
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2021.3092690, IEEE Open
Journal of the Communications Society

OJCOMS-00509-2021 1

Learning to Fly: A Distributed Deep Reinforcement Learning
Framework for Software-Defined UAV Network Control

Hai Cheng, Lorenzo Bertizzolo, Salvatore D’Oro, Member, IEEE,
John Buczek, Tommaso Melodia, Fellow, IEEE, Elizabeth Serena Bentley, Member, IEEE

Control and performance optimization of wireless networks of Unmanned Aerial Vehicles (UAVs) require scalable approaches that
go beyond architectures based on centralized network controllers. At the same time, the performance of model-based optimization
approaches is often limited by the accuracy of the approximations and relaxations necessary to solve the UAV network control
problem through convex optimization or similar techniques, and by the accuracy of the channel network models used. To address these
challenges, this article introduces a new architectural framework to control and optimize UAV networks based on Deep Reinforcement
Learning (DRL). Furthermore, it proposes a virtualized, ‘ready-to-fly’ emulation environment to generate the extensive wireless data
traces necessary to train DRL algorithms, which are notoriously hard to generate and collect on battery-powered UAV networks.
The training environment integrates previously developed wireless protocol stacks for UAVs into the CORE/EMANE emulation tool.
Our ‘ready-to-fly’ virtual environment guarantees scalable collection of high-fidelity wireless traces that can be used to train DRL
agents. The proposed DRL architecture enables distributed data-driven optimization (with up to 3.7x throughput improvement and
0.2x latency reduction in reported experiments), facilitates network reconfiguration, and provides a scalable solution for large UAV
networks.

Index Terms—UAV Networks; Non-terrestrial Netoworks, Deep Reinforcement Learning; AI for Wireless Networks; 6G

I. INTRODUCTION

Unmanned Aerial Vehicle (UAV) networks are attracting
the interest of the wireless community as a ‘tool’ to provide
flexible and on-demand network infrastructure [1, 2]. There are
numerous applications for networked UAVs, including provid-
ing airborne emergency infrastructure in disaster scenarios [3],
and off-the-grid, on-demand network provisioning in civilian
and military scenarios [2, 4–8].

While fielding UAV networks can certainly enable a broad
range of new applications, operating a UAV network and con-
trolling (optimizing) its performance (e.g., throughput, latency,
power consumption) presents several fundamental challenges
when compared to fixed infrastructures.
Challenge (I) : Fully wireless access and backhaul. UAV
networks are fully wireless (i.e., access and backhaul) and their
operations are extremely sensitive to spatially and temporally
varying topologies and dynamic RF environments. Basic func-
tionalities such as network formation and point-to-point com-
munications are often impaired by unstable channel conditions
and fragile network connectivity typical of infrastructure-less
networked systems. This problem is further exacerbated by
interference conditions, spectrum availability, and routing op-
erations, which subject multi-hop communications to high and
unpredictable delays.

Challenge (II) : Centralized control is not practical.
Traditional centralized network control approaches, which are
typical of fixed-backhaul Radio Access Networks (RANs) ap-
plications, are in most cases unfeasible (or unpractical) in fully

This work is supported in part by the Air Force Research Laboratory
(AFRL) under Contract FA8750-18-C-0122. Distribution A. Approved for
public release: Distribution unlimited AFRL-2021-1223 on 20 Apr 2021.

H. Cheng, L. Bertizzolo, S. D’Oro, J. Buczek, and T. Melodia are with
the Institute for Wireless Internet of Things, Department of Electrical and
Computer Engineering, Northeastern University, Boston, MA 02115 USA (e-
mail:cheng.hai, bertizzolo.l, s.doro, buczek.j, melodia@northeastern.edu).

E. Bentley is with the Air Force Research Laboratory, Rome, NY 13441
USA (e-mail: elizabeth.bentley.3@us.af.mil).

wireless networked systems. Centralized control approaches
typically rely upon a centralized representation of the network
(often made possible by collecting network state information
over low-latency optical fiber links) to solve a centralized
optimization problem and then distribute the solutions to the
individual network nodes over the same low-latency wires.
While centralized approaches have been applied with some
success to fixed wired infrastructure and fixed-backhaul RAN
systems [9, 10], they face two fundamental challenges in
infrastructure-less wireless networks (i.e., UAV networks, tac-
tical ad hoc networks, mesh, sensor networks, machine-to-ma-
chine, Internet-of-things (IoT)), as discussed below.
Challenge (II).i: NP-Hard control problems. Optimizing a
distributed wireless network where both access and backhaul
operate on the same frequency bands is non-trivial. The
centralized formulation of the control problem requires very
accurate modeling and, in most cases, is NP-hard because
of the non-linear coupling of the many variables involved.
The use of heuristics and approximation algorithms necessary
to solve the problem often results in sub-optimal solutions.
Furthermore, this optimality gap might grow further in highly
dynamic and unpredictable infrastructure-less UAV networks,
which may make model-based solutions too inaccurate to be
of practical relevance.
Challenge (II).ii : Stale information, ineffective control.

Information retrieval in multi-hop infrastructures suffers from
inherent latency because of the need to relay information
over wireless links. The resulting latency may impact the
Age of Information (AoI) of the gathered data, which even-
tually results in stale network state information at the central
controller. Consequently, the centralized network state repre-
sentation might significantly differ from the actual network
state. This problem can negatively affect the control process
as the solutions computed are optimal with respect to the
stale collected information, and thus potentially inefficient
at actuation time. The latency also determines how quickly

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2021.3092690, IEEE Open
Journal of the Communications Society

solutions computed at the central controller are dispatched to
individual wireless nodes. By the time the computed solutions
are delivered to the wireless nodes, the network state may have
changed, thus making their implementation ineffective.

To address Challenge (I) and Challenge (II), in this paper,
we propose the two following innovations: (1) We envision
Software-defined UAVs equipped with programmable radio
front-ends and flight control units (FCU). We leverage the
real-time reconfigurability of motion, PHY, and upper-layer
operations to implement full-stack cross-layer optimization.
Reconfigurability of functionalities at all layers of the pro-
tocol stack has already been demonstrated to provide supe-
rior performance with respect to systems based on inflexible
hardware unable to adapt to dynamic spectrum conditions [1].
(2) To control the operations of the network of UAVs, we
propose a two-tier architecture that addresses the challenges
of distributed wireless system optimization mentioned above.
We propose to address the UAV network control problem
via data-driven optimization. We envision a multi-agent Deep
Reinforcement Learning (DRL) approach where multiple dis-
tributed agents adapt their network parameters cooperatively to
optimize a chosen network utility function. With enough data
and training time, this approach guarantees optimal decision–
making of the agent’s networking and motion operation with
respect to the defined objective function, without requiring
explicit network modeling or a mathematical control problem
formulation.
Challenge (III): UAV network data trace generation. How
to guarantee sufficient training data to the DRL agents in
UAV networks is the third challenge that we aim to solve
in this work. UAV networks are battery-powered networks
with time-constrained operations. Training a multi-node UAV
network through real-world experiments would require ex-
cessive manpower and frequent battery charging, ultimately
reducing the benefits of data-driven optimization approaches.
While simulation environments are cost-effective tools to
produce large datasets, they often fail in capturing typical
real-time network dynamics or real-world systems (e.g., re-
transmissions, fragmentation, and buffer delays) that are hard
or computationally expensive to model. On the other hand,
full-stack emulation tools (e.g., NS-3 [11]) provide a more
accurate representation of the real-time operations of a UAV
network. Unfortunately, these tools are so far mainly focused
on implementing a subset of common wireless standards
(e.g, Wi-Fi, LTE, 5G NR), often abstracting a number of
low-level details, which make them still unsuitable to accu-
rately represent fully-reconfigurable wireless protocol stacks
for UAVs. Given these limitations, how to produce training
data that is representative of networked systems with UAVs
employing fully-reconfigurable wireless protocols stacks is
still an open problem. To address Challenge (III), in this work
we present (3) a DRL-based architecture that integrates the
Drone networking protocol stack we introduced in [1] with the
Common Open Research Emulator (CORE) and the Extend-
able Mobile Ad-hoc Network Emulator (EMANE) framework.
This integration provides real-time emulation capabilities for
fully-configurable wireless (and motion) protocol stacks for
UAVs. We use this integrated virtual environment to generate

extensive data traces with a high degree of realism and to scale
up the training process.

