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Abstract: Silicon content forecasting models have been requested by the operational team to anticipate
necessary actions during the blast furnace operation when producing molten iron, to control the
quality of the product and reduce costs. This paper proposed a new algorithm to perform the
silicon content time series up to 8 h ahead, immediately after the molten iron chemical analysis is
delivered by the laboratory. Due to the delay of the laboratory when delivering the silicon content
measurement, the proposed algorithm considers a minimum useful forecasting horizon of 3 h
ahead. In a first step, it decomposes the silicon content time series into different subseries using
the Maximal Overlap Discrete Wavelet Packet Transform (MODWPT). Next, all subseries forecasts
were determined through Nonlinear Autoregressive (NAR) networks, and finally, these forecasts
were summed to furnish the long-term forecast of silicon content. Using data from a real industry,
we showed that the prediction error was within an acceptable range according to the blast furnace
technical team.

Keywords: blast furnaces; silicon content; maximal overlap discrete wavelet packet; artificial neural
network; forecasting; time series analysis

1. Introduction

Due to the higher competitiveness in the globalized market, industries are always
seeking to reduce their operational costs without affecting the quality of the final product
through control techniques of the relevant variables involved in the manufacturing process.
The iron-making industry has played a significant role in the world economy, boosting the
process of industrialization. This industry produces molten iron (or hot metal or pig iron)
using blast furnaces and next directs it to be refined in the steel plant, resulting in steel.
The stable and efficient operation of the blast furnace depends on the acquisition of a large
amount of data to support operators in decision making through big data platforms and
data-driven models [1].

The quality of the produced molten iron affects the cost of the production of the steel
and defines for which ultimate purpose it can be sold [2]. However, the adverse conditions
presented inside a blast furnace (high pressure, temperature, and erosive environment)
may impair the direct measurements of some essential variables for quality control of the
molten iron [3]. Thus, the laboratory analysis of some chemical variables of the molten
iron samples is fundamental for monitoring the blast furnace operating state [4]. Notably,
one of the most critical variables is the silicon content of the molten iron, due to its strong
correlation with the thermal state of a blast furnace and the quality of the produced iron [2].
High values of the silicon content indicate an excess of coke in the blast furnace (i.e., a large
amount of thermal energy), while lower values indicate the lack thereof. Thus, since the
coke cost is prevalent in molten iron production, obvious economic benefits arise from
more rigorous control of the silicon content [4–12]. In addition, better silicon control in
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molten iron can reduce the CO2 emissions to the atmosphere due to the steelmaking time
decrease in the pig iron refining stage and other steps of the production process.

Over the past two decades, several papers have proposed neural network models
with different inputs to predict and even control the silicon content of molten iron and
other parameters related to the quality of the blast furnace process. Due to the complexity
and a large number of exogenous variables involved in the molten iron production process,
References [4–12] stressed the difficulty when choosing an appropriate algorithm that can
establish effective the input–output relationships of neural networks. Consequently, we
can observe in the literature a significant quantitative and qualitative discrepancy among
the chosen inputs. All these literature works performed forecasts of silicon content with
forecasting horizons lower than 3 h ahead and also disregarded the delay between the
collection and laboratory analysis results of the silicon content, which is typical in any blast
furnace [11]. The more we anticipate future information on the silicon content, the more
effective the actions of the operators will be, aiming at increasing the quality of the final
product, as well as reducing the CO2 emissions and costs associated with the production
of iron.

Initially, Reference [4] used a Multilayer Perceptron (MLP) without performing a
careful analysis of the most relevant input variables and their respective time delays.
Next, Reference [5] chose the inputs of a Nonlinear Input-Output (NIO) model through the
blast furnace operator experience, and References [4–8] applied a pruning algorithm [13].
The work [9] considered a Nonlinear Autoregressive (NARX) neural network, including
the silicon content as one of the network inputs. The authors of [10] eliminated the
exogenous inputs, by decomposing the silicon content time series into different subseries
from Empirical Mode Decomposition (EMD). After, these authors added the subseries
forecasts through NAR neural network models. However, Reference [10] did not provide a
numerical analysis of the forecasting quality.

Recently, References [11,12] used Extreme Learning Machine (ELM)-based networks with
up to thee hidden layers containing about one-thousand neurons. Unlike backpropagation-
based algorithms, ELM chooses the input and hidden layer weights randomly, while the
output layer weights are determined analytically. Thus, ELM performs faster training
than backpropagation [14]. However, due to the absence of weight adjustment in the
ELM neural network, it requires many more neurons, which may increase its computa-
tional cost [15]. Therefore, because of the hardware limitation of the existing supervisory
distributed computer control systems in the current steel industry, the ELM network im-
plementation in this hardware is much more complicated than the neural network trained
with backpropagation.

