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With the continuous development of smart grids, communication networks carry more and more power services, and at the same
time, they are also facing more and more security issues. For example, some malicious software usually uses encryption technology
or tunnel technology to bypass firewalls, intrusion detection systems, etc., thereby posing a serious threat to the information
security of smart grids. At present, the classification of network traffic mainly depends on the correct extraction of network
protocol characteristics. However, the process of extracting network features by some traditional methods is time-consuming and
overly dependent on experience. In order to solve the problem of accurate classification of power network traffic, this paper
proposes a method of convolutional neural network based on genetic algorithm optimization (GACNN) and data statistical
analysis. This method can simultaneously extract the time characteristics between different packet groups and the spatial
characteristics in the same packet group. Therefore, it greatly saves manpower and gets rid of the dependence on experience value.
The proposed method has been tested and verified on the UNSW-NB15 dataset and the real dataset collected by the power
company. The results show that the proposed method can correctly classify abnormal network flows and is much better than
traditional machine learning methods. In large-scale real network flow scenarios, the detection rate of the proposed method

exceeds 97%, while the traditional method is generally less than 90%.

1. Introduction

1.1. Background. As anext-generation grid, smart grids have
the characteristics of high controllability, high energy effi-
ciency, and self-healing. Smart grids have been rapidly built
in many countries and regions in the world, providing great
convenience to people’s lives [1]. Compared with traditional
power grid, smart grids require more monitoring and
control devices and are more widely distributed. In order to
achieve comprehensive and real-time monitoring, low-cost
wireless communication network and widely distributed
public Internet are increasingly used in power grid. How-
ever, the massive access of the public network in the power
system provides more access for malicious attacks. This will
bring more harm to the power grid and users [2]. With some
new energy access to smart grids, the security risk of smart

grids increases greatly, such as violent attacks, denial of
service attacks, and computer viruses [3].

Due to different business requirements in different areas
of smart grids, the requirements for underlying network
communication are also different. Table 1 shows the main
network technology architecture of the current smart grids
[4]. At present, the network communication of smart grids
mainly depends on advanced metering infrastructure (AMI)
[5]. The AMI network is mainly composed of home local
area network (HAN), neighborhood network (NAN), and
wide area network (WAN) [6].

It can be seen from Table 1 that different power users
have different demands on the network. Timely monitoring
and analysis of network traffic is of great significance to
improving network performance and security defense.
When the network traffic monitoring system is applied to the
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TaBLE 1: Network architecture of smart grids.

Network type Network technique

Application scenarios

1P, DWDM

Wide area network MPLS\MPLS VPN

(WAN)
ATM
SDH
MSTP
&C\f;s network GPRS\3G\4G\5G
PON

IEEE 802.3\802.1q

Local area network

(LAN) buses

Industrial Ethernet

N-PLC, B-PLC/BPL (narrowband, broadband

power line carrier communication)

Field area network Wireless sensor networks

(FAN) Internet of things, RFID
PON/EPON/FTTH
N-PLC\B-PLC\BPL
Home area

network (HAN) WLAN 802.11

Wireless sensor network

RS-485, PROFIBUS and other traditional field

Provide power data network (backbone network), Internet
interconnection, and routing functions
Label switching is provided in backbone network to isolate
traffic of different services
Asynchronous Transfer Mode
Provides physical access to MAN and WAN
It can be used for LAN (Ethernet) access to MAN
Access WAN through mobile communication network
It is a typical passive optical fiber network
LAN of electric power enterprise

Production control fields such as power plants and substations

Interconnection of IED equipment in production control fields
such as power plants and substations
Used for data transmission such as metering and instrument
data collection
Data acquisition, monitoring and monitoring of power
transmission, distribution and consumption side
Collection of label data in equipment inspection
Intelligent residential area provides optical fiber access for home
users
Provide local network and home network access, remote meter
reading and Internet access
Remote meter reading with local network or home network
access
Used for control of smart home and home appliances in HAN

power enterprise, it can not only monitor the network traffic
in real time but also analyze and warn the abnormal situation
of the network [7].

Some early network traffic monitoring models obtain
network characteristic information such as bandwidth and
link utilization and judge whether network abnormalities
occur according to thresholds. Although these models have
certain traffic alarm functions, the performance of the
models mainly depends on the accuracy of the characteristic
values, and the model thresholds are generally set manually
[8].

With the rapid development of next-generation net-
works, integrated services such as voice, video, and data are
running in parallel, and the proportion of new traffic types
P2P, streaming media, and games continues to increase.
Today’s network traffic recognition technology has some
new problems:

(1) The detection efficiency of the existing methods is
low, especially in the high-speed online traffic
classification, and the detection method has a large
storage overhead and a large amount of calculation.

(2) Some new network services mostly use variable
ports, data encryption, and dedicated protocols.
Existing methods can no longer accurately extract
the characteristics of network traffics, which affects
the recognition accuracy.

At present, as a large number of different AMI devices
are connected to the network, it provides detailed basic data
in many aspects for the power system, but at the same time, it

also brings more network security risks. How to grasp the
characteristics of different network behaviors in time and
better understand the state of network traffic has become one
of the key core issues in power communication research.

