0.05, confirming the slight deviation
from a strictly linear preference which would yield k2.

Rich-work-harder. This precise result is not new and tallies with existing studies on degree-
related PA (Newman, 2001a; Jeong et al., 2003). Nevertheless, we wish to stress a more fun-



damental point concerning this kind of PA. Indeed, considerations on agent activity lead us
to question the usual underpinnings and justifications of PA related to a monadic property.
Regarding in particular degree-related PA, we question the “rich-get-richer” metaphor de-
scribing rich, or well-connected agents as more attractive than poorly connected agents, thus
receiving more connections and becoming even more connected.3

When considering the activity of agents with respect to k, that is, the number of events
in which they participate (here, the number of articles they co-author), “rich” agents are pro-
portionally more active than “poor” agents (Fig. 9.2), and thus obviously encounter more
interactions. It might thus well simply be that richer agents work harder, not are more attrac-
tive; the underlying behavior linked to preferential interaction being simply “proportional
activity.”4

While formally equivalent from the viewpoint of PA measurement, the “rich-get-richer”
and “rich-work-harder” metaphors are not behaviorally equivalent. One could choose to be
blind to this phenomenon and keep an interaction propension proportional to node degree.
On the other hand, one could also prefer to consider higher-degree nodes as more active,
assuming instead that the number of links per event is degree-independent and that agents
do neither prefer, nor decide to interact with famous, highly connected nodes; a hypothesis
supported by the present empirical results. These two viewpoints, while both consistent
with the observed PA, bear distinct implications for modeling — especially in event-based
models. More generally, such feature supports the idea that events, not links, are the right
level of modeling for social networks (Sec. 9.1.4) — with events reducing in some cases to a
dyadic interaction.

9.2.2 Homophilic PA

Homophily conveys the idea that agents prefer to interact with other resembling agents.
Here, we assess the extent to which agents are “homophilic” by using the inter-agent seman-
tic distance introduced in Sec. 8.4, thus using the socio-semantic network. As we previously
underlined, the point is not to focus on this particular similarity measure: rather, we wish
to show that simple properties non-related to the strict social structure may also strongly
influence interaction behavior in the social network.

We obtain an empirical estimation of homophily with respect to this distance by apply-
ing Eq. 9.5 on d, with I = 15. The results for ĝ are gathered on Fig. 9.3 and show that while
agents favor interactions with slightly different agents (as the initial increase suggests), they
still very strongly prefer similar agents, as the clearly decreasing trend indicates (sharp de-
crease from d4 to d13, with d4 being one order of magnitude larger than d13 — note also that
ĝ(d1) = 0 because no new link appears for this distance value). Agents thus display se-
mantic homophily, a fact that fiercely advocates the necessity of taking semantic content into

3“(...) the probability that a new actor will be cast with an established one is much higher than that the new actor will be
cast with other less-known actors” (Barabási & Albert, 1999).

4Moreover, if we assume that k is an accurate proxy for agent activity (i.e. a behavioral feature), and if the
number of coauthors does not depend on k (which is actually roughly the case in this data, see Fig. 9.8), then
observing a quasi-linear degree-related PA should not be surprising.
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Figure 9.3: Left: Homophilic interaction propension ĝ with respect to d ∈ D = {d1, ..., d15}
(thick solid line) and confidence interval for p < .05 (thin lines). The y-axis is in log-scale.
Right: Because of the two extremas it seems natural to try to fit the graph using a third-degree
polynomial: log(g(d)) = 4.7.10−3d3 − 9.6.10−2d2 + 2.2.10−1d− 1.76 (dashed line). Simpler is
a linear fit on the log-log graph: log(g(d)) = −0.29d (solid line). The original empirical data
is plotted here with dots — obviously, many other fitting functions are conceivable.
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Figure 9.4: Degree and semantic distance correlation estimated through ĉd(k) =
P (k|d)
P (k)

,

plotted here for three different values of d: d ∈ {d5, d8, d11}, along with y = 1.

account in the perspective of modeling such networks.

Correlation between degree and semantic distance In other words, the exponential trend
of ĝ suggests that scientists seem to choose collaborators most importantly because they are
sharing interests, and less because they are attracted to well-connected colleagues, which
besides actually seems to reflect agent activity. As underlined in Sec. 9.1.3, when build-
ing a model of such network based on degree-related and homophilic PA, one has to check
whether the two properties are independent, i.e. whether or not a node of low degree is more
or less likely to be at a larger semantic distance of other nodes. It appears here that there is
no correlation between degree and semantic distance: for a given semantic distance d, the
probability of finding a couple of nodes including a node of degree k is the same as it is for
any value of d — see Fig. 9.4.



1 2 3 4 5 6 7 8 ¥

l
0.01

0.02

0.05

0.1

0.2

0.5

hHlL

1 2 3 4 5 6 7 8 ¥

0.01
0.02

0.05
0.1
0.2

0.5

Figure 9.5: Social distance-related interaction propension ĥ with respect to l ∈ L =
{1, 2, ..., 7, 8,∞} (thick solid line) and confidence interval for p < .05 (thin lines). The y-
axis is in log-scale. Inset: Fit of ĥ (empirical data, dots), using either an affine function
(log(ĥ(l)) = −.65 − .60l, solid line) or an inverse function (log(ĥ(l)) = −4.7 + 4.6/l, dashed
line). This second function, apparently better, suggests that there is a limit in the decrease of
the propension: after some distance, the preference is the same for everybody.

9.2.3 Other properties

Specifying the list of properties is nevertheless a process driven by the real-world situation
and by the stylized facts the modeler aims at rebuilding and considers relevant for mor-
phogenesis. While we examined a reduced example of two significant properties (node de-
gree and semantic distance), measuring PA relatively to other parameters could actually be
very relevant as well — such as PA based on social distance, common acquaintances, etc.
However, the goal is also to exhibit behaviorally credible as well as non-overlapping, non-
correlated properties, if possible. In this respect, neither common acquaintances nor social
distance seem to be good candidates.

Let us nonetheless examine social distance in more details. The social distance l between
two agents is the length of the shortest path linking them in the social network, with l = ∞
when no path exists.5 Obviously, l is also a dyadic parameter. The rationale for considering
this property is that one may expect that agents at a short social distance are more likely
to interact. The shorter the distance, the more likely two agents are to get gathered in a
common event: if they have at least one common acquaintance (distance 2), if there is a pair
of acquaintances of each agent who know each other (distance 3), etc. Notice that agents at
distance 1 are already neighbors so, as regards our definition of a “new link”, there are no
new links between pairs at distance one.

5The algorithm to compute shortest path length in an unweighted graph principally consists in taking the
first vertex, assigning it distance 0, then assigning distance 1 to all neighbors, taking the list of all neighbors,
assigning them a distance 2, etc. — this is a special version of Dijkstra’s algorithm (1959) on an unweighted
network.
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The interaction propension h with respect to social distance is plotted on Fig. 9.5, and
reveals a strong PA towards “closer” agents. However, social distance is correlated at least
to degree (Newman, 2001c) (nodes of degree 0 for instance are always at an infinite distance
of everyone in the social network) and in this respect a reductive parameter: two agents at
distance 2 are certainly more likely to interact if they have a lot of common acquaintances
than just one, and social distance does not distinguish between the two phenomena.6 By
contrast, we are sure from Sec. 9.2.2 that degree and semantic distance are independent.

9.2.4 Concept-related PA

Yet, we may also wonder how concepts are chosen: for instance, like for social interactions,
are well-connected concepts used more often in articles, thus ‘interacting’ with even more
authors? It turns out that concepts are present with a frequency proportional to their socio-
semantic degree, which is the number of agents who use them, therefore reflecting their
popularity — see Fig. 9.6.

9.3 Growth- and event-related parameters

These features yield an essential insight on how local interactions occur. Now, in order to
complete the description of the way the network grows, studying how events are structured
in terms of both authors and concepts is also a crucial information. Regularly, new articles
are produced, involving on one side a certain number of authors who have already authored

6In this respect, distances based on random walks could be a good compromise (Gaume, 2004), as this takes
into account the fact that two agents are connected through a more or less dense web of common acquaintances
in the broad sens (“proxemy”).
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a paper (old nodes) and possibly a fraction of new authors (new nodes), and on the other
side, concepts that the authors bring in as well as new concepts.

9.3.1 Network growth

The first step is to determine the raw network growth, in terms of new nodes. How many
new events appear, how many new articles are written during each period? Articles gather
existing authors as well as new authors around concepts. Since we consider the set of con-
cepts to be fixed a priori, new nodes appear in the social network only. The evolution of the
size of the social network Nt depends on the number of new nodes per period ∆N t, with
Nt+1 = Nt + ∆N t. In turn, there is a strong link between ∆N t and the number of articles nt,
depending on the fraction of new authors per article.

As we can see on Fig. 9.7, the growth of both ∆N t and nt is roughly linear with time. For
instance, we can approximate the evolution of n by nt+1 = nt + n+, for a given arithmetic
growth rate of n+; every period the number of new articles increases by n+. In our case,
n+ ' 96 (σ ' 28). ∆N and n seem to be linearly correlated, suggesting that the proportion
of new authors in all articles is stable across periods.

9.3.2 Size of events

This leads us to study how articles are structured: in particular, how many agents are gath-
ered in an event, and how many of them are new nodes? As shown on Fig. 9.8, the distribu-



tion of the number of agents per article appears to follow roughly a geometric distribution.7

On the other hand, the weight of new authors within articles obeys a distribution centered
around three modes {0, 0.5, 1}, suggesting that in most cases either (i) authors are all new,
(ii) they are all old, or (iii) half are new & half are old. Since this proportion is stable across
periods, nt is a good indicator of network growth: new articles appear and pull new authors
into the network — on average, articles gather 4.4 authors, among which 55% are new, thus
.55×4.4 = 2.42 new authors, which is close to the coefficient of the best linear fit of ∆N with
respect to n: ∆N ∼ 2.25n.

Since the size of the network is increased by ∆N in a period, and ∆N here shows a
linear behavior, N should exhibit a quadratic growth; which is confirmed by comparing
(∆N)2 to N as shown on Fig. 9.7 (the same goes for n2 vs. N ). The fact that the number
of articles per period linearly increases is however proper to the evolution of this empirical
situation. The evolution of n and N is a consequence of this — this is obviously not the case
for all networks: if for instance this field of research were to be abandoned, we would have
a decrease of articles, not a linear growth.