In this paper, we proposed a long-term forecasting algorithm with horizons from
3 h ahead, because the silicon content measurement in the molten iron is available for
operators through a chemical laboratory analysis updated every three hours approximately
after being collected. We considered a parsimonious neural network model trained by
backpropagation, so that with a smaller number of parameters, it was possible to model
and even forecast the silicon content with superior performance to those NIO and NARX
neural networks. The proposed forecasting algorithm decomposes the silicon content
time series into different subseries using Maximum Overlap Discrete Wavelet Packet
Transformation (MODWPT) [16]. We modeled each subseries decomposed by MODWPT
through a NAR neural network, and we performed the silicon content forecast by adding
each subseries’ forecasts.

MODWPT is the third generation of wavelet transform, and just as the Discrete
Wavelet Transform (DWT) and Discrete Wavelet Packet Transform (DWPT), MODWPT also
applies lowpass and highpass filters to the input signal at each level. However, MODWPT
overcomes the disadvantages inherent to DWT and DWPT as it not only presents a uniform
frequency bandwidth, but is also time-invariant. Besides, using MODWPT avoids edge
effects at the end of the time series and allows the addition of new samples without
the need to recalculate the entire transform again [16]. These properties are worthwhile
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when dealing with real-time series applications focused on performing nonstationary time
series forecasting. MODWPT decomposes the time series into stationary and nonlinear
subseries through highpass and lowpass filters [17], characterized by frequency bands with
different resolutions.

The work [18] applied the wavelet transform of the first generation in a neural model
to reduce data noise and forecast the permeability index for blast furnaces. However,
the analysis presented in [18] was entirely based on static data, i.e., the data were not
processed sample-by-sample, which is inherent to real-time data processing. This inhibits
the application of this model in industrial dynamic systems, whose forecasts must be
processed for each sample, or a small set of samples collected and processed in real time,
as we considered in this article.

There are some differences between the EMD decomposition technique used by [10]
and MODWPT. EMD is an iterative procedure that extracts oscillatory-like features from
the data in such a way that it uses adaptive bases that are directly generated by the data,
i.e., EMD is a wavelet approach. EMD is an adaptive technique, and MODWPT is a math
transform that lends itself to robust statistical analysis [19].

In Section 2, we briefly explain the molten iron production process; in Section 3, we
apply the pruning algorithm to determine the neural network models with and without
the MODWPT decomposition; in Section 4, using real data from a blast furnace located
in Brazil, we compare the proposed algorithm, denoted by MODWPT-NAR, with the
NAR, NARX, and NIO models without considering time series decomposition; finally, we
conclude this article in Section 5.

2. The Blast Furnace Process
2.1. Background

The blast furnace is a big thermo-chemical reactor used for molten iron production,
which is the main raw material for steel production. The operation of the blast furnace
occurs following the countercurrent principle [2]. During the production process, synthetic
ferrous materials (sinter and iron ore pellets) or natural raw materials (granulated iron
ore) enter the upper part of the blast furnace, with one type of fuel (coke or charcoal).
In addition, there may also be auxiliary injections of fuel oil, tar, pulverized coal, or natural
gas. The objective is to produce an alloy, denominated molten iron, at a temperature of
approximately 1500 ◦C, in the liquid state, composed of iron (between 92% and 95%), carbon
(between 3.5% and 5%), and other elements such as silicon and manganese. In addition,
slag and blast furnace gas are also generated as byproducts [2].

Molten iron is formed from the reduction of iron ore, while slag comes from the
agglomeration of minerals and ashes resulting from burning fuels. Generally, it takes about
six to eight hours for the raw materials to be processed in the form of molten iron and
slag, which are accumulated at the base of the blast furnace (called blast furnace hearth).
The molten iron remains on the bottom of the furnace hearth, while the slag remains on
the upper part of it [2]. Ores and coke may contain many different kinds of impurities,
and most of them are reduced in the blast furnace and eliminated in the form of slag. Some
elements are fully incorporated into the molten iron (such as phosphorus and copper),
while others are partially incorporated (such as sulfur, manganese, carbon, and silicon).
From the point of view of thermal control, silicon is one of the most important elements [2].