1.2. Our Contributions. This paper first establishes a stan-
dard power network flow metadata to eliminate the problem
of multisource and heterogeneous equipment information
service coordination. (1) Through the real-time or offline
collection of the entire multisource network equipment flow,
the unified analysis of different equipment, different net-
work levels, and mass flow data is realized. (2) Through
statistical analysis of standardized flow metadata, network
congestion or abnormal conditions can be found as early as
possible, which provides data support for power network
security situation assessment.

Secondly, unlike traditional machine learning methods,
this paper uses deep learning to analyze network traffic
metadata and quickly find out the temporal and spatial
characteristics of traflic. The main advantages of this method
are as follows: (1) it is not necessary to judge the importance
of features in advance but directly input the metadata to the
model for training after preprocessing. (2) The model has
self-learning ability, which eliminates the problem that the
accuracy of traditional methods is excessively dependent on
expert experience or threshold setting. (3) The model has the
ability of dealing with encryption and multilevel business
trafic, which overcomes the problem that traditional
methods cannot analyze network traffic content.
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1.3. Organization. The rest of this paper is organized as
follows: Section 2 summarizes the methods of network traffic
classification. Section 3 introduces the convolutional neural
network (CNN), genetic algorithm (GA), and network traffic
collection and preprocessing. Section 4 introduces the
GACNN method proposed in this paper in detail. Section 5
details the process and results of two experiments conducted
on the UNSW-NBI15 and real power flow datasets. Finally,
Section 6 summarizes the main work of the paper and the
future research direction.

2. Related Work

With the construction of smart grids, power data networks
and the business systems carried by them have developed
rapidly, and a large amount of network traffic is generated in
these systems every day.

Power critical information infrastructure such as AMI is
the nerve center of economic and social operations, and it is
also an important target that may be attacked through the
network. A large number of experiments have found that the
power network traffic under attack will be abnormal. These
kinds of abnormal traffic are usually caused by malicious
network attacks (such as worm propagation, DDOS attacks,
botnets, and viruses) or network configuration errors and
occasional line interruptions [9].

As one of the key technologies of network management
and network security, network traffic classification can not
only optimize network configuration and reduce network
security risks but also provide better service quality. In the
past two decades, domestic and foreign researchers have
carried out a series of related studies and achieved some
outstanding results.

Initially, the network traffic classification technology is
relatively simple, because different network applications use
different port numbers for communication, so the port
number can be used as a function to identify network traffic
[10]. Wang et al. [11] proposed a traffic detection algorithm
based on port scanning behavior. The algorithm determines
whether there is an abnormality in network traffic based on
the ratio and similarity of the number of hosts and ports.
However, some network protocols currently do not use fixed
ports for communication, so this method cannot cope with
the problem of sudden changes in ports.

In order to accurately identify different network services
on dynamic ports, some researchers have proposed network
traffic identification methods based on payload character-
istics, such as deep packet inspection (DPI) [12, 13] and deep
flow inspection (DFI) [14, 15].

The DPI technology mainly determines the type of each
network service by judging whether the network charac-
teristics match the fingerprint library characteristics. Sun
et al. [12] first used DPI technology to quickly and accurately
preclassify the traffic and then calculated the random
characteristics of the packet load, so as to achieve effective
identification of encrypted trafhic.

DFI mainly uses application identification technology
based on traffic behavior. This method believes that different
applications will present different states on network session

connections or data streams, but DFI does not pay attention
to application load. In order to achieve the purpose of
lightweight protection of the power Internet of Things,
Wang and Wei [14] used DFI technology to analyze the
collected network traffic of the Internet of Things and
formed a feasible security prevention and control strategy
model.

The DPI and DFI methods to process network traffic
mainly rely on the application layer message characteristics
of the service, and some of them need to analyze the message
content, which may infringe user privacy. In addition, with
the continuous emergence of new services, the feature da-
tabase must be constantly updated so that the original
method may be effective, which requires a lot of work.

A new generation of traffic detection methods based on
statistical characteristics came into being. This classification
method relies on statistical features or time series features
and can handle encrypted and unencrypted traffic. These
methods usually use classic machine learning algorithms to
process analysis [16].

In recent years, machine learning methods have become
very popular and have been widely used in fields such as
image, sound, and text processing [17-25]. The traditional
machine learning methods used in network traffic recog-
nition mainly include Bayesian algorithms, support vector
machine (SVM) algorithms, decision tree and integrated
learning algorithms, etc. [26]. Distributed denial of service
(DDoS) has always been a serious threat to the Internet. Hou
et al. [27] proposed a scheme of feature selection and ma-
chine learning to identify DDoS traffic. The frequency of
malicious activities such as botnets and port scanning is
increasing. Although these attacks are simple, they may
allow unauthorized network access. Flanagan et al. [28]
proposed an MCODT anomaly detection system, which
mainly uses the polynomial regression technique of clus-
tering density to detect the abnormal behavior of NetFlow
data.

In the power network anomaly detection method, some
machine learning methods have also begun to be applied to
this area of research.