The main contributions of this work can be summarized as
follows:

• A Two-tier Architecture for UAV Network Control: We
propose a two-tier architecture consisting of a Control
Framework and a DRL Drone Programmable Protocol
Stack (DRL DPPS). The Network Operator (NO) uses
the Control Framework to dictate the desired behavior of
a distributed UAV network. Our solution automatically
generates a set of DRL agents (i.e., a set of policies
in the form of Neural Networks (NNs)) that are trained
in a virtual environment within the Control Framework.
Once trained, the NN configurations are tested and au-
tomatically distributed to the individual network nodes,
where they will be used to control networking and motion
parameters in the DRL Drone Programmable Protocol
Stack (DRL DPPS). In this way, the individual UAVs dis-
tributively implement the NO’s objective by optimizing
their network performance in real time. By distributing
the NN configuration once, and by enforcing the desired
network control policy at the edge nodes of the network,
this approach does not suffer from stale information
retrieval and delayed command typical of centralized con-
trol systems. Moreover, the proposed NN-based policies
envision full-stack and cross-layer optimization of flight
and wireless networking parameters alike, thanks to the
use of programmable motion and RF front-ends.

• A Data-driven Control Approach: We propose to solve
the UAV network control problem via DRL. We envision
a multi-agent DRL scenario where each UAV is a differ-
ent agent, and collectively train complex UAV fielding
in a virtual environment for a specific flight mission.
Upon training completion, we test and distribute mission-
tailored NN configurations to individual UAVs. These
use them to compute networking and motion policies to
achieve the NO’s desired network behavior by adapting
to the dynamic network conditions. Compared to model-
based optimization, our data-driven approach addresses
inaccurate modeling formulation and optimization ap-
proximations. Unlike optimization approaches, the DRL
agents do not suffer from optimization solver latency and
can derive policies with O(1) complexity.

• A ‘Ready-to-Fly’ Virtual Environment: To collect ex-
tensive performance data for battery-powered UAV net-
works, we develop a highly representative emulation
virtual environment. We revisit the Drone Programmable
Protocol Stack (DPPS) employed in [1] and integrate
it with Deep Reinforcement Learning features and refer
to it as DRL DPPS. We integrate the DRL DPPS with
the CORE/EMANE emulation tools to obtain a high-
fidelity virtual environment that captures the motion,
wireless channel, and higher-layer protocol stack interac-
tions alike. We systematically employ our ‘ready-to-fly’
virtual environment to collect extensive high-fidelity net-
work performance data. Ultimately, this integration effort
produces a highly representative emulation environment

2

Control Framework

Control Interface

Learning Engine

Objective: Goodput, Latency, Reliability…
Protocols: Motion, PHY, MAC, Routing…

CP 2

CP 5 …

CP 3

AI Drone PPS

Network
Operator

UAVs

CP 1

CP 4

AI Drone PPS

AI Drone PPS

AI Drone PPS

Data
Plane

Register
Plane

DRL
Plane

Data
Plane

Register
Plane

DRL
Plane

Data
Plane

Register
Plane

DRL
Plane

Data
Plane

Register
Plane

DRL
Plane

Virtual Training
Environment Virtual Emulation

Environment

Virtual Testing Environment

Neural Network Configurations

UAV UAV UAV UAV

(I)

(II)

(III) (IV)

(V)

UAV UAV UAV UAV

Fig. 1: Two-tier DRL-based architecture.

that allows us to scale up our learning time and to train
our DRL agents with a high degree of realism.

Through a series of well-crafted experiments, we prove the
effectiveness of our control approach in optimizing the de-
sired network performance objectives (up to 3.7x throughput
gains and 0.2x latency reduction), network reconfigurability
to different control problems through re-distribution of NN
configurations, and scalability to large UAV networks.

The rest of this article is structured as follows: Section II
and Section III introduce the Control Framework and the DRL
Drone Programmable Protocol Stack, respectively. These are
the two building blocks of the proposed architecture. In Sec-
tion IV, we present the integration of the DRL DPPS with the
CORE/EMANE emulation tools that is at the base of our data-
driven optimization, while we use Section V to present our
UAV network optimization performance assessment. Finally,
we review the related work in Section VI and draw the main
conclusions in Section VII.

II. THE CONTROL FRAMEWORK

Figure 1 provides a top-level view of the two-tier archi-
tecture we propose in this work. This includes the Control
Framework and the Deep Reinforcement Learning Drone
Programmable Protocol Stack (DRL DPPS). The first inter-
faces with the Network Operator, whose goal is to define
a flight mission and dictate the desired control objective of
the UAV network. The Control Framework integrates Deep
Reinforcement Learning algorithms in its Learning Engine to
train a multi-agent UAV network in an emulated environment
(without the burden of planning real flight operations). Once
the training terminates, the Control Framework tests and
dispatches the objective-specific Neural Network (NN) config-
urations to the DRL DPPS. The latter implements a complete
wireless protocol stack for UAVs inclusive of radio front-
end and motion layer. The DRL DPPS’s tasks are to support
motion and networking functionalities that are vital to the UAV

network operations and to optimize precise control parameters
(determined by the NO in the first place) to achieve the
NO’s dictated control objective. This last task is performed by
executing the pre-trained NN on board, whose configurations
are received from the Control Framework. We see these two
architectural components in detail in the following sections.

A. The Control Interface

The Control Framework interfaces with the Network Op-
erator (NO) through the Control Interface. The latter is used
to specify the desired flight mission and a UAV network con-
trol objective such as “maximize the end-to-end throughput”,
“maximize network capacity”, “minimize the power consump-
tion” (see Step I in Fig. 1). The Interface is also useful to
specify what control parameters the NO wants to optimize, and
which ones should be kept fixed. These include functionalities
at any layer of the protocol stack (if programmable) as well as
motion operations alike. Examples of possible control parame-
ters include: “nodes’ locations in the 3D space”, “transmission
power”, and “forwarding decisions”. When UAVs are equipped
with programmable radio front-ends (e.g., Software-defined
Radios) Physical Layer parameters such as “transmission
power” and “carrier frequency” can be selected as a control
parameter. Additionally, the NO can specify node- or layer-
specific constraints, such as fixing a UAV’s runtime location
or limiting the maximum transmission power across all nodes.
Ultimately, through the Control Interface, the NO can design
a UAV network fielding for a specific mission and dictate a
specific network behavior. An example of a possible directive
is the following:

“The UAV network consists of 6 nodes. Two
UAVs are location-constrained and hover close to
two sensitive targets (sensing tasks). Two other
UAVs are location-constrained and hover close
to two base camps (reporting tasks), while the
remaining two nodes can hover freely and can
operate as relays. All the nodes can reconfigure
their transmission power as well as their location
in case they are not constrained. The network
control objective of the mission is to maximize
the aggregate end-to-end throughput of the traffic
going from sensing target 1 to base camp 1 and
from sensing target 2 to base camp 2.”