The silicon in the blast furnace comes mainly from ores and coke ashes. The content of
silicon depends not only on the quantity, but also on the types of raw materials used and on
the method applied for producing the molten iron. The transfer of silicon to molten iron can
occur either directly from slag to molten iron (through metal–slag reactions) or indirectly.
For the latter, the silicon is transferred from slag (or coke ash) to the gaseous phase (SiO for
example), which then reacts with molten iron–carbon, incorporating silicon [2].

The silicon content of the molten iron is an essential variable for the blast furnace
process because it expresses not only the thermal state, but also the quality of it. The
fluctuations of the silicon content reflect the thermal variations within the blast furnace.
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This way, a low silicon content indicates that the furnace is cooling, which can compromise
the operation, while high values indicate the waste of coke, shown by excessive heat
generation. Thus, since the cost of coke is prevalent (usually more than 30% of the total
amount) in molten iron production, the stricter the control of silicon content, the more
significant the reduction in production costs is [6,8].

After passing through the blast furnace, the liquid molten iron is taken to the steel-
works to transform it into steel. The thermal input of the molten iron is mainly responsible
for the process heating supply. Besides, this material must show adequate physicochemical
characteristics; otherwise, it is necessary to perform adjustments in the process, which
can decrease productivity. Therefore, the high content of silicon can hinder the process
of converting iron into steel and, consequently, generate even higher expenses. However,
the presence of silicon in the steelworks is desirable, since it contributes to removing the
oxygen present in the steel, through the oxidation of SiO2 [2].

One of the major problems during the quality control of molten iron production is
the long time spent from charging the raw material at the top of the blast furnace until
the molten iron removal from the bottom of the blast furnace hearth [2]. Furthermore,
in the real production process at hand, the laboratory analysis of the molten iron chemical
composition takes about three hours to perform, as well as the silicon content amount to
be available for the operators. Another problem is the nonregularity of the data collection
periods of the silicon content, since the opening and closing times of the pig iron tapholes
may vary according to the blast furnace production rate [20]. All these factors make it
difficult to control the silicon content inside the blast furnace to reach adequate levels that
guarantee the quality of the final product and the low cost of production.

2.2. The Dataset

In this study, we used data extracted from a blast furnace located in Brazil. This blast
furnace has 4 tapholes, 34 tuyeres, 3617 m3 of internal volume, and a nominal annual
production capacity of 2.8 Mt. Typically, one taphole is opened at a time, although in some
cases, it is necessary to open a second taphole to accelerate material extraction [3].

Regarding the blast furnace considered in this paper, twenty-eight variables may
influence the silicon content. Such variables are described in Table 1.

It is noted that for each molten iron casting (time elapsed between an opening and a
closing of the blast furnace taphole), three torpedo cars are filled, on average. A torpedo car
is made with steel and coated with refractory, and its primary function is to transport molten
iron from the blast furnace to the steelworks. Usually, the blast furnace operators collect a
molten iron sample from each torpedo car loading for laboratory analysis. The result of such
analysis, regarding the percentage of silicon, is then updated in the system. Because the
acquisition time of the molten iron samples is not synchronous, presenting variations of
around 50 min, it is crucial to resample it at regular times so that the neural network inputs
can receive the past values of the silicon content time series. The molten iron temperature
and electromotive force (input variables x27 and x28) are also measured at each torpedo
car loading and, therefore, also present an asynchronous sampling period, similar to the
silicon content. The other input variables described in Table 1 have a sample period of
30 min. Thus, due to the interest of blast furnace operators in specifying the data at each
60 min interval, all input and output variables are resampled at this sample time.

Due to the harsh conditions of the blast furnace operation, process and measurement
noises can contaminate the dataset. In this sense, noise reduction is required in data pre-
processing [11]. All input and output data collected were processed to correct outliers and
measurement errors, as well as to exclude significant periods of blast furnace shutdowns.
In general, an abrupt decrease in the blast furnace production rate indicates a blast furnace
shutdown (i.e., a period of strong process instability), and often, these moments are fol-
lowed by outliers in the silicon content time series. Figure 1 shows an example of a plant
shutdown identified during the analysis of the corresponding data. As the objective of this
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work was to forecast the silicon content during regular operational periods, the samples
corresponding to the abnormalities must be detected [21] and excluded from the dataset.

Table 1. Input variables that may influence the silicon content.