9.3.3 Exchange of concepts

Knowing the structure of articles, and how authors are gathered, we now investigate how
concepts are chosen. The distribution of the number of concepts is plotted on Fig. 9.9, and
could be accurately approximated by a geometric distribution. Besides, while old authors
bring a certain proportion of their concepts, some concepts are used for the first time: they
do not belong to the intension of authors. The distribution of the proportion of new concepts
— new to the authors — also shown on Fig. 9.9, makes it possible to distinguish concepts
chosen within the intension of authors, from new, unused ones. It has a single mode 0, but
is on the whole relatively flat.

7In addition, the number of coauthors does not depend on node degree, suggesting that more active agents
are not working with a different number of collaborators when coauthoring an article (see inset on Fig. 9.8-top):
agent interactivity is independent of degree, ῑ(k) = ῑ.
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Chapter 10

Towards a rebuilding model

10.1 Outline

To sum up, the empirical epistemic network of the field “zebrafish” could be described as
follows:

• power-law degree distributions from agents to agents and from agents to concepts;

• a high-level of structurally equivalent groups, both because of a high bipartite cluster-
ing coefficient and because of a particular EC structure observed through GLs;

• a particular distribution of semantic distances;

• interaction behavior characterized by a preference to interact with similar, well-connected
agents (or, equivalently, who are more active), and to use well-connected, popular con-
cepts (or, equivalently, which are more ‘suitable’), in the precise manner outlined in
Sec. 9.2;

• a quadratically growing social network because of a constant growth rate of new au-
thors and articles;

• quasi-geometrically distributed numbers of agents per article and concepts per arti-
cle, with a trimodal distribution for the proportion of new authors, and a unimodal
distribution for the proportion of new concepts.

In short, using the empirically-measured low-level parameters (composition of articles
and interaction preferences) we aim at designing a reconstruction model able to reconstruct a
high-level structure compatible with real-world stylized facts (degree and semantic distance
distributions, bipartite clustering and EC structure). To this end, three crucial modeling
features are implemented: (i) event-based network growth, (ii) co-evolution between agents
and concepts, and (iii) realistic low-level descriptions, especially regarding interactions.
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Respecting PA in n-adic interactions Yet, event-based modeling introduces serious chal-
lenges towards accurately implementing PA. In classical dyadic-interaction-based models,
where events involve only two agents, it is utmost easy to choose pairs of agents with re-
spect to PA based on a set of uncorrelated properties, monadic or dyadic. This category also
covers models where agents make links to a certain number of other agents on a peer-to-
peer basis — for instance in the BA model, where new nodes arrive and attach to a given
number n of old nodes; this can actually be considered as n dyadic interactions, not a n-adic
interaction; at no time sets of more than 2 nodes have to be composed to create links.

On the contrary in n-adic-interaction-based models, where interactions involve n agents
altogether and thus induce the addition of n-cliques (with links between all pairs of agents),
composing the set of agents while at the same time respecting interaction propensions for all
[n(n− 1)/2] links could be an extremely tricky puzzle. In any case, it now appears very du-
bious to base network growth on simple dyadic interactions: n-adic interactions are simply
everywhere. So, how to proceed in this case? Two situations are to be distinguished:

• as regards PA based on a monadic property m, the picture is still easy if ῑ is independent
of m, since choosing agents with respect to f(m) or a(m) is equivalent. Then agents
can be chosen proportionally to a(m), which is nothing else than P (E|m) and PA is
obviously respected for all links between pairs of agents.1 Otherwise, if ῑ depends
on m, it would be hard to randomly form events which respect both activities and
interactivities for all kinds of nodes.

In our case, we observed on Fig. 9.8 that the number of co-authors does not depend on
degree, i.e. ῑ(k) is a constant. In other words, agents make the same number of links
for every event they participate in, whatever their degree is. This is consistent with the
previous observation that the degree-based propension f(k) has the same shape as the
activity a(k) (Sec. 9.2.1).

• as regards PA based on a dyadic property d, the picture is quite different: agents must
be chosen so that all links between all pairs of agents respect the alleged dyadic PA. To
make it simpler, our answer is to introduce an initial node i (an “initiator”) which in
turn chooses all other nodes with respect to a dyadic PA.2 The choice of the initiator
must obey criteria consistent with interaction behavior; for instance, it needs to be
chosen proportionally to agent activity. Then, other nodes are chosen according to (i)
activity and (ii) dyadic PA with respect to the initiator.

1In particular, this is what necessarily happens with dyadic-interaction-based models (where events always
gather 2 agents), which still constitute the core of network growth models (cf. detailed list in Sec. 7.2). Such
models are credible in networks where events are by definition of size two (e.g. peer-to-peer networks, Internet
transmissions, phone calls). Then ῑ(m) always equals 1, and agents can be indifferently chosen with respect to a
propension (which is traditionally the case) or to an activity, because ῑ(m) = 1.

2Another solution could consist in quantifying propensions of n-adic interaction between n members of a
given event with respect to a n-dimensional vector of parameters — that is, a n-adic PA, generalizing further the
framework presented hitherto. Yet, this kind of measurement would really not be convenient. On top of that, for
most networks — even large ones — it may be rare to get statistically significant estimations for a decent number
of n-adic configurations.



Still, without any further assumption there is no guarantee that dyadic propensions are
respected for links between these other nodes, i.e. between nodes that do not involve
the initiator — between agents around the initiator. In our case, the fact that δ is a
metric distance nonetheless warrants that the semantic distance between any pair of
nodes (x, y) remains similar to their respective distance to i: δ(x, y) ≤ δ(i, x) + δ(i, y).

10.2 Design

We may now introduce a minimal event-based model of a coevolving epistemic network.
Events are articles, made of (i) agents, who are more or less active depending on their degree
k, and gather preferentially with respect to their interests — the former being entirely inde-
pendent of the latter, and (ii) concepts, which are more or less popular, depending on their
degree kconcepts→agents. The low-level dynamics is thus as follows:

1. Creating events. nt articles are created at each period:

nt+1 = nt + n+ (10.1a)

n+ fixed to 100.3 This makes the number of events close to that of the real network.
The set of articles is denoted by At such that:

At = {At(i) | i ∈ {1, . . . , nt}}
At(i) = (St(i), Ct(i))

(10.1b)

where St(i) is the author set of the i-th article, and Ct(i) the concept set.

2. Defining event sizes. Author set and concept set sizes follow geometric laws respecting
means observed on Fig. 9.8 and Fig. 9.9, respectively, i.e.:

|St(i)| G(1/ms)
|Ct(i)| G(1/mc)

(10.1c)

where ms (resp. mc) is the mean number of authors (resp. concepts) per article.

3. Choosing authors. New agents within author sets are denoted by Sν
t (i) ⊂ St(i). Because

of the tri-modal distribution (Fig. 9.8), St(i) contains either only new authors, either
only old authors, or equally old and new authors, equiprobably. Thus,

|Sν
t (i)| =


[
P = 1

3

]
|St(i)|[

P = 1
3

] ⌊1
2
|St(i)|

⌋[
P = 1

3

]
0

(10.1d)

3We have to keep in mind that n+ remains an exogenous parameter of the model, adapted to the situation of
a growing network for a growing community.



If St(i) > Sν
t (i), there is at least one old agent, and the initiator is randomly chosen

proportionally to her social network degree k. Then, other old agents of St(i) \ Sν
t (i)

are picked according to probability P (L|k, d), where k is the degree of the agent to be
chosen, and d the semantic distance between her and the initiator — in accordance with
empirical measurements, we have:4

P (L|k, d) = P (L|k)P (L|d)
P (L|k) ∝ k

P (L|d) ∝ exp(µd)
(10.1e)

with µ = −.29.

Finally, |Sν
t (i)| new nodes are created, and ultimately added to S.

4. Choosing concepts. New concepts are denoted by Cν
t (i) ⊂ Ct(i). By new, we mean con-

cepts that no old agent of St(i) uses. These concepts represent a fixed proportion of the
article concept set, that is,

|Cν
t (i)| = µc|Ct(i)| (10.1f)

where µc is the mean proportion of new concepts (see Fig. 9.9).

Thus, concepts are chosen:

(i) for Ct(i) \ Cν
t (i), from the concept set of authors (∪s∈St(i)s

∧);

(ii) for Cν
t (i), from the whole concept set;

(iii) and for all, randomly proportionally to their degree kconcepts→agents (stylization of
Fig. 9.6).

5. Updating the network. When author and concept sets are defined (Fig. 10.1), the whole
network is updated:

St+1 = St ∪
⋃

i∈{1,...,nt}

Sν
t (i)

RS
t+1 = RS

t ∪
⋃

i∈{1,...,nt}

{St(i)× St(i)}

RC
t+1 = RC

t ∪
⋃

i∈{1,...,nt}

{Ct(i)× Ct(i)}

Rt+1 = Rt ∪
⋃

i∈{1,...,nt}

{St(i)× Ct(i)}

(10.1g)

10.3 Results

We ran the model for 8 periods t ∈ {1, · · · , 8}, starting with an empty epistemic network
— in other words, the morphogenesis starts from scratch. Obviously, periods correspond to

4We consider that P (L|k = 0) = P (L|k = 1), which is in reasonable agreement with the data (certainly
choosing P (L|k = 0) = 0 would doom single agents to remain single for their whole life).
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Figure 10.2: Social, semantic and socio-semantic degree distributions. Simulation results
(black dots or thick line) globally fit the empirical data (blue thin line). For instance, the
exponent of a power-law fit for social network degree distribution is γ = −3.10 ± .04, on
average (empirical fit was γ = −3.39).

years. One hundred new articles were to appear during the first period, with a growth rate
of 100 articles per period per period: n1 = 100, n+ = 100. We focus on networks obtained
after simulations are completed for 8 periods, and we have a satisfying adequation for every
stylized fact, both in shape and in magnitude:

• Rebuilding network size. Simulated networks contain 10982 agents on average (σ = 215,
for fifteen runs), agreeing with empirical data.

• Rebuilding degree distributions. Results for all four degree distributions are shown on
Fig. 10.2, indicating a very good fit — in particular, power-law tails have a similar
exponent, with a shape which fits a log-normal distribution similar to that of the em-
pirical case.

• Rebuilding clustering coefficients. Clustering coefficients are accurately reproduced, as
shown on Fig. 10.3.

• Rebuilding epistemic community structure. GLs have been computed for 250-agents sam-
ples (see Fig. 10.4), following the protocol of Part I: distributions of EC sizes are close to
those of the real network, and exhibit the same effect when compared to the “random
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Figure 10.4: Number of ECs with respect to agent set sizes, in GLs computed for samples
of 250 agents. Simulation results (thick black line) fit the empirical data (thin blue line). We
also computed random “rewired” cases, as we did in Part I (keeping degree distributions on
both sides, from agents to concepts and from concepts to agents): as expected, they contain
significantly less ECs, by one order of magnitude (thin red line).

case”.5 Semantic distances are also correctly rebuilt, see Fig. 10.5.