Fei et al. proposed an improved CUSUM detection al-
gorithm (BF-DT-CUSUM) that dynamically updates the
threshold of address statistics, which is used to detect dis-
tributed denial of service attacks in power industrial control
systems. Simulation experiments verify that the algorithm
has good speed and accuracy in response to DDoS attacks
[29]. However, the algorithm is difficult to detect other
unknown attack types.

In order to more effectively classify the increasing traffic
of the power business system and to improve the business
processing speed of the power system, Xu proposed a real-
time traffic classification method for power business based
on an improved random forest algorithm [30]. This method
improves the real-time classification by pruning the random
forest based on the classification interval weighting. Du et al.
analyzed the flow data structure of the power network and
verified that the normal flow data of the power has stable
information entropy. On this basis, an algorithm based on
five-tuple entropy of traffic and SVM is proposed to identify



abnormal traffic [31]. Recent research on the use of machine
learning algorithms for traffic classification is also mainly
focused on the selection of optimized features [32].

Most of these machine learning-based traffic classifica-
tion methods rely on feature selection, which limits their
generalizability.

Recently, deep learning has been well applied in image
recognition, natural language processing, and sentiment
analysis. These methods can automatically select features
through the training process and have strong versatility.

There are three main methods for detecting network
traffic anomalies based on deep learning: deep Boltzmann
machine [33, 34], stacked autoencoder [35, 36], and CNN
[16, 37]. Ertam and Avci developed GA-WKELM software.
This method is based on the combination of genetic algo-
rithm and extreme learning machine and mainly solves the
problem of parameter optimization and selection of deep
neural networks. However, this method can only complete
one training and cannot dynamically update parameters and
training samples [38]. Wang et al. proposed an end-to-end
traffic classification model. This model processes the net-
work traffic data into a specific file format and then classifies
the network traffic through a one-dimensional CNN [39].

Due to business security considerations, the power data
dispatching network uses all established channels exclusively
and must not be reused. Gao and Yao [40] believe that the
statistical characteristics of power communication network
traffic have self-similarity, multifractal, periodicity, chaos,
and other characteristics. The bandwidth occupied by data
traffic of the power data dispatch network can only be a rigid
superposition of the business traffic carried. Based on the
above characteristics of power network flow, Lv and others
used the autoregressive moving average (ARMA) model to
predict the power network flow [41]. Lin et al. established a
power grid operation situation awareness model based on
the fuzzy analytic hierarchy process and the LSTM-attention
mechanism [42].

Compared with traditional machine learning methods,
deep Boltzmann machine-based methods can extract high-
dimensional features of traffic data through learning.
However, the robustness of this method is poor. When the
input data contain noise, the extracted features will be
inaccurate.

The anomaly detection method based on stacked
autoencoders can learn traffic data layer by layer and extract
traffic features with high accuracy. However, when the traffic
data are destroyed, the detection accuracy of this method
will be reduced.

The method based on CNN has strong robustness and
high detection performance. However, the traditional CNN
method generally uses a gradient descent algorithm for
training, and if the initial weight of the network is incorrectly
selected, it will also affect the learning performance and
make the model fall into a local optimal state.

Through the analysis of the advantages and disadvan-
tages of existing deep learning methods in network traffic
classification, this paper mainly selects the CNN model to
extract the characteristics of power network traffic by itself,
eliminating human intervention or relying on expert
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knowledge. In addition, in order to improve the problem of
CNN model parameter selection, considering that the ge-
netic algorithm has an effective search ability for global and
local optimal solutions, the genetic algorithm is used to find
optimal solutions for CNN model parameters.

3. Background

3.1. Introduction to CNN. CNN was originally proposed by
LeCun et al. in 1989 to solve the problem of digital image
recognition [43]. CNN is also a neural network specially
used to process data with a known grid-like topology. For
example, time series data can be regarded as a one-di-
mensional grid sampled at a certain time interval, and image
data can be regarded as a two-dimensional grid composed of
pixels. In the calculation, the network mainly uses a
mathematical operation called convolution. Convolution is a
special linear operation, which can replace the general
matrix calculation to achieve multiple operation effects [44].
With the development of CNN, many variants of convo-
lution network structure appear, but their basic structures
are mostly similar, mainly including input layer, convolution
layer, pooling layer, full connection layer, and output layer.
Figure 1 shows the basic structure of CNN network.

The input layer is used to input data or images. In order
to facilitate the calculation of convolution layer, the input
data needs to be preprocessed.

Convolution layer and convolution kernel of convolu-
tion layer are mainly used for feature extraction of input
information, and the convolution function is shown in the
following formula:

-1
x;':f le" K?j+b§' , (1)
ieDj

where D; is the input characteristic data, x

i is the char-
acteristic value J of the nth layer, Kl’.’j is convolution kernel
tunction, f () is the activation function, and b is the bias
parameter. The activation functions used in this paper are
sigmoid, ReLU, and softmax, and their formulas are,

respectively,

1
S(x) = — (2)
1+e
ReLU (x) x, ifx>0, 3)
X)) =
¢ 0, ifx<0,
e’
U(Z)j =K 2z (4)
k=1¢€

The convolutional layer and the pooling layer are cal-
culated alternately. The calculation of the pooling layer is

x;t+1 — f<zx?w?+l + b;t+1>’ (5)
J

where w?’” is the weight constant of the feature map of the
pooling layer.