Variable Description

x1 flame temperature (◦C)
x2 rate of CO/CO2
x3 H2 gas efficiency (%)
x4 molten iron production (tons/min)
x5 coke rate (Kg/ton of molten iron)
x6 pulverized coal injection rate (Kg/ton of molten iron)
x7 direct reduction (%)
x8 ore/coke ratio
x9 thermal index of H0 (103 Kcal/ton of molten iron)
x10 north central gaseous flow index
x11 north peripheral gaseous flow index
x12 south central gaseous flow index
x13 south peripheral gaseous flow index
x14 blowing air volume (Nm3/min)
x15 blowing air moisture (g/Nm3)
x16 blowing air temperature (◦C)
x17 blowing air pressure (Kg/cm2)
x18 top pressure (Kg/cm2)
x19 top temperature (◦C)
x20 composition of H2 on the top gas (%)
x21 composition of N2 on the top gas (%)
x22 composition of CO on the top gas (%)
x23 composition of CO2 on the top gas (%)
x24 O2 enrichment rate (%)
x25 CO efficiency (%)
x26 staves’ thermal losses (104 Kcal/h)
x27 molten iron temperature
x28 electromotive force (%)

Figure 1. Abnormality period in the blast furnace.

After removing the data corresponding to instability periods in the blast furnace, we
performed the stationarity analysis of the silicon content time series. First, we detected the
nonstationary characteristic of this time series through the Kwiatkowski, Phillips, Schmidt,
and Shin (KPSS) test [22]. Then, we used the Lilliefors [23] and Kruskal–Wallis [24] tests to
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confirm the existence of nonlinearities by splitting the time series into five packages of data;
see Figure 2. Each one of the packages was composed of a 10-day measurement, to show
that these samples were not from the same distribution.

Figure 2. Box plot test of silicon content time series.

Based on these analyses, we concluded that the time series had nonlinear components
due to the asymmetric dispersion concerning the normal distribution, as shown in Figure 3.

Figure 3. Q-Q plot of silicon content time series.

3. Silicon Content Time Series Modeling

Firstly, we present the ANN models without considering the decomposition of silicon
content using MODWPT.
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3.1. NIO, NARX, and NAR Neural Network Models

Inspired by the architecture and learning of the human brain, ANNs exhibit self-
adaptive behavior and are very favorable to model and forecast nonlinear processes that
have complex characteristics, in contrast to traditional deterministic methods. They work
as processors made up of simple processing units—the neurons—that can store the knowl-
edge acquired and can also adapt to a changing environment through a learning process.
The links that connect neurons to carry out signal transmission are called “synapses,” over
which there is a corresponding weight. Each neuron receives multiple inputs from other
neurons, computes them, and generates a single output, which can be propagated to several
other neurons [25].

In this paper, we addressed the Time-Delay Neural Networks (TDNN). Such networks
are extensions of Multilayer Perceptron (MLP) networks, with the introduction of one
unit delay in the input variable, aiming at representing the dynamics (cause and effect
relationships) of the nonlinear model [26]. Examples of TDNN are the NIO, NARX,
and NAR neural networks. Their outputs at k-steps ahead (ŷ(t + k)) are described by
(1)–(3), respectively, where na and nb are the maximum delays of the output y(t) (silicon
content) and inputs x(t) = (x1(t), x2(t), . . . , x28(t)) (defined in Table 1), respectively; t is the
moment immediately after the molten iron chemical analysis is delivered by the laboratory.
f () represents a nonlinear function that is parameterized through the synaptic weights
calculated during the neural network training phase [25,26].

ŷ(t + k) = f (x(t), . . . , x(t− nb)) (1)

ŷ(t + k) = f (y(t), . . . , y(t− na), x(t), . . . , x(t− nb)) (2)

ŷ(t + k) = f (y(t), . . . , y(t− na)) (3)

The NIO, NARX, and NAR neural network models were defined by the input and
output sets {x(t− n), . . . , x(t)} and {y(t− n), . . . , y(t)}, respectively, where n is the total
of historical data samples. We split both datasets into two blocks. Regarding the first
block, each time series had 2160 samples (90 days) used for training, and as for the second
block, each time series had 720 samples (30 days), used for validation. Each time series
was normalized within the range [0.1, 0.9]. Normalization was important to ensure non-
zero values in the time series, thus allowing us to calculate the performance indices used
to compare the neural network models. Furthermore, the normalization technique can
provide a reduction of errors in the training of the neural networks [25]. High-frequency
noises present in the input time series were removed by applying wavelet filters of the
symlet type with order four [27].