10.4 Discussion

Hence, epistemic communities are produced by the co-evolution of agents and concepts. Not only is
the high-level structure accurately reconstructed by our model, but low-level dynamics are
consistent as well — this is a not a minor point: rebuilding high-level phenomena remains
dubious if the low-level dynamics is incorrect. Truthfulness of descriptions must reach the

5There is a slight deviation for high-size ECs, which are found in lower number in the simulations than in the
real network. This could actually be due to a selection bias where empirical data are ex post selected data on a
given community (the zebrafish field), where high-size communities are gathered around paradigmatic words
(“develop”) which the model only partly reproduces.
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higher level as well as the lower level. In any case, we may still wonder what weight some
of our hypotheses bear towards the apparition of high-level phenomena: is our model a
minimal model as regards the stylized facts we selected?

In particular, consider basic event-based models for social networks — which have be-
come popular very recently among a few other authors as well (Ramasco et al., 2004; Guimera
et al., 2005; Peltomaki & Alava, 2005) — that simply rest on n-adic events instead of dyadic
interactions and that do not even specify any kind of PA. Yet, these models lead to scale-
free distributions and high one-mode clustering coefficients. These results suggest that PA is
not required to rebuild degree distributions and c3, by contrast to dyadic-interaction-based
models (such as BA model).

Recall that our model features (i) event-based modeling, (ii-a) degree-related preferential
attachment (or activity) for the choice of agents and (ii-b) for concepts, and (iii) homophily of
agents. Are the high-level stylized facts still reproduced if we loosen some of these hypothe-
ses? Since many combinations of simplified models are envisageable, we only examine what
happens when relaxing one hypothesis at a time; and sum up the results hereafter.

1. Relaxing social-degree-based PA. Only agent degree distributions change (from agents to
agents and from agents to concepts), with a different power-law fit exponent (γ = 2.48
for the social network without this kind of PA, vs. 3.39 with it — the degree distribution
is thus “flatter”, which is consistant with the suppression of the accumulative effect of
this PA).

2. Relaxing semantic-degree-based PA. Here, reconstruction of both EC structure and seman-
tic distance distribution fails. The effect of concept popularity seems central to the
emergence of epistemic communities.

3. Relaxing homophily-based PA. This is certainly the most surprising result: the only change



concerns the semantic distance distribution for the social neighborhood (see Fig. 10.5-
right) — yet, this change is slim, especially as regards a feature that has such a hetero-
geneous impact (recall that the homophilic propension is exponential).

4. Relaxing event-based modeling. This hypothesis is at the core of the model, so revisit-
ing it may require to strongly reshape the whole model. Let us only fix the fact that
|St(i)| = 2, which amounts to classical dyadic interactions — all other mechanisms re-
main unchanged. Then, degree distributions do not enjoy the log-normal shape and are
only scale-free; which is unsurprising from (Barabási & Albert, 1999).6 Also, clustering
coefficients are not reproduced (which is also unsurprising (Ramasco et al., 2004) and
consistant with the fact that a high c3 is simply due to clique addition). Thus, relaxing
event-based modeling creates empirical inconsistancies even for the simplest topological
criteria.

6Yet, any constant number of authors per article (|St(i)| = c) also leads to a very particular degree distribution,
contrarily to what (Guimera et al., 2005) found. For other values of c > 2, by definition social network degree
distributions are likely to be biased around multiples of (c− 1) — especially for low degrees.





Conclusion of Part II

The main achievement of this part has been to micro-found the particular community struc-
ture that we highlighted in Part I. We investigated the formation of an emerging scientific
community, that of the “zebrafish”, considered as a social process of knowledge building
and community organization. Using real-world observations, we asked whether we could
in turn reconstruct artificially the evolution of this scientific field, through the lens of selected
stylized facts deemed relevant for this epistemological task.

We assumed that modeling agents co-evolving with concepts was enough to micro-found
the evolution of this social complex system. In other words, the social constitution, arrange-
ment, configuration, manipulation and reconfiguration of concepts was assumed to account
for most of the scientific field structure. We had thus to design a low-level dynamics λ con-
sistant with empirical data, and adequately rebuilding ηe, through P . To this end, after out-
lining the kind of stylized facts to be reconstructed, we needed to create tools enabling the
estimation, from past data, of the interaction and growth processes at work in the epistemic
network. Only thereafter could we hope for a realistic, descriptive model of the dynamic
co-evolution of agents and concepts, and the resulting structure.

We have thus argued for an empirical stance in designing model hypotheses, although
this attitude can often prohibit analytical solutions and compel to the use of simulation-
based proofs. In fine, introducing credible empirically-based hypotheses would help attract
really more social scientists into this promising field. Social scientists are usually not seeking
normative models. More specifically, in the search for hypotheses eager to explain a given
“high-level” phenomenon, scientists have to make inductions on low-level features which
reconstruct the phenomenon. We suggest that it is eventually essential to know whether
the alleged low-level dynamics is empirically grounded too — even if the model reproduces
the desired stylized facts, and even if the hypotheses do not look ad-hoc (like for instance
introducing scale-free preferences to rebuild scale-free networks). Normative models are
certainly nice, but not necessarily useful towards a descriptive task.

In particular, quantifying interaction processes plays here a crucial role — heterogenous
interaction behaviors are indeed the cornerstone of many recent social network formation
models. Preferential attachment (PA), which is the common way of designating this hetero-
geneity, is obviously a robust method to avoid the classical random graph model. PA was
established by the success of a pioneer model (Barabási & Albert, 1999) rebuilding a ma-
jor stylized fact of empirical networks, the scale-free degree distribution. However, while it
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has subsequently been widely used, generally few authors attempt to check or quantify the
rather arbitrary assumptions on PA. Therefore, we designed measurement tools yielding a
comprehensive description of interaction behaviors with respect to any kind of property,
structural or not. In addition to epistemic networks, this framework could also be eas-
ily applied to any other kind of network, especially non-growing networks — likewise, a
whole class of empirically-based morphogenesis models can be designed (Boguna & Pastor-
Satorras, 2003; Cohendet et al., 2003). This kind of hindsight on the notion and status of PA
should be useful even for normative models.

The final success of the reconstruction gives full credit to the claim of the present the-
sis: the structure of knowledge communities is at least produced by the co-evolution of
agents and concepts. Yet, we also argue that such co-evolution may still depend on ex-
ogenous parameters. We can indeed imagine that various low-level measurements (size of
groups, interaction behavior, growth rate, etc.) would be different in other research groups,
other epistemic areas, or other eras. Take for instance the growth of the field: how comes
that there is such an interest in the zebrafish? Practical reasons can be put forward: it is
a translucent vertebrate, quickly developing, sufficiently close to human, very helpful for
many more fields other than embryology. But all of this is proper to the contingent nature of
the zebrafish. Later, a cure for cancer could be found from the study of the zebrafish, likely to
pull in a large number of scientists; or not: this discovery depends on unpredictable properties
of the zebrafish itself. We strongly doubt that these features could be endogenized in any
model.

More generally, the uncertainty on novelty and new knowledge (new concepts as well
as new usage of old concepts) appearing in the social complex system is not truth-related
uncertainty: it is not something which is already-known, which may happen or not, and
which is easily substitutable by a probability. Rather, it is a radically different uncertainty,
one on the ontology (Lane & Maxfield, 2005): “what ontology will agents dispose of in the fu-
ture?” Epistemologists have long been interested in exploring the justification of new ideas,
but few attempted to explain how discoveries occur. In such cases, random intuition (“lucky
guesses”) and induction are often called on. Some authors on the contrary argue that the dis-
covery of new knowledge is rooted in already-existing knowledge (Gigerenzer, 2003): novel
reinterpretations of existing notions and tools have an innovative feedback onto theories
and concepts. But here too, we cannot predict the way tools will be reinterpreted. In both
situations, we still have to cope with ontological irreducibility: a model cannot express and
yield anything newer than what is already specified by the language and the grammar of the
model, which are closed (Chavalarias, 2004, p.257).

In any case, we must therefore keep in mind that real-world epistemic networks are not
closed. In our model, we decided to keep some things exogenous: we had for instance a fixed
growth rate n+ and a fixed set of a priori equivalent concepts C. In reality, new topics can
arrive in the system — either through items that are not represented in the model (like con-
ferences, news (Gruhl et al., 2004)), underlining the problem of boundary specification (Lau-
mann et al., 1989); or from phenomena that are simply unpredictable (like the cure for cancer,



cf. supra), for which modeling is most likely to fail. Let us mention in particular two model-
ing methods that could be proposed to account for new knowledge creation: (i) innovation
is modeled by a random probabilistic increase in the amount of knowledge, which is thereby
assumed to be quantifiable, monotonic, and whose nature is fixed (e.g. in (Cowan et al.,
2002)); (ii) innovation is a generative process, producing new items from already-existing
items; for instance Lane (1993) proposed λ-calculus as a way to generate truly novel objects,
generally thanks to a chaotic process — such generative processes however could hardly be
considered realistic, even if they are indeed undecidable and unpredictable, hence compati-
ble with ontological uncertainty (which probabilistic models are not).

Hence and more broadly, the potential dependence on undecidable exogenous parame-
ters leads us to moderate the claim of our thesis: whereas the reconstruction has obviously
proven to be a success, within a given time-period and all its particularities, it is nonethe-
less likely that other processes in which the epistemic network is immerged could also play a
significant role. As such, under the provision that such parameters are stable for the consid-
ered time-scale, we clearly demonstrated that the reconstruction of the dynamics of a social
complex system is within reach.





Part III

Coevolution, Emergence,
Stigmergence

Summary of Part III

In this part, we make an epistemological point that provides a significant insight on
how to rebuild a social complex system. After detailing different attitudes towards ap-
praising the relationships between levels of description, we argue that distinct levels
are merely distinct observations on a process. We then present implications on reconstruc-
tion methodology and complex system modeling, and particularly emphasize the role
of level design in making sound distinctions among objects. We distinguish the special
case of systems of agents producing artefacts which in turn have an effect onto them,
a feature shared by many social systems.





Introduction of Part III

“(...) because I know that you are a part of Humanity, of which I am also a part, and that you partly take
part in the part of something which is also a part and of which I am also in part a part, together with all
the particles and parts of parts, of parts, of parts, of parts, of parts... Help! Oh, confounded parts! Oh,
bloodthirsty, nightmarish parts, you’ve grabbed me once again, is there no escaping you, hah, where can I
find shelter, what am I to do?”

Ferdydurke, Witold Gombrowicz.