Security and Communication Networks
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1x128

Max-pool Dense

Ficure 1: The basic structure of CNN.

Before the output layer gets the result, in the n-layer
convolutional neural, as the input sample, f, represents the
activation function of each layer pooling, and w" represents
the connection weight of each layer. The calculation of this
process can be expressed as

)’:fn("‘(fz(fl(x‘“’l)wz))"')wn- (6)

The result of forward propagation is calculated, and the
error is compared with the known label value. The error
function is expressed as

E= (J’j; - yji>2’ (7)

S| =
M=
Mk

I
—

-

I
—

where N is the number of training samples, M is the number
of output neurons, y ]-i- is the expected output value of the j-th
output node of the i-th sample, and y;; is the actual output
value of the j-th output node of the i-th sample.

3.2. Genetic Algorithm (GA). GA was first proposed by John
Holland in 1962. The algorithm is designed and proposed
according to the laws of biological evolution in nature. Itis a
computational model used to simulate the natural selection
and genetic mechanism of Darwin’s theory of biological
evolution. As a metaheuristic search strategy, the GA is
mainly used to find the best super parameter algorithm of
machine learning [45]. Generally speaking, the genetic al-
gorithm is divided into five stages [46]:

(1) Initial population: set the evolution algebra counter
t=0, set the maximum evolution algebra T, and
randomly generate m individuals as the initial
population P (0).

(2) Fitness function: the fitness of each individual in
population P (T) was calculated.

(3) Selection: the selection operator is applied to the
population. The purpose of selection is to inherit the
optimized individual directly to the next generation
or to generate new individuals through pairing and
crossover and then inherit the next generation. The
selection operation is based on the assessment of the
fitness of the individuals in the population.

(4) Crossover: the crossover operator is applied to the
population. Crossover operator plays a key role in
the genetic algorithm.

(5) Mutation: the mutation operator is applied to the
population. That is to change the gene value of some
loci in the individual string of the population. The
next-generation population P (T+1) was obtained
after selection, crossover, and mutation.

After the above five steps, the termination condition is
judged. If t="T, the individual with the greatest fitness ob-
tained in the evolution process is used as the optimal so-
lution output, and the calculation is terminated.

3.3. Power Network Flow Collection and Metadata Generation.
In order to establish a scientific power network traffic
monitoring model, it is necessary to collect the entire net-
work traffic in real time and quickly judge and process
abnormal network traffic, so as to reduce the difficulty and
time of power network fault diagnosis and abnormal
detection.

According to actual operation requirements, the traffic
information is collected through network probes, as shown
in Figure 2. According to the hierarchical characteristics of
the power network, this model needs to deploy traffic col-
lection probes on the links between the edge networks of
different levels of companies and the IDC network, so as to
achieve the purpose of obtaining all network traffic com-
prehensively and accurately.

Distributed hardware probes are deployed on different
network nodes and are responsible for the traffic collection
of the target network. The flow detection remote manage-
ment center provides unified network monitoring and
network analysis and management. The local visual man-
agement platform can perform real-time monitoring and
retrospective analysis on the specified network link and can
also perform playback analysis on local data packets.

In order to fully obtain the power network flow char-
acteristic data, this paper extracts the flow characteristic
metadata from the four dimensions of area, time, business,
and link, so that a complete network flow analysis plan can
be made. Some of the metadata definitions are shown in
Table 2.
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Traffic detection remote .
Local visual management
management center

Integrated data
network 1

Integrated data
network 2

Integrated data
network 3

LHardware probe )

LHardware probe )

1+

1+

Monitored network 1

Monitored network 2

Monitored network 3

<«—>» Data communication
== Flow collection

FiGure 2: Network traffic collection architecture.

4. Method Principle and Process

This section first introduces the process of power network
flow metadata preprocessing, then performs statistical
analysis on the metadata, and finally focuses on the detailed
description of how the GA algorithm optimizes the CNN
parameters. The proposed GACNN power network traffic
detection method is mainly divided into three stages: data
preprocessing, model training, and model verification, and
its overall framework is shown in Figure 3. In the pre-
processing stage, a series of processing is performed on the
collected traffic metadata, including data encoding, data
normalization, data shaping, and data splitting. The pre-
processed data will be converted into pictures for training
and learning in the GACNN model.

4.1. Data Preprocessing. Network metadata are string data
composed of multiple information elements extracted by the
probe from the original network traffic. Each information
element in the metadata occupies a fixed position in the
character string, and the character strings are separated by a”
sign, and the final character string also ends with a”. For the
information element that does not have a value, the position
does not need to be filled with any content; that is to say, the
two " are adjacent at this time.

For example, an extracted piece of network traffic
metadata is shown in Figure 4.

For certain feature data of metadata that only contain a
few types of data, tag coding can be used to solve it, such as
protocol field: http code is 1, ftp code is 2, etc. For some very
long strings contained in metadata, for example, the content
of the DPI package is “Welcome to the Changsha city!” after
byte encoding, it is “235619648990998464306777891175220
0940810994543019102548539974727530785.”