(A)

These directives can be specified through a few lines of
code via the Control Interface as illustrated in Listing 1. The
NO specifies the number of UAVs involved in the fielding
(N_uavs, Line 2), as well as sensing and reporting areas
(Lines 8-13). For example, sensing areas could correspond to
sensitive targets on the ground to be monitored or recorded.
Reporting areas could correspond to locations where to offload
the data, such as a base camp. The Control Interface handles
these inputs and creates a UAV network configuration where
one UAV is assigned to each of these areas. In this case,
UAV 1 is instructed to hover on the sensing area 1, while
UAV 2, UAV 3, and UAV 4 are assigned to sensing area
2, report area 1, and report area 2, respectively. UAV 5

3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2021.3092690, IEEE Open
Journal of the Communications Society

and UAV 6 are free to hover. The NO also specifies which
UAV parameters can be controlled (Line 16) and the network
control objective, specified as to maximize the aggregate
throughput at the report areas (Line 29). This input altogether
is handled by the Control Interface by creating UAV objects
and assigning control variables to them (Lines 19-26). The
constructed network configuration is used in the Learning
Engine to instantiate a virtual UAV network and optimize the
UAVs’ policy making so as to match the NO’s desired control
objective.

1 # Set number of UAVs
2 N_uavs = 6
3

4 # Creating network
5 nwk = Network.create(N_uavs)
6

7 # Set up monitoring areas
8 nwk.add_area("sensing", x_1, y_1)
9 nwk.add_area("sensing", x_2, y_2)

10

11 # Set up reporting areas
12 nwk.add_area("report", x_3, y_3)
13 nwk.add_area("report", x_4, y_4)
14

15 # Set up control variables
16 controls = (LOC, TX_POW)
17

18 # Create UAVs and assign control variables
19 nwk.get_UAV(1).set(location = [x_1, y_1], actions

= [TX_POW], session = 1, role = source)
20 nwk.get_UAV(2).set(location = [x_2, y_2], actions

= [TX_POW], session = 2, role = source)
21 nwk.get_UAV(3).set(location = [x_3, y_3], actions

= [TX_POW], session = 1, role = destination)
22 nwk.get_UAV(4).set(location = [x_4, y_4], actions

= [TX_POW], session = 2, role = destination)
23 nwk.get_UAV(5).set(actions = [LOC, TX_POW],
24 role = relay)
25 nwk.get_UAV(6).set(actions = [LOC, TX_POW],
26 role = relay)
27

28 # Set up control objective
29 obj = max(sum(nwk.get_Th(role = destination))

Listing 1: Control Interface example for quote (A).

B. The Learning Engine

Previous work has focused on tackling this class of problems
by first mathematically formulating the underlying network
control problem, and then solving it through constraint relax-
ation, decomposition theory, and convex optimization [1, 12–
14]. Indeed, these approaches guarantee scalability, ease of re-
configurability, and operate in a distributed fashion. However,
their performance is bound to the accuracy of the employed
(motion, channel, switching, etc.) models and to the quality
of the performed mathematical relaxations necessary to deem
the problem solvable through convex optimization. A key
drawback is that the model-based approaches fail to capture
network operations such as retransmissions, fragmentation,
buffer delays, MAC accesses, failed sensor readings, and all
other network architecture dynamics that are hard (or com-
putationally expensive) to model. While the differences and
inaccuracies between the model and the actual implementation
can be safely neglected for small network instances, the nega-
tive effect of such inaccuracies on network performance (or the

model complexity, and thus the solver convergence time) might
increase when considering more complex and large network
instances. For these reasons, in this work, we select a data-
driven approach and aim to solve the UAV network control
problem through Deep Reinforcement Learning (DRL).

Deep Reinforcement Learning (DRL)-based approaches
have progressively gained the attention of the wireless com-
munity to address a variety of critical spectrum access chal-
lenges, such as handover and power management in cellular
networks [15, 16], dynamic spectrum access [17–20], resource
allocation/slicing/caching [21–25], modulation/coding scheme
selection [26], among others [27]. The driver of this success
story lies in the ability of DRL to optimize the performance of
a system by solving partially-observable Markov Decision pro-
cesses (POMDP)-based problems without explicitly providing
any details on the model, which is instead learned by observing
and exploring the environment. Complex wireless network
control problems are no exception. Therefore, DRL provides
an effective tool to design control policies that optimize
wireless networked systems: (i) that are hard-to-model and
hard-to-solve, whose network control problem’ representation
might excessively differ from the final fielding and whose
formulations need to go through several approximations before
being deemed solvable; (ii) whose control decisions involve a
set of known network actions (e.g., UAV locations, TX power,
modulation, coding, medium access, routing, and transport
parameters) according to the current wireless environment and
optimization objective; (iii) where DRL training can leverage
extensive and representative datasets with detailed information
on network performance and conditions.

However, collecting extensive and representative perfor-
mance data is hard, especially in battery-powered UAV net-
works. Limited flight time, the need to recharge and replace
batteries frequently, and flight location regulations pose signif-
icant challenges to the collection of experimental data for the
DRL training of UAV networks. To overcome this limitation,
we developed a Learning Engine architecture that integrates
the Drone Programmable Protocol Stack (DPPS) developed in
[1] and employed in real UAV networks fielding with the Com-
mon Open Research Emulator (CORE) and the Extendable
Mobile Ad-hoc Network Emulator (EMANE), a framework
that provides detailed radio models and mobile networks
scenarios [28]. This integration allows for extensive full-stack
data collection in a representative emulated environment that
captures the dynamics of real network implementations. This
integrated environment is employed in the Learning Engine
to emulate the UAV network configured through the Control
Interface and to measure its performance for a wide range
of configuration parameters. Most importantly, this integrated
environment allows us to perform high-fidelity UAV network
performance data collection at scale. This architectural system
is at the base of the proposed data-driven UAV network
optimization.

In a nutshell, the training phase works as follows. The
Learning Engine instantiates a virtual UAV network based on
the configuration expressed by the NO through the Control
Interface in the Virtual Training Environment. As shown in
Listing 1, this includes the exact number of UAVs, their

4

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2021.3092690, IEEE Open
Journal of the Communications Society

flight mission (sensing and report areas), a list of control
parameters we can leverage to optimize the performance of
the fielding, and the overall network control objective (e.g.,
‘maximize end-to-end throughput’). In the Virtual Training
Environment’s UAV network, each UAV is an independent
agent employing a DRL Drone Programmable Protocol Stack
(DRL DPPS) to carry on motion and wireless stack operations.
During the training phase, the DRL DPPS is interfaced with
the CORE/EMANE emulation environment which is where
motion and physical layer functionalities are executed. As we
will see in detail in Section III, the individual agents’ DRL
DPPS features a Neural Network (NN) for policy decision-
making. The NN input and output layers are dimensioned
according to the problem inputs and the control variables in
play. The NN is used by the agents to perform cross-layer
optimization by jointly deriving wireless and motion policies
at once. In the Learning Engine, we train the agents’ NNs
for the specific mission. Thanks to our virtual environment,
we perform extensive performance data collection and derive
optimal policy making strategies that optimize the desired
control objective dictated by the Network Operator (see Step
II in Fig. 1). Finally, the performance of the trained NNs
are tested in the Virtual Testing Environment (see Step III
in Fig. 1), which interacts with the CORE/EMANE emulation
tool, similarly to how the Virtual Training Environment does
(see Step IV in Fig. 1). The testing phase’s main task is
to verify the quality of the just-concluded training in terms
of control objective optimization before sending the network
configurations to the UAVs. We use Section IV to outline the
components of this integration effort and explain in detail how
our training process operates.

C. Neural Network Configurations

Once the Virtual Testing Environment has trained and
tested the NNs, the Control Framework distributes the NN
Configurations to the individual network nodes (the agents)
over the wireless interface (see V in Fig. 1). Specifically, each
UAV receives a different NN Configuration. These configu-
rations are employed at the individual UAVs’ DRL Drone
Programmable Protocol Stack (DRL DPPS) throughout the
mission to optimize the network parameters in real-time. Once
dispatched, and differently from the emulated DRL DPPS,
the NNs interact with hardware radio and motion front-ends.
This way, the agents use the received NN configurations to
adapt to the dynamic network conditions and to achieve the
overall network behavior defined by the Network Operator.
The Neural Network Configurations consist of the DRL NN
to be executed by the DRL DPPS and a configuration file. The
configuration file provides information about (i) the dimension
of the DRL NN; (ii) a mapping between the input neurons of
the DRL NN and the UAV network state information; (iii) a
mapping between the output neurons of the DRL NN and the
UAV’s control parameters. Last, the NNs’ internal layers are
dimensioned according to the state space and the action space,
as we will see in detail in Section IV.