In this final part, we wish to make an epistemological point that should provide a crucial
methodological insight on social complex system modeling. So far, we have proven that epis-
temic networks are the result of low-level interactions of agents co-evolving with concepts.
To do so, we have appraised this socio-semantic complex system both (i) starting from disci-
plines & community structure, and looking at how this may be expressed in terms of agents
and concepts, exhibiting a valid “P” (Part I); and (ii) using low-level dynamics of epistemic
networks to reconstruct high-level phenomena (Part II). As such, we filled the explanatory
gap between the lower level of agents & concepts and the higher level of epistemological
descriptions. We now wish to investigate the epistemology of our approach, and suggest
broader implications on social complex system modeling. In order to do so, we will focus
on the status of the different levels of description, the subsequent relationships they may
entertain, and the modeling methodology required to give an account of these relationships.
We will argue that modeling social complex systems tends to require the introduction of
co-evolutive frameworks at the lower level of the kind we presented here. More gener-
ally, we argue that some high-level phenomena cannot be explained without a fundamental
viewpoint change in not only low-level dynamics but also in the design of low-level objects
themselves. In other words, it may be important to reconsider (and sometimes differentiate)
objects at a given level in order to achieve a successful reconstruction. Emphasizing level
design is particularly insightful in situations where structures created by a level exhibit an
efficient causal feedback on this level. Surprisingly, these cases do not involve downward
causation, but simply relate to causation of a priori distinct objects onto each other, or coevo-
lution of phenomena.

The outline of this part is as follows: in Chap. 11 we suggest that distinct levels, con-
sidered as phenomena of a unique underlying process, only exist to the observer and as
such may still yield overlapping, redundant and thus correlated information about the pro-
cess (Bonabeau & Dessalles, 1997; Gershenson & Heylighen, 2003; Bitbol, 2006). Chapter 12
presents meaningful implications on modeling, and highlights a few yet essential method-
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ological points required for complex system modeling. In Chapter 13, we support the idea
that while levels are often simply different aspects of a process, objects could still be use-
fully differentiated to describe certain kinds of causality between phenomena: for instance,
agents produce artifacts that in turn influence them, with no downward causation. The no-
tion of “emergence” is consequently enriched by the concept of “stigmergence” of artifacts.
We conclude that co-evolution is a central feature of socio-semantic complex systems.



Chapter 11

Appraising levels

The concern of any scientific field is to describe certain kinds of objects, along with the reg-
ularities that govern them. The global picture of scientific research is subsequently made of
disciplines focused on particular levels of description: physics is concerned with fields and
particles, biology with cells and living organisms, social sciences with agents and institu-
tions. Often, a level can be considered to “rely on” more fundamental levels — for instance,
agents are living organisms, organisms are “made of” cells, cells are “made of” molecules.
These notions usually translate in terms of “whole/part” relationships.

Modern science, and complex system science in particular, has also been taking this con-
ception in a reverse, compositionalist direction: items at some level are organized system-
ically and compose higher-level objects — higher in size, because they are made of at least
one entity and, often, higher in inertia (i.e. slower time-scale). For example, molecules build
up cells, cells build up organisms, which build up agents, and so on. Like our epistemic
network model, an important associated challenge is the reconstruction of high-level phe-
nomena through the iterated, cumulated interplay of low-level objects: complex scientists
dream to rebuild high-level descriptions from low-level ones. Thus they would bridge ex-
planatory gaps between levels and cancel out separations between scientific fields. To this
end, investigating the nature of levels of description becomes a crucial topic — especially
addressing the two following key questions: (i) how to appraise different levels? (ii) how
to assess their links and potential mutual influence upon each other? We also indicate why
this attitude leads to reconsider the notions of upward and downward causation — namely,
a level having a causally efficient influence on other levels.

11.1 Accounting for levels

In order to appraise the nature of levels, as mentioned above, several attitudes are available.
Classical answers include dualism, reductionism and, as a tentative bridge between these
two extremes, emergentism, where higher levels are supposed to emerge from lower levels.
Here, we review these stances and present their caveats, notably dismissing the idea that
levels exist as entities, and suggesting instead that they are merely observations of a single
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process — as such, distinct aspects, various phenomena of a same underlying “x.”
Let us recall the two most classical positions that could be first suggested:

Definition 12 (Dualism). Dualism is a position for which different levels correspond to different
entities, and have a proper reality by themselves.

Thus in the dualist position, different levels must be appraised through different means and
enjoy distinct realms. Causality happens at all levels. Even if one can for instance describe
the cells that compose the body, the body is supposed to enjoy a substantial reality by it-
self that cannot be explained in terms of the lower level, and accordingly a proper causal
efficiency — this amounts, for instance, to vitalism.

Definition 13 (Reductionism). Reductionism states that all phenomena can be explained, computed
and rebuilded from the lower level, up to higher levels.

Opposite to dualism, the reductionist viewpoint denies that higher levels exist by them-
selves: they are at best convenient macroscopic descriptions. Here, only the lower level en-
joys reality and causal efficiency. This eventually amounts to physicalism: physical entities
and laws are sufficient to explain the entire world, at least in theory.1

11.2 Emergentism

These two conflicting positions nevertheless exhibit some weaknesses. Apart from its uncon-
vincing non-materialistic aspects (Papineau, 2001), the dualist viewpoint eventually amounts
to pluralism, with as many ontologies as there are levels. Worse, it is in fact a subjective plu-
ralism, because conceptions of levels mostly depend on a quite subjective if not arbitrary
ontology.2 How could levels created by scientists be real entities, especially when consider-
ing the multiplicity of levels at stake (physical, chemical, biological, individual, social, etc.)?

On the other hand, it is unclear whether reductionism allows the rebuilding of the whole
world and its different levels. In this respect, it appears sometimes unlikely that theories
on a given level could be reduced to an applied, iterated version of lower-level theories
(Anderson, 1972; Laughlin & Pines, 2000; Lane, 2006). Practical reasons (computing the
behavior of more than a handful of particles proves quickly to be impossible) as well as
less practical reasons (such as Anderson’s example of nuclei whose spherical shape is due
to an infinite approximation of lower-level particle properties) suggest that “the Theory of
Everything is not even remotely a theory of every thing” (Laughlin & Pines, 2000).

1(Bickhard & Campbell, 2000) “Everything else is epiphenomenal to that, and can be eliminatively reduced to it —
perhaps with the caveat of the cognitive limitations of human beings to handle the complexities required. In this cognitive
view, higher levels are necessary considerations only because of their relative cognitive simplicity for humans, not for any
metaphysical or even physical reasons.”

2As Emmeche et al. (2000) observe, “Our methods for making such distinctions [of primary levels] are of course
dependent on the historical development of scientific theories and disciplines.”



While the dualist position is based on the a priori existence of several levels, the reduc-
tionist position actually eliminates the higher levels to the benefit of the lowest level.3 These
two stances are strikingly contradictory, and the tension is particularly disturbing when one
dismisses dualism but still wants to consider higher levels to be irreducible, granting them
some reality.

Bridging the gap The emergentist position is an attempt to reconcile both views, by assum-
ing emergence. The point is to bridge the possible failures of reductionism: the higher level is
not reducible, the whole is more than the sum of its parts, even in theory; but it is physically
grounded so it needs to emerge from the lower level. No dualism is supposed a priori, but
the cumulated, aggregated action of small objects somehow leads to the emergence of novel
higher-level objects that are not reducible to lower-level objects. To make things clearer, we
adopt the following definition of emergentism:

Definition 14 (Emergentism). Emergentism assumes that low-level phenomena are the cause of
high-level phenomena, yet in turn not necessarily reducible to low-level phenomena.

The resulting high-level and low-level phenomena then come to influence each other through
causally efficient mechanisms. This classical picture of emergence distinguishes the inter-
acting objects (physical phenomena at the lower-level) from the emerging objects (emergent
structures at the higher-level). Yet providing the lower level with causally efficient prop-
erties onto the higher level induces two possibly unsatisfactory consequences: either the
higher-level is an epiphenomenon (a mere consequence of low-level phenomena, which can-
not cause anything itself), or it enjoys causal properties as well (which amounts to downward
causation).

In the first case indeed when causation goes only upwards, some authors underline the
epiphomenality of higher-level phenomena (Kim, 1999; Campbell & Bickhard, 2001). The
argument is fundamentally as follows: denoting lower-level states by “L” and higher-level
states by “H”, at the lower level L causes L′, however at the same time L causes H and L′

causes H ′; so why would we need H and H ′ for? These two properties seem in fact merely
epiphenomenal. Thus, “[i]f emergent properties exist, they are causally, and hence explanatorily,
inert and therefore largely useless for the purposes of causal/explanatory theories” (Kim, 1999).

But then, epiphenomenality does not differ much from reductionism, and according to
Bitbol (2006), “emergentists are inclined to require productive causal powers of the emergent proper-
ties on the basic properties.” In other words, the whole may impose constraints onto the parts.
In such a framework, where both upward and downward causations are present, interac-
tions of low-level items (in L) create a higher-level object (in H), which in turn, is supposed
to have an influence on the lower-level items (L → H → L′). Hence causation goes down-
wards too, and H adds something to the lower-level. To Donald Campbell, who introduced
the term ‘downward causation’, “All processes at the lower levels of a hierarchy are restrained by

3Some call this “eliminativist physicalism”, because processes are supposed to be fully characterized by the
lowest physical level only.



and act in conformity to the laws of the higher levels” (Campbell, 1974a).4 In other words, the
whole influences the part through top-down constraints.

Definition 15 (Downward causation). Downward causation corresponds to the fact that a system
of objects which integrates a larger whole is in turn affected by the larger whole.

For instance, cell interactions produce some emergent psychological feature (e.g. stress)
which in turn induces biological changes (blood pressure increase). Similarly, consciousness
is considered causally efficacious on the activity of the body (Thompson & Varela, 2001).

Although widely spread, this conception could be surprising: indeed, can a lower level
create a higher level which in turn influences the lower level? Accordingly, detractors of
downward causation argue essentially that it is redundant and, even worse, that it violates
the causal rules defining the lower level; hence, they suggest, a critically erroneous principle
— see e.g. (Emmeche et al., 2000).

11.3 What levels are not

Basically, each one of the three positions posits different assumptions on the status of levels,
considering higher levels to exist:

(i) a priori — dualism;

(ii) a posteriori — emergentism;

(iii) only at the bottom — reductionism.

The two first options assume the objective existence of the higher level. Let us not elab-
orate on strict dualism. So what about emergent levels? Often, emergent properties are
called on when a system exhibits highly unexpected and/or unpredictable high-level prop-
erties.5 Emergentism here underscores the potential failure of reductionism in manipulating
high-level properties. Granting an independent objective status to the higher level makes it
possible to develop assertions and predictions on it (and particularly on what is considered
irreducible or unpredictable) while still grounding the system into low-level objects. Using
downward causation, it is even possible to cast back the higher level into the lower level.