Data standardization can improve the accuracy of the
model. At present, there are many data standardization
methods. In summary, they can be divided into linear
methods (such as extreme value method and standard

deviation method), broken line method (such as three-fold
line method), and curve method (such as seminormal dis-
tribution). This article mainly adopts the min-max method,
and its formula is as follows:

~ x; — mmlsjgn{xj}
Yi

= : ;
maxlgjgn{xj} - mlnlsjgn{xj}

(8)

where x; is the input data sequence, y; is the output sequence
after the change, and the value is between [0, 1].

For the input of the CNN model, the format should
generally be three-dimensional data (height, width, and
channel). The data after data encoding and standardization
are only some two-dimensional feature vector data. These
data cannot be directly used for model training and testing.
In this paper, each line of traffic metadata is reshaped
according to the proportion of (50 * 50 * 3). When the length
of metadata is less than 2500, the same value of metadata is
used to fill. The purpose of this is to further increase the
reliability of feature extraction. In addition, the channel
value is filled according to the data type. For example, if the
metadata are an abnormal type in the second category, it is
filled with 1, and the normal type is filled with 0. In the
multicategory, it is filled with the corresponding data.
Figure 5 shows a data image obtained by reshape of a certain
piece of traffic metadata.

4.2. Statistical Analysis of Traffic Metadata. In order to
quickly and accurately understand the statistical charac-
teristics of the traffic metadata collected by different probes,
in addition, the metadata contain 217 explicit characteristics,
but they lack some spatiotemporal implicit statistical
characteristics, which is not convenient for deep under-
standing and analysis of abnormal traffic information. In this
paper, the characteristics of traffic metadata in different time
periods are statistically analyzed, so as to obtain some im-
portant supplementary implicit features.
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TaBLE 2: Some of the metadata definitions of network traffic.

ID Name Type Length Description Dimension

1 EventID String 64 Event unique ID

2 OccurTime Long 8 The time when the event first occurred Time

3 RecentTime Long 8 Time of the last occurrence of the event Time

4 SrcGeographyLocationCountryOrRegion String 128 Country or region of source IP Area

5 DestGeographyLocationCountryOrRegion String 128 Country or region of destination IP Area

6 OriEventType String 1024 Original event type Business

7 EventSubType String 128 Event subtype Business

8 AbnTrfBaseline String 20480 Baseline value of abnormal flow Link

9 ESN String 64 Link device serial number Link

Raw flow data

}

Data preprocessing

Convolution

Kernels

3D flow data

Flatten Softmax

L
| © 000 00|

Use genetic algorlthm to find
optimal parameters

Figure 3: The overall framework of GACNN.
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FIGURE 4: A piece of element probe traffic metadata.

Figure 6(a) shows the number of uplink bytes of a stream
(octetDeltaCount) in the 2019 year, and Figure 6(b) shows
the relationship between the number of uplink bytes
(octetDeltaCount) and TCP and UDP source ports
(sourceTransportPort).

Figure 7 shows the change of traffic ports from July 26,
2019, to August 5, 2019. It can be observed that the flow port
is relatively stable, but the fluctuation is relatively large on
August 2, 2019.

Figure 8 shows the main distribution of network traffic
source ports in 2019 (in Figure 8(a)) and the distribution of
traffic source ports in July and August of 2019 (in
Figure 8(b)). It can be seen from the right figure that the

source ports are still quite different in July and August of
2019.

Figure 9 shows the statistical distribution of source ports
of network traffic, mainly including raw data, rolling av-
erage, and rolling standard deviation. It can be seen from the
figure that these values are mainly concentrated between
10000 and 25000.

4.3. GA Optimizes the Parameters of CNN. GA is an algo-
rithm that simulates biological evolution for individual
selection, crossover, and mutation. Its main core is pa-
rameter coding, initial group setting, and fitness function
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FIGURE 5: A certain flow metadata image after reshape.
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FIGURE 6: The number of uplink bytes of a stream (octetDeltaCount) in 2019. (a) Yearly load. (b) sourceTransportPort.
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FiGure 7: The change of traffic ports from July 26, 2019, to August 5, 2019.
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FIGURE 8: The distribution of network traffic source ports in 2019. (a) Yearly load. (b) Month load.
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FIGURE 9: The statistical distribution of source ports of network traffic.

determination, and the optimal solution is obtained through
the final search. In this paper, the GA is used to optimize the
parameters of CNN such as weight, bias, and optimizer
selection, and the optimization process is shown in
Figure 10.

In the initial population stage, some important pa-
rameters of CNN are randomly set, mainly including the
filters, the kernel_size, the activation parameters of the
Conv2D layer, the loss rate of the dropout layer, and the unit
parameters of the dense layer.

(i) Filters: the number of CNN filters (16, 32, 48, 64).

(ii) Kernel_size: the shape and size of the filter in CNN.
The initial random setting is as follows: (2 * 2),
(3 * 3) or (5 * 5).

(iii) Activation: the activation function used in the
CNN model is randomly selected from
{relu, selu, elu, sigmoid, tanh}.

(iv) Loss rate: randomly generated values between [0.1,
0.5].