An example of NN configuration file for UAV ‘5’ in quote
(A) is provided in Listing 2. According to the example reported

in quote (A), each NN has 12 inputs, which are mapped to
specific UAV network variables: the location of the 6 UAVs
and their TX power. The outputs of each NN are instead 15
(the cartesian product between the possible control actions)
and are mapped to the control variables of the UAV of
interest.For instance, in the case of UAV ‘5’, the 15 NN’s
output correspond to the combinations of the 5 allowed control
actions for the UAV’s location (move north, move east, move
south, move west, and keep fixed) and the 3 allowed actions
for the UAV’s TX power (increase TX power, decrease TX
power, and keep TX power fixed). The first UAV’s 5’s NN’s
output corresponds to a movement of UAV 5 one step north
and to an increase of its TX power; the second NN’s output
corresponds to a movement of UAV 5 one step east and also
increases its TX power, and so on. The nodes use this file to
feed the DRL NN the correct network state information, and
at the same time to interpret the outcomes of the DRL NN
and translate them into actions.

Although EMANE makes it possible to specify the three-
dimensional location of each UAV, as well as the velocity at
which each UAV navigates within the emulated area, for the
sake of illustration we assume that all UAVs move at the same
velocity and hover at the same altitude.

1 <NN_size>
2 <NN_inputs> 12 </NN_inputs>
3 <NN_layers> 50, 50 </NN_layers>
4 <NN_outputs> 15 </NN_outputs>
5 </NN_size>
6

7 <input_map>
8 <in1> UAV1.LOC </in1>
9 <in2> UAV1.TX_POW </in2>

10 <in3> UAV2.LOC </in3>
11 <in4> UAV2.TX_POW </in4>
12 ...
13 </input_map>
14

15 <output_map>
16 <out1> UAV5.LOC.NORTH, UAV5.TX_POW.UP </out1>
17 <out2> UAV5.LOC.NORTH, UAV5.TX_POW.DOWN </out2>
18 <out3> UAV5.LOC.NORTH, UAV5.TX_POW.KEEP </out3>
19 <out4> UAV5.LOC.EAST, UAV5.TX_POW.UP </out4>
20 ...
21 </output_map>

Listing 2: DRL NN configuration file for UAV 5 in quote (A).

Different from central control approaches, this procedure
does not suffer from stale information retrieval and control
latency. This because the Neural Network Configurations are
dispatched once. Thus allowing nodes to optimize performance
directly at the edge of the network and in a distributed
fashion. The many hours of emulated flight and networking
experiments carried on by the Learning Engine help reduce the
performance gap between model and implementation typical
of model-based approaches. In Section IV-D, we will show
how training procedures can be accelerated via environment
parallelization.

This approach facilitates reconfigurability of the network
and objectives. Specifically, to change the behavior of a
network, it is sufficient to define a new control objective.
The Control Framework will take care of re-training and
distributing new Neural Network Configurations. Moreover,
it is worth mentioning that previously trained Neural Network

5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2021.3092690, IEEE Open
Journal of the Communications Society

Configurations can be stored locally and fetched on-demand
for later uses , which eliminates the problem of re-training the
NNs for common and previously solved control problems.

III. THE DRL DRONE PROGRAMMABLE PROTOCOL STACK

An overview of the DRL Drone Programmable Protocol
Stack (DRL DPPS) architecture is reported in Fig. 2. The
DRL DPPS is used at individual UAVs to carry our motion
and wireless operations at all layers of the protocol stack, as
well as in the Control Framework’s Learning Engine to train
and test the NN policy making for specific mission objectives.
In the latter, the Physical layer and Motion operations are
performed by the virtualized CORE/EMANE environment,
while in the former these operations are implemented through
hardware motion and RF front-end. By employing the whole
DRL DPPS architecture in the Control Framework’s Learning
Engine (with the exclusion of the hardware front-ends), we
obtain a realistic emulation environment which is key to our
high-fidelity performance data collection and effective DRL
training. With this premise in mind, in this section, we describe
the DRL DPPS design choices and implementation details.
Furthermore, the details on how the DRL DPPS is interfaced
with CORE/EMANE and employed in the Learning Engine
are discussed in Section IV.

To implement the wireless protocol stack of the UAV
nodes we start from the Drone Programmable Protocol Stack
presented in [1]. This architecture concerns three planes: the
Decision plane, the Register plane, and the Data plane. We
revisit [1]’s three-plane design by replacing the decision plane
with the new DRL plane, yet maintaining its architectural
functionality; to optimize the networking and motion control
parameters at once in a cross-layer fashion. We call this new
architecture the DRL Drone Programmable Protocol Stack
(DRL DPPS). Here we summarize the three planes’ function-
alities and the interactions with one another, highlighting the
main differences with the implementations in [1].

A. DRL Plane

Upon receiving the Neural Network configurations from
the Control Framework, each UAV (agent) stores it in the
DRL DPPS Decision Plane. The DRL Plane is in charge of
determining the optimal motion and networking policies in real
time, by dynamically adapting to the changing network condi-
tions and making decisions on up-to-date UAV network state
information. To derive mission-tailored policy optimization at
every given time, the DRL plane executes the NN by feeding
its inputs and interpreting its outputs according to the received
configuration file. In this work, we exploit the simplicity of
a widely adopted DRL variant called Q-learning, which aims
at optimizing an estimate (called Q function) of the objective
function we are trying to maximize (i.e., the NO’s objective).
The NN employed by the DRL is a Deep Q-Network (DQN)
which uses stochastic gradient descent (SGD) to approximate
the Q-function. We cover these design choices in detail in
Section IV. What is most important from an architectural
standpoint is that the adopted DRL approach approximates a
complex optimization function by means of a relatively simple

Neural Network that can be ‘probed’ in real time with O(1)
complexity. This design allows for rapid calculation of new
policies which can be implemented at the Data Plane with
negligible latency which, instead, would be hard to avoid when
using traditional mathematical solvers.

B. Data Plane

Similar to [1], the Data Plane is responsible for implement-
ing the computed optimal policies by reconfiguring motion
control and networking stack parameters. To do so, this
plane implements a programmable protocol stack spanning all
networking layers with the addition of the motion layer (‘Layer
0’.) The protocol stack is fully programmable in software
and exposes control APIs to tune key control parameters
at all layers of the stack, including MAC, Physical, and
Motion. This is possible thanks to the adoption of open-
source flight control firmware (we here use Ardupilot[29]) and
Software-defined Radios (SDRs) as radio front-end[30]. These
are programmable hardware that implements the Physical
and MAC layer functionalities in software, and make them
controllable in real-time by the OS[31]. In this way, the Data
Plane provides the necessary tools to prototype cross-layer
control algorithms spanning multiple (potentially all) layers
of the protocols stack—plus motion—all at once.

The control interface between the Data Plane and the DRL
Plane is dual-purpose and operates as follows: (i) the DRL
Plane’s NN can retrieve network state information from the
Data Plane through the Register Plane (e.g., UAVs’ locations,
UAVs’ TX power, etc.) to determine the current UAV network
state within the DRL’s defined state space; (ii) the Data Plane
can configure the networking and motion parameters of the
programmable protocol stack following the optimized policies
suggested by the DRL Planes’ NN (e.g., adopt a new ‘UAV
location’ in space, decrease the node’s ‘TX power’, etc.) The
latest optimal policies are stored in the Register Plane.