But as Emmeche et al. (2000) put it, “it is unclear what the ramifications are of assuming that a
physical cause could have an effect which was not physical.” Arguing that emergent properties are

4More precisely, Campbell illustrates this idea as follows: “The organisational levels of molecule, cell, tissue,
organ, organism, breeding population, species, in some instances social system (...) are accepted as factual realities
rather than as arbitrary conveniences of classification, with each of the higher orders organising the real units of the lower
level.”

5A common definition of ‘emergent’ is precisely “unpredictable from the basic laws”. As Shalizi (2001) notes,
“to call something emergent is therefore not to say anything about the property at all, but merely to make a confession of
scientific and mathematical incompetence.” Similarly, an easily deducible macroscopic phenomenon is rarely consid-
ered “emergent”: if the low-level mechanism at the origin of the high-level property is clearly explainable (with
linear dynamic systems being the limit case), its status as an emergent feature is often weakened or considered
trivial (again, particularly in the case of linearity (Bickhard & Campbell, 2000)).



hard to predict from underlying properties is not a reason to abandon a strictly reductionist
viewpoint. The reason why the reductionist approach still fails in practice could simply
be that we miss tools, cognitive or formal, to observe and predict high-level phenomena
from the low-level ones. One must tell whether there is a real emergence of irreducible
novel objects or not — not only that these new properties are a convenient descriptive and
predictive tool. In other words, emergentists must explain why the fact that “each level can
require a whole new conceptual structure” (Anderson, 1972) is not simply epistemological. In this
respect, considering temperature, which is simply an instrument and enjoys no reality by
itself, Bitbol (2006) notices that “[it] looks as if it were a new and autonomous property, but it is
only relative to the thermometric technique”. Yet, he underlines that even in the particular case
of property fusion in quantum mechanics — low-level properties merge to yield an upper-
level property, which in turn forms different lower-level properties — there is no objective
reality of the higher-level: “in the upward direction, fusion of potential experimental information
occurs; not fusion of actual property.”

Now, the assumption of the existence of a lowest level, which makes the core of reduc-
tionism, is problematic as well. This point has been indeed recently challenged by Bickhard
& Campbell (2000) who deny any supremacy to the lower level: “there is no ‘bottoming out’
level in quantum field theory — it is patterns of process all the way down, and all the way up.” For
reductionism lies on the hypothesis that only higher levels are decomposable into smaller ob-
jects, a decomposition which ultimately reaches physical items governed by physical laws;
yet what happens if patterning occurs at all levels? If we cannot consider the lowest level
to involve elementary properties, then Bitbol suggests that “no level can claim for itself the
privilege of being for sure the ultimate one; ultimate and monadic.”6

11.4 Observational reality of levels

11.4.1 Different modes of access

To summarize, all levels, both higher and lower, seem to vanish as substantial objects — as
Bitbol puts it, “the physical process may have no substantial roof of emergent properties, it has no
substantial ground of elementary properties either.” This apparently yields a tricky paradoxical
situation, where objects and hence causality are bound to have no shelter anymore, while
things still happen. To solve this, suggesting instead that properties at any level are the result
of an observational operation proves to be a unifying and compelling answer (Bonabeau &
Dessalles, 1997; Gershenson & Heylighen, 2003; Bitbol, 2006). Notably, focusing on quantum
property fusion, Bitbol stresses the fact that “[w]hat emerges is only a new mode of possible cog-
nitive relation between the microscopic environment and the available range of experimental devices.”

This remark is crucial and can obviously be extended to any kind of phenomenon. The

6This viewpoint is already present in (Campbell, 1974b): “For a weak microscope, we assume that the homogeneous
texture provided at its limit of resolution is a function of those limits, not an attribute of reality. We do this because through
more powerful scopes this homogeneity becomes differentiated. By analogy, we extend this assumption even to the most
powerful scope.”
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Figure 11.1: Distinct, partially overlapping aspects of an underlying process x.

whole point is to see that properties are defined only under a given instrumental appara-
tus, and that even lowest-level properties are always appraised through an “instrumental
intervention.” Thus, we have to consider that there are different modes of access to a same
process, not different levels that co-exist. In other words, there is a dual mode of instrumen-
tal access, not a duality of entities. In this view, we can have different kinds of properties
(microscopic or macroscopic, monadic or relational) leading to the introduction (by the ob-
server) of several kinds of related objects and phenomena — and accordingly have different
modes of access to a real process, by operating on any level. Thus different ways to appraise
properties emerge, not levels.

Therefore, Bitbol stresses out that “[t]here may be emergence without emergent properties. Not
asymmetric emergence of high-level properties out of basic properties, but symmetrical co-emergence
of microscopic low-level features and high level behavior.” As such, considering the co-emergence
of several modes of observation is not a physicalist position, for it does not assume a lowest
physical level, yet it is not dualist as well, because it does not imply dualist entities but
simply the simultaneous observation of a unique process at different levels. Here levels
have no consistence, rather they are observational: in this respect, one may say that they exist
a observatori. By contrast with the other trends presented so far, we will call this position
“observationism.”

An underlying process “x” is thus appraised through observations, which are phenom-
ena in the etymological sense: things that appear. Each of the observed aspects of a process
can be considered as a partial projection pi(x) of the underlying “x.” Each pi(x) yields possi-
bly overlapping information on x: the mean kinetic energy of a perfect gas gives indeed the
same information as does a thermometer. But the thermometer is able to provide the temper-
ature of fluids and solids as well — the thermometer, as a high-level observation instrument,
yields information which obviously the mean kinetic energy cannot render. More generally,
it is dubious that we could exhibit a set of instruments {p1, p2, ...} that would wholly charac-
terize the process x, in the sense that any observation concerning x could be deduced from this
minimal set of instruments, even infinite (i.e., we suggest it is impossible to find a covering
of x with pi, see Fig. 11.1).



11.4.2 Illustrations

This conception is instructive in situations involving iterated actions producing an emergent
structure that in turn influences individual action, where downward causation is often sup-
posed to play a key role. Let us consider first waves “emerging” from water: in this case
water molecules move by obeying strictly mechanical laws at the lower level. Yet at a higher
level a wave emerges, which in turn like an independent object seems to have a downward
causal effect on the molecules that participate in the wave by draining them into a high-
level dynamics that individual molecules cannot resist. Rather, it is a phenomenon which
lends itself to dual-mode appraisal, either at the high-level of the wave or at the lower-level
of molecules. Local laws applying to the lower-level are not to be modified, and molecule
positions are consistant with what is to be observed at a higher-level. Looking at the wave
however provides only information about low-level phenomena (position, movement of wa-
ter molecules).

The same goes with Schelling’s (1971) celebrated model of segregated neighborhood for-
mation. In this model, agents are placed on a grid and assigned a random color, blue or
red. They behave according to a simple and unique rule consisting in changing locations
in order to be surrounded by at least a certain fraction α of same-color agents. When run-
ning the model, for a sufficient value of α, large areas of same-color agents appear, as such a
global pattern emerging from strictly local rules. Downward causation seems at work when
“emerging” patterns in turn influence agents who join segregated neighborhoods. But this is
simply apparent: the agent does not choose ‘consciously’ to join segregated neighborhoods.
Her behavioral and causal rules are the same as before and need not be changed to observe
an emergent macro-level behavior consisting of “agents going to same-color neighborhood.”

In the case of epistemic networks, the fact that higher-level epistemic communities ap-
pear bears no influence as such on agents: agents are still characterized by their low-level
behavior. Appraising differently the process through a high-level instrument — Galois lat-
tices — reveals high-level patterns. Agents could even appear to join epistemic communities.
But in the definition of our model, agents are not explicitly influenced by epistemic com-
munities. Other examples include norm emergence from repeated games between agents
(Epstein & Axtell, 1996; Axtell et al., 2001), network formation from repeated agent-based
interactions (Skyrms & Pemantle, 2000), to cite a few. For every of these cases, high-level
phenomena may appear to have a backward effect on the behavior of lower-level objects.
Instead, the higher level simply yields large-scale information on the lower-level, but it does
not induce a modification of the behavior itself, which remains unchanged. In other words,
observing the higher-level provides us with knowledge on the outcome of low-level behav-
ior. Therefore, with respect to lower levels, higher levels are often macroscopic and partially
informative observations — possibly expressible as a “pattern” of low-level items.





Chapter 12

Complex system modeling

Even when adopting such an observational position, the way of linking levels remains an
open question — at least for the modeller. What are the implications of these philosophical
considerations on modeling phenomena? How should models deal with different levels of
access? Before suggesting answers, we need first to detail more extensively the operational
motives of reductionists and emergentists and, by doing so, recall some goals and methods
of complex system science.

12.1 Complexity and reconstruction

12.1.1 Objectives

Basically, complex system science craves for explaining high-level phenomena by playing
with lower level objects. More precisely, with the help of low-level descriptions, it aims at (i)
checking whether some already-known high-level descriptions are properly reconstructed
(validation of higher-level phenomena), or (ii) discovering new high-level descriptions (new
unexpected and potentially counterintuitive phenomena).

This attitude has two main epistemological advantages over strictly high-level descrip-
tions: it follows Occam’s razor law and, subsequently and more importantly, it works with
simpler and, often, more reliable mechanisms. Simplicity means that objects are governed by
more simple laws, while reliability here qualifies mechanisms that enjoy a more accurate and
stable experimental validation.1 This is most of the motto of complex system science: rebuild
complex high-level behavior based on simple and well-understood “atoms.”

12.1.2 Commutative decomposition

In order to win the challenge of reconstruction, one could first adopt a reductionist version
of the paradigm of complexity, modeling only low-level items. This approach discards the-
ories of the higher level to the benefit of “micro-founded” science — as such, it discards all

1Some other epistemological benefits of this approach can be found in more details in (Bonabeau, 2002) for
example.
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impermeability between scientific fields. For instance, instead of using laws and theories of
psychology, one may be willing to rebuild them by iterating the activity of neurons, which
compose here the lower level, governed by biological laws — and this is a current issue
in computational neuroscience, e.g. for explaining adaptive change capabilities from neural
plasticity (Destexhe & Marder, 2004).