(v) Optimizer:
“adadelta,” “adam,

(vi) Pooling: pooling (none, maximum pooling, average
pooling).

select randomly from [“adamax,”
” “adagrad,” “nadam”].

» «

(vii) Loss: the loss is used to match the function of the
network, select randomly from [“catego-
rical_crossentropy,” “mse,” “ focal_loss™].

In the selection stage, an individual is randomly selected
from the generated population for model training.

In the crossover stage, two crossover points are ran-
domly set in the individual coding string, and then partial
gene exchange is performed.

In the mutation stage, the mutation operation is per-
formed on the individual coding string with mutation
probability and the value of a random bit.

5. Experiment and Results

In order to evaluate the proposed abnormal traffic detection
scheme, this article uses Python, Scikit-learn, NumPy,
Pandas, TensorFlow, and Keras to conduct training and
testing on a 64 bit Windows computer, which is configured
as Intel(R) Core(TM) i3- 4005U 1.7G CPU, 8 GB RAM,
250G solid state drive.

The labeled dataset is a key factor to ensure the perfor-
mance of deep learning. In order to verify the performance of
the GACNN method, the internationally public network
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intrusion dataset UNSW_NBI15 [47] and a part of the traffic
dataset are collected by a probe of a Chinese power company.

This article uses accuracy, precision, recall, and F1-scores
to evaluate model detection performance. In order to
measure the values of these 4 indicators, it is generally
calculated by using true positive (TP), false positive (FP),
true negative (TN), and false negative (FN).

Accuracy is the proportion of correctly classified samples
to the total number of samples, which is defined as

_ TP + TN
" TP + FP + TN + EN

Acc 9)

Precision: its meaning is the ratio of samples that are
actually positive samples among all the samples predicted to
be positive, and its expression is

TP

P=—
TP + FP

(10)

Recall rate: its meaning is the ratio of positive cases
predicted to be positive in a sample that is actually positive,
and its expression is

TP

R=——"—. (11)
TP + FN

F1-score: the Fl-score considers both the precision rate
and the recall rate, so that the two can reach the highest at the
same time and strike a balance. The F1-score expression is

_2XxPxR

Fl=——— 12
P+R (12)

In these formulas, TP is the number of successful de-
tections of the current network traffic category, TN is the
number of other network traffic types successfully detected,
FP is the number of other network traffic categories iden-
tified as the current network traffic category, and FN is the
number of current network traffic categories identified as
other network traffic categories.

5.1. Tested on UNSW-NBI15 Dataset. The original network
packets (Pcap files) of the UNSW-NB15 dataset were created
by the IXIA PerfectStorm tool in the network-wide labo-
ratory of the UNSW Canberra Network Center, which is
used to generate network traffic test of real normal activity
and synthetic attack activity. The source files of the dataset
are divided based on the simulation dates of January 22,
2015, and February 17, 2015, respectively [47].

The total training dataset selected in the experiment
contains 175341 records, and the test set contains 82332
records. These records come from different types of attacks
and normal conditions. Furthermore, there are 9 types of the
attacks including Analysis, Backdoors, DoS, Exploits, Ge-
neric, Reconnaissance, Shellcode, and Worms. All the fea-
tures in the dataset can be divided into 6 subtypes, namely,
flow features, basic features, content features, time features,
additional generated features, and labelled features. Table 3
lists the 12 features included in the dataset.

5.1.1. Binary-Classification Test. In order to improve the
understanding and analysis of datasets, this paper carries out
a series of preprocessing operations before binary
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TaBLE 3: The 12 features included in the UNSW-NB15 dataset.

No.  Feature name Type Feature description Feature classification

1 srcip Nominal Source IP address Flow features

2 sport Integer Source port number Flow features

3 proto Nominal Transaction protocol Flow features

4 sbytes Integer Source to destination bytes Basic features

5 dbytes Integer Destination to source bytes Basic features

6 swin Integer Source TCP window advertisement Content features

7 smeansz Integer Mean of the flow packet size transmitted by the src Content features

8 sjit Float Source jitter (mSec) Time features

9 djit Float Destination jitter (mSec) Time features

10 ct_flw_http_mthd Integer No. of flows that have methods such as get and post in http service. Additional generated features
11 ct_ftp_cmd Integer No of flows that have a command in ftp session Additional generated features
12 attack_cat Nominal The name of each attack category Labelled features

Feature standard deviation (log)
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FiGure 11: The standard deviation of features included in the UNS
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FIGURE 12: Heat map of some features in the UNSW-NBI15 dataset.

classification, mainly including standardization, dedupli-  correlation analysis are shown in Figures 11 and 12. As can
cation, dimension reduction, and feature correlation anal-  be seen from Figure 11, the values of sload, dload, stcpd,
ysis. Among them, the results of standardization and  dtcpd, and other characteristics after the standard are more
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FIGURE 13: Binary-classification results in the UNSW-NB15 dataset.

prominent, reflecting the importance of these characteris-
tics. It can be seen from Figure 12 that the selected eigen-
values have very little correlation. For example, the
correlation between proto and service is -0.17, indicating
that the selected eigenvalues are very suitable.

