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A novel approach to decode hand motor tasks from 
intraneural recordings in an amputee 
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Abstract— In the field of neuroprosthesis, intraneural 
interfaces represent an interesting solution to restore lost 
functions in amputees. In particular, recent results have shown 
that transverse intrafascicular multichannel electrodes 
(TIMEs) can re-establish natural and sophisticated sensory 
feedback. However, the possibility to decode motor intentions 
in humans has not been explored yet. In this study, we 
developed a framework able to decode several hand 
movements intention from neural signals recorded from 
intrafascicular electrodes in an upper limb amputee. Four 
intraneural multichannel electrodes (TIMEs) were implanted 
in the median and ulnar nerve of the amputee, and the 
electroneurographic (ENG) activity was recorded during hand 
motor tasks imagined by the subject. We built a stable decoder, 
reliable in all the experimental sessions and able to decode four 
classes of movements plus rest with about 80% accuracy. This 
approach could improve the efficacy of sensitive hand 
prosthesis resulting in a more natural and dexterous device 
relying on a single device for both sides of the closed-loop. 
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I. INTRODUCTION 
Restoring lost functions in patients after hand amputation 

is one of the main challenges of neuroengineering 
applications [1]. Studies showed that dexterous hand 
prostheses can be successfully controlled by processing 
electromyographic (EMG) signals recorded from the residual 
muscles of the amputee [2]. Alternatively, in the case of high 
level amputations, Targeted Muscle Reinnervation (TMR) 
[3] showed to provide a suitable surgery technique to enable 
prosthesis control. However, to restore the full bidirectional 
information (i.e., decode motor control and provide sensory 
feedback), it is necessary to increase the level of selectivity 
using intraneural or intrafascicular interfaces. Indeed, neural 
interfaces have shown to be able to restore sensory feedback 
[4] but they can also record electroneurograms (ENG) related 
to hand motor commands from the residual nerves of 
amputees [5], [6]. Recently, Transversal Intrafascicular 
Multichannel Electrode (TIME) [7] have been demonstrated 
to provide a rich and useful sensory feedback to trans-radial 
amputees [4], [8]. In the present work, we investigated the 

possibility to record neural signals from TIMEs and decode 
hand movement intentions in an amputee subject. We 
proposed a procedure to automatically select channels and a 
new framework to decode several motor intentions from 
ENGs based on the compound neural signals. 

II. METHODS 

A. Experimetal protocol 
The subject was a 48-years right-handed female with a 

transradial amputation. Four Transversal Intrafascicular 
Multichannel Electrodes (TIMEs), with 14 active sites each, 
were implanted two in the median (M1 and M2) and two in 
the ulnar (U1 and U2) nerve of the subject as in Fig. 1 (see 
subject 1 in [8] for details and ethical approval). The subject 
was asked to perform finger flexion movements with the 
amputee arm but also with the healthy hand (right one) in 
order to check the subject’s attention. Three different 
grasping movements were defined, i.e. Tridigital Pinch (Tr), 
Thumb opposition (Th), Ulnar finger movement (Ul), and 
each grip was repeated 10 times. The patient had to move her 
phantom hand for each trial as shown on the screen; each 
trial lasted 2 seconds and was followed by 3 seconds of 
motionless rest. Overall, the task consists of 1 seconds for 
the movement (Phase 1 - flexion) and 1 seconds for coming 
back to rest position (Phase 2 – open task). Here we reported 
recordings in 5 sessions, from day 16 to day 23 after 
implantation. 

B. Neural recordings and ENG analysis  
Four electrodes (56 active sites) were recorded 

simultaneously (using Grapevine neural Interface System, 
Ripple, LLC), and digitally sampled at 30 kHz. Collected 
electroneurographic (ENG) data were analysed in MATLAB 
as follows. Raw ENG data were pre-processed with a band-
pass filter between 300 and 3000 Hz (4th order Butterworth 
filter) and down-sampled at 10 kHz. The root mean square 
(RMS) was extracted for each channel and a band pass 2nd 
order Butterworth filter at [2 100] Hz was applied. Finally, 
signals were binned into 25 millisecond windows obtaining a 
binned-RMS-ENG sampled at 40 Hz (Fig. 1). This procedure 