The criteria used to define the ANN models were the k-steps ahead Mean Squared
Error (MSE(k)) and k-steps ahead Mean Absolute Percentage Error (MAPE(k)), defined
according to (4) and (5), respectively:

MSE(k) =
1
n

n

∑
t=1

(y(t + k)− ŷ(t + k))2, (4)

MAPE(k) =
1
n

n

∑
t=1
|y(t + k)− ŷ(t + k)

y(t + k)
|, (5)

We considered a NAR neural network topology with six inputs because the leaks
(casting) through the tapholes occurred at a frequency of between eight- and fourteen-times
a day, which corresponded to a leakage period of 1.5 to 3 h. Besides, the residence time of
the load inside the blast furnace was 6 h approximately; therefore, the current sample of
the silicon content depended on the samples collected up to 6 h before, i.e., up to six lags
considering a sample time of one hour. For that reason, the NAR neural network must
have six entries, which corresponded to the current sample plus five previous samples.
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Regarding the NIO and NARX neural networks, the delays of the input variables
x1 . . . , x28 were, initially, equal to their respective average response times, i.e., the average
times the production process responded to the variations of each input. In this sense, except
the coke (x5) and ore/coke (x8) rates, which presented a slower response time (8 h), all
input variables of the NARX network had a delay of three samples (3 h).

The NIO, NARX, and NAR neural networks have a hyperbolic tangent-type activation
function for the hidden layer neurons and a linear activation function for the output layer
neuron. We used a single hidden layer on each of the networks, which were defined by
testing structures with five to two-hundred hidden neurons, adding five neurons per test.
For each of these networks, we determined the MSE(0) errors after five consecutive training
rounds performed by using the Levenberg–Marquardt learning algorithm. From these
experiments, we concluded that the hidden layers for the NIO, NARX, and NAR neural
models with 95, 90, and 100 neurons, respectively, provided the lowest MSE(0) errors in
the training phase.

Due to a large number of variables involved in the process, it was challenging to choose
an appropriate algorithm that could select the most relevant inputs and, consequently, to es-
tablish input–output relations effectively [6]. To remove redundant connections between
the neurons of the input and hidden layers, without harming the model performance,
we applied a pruning algorithm based on Hessian matrix, using the Optimal Brain Sur-
geon method (OBS) [28,29]. The pruning algorithm allowed removing regressors (input
variables) that were not significant for the model, thus facilitating the choice of relevant
variables. We verified that after applying the pruning algorithm, the number of hidden
neurons for the NIO, NARX, and NAR neural networks reduced from 95 to 3, 90 to 6,
and 100 to 13, respectively. The pruning algorithm also detected the significant regressors
to be considered in the input layer of each neural network, as shown in Table 2. Each of
the hidden layer neurons of these final ANN models was associated with more than one
regressor, although the total number of regressors decreased significantly concerning the
ANN models initially proposed. In Section 4, we compare the performances of the NIO,
NARX, and NAR neural networks before and after applying the pruning algorithm.

Table 2. Significant regressors in the input layers of neural networks.

ANN Model Regressors

NIO x5(t− 5), x24(t− 1), x27(t− 2)

x2(t− 2), x3(t− 3), x4(t− 3), x5(t− k) for k = 1, 2, 3
x7(t− 3), x8(t− 1), x10(t− k) for k = 1, 2,

NARX x12(t− 2), x14(t− 1), x15(t− 1), x19(t− 2),
x23(t− 2), x24(t− 3), x25(t− 2), x27(t− k) for k = 1, 2,

x28(t− 1), y(t− k) for k = 1, 2, 3, 4, 5.

NAR y(t− k) for k = 1, 2, 3, 4, 5.

3.2. MODWPT-NAR Neural Network Model

To increase the accuracy of prediction models using neural networks, we developed
a hybrid algorithm based on MODWPT decomposition and ANN models to forecast the
content of silicon in molten iron (see Figure 4). Firstly, the silicon content time series was
decomposed into three levels through the MODWPT, using a four-order symlet mother
wavelet. As a result, we obtain eight data subsets {XWP1}, {XWP2}, . . . , {XWP8}), which
are illustrated in Figure 5.
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Figure 4. MODWPT-NAR neural network model.

After that, we used eight NAR networks to perform multistep forecasts of each one
of the eight subseries. Finally, we added the subseries forecasts to obtain the original
signal forecasting.

The Discrete Wavelet Transform (DWT) is a time and frequency multiresolution
analysis technique that decomposes the original signal into several levels. According
to [27], multiresolution analysis is a useful tool since many signals found in practical
applications have high-frequency components for short time durations and low-frequency
components for a long duration of time.

The implementation of DWT is an iterative process with successive decompositions of
a signal, which uses two sets of functions called scale functions and displacement functions,
associated with the lowpass and highpass filters of the wavelets. Employing convolution,
each one of the lowpass and highpass filters yields signals in the approximation and detail
components, respectively, of the original signal [27].