In order to better verify the classification effect of the
model, a simple CNN model and some traditional machine
learning methods such as ExtraTreeClassifier [48], KNN
[49], and naive_bayes [50] are selected for comparison. The
experiment uses a dichotomy method from the training
dataset to divide the data into two, and both the training
and test sets contain (87670, 43) feature data. This ex-
periment is only for the identification of normal and ab-
normal network flows, and the experimental results are
shown in Figure 13.

This experiment is only for the identification of normal
and abnormal network flows. This paper selects ROC and
AUC curves commonly selected in machine learning to

describe the classification accuracy of the model. The full
name of ROC is “Receiver Operating Characteristic.” The
area of the ROC curve is AUC (Area Under the Curve). AUC
is used to measure the performance (generalization ability)
of machine learning algorithms for “two classification
problems.” The most ideal classifier is to classify the sample
completely correctly, that is, FP =0 and FN =0. So, the ideal
classifier TPR=1 and FPR=0.

The experimental results are shown in Figure 13. It can
be seen from the ROC graph in Figure 13 that the AUC value
of ExtraTree is 0.978, KNN is 0.897, naive_bayes is 0.869, and
GACNN is 0.981. The test results show that the GACNN
method is better than the previous three methods.

The same situation also appeared in the test results of the
other three indicators. In the graph composed of precision and
recall, GACNN is relatively stable when the recall value changes
from 0.0 to 1.0, and most of them are fixed at 1.0. However, the
other three algorithms fluctuate greatly. In the graph composed
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FiGure 14: The classification results of GACNN.

of threshold and %, when the training threshold is from 0.0 to
1.0, the TPR value of GACNN is basically stable at 1.0. The
other three methods are generally lower than 1.0.

5.1.2. Multiclassification Test. In order to accurately classify
different network traffic, this paper further tests this dataset
and compares the classification effects of the previous four
methods in multiclassification. The experiment first per-
formed a series of preprocessing on the metadata and divided
the dataset into two subdatasets for training and testing. In
addition, both data subsets contain (87670, 43) dimensional
feature values and 10 types of attack data. The coding of the 10
attack types is as follows: {0: “Normal,” 1: “Generic,” 2:
“Exploits,” 3: “Fuzzers,” 4: “DoS,” 5: “Reconnaissance,” 6:
“Analysis,” 7: “Backdoor,” 8: “Shellcode,” and 9: “Worms™}.

The GACNN model has been trained many times to find
the optimal parameters of the model and then use the

optimal parameter training and test data. The experimental
results of the four methods are shown in Figures 14-17.

In Figure 14, the classification AUC value of the GACNN
method for each category exceeds 0.91, and the average AUC
value of all types reaches 0.98. In addition, from the pre-
cision-recall diagram in Figure 14, it can be seen that AUC
values of model classification for 0, 1, 2, 3, and 5 types of
network traffic are all more than 0.6, and the average AUC
value is 0.89, but the AUC value of 4, 6, 7, 8, and 9 types of
network traffic is lower.

In the left subgraph of Figure 15, the classification AUC
value of the ExtraTree method for each category is relatively
good, basically exceeding 0.6, and the average AUC value of
all types also reaches 0.92. In addition, in the right subgraph
of Figure 15, the AUC values of the model classification for 0,
1,2,and 5 types of network traffic are all greater than 0.6, and
the average AUC value is 0.74, but the AUC value 0f 3, 4, 6, 7,
8, and 9 types of network traffic is also lower.
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FiGure 15: The classification results of ExtraTreeClassifier.

In the left subgraph of Figure 16, the classification AUC
value of the KNeighbors method for each category is relatively
good, basically exceeding 0.6, and the average AUC value of
all types also reaches 0.96. In addition, in the right subgraph of
Figure 16, the AUC values of the model classification for 0, 1,
2, and 5 types of network traffic are all greater than 0.6, and
the average AUC value is 0.86, but the AUC value of 3, 4, 6, 7,
8, and 9 types of network traffic is also lower.

In the left subgraph of Figure 17, the classification AUC
value of the naive_bayes method for each category is rela-
tively balanced, basically exceeding 0.80, but the average
AUC value of all types is only 0.82. In addition, in the right
subgraph of Figure 15, only the AUC value of the model
classification of type 0 network traffic is greater than 0.6, and
the AUC values of the other types of network traffic are very
low.

From the above experimental results, it can be known
that in the multiclassification test of the UNSW-NBI15
dataset, the GACNN method is basically better than the
other three methods.

5.2. Test on Real Power Dataset. In order to further verify
the anomaly classification effect of the proposed method
in real network scenarios, the continuous flow data
grouping of a power company information network in
July and August 2019 was obtained through flow probes
and processed and analyzed in the experimental platform.
The preprocessed data are used as the input of the ex-
perimental platform, and the performance of the algo-
rithm is evaluated through the processing of different
algorithms. Some preprocessing results are shown in
Figures 5-9.

Due to the different parameters of CNN, the detection
performance of the network will be different. In order to
evaluate the classification performance of the GACNN
method, some initial parameter settings are shown in this
experiment in Tables 4 and 5.