Here, it is necessary to characterize how lower-level properties translate into higher-level
properties by a projection function P (or composition function) expressing the higher-level
H from the lower-level L; that is, P (L) = H . Without P , how would somebody playing
with low-level items expect to say anything about high-level phenomena H? The defini-
tion of P is however not sufficient to achieve successful reconstruction: low-level dynamics
observed through P must also be consistent with higher-level dynamics. Dynamical con-
sistence means that a sequence of low-level states projected by P corresponds to a valid
sequence of high-level states. More formally,2 if we denote by λ (resp. η) the transfer func-
tion of a low-level state L (resp. high-level state H) to another one L′ (resp. H ′) — in short,
λ(L) = L′, η(H) = H ′ — this means that P must form a commutative diagram with λ and
η so that, as suggested in the general introduction (Rueger, 2000; Nilsson, 2004; Turner &
Stepney, 2005):

P ◦ λ = η ◦ P (12.1)

Indeed, the left side of Eq. 12.1 is the high-level result of a low-level dynamics, while the
right side yields the outcome of a high-level dynamics. The aim of the reconstruction is to
equate the latter with the former.

Hence commutativity is the cornerstone of the process; should this property not be veri-
fied, reconstruction would fail. How to check it? Since P is a definition and λ is designed by
the modeler, η is truly the benchmark of the reconstruction. There are nevertheless two ways
of considering η: (i) either η stems from a priori knowledge of higher-level theories (e.g., “can
we rebuild these Zipf laws arising in that context?”); (ii) or η is discovered a posteriori from
the model (e.g. “what unexpected phenomena may emerge? are they empirically valid?”).
Verifying Eq. 12.1 in the first case refers to a successful reduction, while in second case it
induces new knowledge for the scientist, because the challenge is to exhibit a solution η̄ of
Eq. 12.1, then to test this theoretical solution against reality.3

2Although formulated in a specific way, this formalism could be easily transposed for a wide range of kinds
of dynamics, discrete or continuous.

3In more details: in the first case, consider an example where one already knows the empirical dynamics ηe

of a given law of city size distribution (ηe(H) = H ′, where both H and H ′ follow Zipf laws) (Pumain, 2004).
The high-level state H is composed by P of low-level objects (cities and their populations) whose dynamics
is deemed to be λ. Initially, P (L) = H . Suppose now that P ◦ λ(L) = H ′′: if H ′′ = H ′, P ◦ λ = ηe ◦ P ,
the reconstruction succeeded, otherwise it failed. In the second case, consider an example where one wants to
observe the adoption rate of an innovation (a high-level dynamics) from low-level agent interactions (Deroian,
2002). Here also, P and λ are defined by the modeller, only ηe is induced by assuming the commutativity, i.e. find
a η that satisfies Eq. 12.1. Often, this approach stops here: it rests on the stylized high-level dynamics η deduced
from the interplay of P and λ. But at this point it should be straightforward to try to measure the empirical ηe,
which comes down to the kind of empirical validations carried out in the first case: “does η(H) = ηe(H)?”



12.1.3 Reductionism failure

Nevertheless, Eq. 12.1 should hold in any case. Sometimes verifying it works perfectly,
thanks to an analytical proof — such as in the famous case of temperature of gases: “Physics
can make it intelligible that mean kinetic energy of the molecules of a gas plays exactly [the] causal
role [that temperature plays]” (Beckermann, 2001); the causal role of gas temperature has been
reduced to physical phenomena (molecular interactions). Sometimes it works less perfectly,
because analytical resolution is hardly tractable; here only proofs on statistically sufficient
simulation sets are available, using several initial states L. This is a somewhat positivist at-
titude, but as Epstein (2005) notices, each simulation is nonetheless a proof on a particular
case, so the reconstruction may be considered a success as long as Eq. 12.1 holds true for
statistically enough particular cases.

But sometimes it just doesn’t work: commutativity does not hold. For we assume η to
be empirically fixed, the failure must be due either to λ or to P . Suppose that we stick to
the fact that H is always correctly described by P (L).4 Then λ must be jeopardized. In this
case the fact that the low-level dynamics entails, through P , a high-level dynamics different
from that given by η means that λ misses something: λ(L) is invalid, otherwise P (L′) would
equate H ′. Solutions consist in improving the description of the low-level dynamics. In this
paradigm, reductionism could fail only for practical reasons, for instance if λ has to be too
complicated for commutativity to hold.5

12.1.4 Emergentism

In spite of that, it may also be that reductionism fails for ontological reasons: P is incorrect
and, more generally, it is impossible to define P . This is for example what Anderson (1972)
suggests in his famous quote: “Psychology is not applied biology.” In other words, even with
an ideally perfect knowledge of λ, reconstruction attempts would fail from the beginning be-
cause of the inobservability of H from L. Here the whole is more than its parts, and the higher
level enjoys some sort of independence, even when acknowledging that in reality everything
is physically grounded. Obviously, this is the emergentist position. H is substantially inde-
pendent, and causation relationships between both levels are necessary to expect that L and
λ explain something about H and η — and possibly reciprocally when assuming downward
causation. In other terms, η is enriched to take L into account, and λ may be enriched to take
H into account: λ(L,H) = L′, η(L,H) = H ′; with possibly both levels exerting a causally
efficient influence on each level dynamics. In fine, the modeller wants both λ and η to be
empirically correct. So far, this is not formally different from what a “pure” dualism would
yield.

4I.e., P (L) = H for all empirically valid couple of low- and high-level states (L, H). Note that this is neces-
sarily the case when H describes higher-level patterns on L. This is what some authors seem to call second-order
properties (Kim, 1998).

5For the sake of instrumental practicality then, it is even possible to say that λ depends also on H , but only
because P (L) = H , which amounts to no more than repeat that λ depends on L, through the instrumental
“simplifier” P .



Yet when considering that it is the lower-level that causes the emergence of the higher-
level, most problems underlined in Sec. 11.2 & 11.3 emerge as well. Still, reductionism is
uneasy to trust, because of its conception of a lowest level where all causality happens and
for which projection functions P onto any level do exist (at least in theory). So, in many
cases where reductionism actually fails in spite of a “solid” λ, complex system methodology
nonetheless agrees with the emergentist stance.

12.2 A multiple mode of access

12.2.1 The observational viewpoint

This dilemma appears to be easily solved from an observational viewpoint. Within this
framework levels are only a different way to access a same process, and L and H are “obser-
vation” functions: the high-level and the low-level are simply two simultaneous manifesta-
tions of the same process. Nonetheless, this is still a monist conception of reality: there is a
single ontology, that of the process.

When levels themselves are merely informations, links between levels are thus bound to
be only informational. The higher level may yield sufficient information about the under-
lying process, so that we can have an idea of what happens and what does not happen at
the lower-level, and vice-versa. For example, when some individual expresses some stress
(a psychological observation), one could guess that the blood pressure is higher (a biological
observation). There is top-down as well as bottom-up informational constraining, because
information from some level specifies the dynamics of another level. To clarify this, dynam-
ics could be rewritten as λ(L|H) = L′ and η(H|L) = H ′ — see Fig. 12.1. Here again the
success of the model will be measured by the empirical correctness of both λ and η.6 If for
instance there is ideally enough information in the lower level about the higher level, then
sufficiently valid models of the lower level bear hopes that the higher level could be rebuilt.

In case the reconstruction fails, there are two alternatives: either, as before, λ and/or η are
not precise enough. Or, the chosen decomposition in levels is not informative enough about
the phenomenon, and we have to check whether we are not missing something crucial when
designing levels. Lane (2006) underlines this effect with a striking metaphor about “details”:
there is basically no use trying to explain crises from dynamics on social classes, when the
relevant item that is informative of the high-level crisis is actually at a very lower level con-
cerning individual action. In other words, sometimes there are details that may account for
the high-level dynamics such that the chosen decomposition into a lower-level dynamics is

6One can introduce useful modeling approximations that seemingly give some thickness to the higher-level,
but are clearly not to be confused in any way with substantial independance or downward causation. A frequent
knack consists indeed in considering that the high-level is evolving slowly comparatively to low-level objects
(which sometimes are considered low-level precisely because their timescale is faster), therefore being some-
what fixed and apparently independent. In this respect, some distinguish the “emergence” of higher-level items
(characterized by larger, slower quantities) from the “immergence” of lower-level items in a stable, fixed high-
level environment — such as boundaries (Bourgine & Stewart, 2004). This is not far from what Rueger (2000)
calls “robust supervenience,” in case a high-level phenomenon enjoys some temporal stability.
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Figure 12.1: Relationships between levels and their dynamics in the case of (1) reductionism,
(2) emergentism or dualism, and (3) observationism.

essentially unefficient for high-level prediction. Here, it may simply be that observing L will
never yield enough information about H , and this bears identical consequences for modeling.

On the whole, this is a strong change in viewpoint:

• First, there is no “substantial” reality of levels, but an observational reality only (Sec. 11.4).

• Second, and consequently, there is no reciprocal causation of higher- and lower-level,
but simply informational links: high- and low-levels are distinct but simultaneous obser-
vations of a same underlying process, through an instrumental “equipment” defined
by the observer/scientist, that may or may not yield information about other levels.

• Third, and most importantly, for some phenomena it is hopeless to expect to rebuild
them from some given lower-level descriptions — not because there is something irre-
ducible in the higher level, that provides it with thickness, but because the lower level
of description itself is essentially maladapted. Thus improving dynamics is not sufficient,
and rethinking levels is mandatory.

• Lastly, the conception of “higher” and “lower” levels becomes simply a notion of dif-
ferent levels, because of a distinct instrumental apparatus. Therefore, problems regarding
the specification of why the “higher” level is truly above the lower level (timescale?
size? inertia?) vanish.

In this respect, both reductionism and emergentism are inadequate conceptions for ap-
praising and modeling complex systems. Reductionism works in particular cases where the
low-level description yields enough information about the high-level, giving the impression
that the high-level is reducible, while in fact it is simply fully deducible. Therefore, reduc-
tionism makes the bet that physical interactions yield enough information about any other



“higher” level, at least in principle. This is a intuitive yet very audacious bet. Emergentism
on the other hand bears serious causality problems. Dualism is consistent theoretically, but
clearly lacks plausibility (especially if it leads to subjective pluralism).

Application to epistemic network reconstruction In Part II we have adopted an apparent
reductionist stance, starting from low-level description (epistemic networks) to rebuild high-
level phenomena (epistemic communities, inter alia). But being reductionist would amount
to say here that everything could be caused by networks built on agents and concepts. Obvi-
ously, this is not the case: only for the H we exhibited in Part I do we have a valid reconstruc-
tion from the L suggested in Part II. In other words, we showed that this L yields enough
information about the stylized facts H we selected: we could define a P such that P (L) = H ,
thanks, inter alia, to Galois lattices. To compare with the case of temperature, the high-level
information we had through experts is like the temperature of a perfect gas obtained through
a thermometer: there are low-level phenomena (epistemic network and molecular activity
alike) from which we can deduce the high-level information.