Figure1. Workflow of the experimental design and neural recording analysis: 1) The subject was implanted with four TIMEs in the median (M1, M2) 
and in the ulnar (U1, U2) nerve of the amputee arm. 2) The subject imagined to perform the movement indicated on a screen with the phantom hand 
while neural signals were recorded and stored. 3) Recordings from each channel were bandpassed filtered and downsampled at 10 kHz. Then, each 
signal was binned at 40 Hz after computing the Root-Mean-Square 4) PCA allowed to select a set of 14 channels for each sessions and reduce 
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allowed to improve drastically the signal-to-noise ratio (data 
not shown). 

C. Channel selection and neural decoding algorithm  
After computing the Principal component analysis 

(PCA), we selected the first two channels more correlated 
with each of the first 10 principal components. The final list 
resulted in 14 instead of 20 channels as some of them 
matched the condition more than once. As shown in Fig.1, at 
least one active site for all the four implanted electrodes was 
selected for each experimental session. The first 200 
milliseconds after the external starting trigger were labelled 
and associated to a specific movement. These values from 
the selected channels were used as input for training and 
testing the decoding algorithm. We applied a Support Vector 
Machine with a quadratic kernel (qSVM) classifier to decode 
movements (one-vs-one strategy, five-fold random cross-
validation procedure). The overall classification accuracy 
was defined as the mean value of the percentage of correct 
predictions per class, which corresponds to the mean value of 
the diagonal in the confusion matrix. 

III. RESULTS 
We tested our decoding procedure across sessions to 

show the ability to classify different tasks, i.e. tri-digital 
pinch, thumb opposition and ulnar finger movement, which 
require the activation of both the median and the ulnar 
nerves. We consider other two additional classes: the 
opening hand task and rest. Confusion matrix in Fig. 2A 
shows results related to the first sessions: percentage of false 
positive is low even if some tasks are classified as rest. We 
repeated the same procedure across sessions and we 
obtained high performances and a stable accuracy (see blue 
markers in Fig. 2B) always higher than 83%. Additionally, 

to evaluate the stability of channel selections, we computed 
classification performances for every session using channels 
selected during the first day (red markers in Fig. 2B). In this 
case, accuracy was more than 79% meaning that 
performances are still high even without the customized 
channel selection strategy. This could be an advantage in a 
real-life situation: in fact, it would be possible to select 
channels only during the first session, and to use them 
during the following days.  

IV. DISCUSSION 
Several studies explored the possibility to decode motor 

intention from neural activity using intrafascicular/ 
intraneural electrode as tf-LIFE [5] or Utah array [6]. In this 
work we demonstrated the feasibility of decoding hand tasks 
intentions using TIMEs implanted in an amputee, which 
have been shown to be very promising in restoring sensory 
feedback [8]. As we are working with multichannel 
interfaces, one of the main challenge is the appropriate 
selection of active sites as inputs for the classifier. Herein 
we developed a new channel selection approach which 
differs from previous studies like in [9], based on the signal-
to-noise ratio or in [6] where the correlation between the 
firing rate and the movement cue was the discrimination 
parameter. Moreover, we proposed the root mean square as 
the signal feature for a SVM decoder which could offer 
advantages for online application. In fact, the RMS 
represents a compound multiunit activity signal which 
considers the whole neural activation without computing 
spike sorting or using advanced techniques requiring a high 
computational cost. The robustness and the stability of this 
multi-class decoding based on ENG recorded with TIMEs 
envisioned the possibility of using the present approach as 
part of a bidirectional prosthesis in order to restore both 
motor control and sensory feedback in amputees.  
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Figure 2. Accuracy and performance stability for 5-class SVM classifier 
(Tridigital Pinch TrC, Thumb opposition ThC, Ulnar finger movement 
UlC, Open task and rest). (A) Confusion matrix from day 16 (first 
session, accuracy 85%).  (B) Comparison of the accuracy for each of the 
five sessions considering channels selection PCA-based and the same 
channels selected during the first session (red markers). 