The experiment collected normal network flows and
three abnormal network flows (C&C attack, SSH brute force
attack, and webshell attack). Among them, the normal
stream is 563 MB, the webshell stream is 8.8 MB, and the
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F1GURE 16: The classification results of KNeighborsClassifier.

SSH stream is 5.74 MB. However, C&C is relatively small,
only 24 kB. These probe stream metadata are converted into
CSV files after preprocessing. In the training and detection
stage of the CNN model, the original CSV format data
cannot be directly used. Then, merge the CSV files of dif-
ferent attack types and convert them into an NPY file.

In GACNN model training, the dataset is divided into
training set and test set, and the training set contains
(216066, 50, 50, and 3) records, and the test set contains
(72022, 50, 50, and 3) records. The GACNN model contains
5 two-dimensional convolutional layers Conv2D, 5
batch_normalization layers, 5 max_pooling2d layers, a
flatten layer, 2 dense layers, and 2 dropout layers.

Like the previous experiment, this experiment also se-
lects the former three machine learning methods for
comparison. Table 6 lists the detection results of these

algorithms for three attack types (ExtraTree-E, KNeighbors-
K, naive_bayes-N, and GACNN-G). As can be seen from the
results in Table 6, compared with the other three detection
methods, the convolution neural network optimization
method based on the genetic algorithm has greatly improved
the detection rate and unknown attack detection rate, re-
duced the false alarm rate, and achieved good results.

For example, in binary detection, the precision, recall,
and F1-score of GACNN are all higher than 0.96, while other
methods are lower than 0.95.

In the multiclassification detection, the precision values
of the other three methods are lower than 0.93, recall values
are lower than 0.96, and the Fl-score values are basically
lower than 0.94. On the contrary, the three detection values
obtained by GACNN method are relatively good, and all of
them reach the values above 0.96.
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FIGURE 17: The classification results of naive_bayes.
TaBLE 4: The initial parameters of CNN.
Parameters Value
Filters 32, 64
Kernel_size (3, 3), (5, 5),
Activation Relu, selu, elu
Input_shape (50, 50, 3)
Output_shape 2, 10

Dropout_rate

0.1, 0.2, or random number between 0.1 and 0.5

Optimizer “adamax,” “adadelta,” “adam,” “adagrad”
TaBLE 5: The initial parameters of GA.

Parameters Value

Mutation probability 0.01 or the random number is greater than the threshold value

Crossover probability 0.5

Reproduction algebra 5

Population size 10
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TaBLE 6: The results of four methods in power network flows.
Precision Recall Fl-score
Class Type
E K N G E K N G E K N G
Two Normal 0.928 0.921 0.892 1.00 0.962 0.976 0.949 1.00 0.945 0.947 0.920 1.00
Abnormal 0.917 0.928 0.873 1.00 0.885 0.875 0.837 0.962 0.901 0.901 0.854 0.975
C&C 0.905 0.805 0.776 0.973 0.911 0.940 0.932 0.993 0.908 0.867 0.846 0.983
Multi SSH 0.863 0.922 0.892 0.963 0.917 0.905 0.852 0.982 0.889 0.913 0.872 0.972
Webshell 0.799 0.852 0.925 0.974 0.957 0.950 0.961 0.989 0.870 0.898 0.943 0.981
Whole 0.847 0.907 0.853 0.978 0.956 0.959 0.950 0.986 0.898 0.932 0.899 0.982

6. Conclusion

With the continuous development of smart grids, the current
power information network is constantly expanding, and the
possibility of failures in the network is also increasing. Aiming
at the high false alarm rate and low detection efficiency of
current network traffic anomaly detection, this paper proposes
a genetic algorithm-optimized convolutional neural network
method to deal with power network traffic anomaly detection.

Compared with the traditional machine learning
method, this paper mainly innovates and improves from the
following aspects:

(1) According to the business characteristics and re-
quirements of the power system, this paper establishes
a network flow metadata collection model for the
power system. This model mainly monitors network
traffic and equipment indicator status from the four
dimensions of time, area, event, and link, thereby more
effectively improving the quality of network services.

(2) Aiming at the problem that the classification accu-
racy of CNN depends on parameter settings, this
paper proposes to use the genetic algorithm to find
the best CNN parameters, which can quickly im-
prove the training accuracy of the CNN method.
From the experimental results, this method is su-
perior to other detection methods in the anomaly
detection of network flow.

(3) The classification accuracy of traditional machine
learning largely depends on the reasonable selection
of network features. The method proposed in this
paper uses raw traffic or metadata directly as model
input and trains features through self-learning
without manual intervention. In addition, the hidden
spatiotemporal features and package content analysis
can be completed through multiple convolutional
learning and spatiotemporal analysis of the model,
thereby reducing the complexity of the task and
improving the accuracy of the model classification.

In order to further improve the accuracy and efficiency
of the method, the next step is to continue to work on the
following aspects:

(1) Improved CNN structure: the network in this algo-
rithm is based on a simple 2-dimensional CNN model.
In future work, you can try to use ResNet, VGGNet,
and GoogLeNet models to build deeper mixed net-
works to further improve classification accuracy.

(2) Continue to increase the testing of the method in
large-scale power network traffic to realize practical
application in engineering.

Data Availability
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