More broadly, the claim is thus the following: given a high-level phenomena, it may
be possible to find a finite set of low-level observations (potentially only one) that yield
enough information to fully deduce the given higher level. But there is no set of finite low-
level descriptors such that any (high-level) phenomenon can be fully deduced, even in theory
— and not even at the physical level of atoms and molecules.

12.2.2 Introducing new levels

By contrast, observationism is both consistent and potentially efficient to rebuild any given
complex phenomenon as long as levels are relevantly defined.7 In this respect, explaining
phenomena at some level may require more than one level. A quite frequent need is that of
a third level, intermediary between higher and lower levels: a “meso-level” deemed more
informative than the macro-level while more assessable than the micro-level; sometimes cru-
cial to understand some types of phenomena (Laughlin et al., 2000). A triad of macro-, meso-
and micro-levels seems rather arbitrary, and one may well imagine that some research topics
involve even more levels (such as e.g. studying a (i) system of (ii) cities made of (iii) coali-
tions of (iv) agents who are (v) learning neural networks). While in some cases new levels
are necessary (because the basic levels are essentially deficient), introducing a few levels
may also be just more convenient. Here, there is no trouble using as many levels as desired,
since there is only one unique and simultaneous process producing to all levels — and many
ways to look at it. At this point activity-based modeling is a precious modeling feature, for
it enables a multi-level appraisal but also yields a natural insight on level-specific properties
(Bonabeau, 2002).

Now, how to design new levels? Various authors support the idea that introducing a new
level is interesting insofar as it makes possible a better understanding and/or prediction of

7It is also compatible with reductionism which is a particular case where a level is “fully-informative” about
another level (generally higher).



the system (Crutchfield, 1994; Clark, 1996; Shalizi, 2001; Gershenson & Heylighen, 2003).
More precisely, the argument is essentially that emergent properties are high-level proper-
ties that “are ‘easier to follow,’ or ‘simplify the description,’ or otherwise make our life, as creatures
attempting to understand the world around us, at least a little easier” (Shalizi, 2001). This calls
clearly for choosing an observation level that provides easily key information on a given
phenomenon. Here, instead of considering (emergent) high-level properties as something
complicated, impossible to understand, or even irreducible — a negative and slippery def-
inition — this informational attitude looks the high-level as something that must enable a
more convenient understanding and prediction of the phenomenon — a positive definition.

This stance is very enlightening theoretically: to give meaning to complex systems we
design new observational instruments and description grammars that help reduce reality
dimensions and complexity. Going further operationally, compelling methods (Crutchfield,
1994) and effective algorithms (Shalizi & Shalizi, 2004) have been proposed to find and build
automatically & endogeneously a new level of observation (i) based on low-level phenom-
ena and (ii) simplifying their description. In any case, these tools appear to be powerful for
detecting higher-order properties and informative, relevant patterns, for it yields an imme-
diate description of H and, if the grammar is simultaneously built, a valid η too (at least
statistically). However, as Shalizi (2001) notes, “the variables describing emergent properties
must be fully determined by lower-level variables.” It becomes clear then that the new simplified
“high-level” description is a clever projection function P of the lower level.

12.2.3 Rethinking levels

More generally, such methods produce relevant “high-level” description grammars, possibly
hierarchically ordered, which are still based on an initial lower level (Bonabeau & Dessalles,
1997). In addition, while simpler, the newly created levels are not necessarily (i) more natural
and intuitive or (ii) more importantly, complete: their efficiency is indeed limited in case the
reductionist approach fails, i.e. when the chosen lower levels are not informative enough
about the considered phenomenon. What happens for instance when creating high-levels
from neural activity in order to describe some psychological phenomenon, while in fact there
are crucial data in glial cells (Pfrieger & Barres, 1996)? What new descriptions extracted
from neural activity could be effective when glial cells do a key part of the job? Consider
indeed someone trying to make learning emerge from neurons and failing to do so: she could
conclude that learning is a irreducible high-level description that emerges from neurons, yet
models of such a thing would be irremediably unsuccessful, if not reconsidering lower level
design. Neurons are simply not sufficiently informative about learning processes. As such,
emergentism could also be a dangerous pathway.

Also, the question here goes deeper: can an automatic (bottom-up) process yield an es-
sentially new vision on things? This sounds as if a deterministic machine could address the
problem of ontological uncertainty. In short, it may be hopeless to expect a machine to yield
a truly innovative insight starting from already deficient levels. Coming back to the cen-
tral problem of rebuilding efficiently a given phenomenon through a “complex system” ap-



proach, this means that mistakes are not to be found necessarily in the dynamics λ, η, etc.
nor in putative projection functions P , Q, etc.; but rather in the definition itself of levels L,
H , etc. In other words, a successful reconstruction may require not only to find a valid and
efficient grammar, but also to rethink the very bricks that constitute any potential grammar.



Chapter 13

Reintroducing retroaction

13.1 Differentiating objects

In the previous chapter, we detailed consequences on modeling methodology of the idea that
different levels are simply different manifestations of a same process. By denying them any
substantial reality and by dismissing any causal efficiency from a level to another, downward
causation should be interpreted as informational dependence of low-level phenomena on
high-level phenomena.1

Yet, of course, causality may still occur between distinct objects at a same level: for in-
stance, agents have a causal influence upon other agents. Causality may also happen be-
tween different levels, as long as it happens between different items: a hand can move the
molecules that constitute a stick. A given wave moves molecules other than those that consti-
tute this wave. Here, there is simultaneity in the movement of the hand and of its molecules,
while there is causality of the hand on the stick or, equivalently, on stick molecules. In this
respect, when defining a level one must describe the objects it contains as well as the causal
links between these objects.

To illustrate this, consider that a neuron can interact with another neuron and at the same
time, at a higher-level of observation, a bunch of neurons is able to affect other bunches of
neurons. Observing a bunch of neurons provides partial information on the state of each
individual neuron, whereas causality happens between different bunches of neurons and, si-
multaneously, between neurons of these different bunches; depending on whether one looks
high-level or low-level. Therefore, if one acknowledges that there are also glial cells on the
playground, causal relationships are to be expected between neurons and glial cells. At the
level of the brain, one may consider low-level observation of neurons and high-level obser-
vation of psychological facts. Suppose now that refining the picture leads to consider the
nervous system as a set of both neurons and glial cells. From there, high-level observation

1The modeler may yet overlook the question of the status of levels, as long as equations correctly render inter-
level links/dependencies (Bourgine, personal communication). It is however really important to know where
the error comes from when reconstruction fails — this is why a particular attention must be paid to level design
itself.
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instruments can be designed for neurons and, separately, for glial cells. Causation occurs
between neurons and glial cells (as it occurs between two neurons too), and there is a real
efficient causation when glial cells observed from a high-level standpoint induce a change
on individual neurons. This shall not be downward causation.

13.2 Agent behavior, semantic space

This point however helps understanding an intriguing objection that may be raised when
considering intentional systems: in social systems notably, agents are able to observe what
happens at a higher level, and modify their behavior accordingly. Large-scale artefacts cre-
ated by agents, such as semantic items or institutions, seem to interfere with laws at the agent
level. Does this induce some kind of downward causation? As we will show below, such
causal influence of the higher level actually corresponds to coevolution of different kinds of
objects — thus accentuating the need for accurate level descriptions, and for accurate dis-
tinction between objects.

Consider again Schelling’s model outlined in Sec. 11.4: one could be tempted to say that
the higher level exerts a causal influence on the lower level: agents decide to join same-color
neighborhoods. As we noted, it is simply a two-mode access to a same phenomenon, where
agents go increasingly to places where they are surrounded by same-color agents. Eventu-
ally, using “neighborhoods” as a new high-level of description, agents appear to join same-
color neighborhoods.

In the real world however, it seems that agents do not stick to their alleged low-level
behavior (i.e. going where they are surrounded by at least α% of same-color neighbors).
Instead, they actually adopt another kind of behavior by really deciding to move to neigh-
borhoods, not only to places verifying local properties. Thus, their local, low-level behavior
itself is modified by this high-level feature. Believing in this case that this is downward cau-
sation would require to ignore that the agent behavior has been enriched. More precisely, the
low-level description has been modified by adding a new capability to the cognitive equip-
ment of agents: agents are now equiped with the notion of neighborhood.

Thus, what used to exist only in the eye of the modeler/observer — the presence or
not of neighborhoods — has been introduced within the model, under the form of a high-
level representation available to agents: agents are observers and they can access high-level
descriptions. In the original Schelling model, the fact that there is a neighborhood does not
change agent behavior: neighbor colors not neighborhoods have a causal impact on agents.
In the modified model, which is more realistic,2 neighborhoods have a causal impact on
agents in addition to local features such as neighbor colors. In both models, agent moves
can be provoked by color-based (semantic) features; in the new one, they are furthermore
affected by neighborhoods. There is still no downward causation, but a richer causal impact
of other neighbors, both low- and high-level (local neighbors, and neighborhoods).3

2With agents more sensible to considerations on the neighborhood than to a low-level scrutiny of each loca-
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13.3 Coevolution of objects

Here, agent behavior is causally linked to a semantic space, appraised through representa-
tional capacities, either low-level (“color of closest neighbors”) or possibly high-level (“be-
longing to a neighborhood”). Therefore, we may more generally discern two kinds of influ-
ence:

(i) upward/downward informational dependence of a level on another, through different
observation levels of a same phenomenon. Water molecules are not meant to take the
wave into account, and there are two modes of access: informational links clarify the
classical picture of downward causation (Bitbol, 2006).

(ii) co-evolution of objects, through an efficient explicit causality between two different
kinds of objects given a priori. Obviously, this remains a classical causation.

The global picture is summarized on Fig. 13.1 — put this way, it should also be possible to
address tangled hierarchies explicitly without having to deal with causation violations.

To take another example, suppose we try to model the way agents create a semantic
structure and paradigms through concept associations, which themselves in turn influence
agents by what seems at first sight to be downward causation. This sounds like an enriched
version of the model of Part II, where agent behavior has been extended to take into account
high-level phenomena; as such, we get off the framework of the simple emergence of H .
We must then distinguish: (i) the two-mode access to different features or phenomena of
epistemic networks (agents and concepts, vs. social semantic and epistemic communities),
and (ii) the co-evolution between objects belonging to the three kinds of networks.

Introducing co-evolutionary objects the way we did is thus crucially linked to level de-
sign. Indeed, accounting for the morphogenesis of epistemic networks using social data only
may be essentially unsufficient. This compels the modeler to modify the description: adding
a semantic space (containing concepts) is required to explain the formation of such networks
and the appearance of patterns (communities of agents).