When the DRL DPPS is installed on the UAVs (see Fig.
2), the lower layers of the programmable protocol stack
(Physical and Motion) interface with the radio and motion
front-ends hardware through the software-defined radio (i.e.,
USRP hardware driver (UHD)) and the flight controller (i.e.,
Ardupilot) drivers. These in turn control the hardware through
the universal serial bus (USB 3.0) and electronic speed control
(ESC) interfaces, as illustrated in Fig. 2. When the DRL DPPS
is instantiated in the Learning Engine (which we will describe
later in detail using Fig. 3), these two layers do not drive exter-
nal hardware but instead interface with CORE/EMANE which
takes care of emulating the motion and physical layer func-
tionalities. Thanks to this architectural design, the Data Plane
guarantees the use of the same programmable protocol stack
architecture (and its real-time operations) whether we interface
the DRL DPPS with real hardware or the CORE/EMANE
emulation environment. This is the architectural innovation at
the core of our extensive UAV network data collection.

C. Register Plane

The Register Plane acts as a middleware (i) allowing the
DRL Plane to retrieve fresh network state information from

6

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2021.3092690, IEEE Open
Journal of the Communications Society

DRL Drone Programmable Protocol Stack

Control Framework

Control Interface
Network
Operator

Driver PlaneDRL Plane
DRL NN

Register Plane Data Plane

L4: Transport
L3: Network

L2: MAC
L1: Physical
L0: Motion

L5+ : Application

Ardupilot

UHD
USB

ESC

Policy LUTs

L0: MotionL0: MotionL3/L1/L0

Network LUTs

L1: TX PowerL1: TX PowerL3/L1/L0

RF Front-end

Motion
Front-end

UA
V

1

…

Learning Engine CORE / EMANECORE / EMANECORE / EMANE Neural Network ConfigurationsNeural Network ConfigurationsNeural Network Configurations

DRL DPPS

DRL Plane

Register
Plane

Data Plane

UA
V

2

DRL DPPS

DRL Plane

Register
Plane

Data Plane

UA
V

N

Fig. 2: Three-plane DRL Drone Programmable Protocol Stack architectural design.

the Data Plane; and (ii) making the computed optimal policies
available to the Data Plane through a set of dedicated Look
Up Tables (LUTs). Each protocol stack layer has a dedicated
Network State LUT in the Register Plane where to store all
the layer-related network state parameters that are used to
represent the DRL state space (e.g., the neighboring UAV
locations, the neighboring nodes’ TX power, etc.). Conversely,
dynamically re-calculated at regular intervals, optimal policies
are stored in a similar way in dedicated Policy LUTs, one
per control variable of interest (e.g., optimal UAV location,
optimal TX power, etc.)

IV. A READY-TO-FLY VIRTUAL ENVIRONMENT

Among the main contributions of this work is the integration
of the DRL DPPS presented in Section III with the CORE/E-
MANE emulation tools. The goal of this integration effort is
two-fold:

(i) to develop a high-fidelity emulation environment cap-
turing both real-time wireless channel phenomena (e.g.,
path-loss, delay spread, interference) and networking op-
erations at all layers of the protocol stack (e.g., pack-
etization, segmentation, re-transmissions, traffic bursts,
processing delay) which are hard or expensive to model
and can only be approximated in simulations;

(ii) to provide researchers with a reconfigurable emulation
tool to design different UAV network configurations and
topologies and collect high-fidelity UAV network perfor-
mance data at scale. This effort serves as an effective
alternative to the collection of experimental performance
data for battery-powered UAV networks that is both
time- and resource-expensive. Collecting a high volume
of UAV network performance data is the foundation of
the development of data-driven optimization.

At the same time, this emulation tool can be employed to
test UAV network configurations before experimental imple-
mentation. These two operations are performed in the Control
Framework’s Learning Engine, in the Virtual Training Envi-
ronment and Virtual Testing Environment, respectively. In the
following sections, we provide a detailed description of the
development of our ready-to-flight emulation environment.

A. Integrating the DRL DPPS with CORE/EMANE

EMANE is an open-source wireless network emulator de-
veloped and maintained by U.S. Naval Research Labs (NRL)
and Adjacent Link LLC [28]. EMANE provides a complete
and flexible emulation of both physical and MAC layers net-
work modules, as well as providing functionalities to control
network topology and node location. Additionally, EMANE
embeds an Over-The-Air (OTA) channel emulator component,
which allows the configuration of wireless medium propa-
gation characteristics such as fast and slow fading, delay
spread, and interference patterns among others. CORE instead
provides high-level functionalities like virtualization, network
bridge construction, and APIs to instantiate EMANE nodes
and conveniently setup Location and Physical layer parameters
in EMANE. Importantly, CORE exposes controls to EMANE’s
parameters (e.g., nodes’ location, transmission powers) via a
set of APIs configurable in real time.

This way, CORE/EMANE represents a full-fledged and
comprehensive emulation environment for designing and per-
forming wireless network experiments with diverse topologies,
RF conditions, and mobility patterns. The reader is referred to
[28, 32] for further details on the CORE/EMANE emulation
environments architecture.

As introduced in Section III, the DRL DPPS implements
a full protocol stack for UAVs. This performs the wireless
stack operations from the Physical to the Application layer,
with the addition of flight control functionalities carried out
by the Motion layer. By integrating the DRL DPPS and
CORE/EMANE emulator, we obtain a full-stack emulation
environment that is representative not only of the channel
propagation dynamics, but also of the protocol stack opera-
tions internal to individual wireless UAVs. This integration
is extremely important as it provides a unique framework
where UAV networking functionalities are reconfigurable in
real time and their performance can be easily measured. This
innovation is systematically leveraged in this work to perform
an extensive UAV network performance data collection that is
at the base of the proposed data-driven optimization.

The architectural integration between the DRL DPPS and
CORE/EMANE is illustrated in Fig. 3. The same architecture
is used in the Control Framework’s Learning Engine both by
the Virtual Training Environment and by the Virtual Testing
Environment. The integration between the DRL DPPS and

7

Learning Engine

Re
gi

st
er

Pl
an

e

Data Plane

L4: Transport

L3: Network

L2: MAC

L5+ : Application
Policy LUTs

Network LUTs

L1: TX PowerL1: TX PowerL3/L1/L0

UAV 1

Controls
Controls

Network
state

Python Socket
(data)

Python API
(controls)

CTRL

Python API
(network state)

NETCTRL NET

L1: TX PowerL1: TX PowerL3/L1/L0

…

DRL Plane

Register
Plane

Data Plane

UA
V

N

Network
state

UAV 2 UAV N

NET

DRL Plane

Register
Plane

Data Plane

UA
V

2

EMANE OTA WIRELESS CHANNEL

CORE CONTROL BRIDGE

CORE / EMANE Virtual EnvironmentCTRL

UAV 1

DRL DPPS DRL DPPSDRL Drone Programmable Protocol Stack

L0: Motion

DRL NN

DR
L

Pl
an

e

L1: Physical
L0: Motion

L1: Physical
L0: Motion

L1: Physical

Fig. 3: Learning Engine architecture.

CORE/EMANE implements the following three functionali-
ties:

(i) Data communication: The MAC layer (Layer 2) imple-
mented in the DRL DPPS’s Data plane communicates
with the Physical Layer (Layer 1) emulated in CORE/E-
MANE. This integration is bidirectional. It guaranteed
that the Data Plane’s MAC Layer’s data is passed down
to the Physical Layer module in transmission, and that
the CORE/EMANE’s Physical Layer’s data is passed
up to the Data Plane’s MAC layer in reception. These
two operations are implemented through Python sockets
which guarantee in-time data delivery and data integrity
and happen simultaneously, in a transceiver fashion.