A single function Ψ(t), called the mother wavelet, generated the wavelet functions.
Mother wavelets can take many forms (Daubechies wavelet (Daubechies), Daubechies’
least-asymmetric wavelet (symlet), and coiflet [27]) and, in general, are defined by [16]:

Ψj,k(t) = a−j/2
0 Ψ(a−j

0 t− kb0) (6)

where j and k are the expansion and translation coefficients, respectively, and a0 and
b0 give the expansion variation and the translation step, respectively. We usually as-
sumed binary expansion and unit translations, i.e., a0 = 1 and b0 = 2, resulting in the
following expression:

Ψj,k = 2−j/2Ψ(2−jt− k) (7)
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Figure 5. MODWT decomposition of silicon content time series.

However, at each DWT iteration, only the elements were divided into new approxi-
mation and detail components. In contrast to DWT, the Discrete Wavelet Packet Transform
(DWPT) allows detail elements to be also divided into new approximation and detail com-
ponents, resulting in uniform frequency bands. In addition, in the DWT, the approximation
coefficients identify the frequency range [0, fs

2(j+1) ], while the detail coefficients at level j

describe the frequency band [ fs
2(j+1) , fs

2j ], where fs represents the sampling frequency of the
original signal. On the other hand, the DWPT allows that, at each level j, the frequency
band is divided into 2j partitions of equal length [16].

In the DWT and DWPT approaches, the signal length is limited to the power of two
integers. Let L be the maximum decomposition level, int() the function that returns the
nearest integer, and n the length of the input signal. We defined the maximum decomposi-
tion level by [27]:

L = int(log2(n)) (8)

In contrast to DWT and DWPT, the Maximal Overlap Discrete Wavelet Packet Trans-
form (MODWPT) is invariant after adding new samples in the time series. It has the same
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number of coefficients at each level of decomposition since there is no signal decimation at
each level. The MODWPT has often been used as an analytical tool to represent signals
in the analysis of nonstationary time series, by dividing the variance of the data by the
scale [27]. The main characteristic of such a transform is the lack of sensitivity to the time
series starting point; consequently, the temporal analysis does not depend on the instant of
time we take the samples [16].

The MODWPT is a function that allows the signal representation in frequency bands
with different resolutions [16]. As the DWPT, it divides the frequency band into 2j partitions
of equal length for each level j [16].

Another feature of subseries resulting from the decomposition process via MODWPT
is that the original signal is perfectly reconstructed since the decomposition coefficients
pass through lowpass and reverse-highpass filters [16]. The MODWPT overcomes the
disadvantages of the DWT and DWPT, i.e., it not only has uniform frequency bandwidth,
but it is time-invariant. Furthermore, since the MODWPT components are nonorthogonal,
there is a slight overlap of frequency bands enabling solving the edge effect problem found
in time series forecasting. These properties allow the addition of new samples in the time
series without the need to recalculate the entire transform again [16,17].

In the proposed hybrid MODWPT-NAR algorithm, the decomposed signals were
modeled by the NAR1, . . . , NAR8 neural networks. We performed two experiments to
select the number of neurons in the hidden layer of each NAR model by using the learning
algorithm Levenberg–Marquardt [25]. The first considered the same number of neurons in
the hidden layer of all NAR1 to NAR8 networks. We varied the hidden neurons from one to
thirty for all these networks, simultaneously, and we obtained 30 MODWPT-NAR models.
The MODWPT-NAR model with seven neurons in the hidden layer of all NAR1 to NAR8
networks had the lowest training error, and its MSE(0) index was equal to 5.32× 10−5.

Regarding the second experiment, we considered different numbers of neurons in the
hidden layer of each NAR1 to NAR8 network within the range of one to thirty neurons. This
was necessary because we determined the number of neurons of the hidden layer of each
neural network according to the complexity of the decomposed subseries. Next, we found
the number of neurons in the hidden layer of each NAR1 to NAR8 network that provided
the lowest MSE(0) error in the training phase, as shown in Table 3. We calculated this
error from each decomposed subseries and corresponding forecast, without considering
the original time series.

Table 3. Hidden layer size of networks for the second experiment.