13.4 “Stigmergence”

A co-evolutionary framework also yields an insight on why high-level artifacts (such as insti-
tutions) may have a proper influence on agents. Here social acts are actually “immerged” in
an environment which influences social behavior and on which agents may act. For instance,
when an agent arrives in an epistemic network links between concepts are already present
— a portion of the bibliography has already been written — but she may act upon them and
make semantic associations vary and influence other agents (and herself).

tion.
3High- and low- level semantic features are two observations of a same process, so there may also exist an

informational overlap of both levels (e.g., the existence a blue neighborhood bears low-level information on
neighbor colors).



In a more abstract manner, institutions are produced by agents, yet have a causal effect
on agents because they can take them into account — they are equipped to recognize them.
When agents build artifacts, create institutions, they produce something that is not ascribed
to the particular social situation being modelled. Artifacts do exist outer of agents, they are
stigmergic — in the sense Karsai & Penzes (1993) use when they describe wasps building
their comb and being influenced by it, generalized in (Bonabeau et al., 2000) with agents
producing external, stigmergic three-dimensional structures that influence them. Thus we
may talk of “stigmergence” of institutions or artifacts, not emergence; inducing in this case
(diachronic) co-evolution, not downward causation.





Conclusion of Part III

In most scientific disciplines, levels of description can be considered to rely on objects which
are themselves the focus of lower-level disciplines. In this picture, complex system science
has been the cornerstone of a recent and natural effort to try to explain higher level phenom-
ena with the help of lower-level descriptions. As an interdisciplinary area of research, this
new field attempts to bridge levels by binding both lower and higher levels into a systemic
framework, in order to eventually rebuild phenomena through the interplay of both high-
and low-level objects.

This also requires considerations on how relationships between levels should be ap-
praised. After reviewing several possible attitudes towards the status of levels (dualism,
reductionism, and emergentism) we supported the idea that these three stances were pos-
sibly unsatisfactory — either because of plausibility, successfulness or consistency. Rather,
noting that even the lowest level could not be the ”ultimate and monadic level”, we built
upon recent suggestions that levels were simply different modes of access to a process. This
led us to present and adopt a viewpoint inducing only one ontology, that of the process,
and many ways to look at it. In this framework, levels are instrumental apparatus created
by scientists to partially access reality: they are distinct but simultaneous observations of a
same underlying process. Thus, what appeared to be upward or downward causation can
be reduced to informational dependence.

We then detailed the implications for modeling methodology. Indeed, a given description
level may only yield (partial) information about other levels. In some cases, this information
is unsufficient to rebuild a given phenomenon, and new levels may be required. In the
perspective of reconstruction, because some given levels may be essentially unsufficiently
informative for explaining a given phenomenon, we hence insisted on the idea that design-
ing levels was as crucial as designing the dynamics. In particular, in the case of network
morphogenesis the fact that, say, clustering coefficient reconstruction from the strict social
network fails may be due to a wrong low-level dynamics λ. Yet, as regards epistemic com-
munity structure reconstruction, there is simply no P that may yield H from the strict social
network of collaborationships. We are compelled to enrich the description of L, introducing
epistemic networks.

Dismissing the possibility of retroaction could nevertheless be puzzling in several cases,
in particular in artefactual systems. For instance, when studying innovation and social
change, innovation is obviously not only a question of increasing production with no in-
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fluence on the production processes: agents modify the production processes with respect to
what they produce – hence, retroaction often happens. Putting forward level design helps
reintroducing the possibility of causally efficient actions between levels, through distinct ob-
jects. Indeed, this kind of retroaction must not be confused with alleged downward cau-
sation; it only follows from objective differentiation, entailing causation on a “horizontal”
basis. Agents produce something that remains external, then influences their actions. Instead
of emergence, we suggest that this notion of reciprocal action of an external item should been
denoted by the new term stigmergence.



General conclusion





“Explaining the distribution of cultural representations would be isolating the causes (...) of the capacity for
some representations to propagate until becoming precisely cultural, that is, revealing the reasons of their
contagiosity.”4 (Lenclud, 1998)

The present dissertation provides a theoretical overview of the purposes of complex
system reconstruction along with an empirical achievement on a particular case study of
knowledge community rebuilding. We have argued that epistemic communities are mostly
produced by the co-evolution between agents and concepts. More precisely,

• in Part I, we proposed a method for describing and categorizing knowledge communi-
ties as well as capturing essential stylized facts regarding their structure. In particular,
we rebuilt the taxonomy of a whole epistemic community using a formal framework
based on Galois lattices. Then, studying the evolution of these taxonomies made pos-
sible an historical description of knowledge fields, describing inter alia field progress,
decline, specialization, interaction (merging or splitting).

• in Part II, we micro-founded the particular structure observed in Part I: which processes
at the level of agents may account for the emergence of epistemic community struc-
ture? To achieve a morphogenesis model of this phenomenon, and thus of epistemic
networks, we needed to build tools enabling the empirical estimation of interaction
and growth processes. Then, assuming that agents and concepts are co-evolving, we
successfully reconstructed the structure of a real-world scientific community on a
selection of relevant high-level stylized facts.

• in Part III, we argued that modeling social complex systems tends to require the in-
troduction of co-evolutive frameworks of the kind presented in the preceding parts.
More generally, investigating the methodology of complex system science, we sug-
gested that some high-level phenomena cannot be explained without a fundamental

4“Expliquer la distribution des représentations culturelles, ce serait isoler les causes (...) du pouvoir détenu par certaines
représentations de se propager jusqu’à devenir justement culturelles, c’est-à-dire déceler les facteurs de leur contagiosité.”



viewpoint change in not only low-level dynamics but also in the design of low-level
objects themselves.

Naturalizing cultural anthropology As such, this thesis also makes a preliminary to the
study of knowledge diffusion and cultural pattern formation. Indeed, three canonical expla-
nations are available to account for cultural similarity (Aunger, 2000): (i) genetics (i.e. con-
vergent biological evolution), (ii) individual learning (through convergent cultural evolu-
tion), and (iii) social learning (through transmission and adoption of knowledge). It is easy
to dismiss genes as an appropriate explanation: culture evolves on a dramatically shorter
time-scale than that of genetic evolution. The second point alone, because it assumes the ex-
istence of cultural attractors for mankind, lacks credibility: here, cultural diversity confronts
cultural similarity. On the contrary, social epistemology underlines the fact that knowledge
construction is only marginally individual-based. Kornblith (1995) for instance insists on
the influence of society from birth: we are immerged from the beginning in a cultural and
conceptual bath, “Language is not reinvented by each individual in social isolation, nor could it be.”

The third argument, social learning, or social cognition, is thus a convincing account —
Bloch (2000) summarizes the point: “One generation may have no idea about electricity, while
the next may be innovating a new computer program under Windows. This is not due to a speeding
up of ’cultural evolution’ but the result of a totally different process: the fact that humans can com-
municate knowledge to each other.” Subsequently, the co-evolutionary morphogenesis model
presented here is an important step for explaining cultural similarity through a naturalistic
approach (Sperber, 1996): the structure and dynamics of epistemic networks has indeed a
crucial impact on processes taking place on it, such as, precisely, knowledge propagation.
In this respect, Pastor-Satorras & Vespignani (2001) for instance show that even with a very
simplistic epidemiologic model, disease propagation follows very different paths depending
on network structure.

Yet, our morphogenesis model nevertheless dismissed important considerations regard-
ing in particular:

1. agent behavior enrichment, following the way cognitive economics improve ‘classical’
economics (Bourgine, 2004). For instance, agent behavior could be enriched to use
knowledge on epistemic communities — high-level phenomena — so that it is closer
to reality. This is credible at least in scientific networks: agents refer to themselves and
their work using e.g. disciplines, they do not only interact on the basis of individual
properties.

2. endogenization of additional phenomena which, as suggested at the end of Part II,
is strongly linked to modeling novelty and induces ontological uncertainty. Here, it
is likely that we could not dismiss purely historical features: we certainly reach the
boundaries of any reconstruction model in social science.

Bridging these caveats, when possible, and assessing their impact on the structure of
epistemic networks — especially on features that precisely influence knowledge propagation



and transmission — would be a first improvement. Besides studying cultural similarity on a
social basis, including homophily, we should also investigate why cultural similarity relates
to conceptual similarity, on an individual and cognitive basis. How comes that concepts cover
identical representations among several agents of a same (epistemic) community? Working
on the notion of “concept” appears to be decisive in order to depart from a strict memeticist
point of view, and especially to take into account critics of memetics by cultural anthropol-
ogy (Kuper, 2000; Atran, 2003). On one hand indeed, memetics could appear as a seducing
program with respect to social learning, for it offers three significant features: a unit of cul-
tural transmission (memes), a process of transmission (imitation) and characteristics of the
transmission (survival of fitter ideas). Yet, memetics also entails three major drawbacks: (i)
the atomistic assumption that there are bits of knowledge is very controversial; as is (ii) the
assumption that there is high-fidelity transmission (imitation), when there is in most cases
contextual reformulation, or reproduction; finally memetics does not address (iii) what a
fitness function is, and what makes a meme be selected. In this thesis, we nevertheless as-
sumed that using the same term was identical to sharing the same representation, and agents
gathering in an event were exchanging concepts, without alteration or reinterpretation — a
viewpoint that memetics would not deny. Hence, acknowledging the weaknesses of this po-
sition, we should also improve the cognitive description of processes at work in epistemic
networks.5

Towards an autonomous society In any case, the work presented in this dissertation is a
first brick towards enabling agents to understand the dynamics of the global social system
they are participating in, and more broadly towards the achievement of a truly autonomous
society, in Castoriadis’ (1983) sense: a society which, knowing its own structure, organiza-
tion, and representations, is able to determine its own laws. Then, what would indeed be a
society which knows its own dynamics, and which precisely adapts its behavior with respect
to the knowledge of its own dynamics?

5In particular, several authors argue that concepts are patterns in a semantic space (Colby, 2003). Empirical
evidence suggests that e.g. kinship concepts are roughly located in the same area of a multidimensional semantic
representation (Romney et al., 1996). In other words, people of a same “culture”, using the same language
could be almost in agreement on the meaning of concepts. Henrich & Boyd (2002) explain such aggregation by
assuming that there are cognitive attractors: then, a concept is a pattern of “versions” that ressemble each other.
As Sperber notices, “a myth is the set of its versions.” This position does not deny that concepts are “continuously
graded entities,” but it suggests that these entities aggregate around alleged attractors. Eventually, classes of
equivalences of patterns might thus be of great use to model concepts.
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