(ii) Network State observation: Similar to the other DRL
DPPS’s layers, the network state information associ-
ated with the Physical and Motion layers emulated in
CORE/EMANE is observable by the DRL DPPS’s Reg-
ister Plane. This information includes neighboring UAVs’
locations and their transmission powers, for example.
Different from the L2+ layers, L0, and L1 layers do not
execute in the same binary as the Register Plane, and the
information passing is thus implemented through CORE’s
Python APIs.

(iii) Motion and Network parameters control: Similarly, the
control actions operated by the DRL DPPS’s DRL Plane
must be relayed to the Physical and Motion layer em-
ulated in EMANE. We employ CORE’s Python APIs
between the two environments for this task as well.

From an Operating System (OS) architectural standpoint,
we employ Linux containers to instantiate our virtual Training
(and Testing) Environment, as well as the individual UAVs
residing within the environment. An illustration of the OS
architectural organization of our virtual UAV network is
provided in Fig. 4. In our implementation, we use a nested
container architecture where the Virtual Training Environment
is instantiated in a Linux docker container. This, in turn, hosts
a set of Linux containers, i.e., the CORE containers (one
per UAV). Each CORE container operates both the EMANE
Motion and Physical layers and the DRL DPPS implementing

MAC’s and higher layers’ functionalities. Once instantiated,
nodes communicate with each other at the CORE level through
the CORE Control Bridge and their CORE CTRL interface
[28, 32]. At the EMANE level, nodes interact via the over the
air (OTA) wireless channel through the NET EMANE interface
as reported in Fig. 3. As per the individual UAVs, each CORE
container creates one EMANE process and one DRL DPPS
process. The two intra-container processes communicate with
each other through Python sockets. Specifically, the data-flow
streaming between MAC and Physical layer is handled through
low-latency UDP sockets, while control and network state
information are sent and retrieved through dedicated CORE’s
Python APIs to EMANE functionalities.

B. Background on Deep Reinforcement Learning

The objective of this section is to provide useful background
knowledge on the specific data-driven approach that we use
in this work to solve the problem of controlling a distributed
UAV network.

DRL is a well-established data-driven approach with foun-
dations in Reinforcement Learning (RL). The latter is a class
of machine learning algorithms where an agent iteratively
interacts with an environment to learn the optimal control
policy that maximizes the desired reward. Different from
supervised learning approaches, in RL the agent has no initial
knowledge of which actions are more beneficial. Instead, this

Virtual Training (Testing) Environment

EMANE

CTRL NET

DRL DPPS

UAV 1

EMANE

CTRL NET

DRL DPPS

UAV N

…

Linux Container OS ProcessLegend:

Fig. 4: OS Architecture of the Virtual Training Environment.

8

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2021.3092690, IEEE Open
Journal of the Communications Society

one explores the environment, tries several actions in different
environment states, and eventually learns the best policy
through experience. Let us here introduce some concepts and
RL notations that we will use in the following sections.
• Agent: the entity that observes the environment and takes

actions accordingly, aiming at maximizing a given reward
function;

• Environment: the physical (or emulated) world with
which the agent interacts;

• State space S: representing all of the possible states s ∈ S
of the environment;

• Action space A: all feasible actions a ∈ A that can be
taken by the agent;

• Reward r: a metric that measures the effectiveness and/or
success of an action.

In RL, the goal of the agent is to maximize the discounted
future reward in (1) by selecting actions according to the
observed states from the environment.

Rt =
T∑
t′=t

γt
′−trt′ . (1)

where γ ∈ [0, 1] is a discount factor used to weigh instanta-
neous and future rewards. One effective algorithm to maximize
the discounted future reward and solve the policy optimization
problem is Q-learning, where the agent is trained to compute a
policy that results in the selection of the optimal action-value
pairs that maximize the so-called Q-values. These represent
the expected discounted future reward and are computed by
using the following equation

Q∗(s, a) = max
π

E[Rt|st = s, at = a, π], (2)

where π : S → A is the policy that maps the observed state
st to selected action at. The optimal Q-values are computed
by solving the Bellman’s equation, and can be represented as

Q∗(s, a) = Es′∼S
[
r + γmax

a′
Q∗(s′, a′)|s, a

]
, (3)

where s′ and a′ are the state and action in the next time-
step. Although in several cases it is possible to solve (3)
directly, the same task becomes challenging when dealing with
a large number of states which usually leads to the so-called
state explosion. That is, the state space S is so large that
the agent cannot explore all of it, and solving (3) becomes
time-consuming. To overcome this issue, a typical approach
consists of approximating the Q-values rather than computing
them directly. In DRL, this approximation is achieved by
using a Deep Neural Network (DNN) (well-known for being a
universal function approximator) with weights θ. Specifically,
the Q-values in (3) are estimated as

Q(s, a; θ) ≈ Q∗(s, a). (4)

and the DNN used to approximate the Q-vales Q∗ is referred
to as the Deep Q-network (DQN) [33].

In this paper, we will focus on the use of double-DQNs
for autonomous control of UAV networks. Specifically, we
consider this specific class of DQNs as they demonstrated
to be effective in stabilizing the training phase and avoid

over-estimations of the Q-values in the first stages of the
training process. As we will discuss in Section IV-D, this is a
critical aspect in data-driven optimization of UAV networks.
To optimize its policy making, an agent stores experiences in
the form of tuples (s, a, r, s′) in a replay buffer. The buffer is
used during the training phase to randomly extract batches of
past experiences and use them to compute the DQN weights
θM by minimizing the loss function (5) via SGD.

L(θM) =
[
r + γmax

a′
Q(s′, a′; θT)

]
−Q(s′, a′; θM) (5)

In double-DQN, the decision making and the policy optimiza-
tion are performed by two separate networks to prevent over-
(or under-) estimations of Q-values. Specifically, a first DQN,
called main network, is in charge of learning the Q-values at
every iteration by updating the weights θM via SGD. A second
DQN, called target network, is instead used to compute the
actions to take, while its weights θT are periodically copied
from the main network every τ training epochs (copy period).
Moreover, we consider an ε-greedy strategy where the action
taken by the DRL agent depends on the ε ∈ [0, 1] parameter.
Specifically, with probability ε, the action taken by the agent
corresponds to that computed by the DQN. Otherwise, it is
randomly drawn from the action spaceA with probability 1−ε.

One of the possible extensions of DRL consists of consider-
ing multiple agents cooperating and interacting with each other
to maximize a shared reward function. This class of problems
is often referred to as multi-agent DRL and involves several
agents independently interacting with a shared environment.
In multi-agent DRL, each agent has a dedicated double-DQN
which is updated according to their own experience of the
environment. Although this class of problems has several
variations (e.g., competitive agents, partial observability of the
environment, heterogeneous rewards), in this work we focus
on the case where all agents cooperate to maximize a shared
reward in a distributed fashion. The reader is referred to [34]
and [35] for a comprehensive survey on multi-agent DRL
and its applications, and on cooperative wireless networks of
UAVs, respectively.

C. UAV Network Control Problem as Multi-agent DRL

In this work, we model the control problem of a Network
Operator (NO) willing to dictate the behavior of a distributed
network of UAVs as a multi-agent DRL employing the Q-
learning techniques introduced in the previous section. As
discussed in the previous sections, DRL provides a framework
where a set of agents learn to react to changing environmental
conditions by exchanging information, identifying the state
of the environment, and adapting their policies to the current
environment state. Similarly, the nodes of a distributed UAV
network learn to react to the changing network conditions by
recognizing the network state, exchanging information with
their neighbors, and adapting their wireless networking and
motion policies accordingly. As each UAV has full control of
its motion and on-board wireless stack operations, we model
each UAV as an independent agent in our DRL problem
definition.