Neural Hidden Layer MSE(0)
Network Size (×10−4)

NAR1 27 0.0169
NAR2 8 0.2642
NAR3 7 0.1299
NAR4 19 0.0487
NAR5 21 0.0500
NAR6 25 0.0442
NAR7 23 0.0708
NAR8 14 0.0047

The training error obtained from the MODWPT-NAR model after the second experi-
ment had an MSE(0) index equal to 6.55× 10−5. Therefore, we chose the MODWPT-NAR
model obtained from the first experiment as the final hybrid model, because it had a
smaller hidden layer size for all NAR1 to NAR8 networks and provided a smaller MSE(0)
training error.
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4. Comparative Analysis of Forecasting Models

In this section, we compare the silicon content forecasting performances obtained from
the NAR, NIO, and NARX neural networks and the MODWPT-NAR model. All numerical
results were performed on a desktop PC i3-3110M, 2.4-GHZ CPU, and 4G RAM with the
MATLAB (2018a) software, using real data obtained from a steel industry located in Brazil.
We used the toolboxes provided by [29] to implement the neural networks and perform the
pruning algorithm.

In addition to the MSE and MAPE indices, another important criterion used to com-
pare the silicon forecasting models is the absolute error percentage of the k-steps ahead
forecasting lower than ε (AEPε(k)), given by [9]:

AEPε(k) =
1
n

n

∑
t=1

NE × 100 (9)

where

NE =

{
1 if |y(t + k)− ŷ(t + k)| < ε
0 otherwise

(10)

The AEPε(k) index is defined according to the blast furnace specialists’ need. In this
paper, we considered ε = 0.05, i.e., the forecasting absolute errors at k-steps ahead were
acceptable when they were lower than this range. Therefore, this index is better when the
resulting value is higher.

To better understand the forecasting results presented in this section, let us define by t
the time when the last molten iron chemical analysis is delivered by the laboratory. Since
silicon content measurements were updated every 3 h and the molten iron samples were
collected at intervals of 1 h, the collection time of the current molten iron sample was t + 3.
Therefore, the silicon content forecast at this time was ŷ(t+ 3), which was obtained through
neural models using the data stored until time t. In addition, the future silicon content
samples would be collected at times t + k, k = 4, 5, . . . , and the respective forecasts would
be ŷ(t + k). In fact, to control the silicon content in the blast furnace and steelmaking plant,
only forecasting horizons longer than or equal to 3 h ahead starting from instant t were
adequate; due to the great inertia of the blast furnace, and the time spent in the steelmaking
shop floor operations, the longer the forecasting horizon was, the better actions could be
obtained in correcting the silicon content.

Tables 4 and 5 show the forecasting performances obtained by the NIO, NARX, and
NAR networks before and after implementing the pruning algorithm.

From Tables 4 and 5, one can observe a significant improvement of the networks with
exogenous inputs (NIO and NARX), in addition to a considerable decrease in the size of the
hidden layer. For example, for the NARX network before applying the pruning algorithm,
the number of hidden neurons was 90, the MSE(3) value 13.42× 10−3 the MAPE(3) value
32.15%, and the AEPε(3) value 33.80%, for a three-hour-ahead forecasting horizon. In turn,
after applying the pruning algorithm, the AEPε(3) value became 56.33% and the MAPE(3)
value 17.98%, by considering only six neurons for the hidden layer.
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Table 4. Performance of NIO, NARX, and NAR models before implementing the pruning algorithm.

Model Horizon MSE(k) MAPE(k) AEPε(k)
(k) (10−3) (%) (%)

NIO

3 21.15 38.85 27.32
4 20.54 38.28 30.60
5 20.29 38.05 30.90
6 20.48 38.25 28.14

NARX

3 13.42 32.15 33.80
4 11.65 29.55 36.53
5 12.37 30.42 34.74
6 11.87 29.04 36.63

NAR

3 3.05 12.88 73.73
4 4.40 15.07 66.94
5 9.07 21.76 53.80
6 15.17 29.50 40.48

Table 5. Performance of NIO, NARX, and NAR models after implementing the pruning algorithm.

Model Horizon MSE(k) MAPE(k) AEPε(k)
(k) (10−3) (%) (%)

NIO

3 5.24 18.76 58.30
4 5.28 18.76 58.53
5 5.38 18.74 60.02
6 5.45 18.76 59.83

NARX

3 5.31 17.98 56.33
4 5.67 18.82 54.58
5 6.04 19.55 51.41
6 6.40 20.13 49.50

NAR

3 3.36 12.29 76.26
4 5.88 16.49 66.24
5 15.31 26.26 52.53
6 21.52 31.76 40.76

We observed the same effect for the NIO network, which previously had 95 hidden
neurons and presented an MSE(3) of 21.15× 10−3, a MAPE(3) of 38.85%, and an AEPε(3)
of 27.323%, for a forecasting horizon of 3 h ahead. After applying the pruning algorithm,
on the other hand, this network could perform forecasts with superior performance (MSE(3)
of 5.24× 10−3, MAPE(3) of 18.76%, and AEPε(3) of 58.309%) using only three hidden
neurons. Figure 6 illustrates the six-hour-ahead forecasts of silicon content obtained from
the NIO and NARX models.
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Figure 6. Silicon content and its six-hour-ahead forecasts from the NIO and NARX models.