9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2021.3092690, IEEE Open
Journal of the Communications Society

Replay
Buffer

CORE/
EMANE

Container

Action
Reward

DRL Agent 1

Replay
Buffer

DRL Agent 2

Replay
Buffer

DRL Agent 3

State

Main
DQN

Target
DQN

Main DQN

Target DQN

Main DQN

Target DQN

(I)

(II)

(III) (IV)

Fig. 5: Multi-agent DRL representation of the UAV network control problem

From a DRL perspective, the Control Framework’s Learning
Engine constructs the Virtual Training Environment based on
the NO’s input where:

(i) each UAV is represented as an independent agent fea-
turing the DRL DPPS introduced in Section III, and
interacting with the CORE/EMANE virtual environment
as explained in Section IV;

(ii) the environment is represented by the multi-hop UAV
network operations where source nodes generate data to
be delivered to destination nodes while the rest of the
network operates traffic forwarding tasks;

(iii) the agent’s action space involves the control parame-
ters specified by the NO spanning both networking and
mobility domains. It is also worth noticing that in the
considered multi-agent scenarios, different agents have
different action spaces according to their role in the
mission. For example, location-constrained UAVs feature
a smaller action space as they can only adapt their
networking parameters.

(iv) the state space is also discrete and defined as the set
of values of the control parameters of the UAVs in the
network (e.g., if this is the UAV’s location only, the set
of all UAV locations);

(v) the reward is UAV network-wide and defined according
to the network control objective specified by the NO. The
agents are collaborative and all work to obtain the highest
reward possible.

In our modeling, we do not assume the distributed agents have
global knowledge about the environment and the state space.
On the contrary, the agents (UAVs) can communicate with
their neighbors or other UAVs belonging to the same multi-
hop session. Therefore, UAVs can observe and share local state
information only. In this way, we model our distributed UAV
network control problem as a partially-observable multi-agent
DRL problem.

An illustration of the multi-agent DRL problem formulation
is reported in Fig. 5. Upon receiving NO’s input, the Learn-

ing Engine instantiates a virtual representation of the UAV
network scenario as described in Section IV where different
UAVs interact with each other via the EMANE OTA Wireless
Channel. This representation is used for the multi-agent DRL
Training. In this phase, the agents iteratively explore the
environment, and at each iteration t ∈ T they learn to adapt
their policies to the environment to maximize the common
utility function. At each given training step t, each DRL agent i
observes the state sti and uses the target DQN in its DRL Plane
(Step I) to independently take an action ati. These decisions are
made following the ε-greedy strategy we described in Section
IV-B and are based on the observed network state at time t, i.e.,
sti. It is worth recalling that each action can involve multiple
control variables at several layers of the wireless stack and
include the UAV’s motion capabilities (e.g., change location
and increase transmission power).

Upon taking action ati, node i measures the network per-
formance rti and the new network state st+1

i (Step II). After
each iteration, the tuple (sti,a

t
i, r

t
i , s

t+1
i) is added to the replay

buffer of agent i which is used to train the main DQN (Step
III). Then, the weights of the main network are copied to
the target DQN every τ iterations (Step IV). Within the DRL
DPPS, the actions, observations, and rewards follow the logical
flow described in Section III, while agents sharing traffic or
operating close-by share policy information at every step t.

In conclusion, by training our multi-agent DRL representa-
tion of the UAV network, the agents learn how to adapt their
policies to maximize the UAV network performance dictated
by the NO in a distributed fashion. The training procedure
terminates when the DQN converges and the loss function
plateaus to a constant value (or no further improvements are
observed). Finally, the trained Neural Network Configurations
are evaluated in Virtual Testing Environment to assess their
performance and are ready to be dispatched.

We now provide an example of how the NO’s directives
introduced earlier in the paper (see Section II, quote (A)) are
formulated into a multi-agent DRL problem by the Training
Engine. Six agents (i = 1, 2, . . . , 6) are instantiated in our vir-
tual environment which also implements the fielding location
and wireless scenario in EMANE. Each agent features a DRL
DPPS and interacts with the other agents over EMANE’s OTA
wireless channel. Following the NO’s directive, the agents
control each UAV’s location in space and Physical layer TX
power. We consider a discrete action space A = L0 × L1,
where L1 = {N,E, S,W,U,D, } represents the six possible
directions (i.e., the cardinal points, up, and down) each UAV
can select as well as a ‘stay put’ action, and L1 = {−1, , 1}
represents a step decrease, maintain, and a step increase of the
wireless transmission power, respectively. Four of the agents
are location-constrained, which means that their NN will not
perform location policy optimization (i.e., A = ∅×L1 = L1)
and the two traffic patterns are specified as flowing from node
1 to node 3 and from node 4 to node 6. Accordingly, the state
space of the environment is defined as S = S1×S2×· · ·×S6,
where Si represents the location and transmission power of
agent i. At each step t of the training, the agents operate as
follows: (i) the DRL Plane’s NN of each agent i operates
policy optimization for the UAV’s location in space and

10

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2021.3092690, IEEE Open
Journal of the Communications Society

transmission power by taking action ati = {LOCti,TX_POWti}
if location unconstrained, ati = {TX_POWti} otherwise; (ii) the
DRL DPPS’s Register Plane collects observations from the
virtual environment in the form of state and reward; (iii) the
agent measures the received reward rti and observes the new
state st+1

i ; (iv) the experience (sti,a
t
i, r

t
i , s

t+1
i) is stored in the

Replay Buffer and will be used to minimize the loss function
in (5) of the main DQN via SGD; (v) the new state st+1

i

is used by the target DQN to compute the next action at+1
i ;

(vi) every τ training iterations, the knowledge of the main
DQN gets transferred to the target DQN.

D. Scalability and Robustness Against Stochastic Effects

Different from other wireless applications (RAN, Wi-
Fi, etc.), measuring the network-wide performance of an
infrastructure-less wireless network presents some unique
challenges.

I) Slow start: Due to the multi-hop nature of UAV networks,
the first time instants after instantiating the network might
be characterized by the lack of transmission activities
in some parts of the network. Indeed, to relay data to
the next hop, some nodes must first wait to receive
packets from previous hops. However, due to transmission
and processing latency introduced by multi-hop relaying,
packets generated at source nodes are not immediately
available at intermediate nodes. This generates a transient
phase where not all nodes of the network are operative
at once and performance measurements might fluctuate
significantly. Thus, testing the performance of a multi-
hop wireless network at regime asks for a measurement
period longer than the transient phase;

II) Slow transitions: Differently from fixed-backhaul
wireless networks and single-hop wireless systems,
infrastructure-less wireless networks maintain memory of
previous states and network parameters’ configurations.
For example, the effect of a single control action (e.g., a
change in UAV’s location and TX power) on a high-level
network performance metric (e.g., end-to-end network
throughput) is not immediately measurable. Similar
to the previous point the traffic needs to propagate
through the whole network before the performance can
stabilize to the new network configuration. Accordingly,
performance measurements need to be long enough to
allow the network performance to stabilize to the new
configuration.

III) Stochastic performance metrics: when measuring high-
layer performance metrics such as end-to-end throughput
on a multi-hop wireless network, one might notice a
stochastic behavior of the measured performance. This is
caused by the stochastic nature of the wireless channel,
medium access techniques, data availability, and—more
generally—lower layer protocol stack operations. This
effect is exacerbated by the number of wireless hops the
end-to-end data flow traverses. The data distribution of
the end-to-end throughput (measured in packets per sec-
ond) for a 6-UAV network and 50 identical-configuration
runs is reported in Fig.6. It reports an average of 40

0 10 20 30 40 50

End-to-end network throughput [pkt/s]

0

2

4

6

8

10

12

D
a

ta
 d

is
tr

ib
u

ti
o

n

Histogram

 Fitted distribution

Fig. 6: Performance data distribution for 50 experiments on a 6-UAV network.

pkts/s with variance equal to 68 as well as large outliers
(in the order of 200 pkts/s). To obtain a representative
performance measure of a given network configuration,
it is therefore important to perform measures in batch and
average out the outliers.