The most significant effect brought by the pruning algorithm for the NAR network
was that the size of the hidden layer was reduced from 100 neurons to 13 hidden neurons,
without harming the performance. Notice in Table 5 the improvements in NIO and NARX
networks due to the use of the pruning algorithm. Besides, observe in Table 5 that the
NAR network still performed the best in forecasting for horizons until four steps ahead,
and for longer horizons, the performance of NAR was worse than NIO and NARX. Thus,
it was relevant to use the previous values of silicon content as the ANN input. However,
the nonstationary behavior of this time series could impair the learning ability of the NAR
and NARX networks for a longer forecasting horizon.

In Table 6, observe the performance of the MODWPT-NAR forecasts for the same data
considered in Table 5.

Table 6. Performance of the MODWPT-NAR model.

Horizon MSE(k) MAPE(k) AEPε

(k) (10−3) (%) (%)

3 0.043 1.58 100
4 0.14 2.82 99.72
5 0.22 3.54 99.02
6 0.30 4.21 98.18
7 0.33 4.54 97.90
8 0.83 6.57 93.70

We noticed that this hybrid algorithm presented superior performance to the NAR
model. As an example, the 3-h-ahead forecasting of the MODWPT-NAR model reached a
MAPE(3) of 1.58%, while for the NAR model, this index was 12.29%. Furthermore, when
the forecasting horizon increased, notice from Table 6 that the performance of the hybrid
model did not decrease as much as in the model that used only the NAR neural network
without considering MOPWPT decomposition. However, the proposed forecasting model
became inaccurate for horizons longer than 8 h ahead, because the AEP index remained
below 90%.

We also verified from Tables 5 and 6 that 40.76% of the six-hour-ahead forecasts
obtained from the NAR model were inside the tolerance range, against the 98.18% obtained
by the MODWPT-NAR hybrid model. We justified this result by the fact that the operators
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frequently take actions on the blast furnace input variables, aiming to correct instabilities
to keep the silicon content within an acceptable range. These actions may increase the
nonstationary behavior of the silicon content time series and hamper the learning ability of
the NAR network when compared to the proposed MOPWT-NAR hybrid model. This is
because MODWPT allows the decomposition of the nonstationary signal into stationary
subseries. Figure 7 illustrates the six-hour-ahead forecasts of silicon content obtained from
the NAR and MODWPT-NAR models.

Figure 7. Silicon content and its six-hour-ahead forecasts from the NAR and MODWT-NAR models.

5. Conclusions

In this paper, we proposed a long-term forecasting model of silicon content, which
performed the decomposition of the time series into additive components using MODWPT.
We used NAR neural networks to model each decomposed signal, and the long-term
silicon content forecast was performed by adding each subseries forecasting. In this case
study, ninety-three-point-seven percent of the 8-h-ahead forecasting errors determined by
MOPDWT-NAR model were within the acceptable range of 0.05%, while at most 60% of
the 6-h-ahead forecasting errors furnished by the ARX, NIO, and NAR neural network
models without decomposition were within this acceptable range. Therefore, with this
hybrid model, we obtained very accurate forecasts with a horizon of up to 8 h ahead from
the moment the last molten iron chemical analysis was delivered by the laboratory.

The proposed model proved to be a promising tool for the prediction of pig iron
silicon content, and we can extend it to other blast furnaces, with appropriate changes.
To implement this forecasting system on industrial plants, an operating station accessing
the process database to collect input data and send the forecasts in real time to the super-
visory system is necessary. In the control room, the operator may observe the long-term
silicon content forecasts while performing blast furnace operational changes. Thus, such a
forecasting system can optimize the blast furnace raw materials, reduce the operational
costs, and increase the quality of the pig iron. It also allows optimizing the steelmaking
logistics since, currently, the technical team of the steelmaking plant receives the silicon
measurements 3 h after the molten iron sample’s collection. In this way, the anticipation of
silicon content information can decrease the steelmaking time and, consequently, reduce
the production costs and the CO2 emissions to the atmosphere.
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