These aspects combined pose severe challenges to the collec-
tion of extensive and representative performance data which
is at the foundation of any data-driven approach. If left
unaddressed, these issues result in excessively long data col-
lection periods, even when performed in a virtual training
environment.

To overcome the above issues, we have developed a
training pipeline that implements parallelization and outlier
suppression. To collect the performance metric of a given
network configuration, issue I) imposes a measurement time
long enough to allow nodes relaying traffic to receive data.
Indeed, such measurement time can be evaluated in our virtual
environment per individual network fielding. For example,
we have measured that the duration of such an interval is
5 seconds for network instances with less than 20 UAVs.
As mentioned before, our emulation environment aims at
mimicking an actual UAV fielding and, thus, executes in
real time. This means that 1 second in the emulated en-
vironment corresponds to 1 second in the real world. To
address the long training time resulting from this feature, we
designed our ’ready-to-fly virtual environment to execute a
set of K emulated environments in parallel, each running
on a dedicated Linux docker container. By instantiating K
independent parallel environments, our agents perform K
actions. Therefore, they collect K rewards and K observations,
this way generating K times more performance data than
single-container executions effectively cutting the exploration
time by a factor K. These parallel environments are non-
identical and evolve independently over the iterations T , thus
representing K independent learning threads for the agents. To
tackle issue II), we leveraged the reconfiguration capabilities
of our virtual emulation environment and reset the network
state upon any action. In this way, we remove any residual
memory of previous network configurations, and are able to
assess uniquely the performance of the actions taken at a given
time instant with no memory of the previous ones.

While parallel executions speed up the training time by
a factor K they are not sufficient to address issue III)
which causes metric outliers that could result in overestima-
tion (or underestimation) of Q-values and affect the learning
performance of the DRL agents. To alleviate this problem,
we leverage again parallel virtual executions by instantiating
clusters of NS environments for each of the K containers,

11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2021.3092690, IEEE Open
Journal of the Communications Society

Replay
Buffer

DRL Agent 1

API

CORE/
EMANE

Container
(1,1)

CORE/
EMANE

Container
(1,Ns)

API

Cluster 1

Action
Observation

CORE/
EMANE

Container
(K,1)

CORE/
EMANE

Container
(K,Ns)

Cluster K

Replay
Buffer

DRL Agent 2

API API

Linux Container

Fig. 7: Architectural design of parallel training.

for a total of NS × K parallel environments as shown in
Fig. 7. Within each cluster, the instantiated environments are
identical copies of each other (i.e., they share the same RF
conditions, topology, and network parameters), and are used
to compute average performance metrics that mitigate the
impact of outliers. As shown in Fig. 7, our framework is
designed to combine the rewards coming from each cluster
and to remove outliers which stabilizes the training procedure
(i.e., the approximation of the Q-values). Architecturally, each
environment is instantiated through a Linux docker container.
Our ’ready-to-fly virtual environment implementation thus
employs NS × K × |agents| Linux containers executing in
parallel. This feature is paramount to ensure scalability with
respect to the number of agents, states, and actions, which
could severely prolong the training phase. Indeed, our parallel
training architecture allows the exploration of K environment
instances at once. This results in faster exploration time, and
provides a scalable training approach for DRL-based solutions.

In conclusion, the presented ‘ready-to-fly’ virtual environ-
ment architecture allows us to perform an extensive and
representative experimental data collection for multi-hop UAV
networks without compromising the duration of our training.

V. EVALUATION

In this section, we test the performance of our DRL-based
optimization on a series of fielding scenarios and control
objectives. Here, we report the testing performance of the
trained DRL agents as measured in the Control Framework’s
Virtual Testing Environment. Specifically, we consider the
following three control schemes:
• No Control (NC): in this case, all UAVs operate under

static network and motion parameters. They use the ini-
tial fielding location and wireless networking parameters
without optimizing them throughout the experiments. No
Control is a non-optimized control scheme and serves as
a baseline for our evaluation.

• Best Response (BR): UAVs optimize their motion and
wireless networking parameters individually with neither

0 10 20 30 40 50 60 70

End-to-end network throughput [pkt/s]

0

0.2

0.4

0.6

0.8

1

C
D

F

Empirical CDF

NC

BR

DRL(LOC)

DRL(LOC, POW)

NC BR DRL(LOC) DRL(LOC, POW)
0

20

40

60

T
h
ro

u
g
h
p
u
t
[p

k
t/
s
]

1.8X

3.2X 5.5X

3.3X

Fig. 8: Average performance results for Max-sum-throughput and different
control schemes (100 experiments) under 6 UAVs network.

cooperation with other nodes nor considering the cross-
layer coupling between protocol stack variables. For
example, under this control scheme, UAV location and
transmission power are optimized individually without
considering the effects of these decisions on the perfor-
mance of other protocol layers or nodes on the channel.
This approach has proved to be limiting in wireless
networked systems and serves as a second baseline in
our evaluation.

• Deep-reinforcement Learning (DRL): this is our proposed
approach. In DRL, each UAV is controlled by an individ-
ual DRL agent that uses a pre-trained NN to implement
cross-layer motion and networking policy optimization.
Furthermore, different agents exchange information with
one another in a coordinated yet distributed fashion.

For each UAV network configuration, we evaluate the per-
formance of the aforementioned three control schemes over
100 different initial UAV fielding configurations. Moreover, for
each fielding, we perform 10 independent runs, and report the
average performance results upon convergence of the agents
to a stable operational point.

Experimental Configuration: In all of our experiments, we
consider UDP transport layer protocol with 256 Byte long
packets, single-path routing scheme, and frequency division
multiplexing MAC. At the Physical layer, wireless communi-
cations occur in the 2.4GHz ISM band with operational band-
width of 1 MHz. From a DRL optimization perspective, we
consider optimization intervals t of 5 seconds, Physical layer’s
TX power step size of 5 dBm, and we constrain the UAVs’
relocation range to a 40 000m2 box with step size equal to 20
meters, unless otherwise specified. As RF antennas employed
for UAV communications are usually dipole modules mounted
on the upper side of the main frame, in this work we only
consider UAV mobility on the latitude and longitude planes.
This allows us to simplify the emulated signal propagation
patterns and avoid modeling frame shadowing, blockage, and
reflection effects which incur when wireless UAV fly at
different altitudes.

12

0 10 20 30
Time [s]

50

100

150

200

250

Su
m

 th
ro

ug
hp

ut
 [p

kt
s/

s]

Instantaneous
Moving average

0 10 20 30
Time [s]

50

100

150

200

250

Su
m

 th
ro

ug
hp

ut
 [p

kt
s/

s]

Instantaneous
Moving average

Convergence

-2
0
2
4
6
8

10
12
14
16
18
20

Lo
c

Y
[m

]

-2 0 2 4 6 8 10 12 14 16 18 20
Loc X [m]

Legend:
Start Loc

t1 Loc

t2 Loc

End Loc

Flow 1

Flow 2

Traject.

UAV 1
UAV 2

UAV 3

UAV 4

UAV 5

UAV 6

t1

t2

0 10 20 30
Time [s]

-25

-20

-15

-10

-5

7;
 p

ow
er

 [d
B

m
]

8$9��
8$9��

8$9��
8$9��

0 10 20 30
Time [s]

-25

-20

-15

-10

-5

7;
 p

ow
er

 [d
Bm

]

8$9��
8$9��

8$9��
8$9��

t1 t2

Time [iterations]

Time [iterations]

Fig. 9: A single-run experiment for Max-sum-throughput with 6 UAVs

A. Effectiveness

We start our analysis by assessing the effectiveness of our
DRL-based control scheme in addressing the control problem
defined in quote A. First, we assess the performance of the
network when the two relays are allowed to control their
location only. The average performance results for NC, BR,
and DRL when employing only UAV’s location control (DRL
LOC) are reported in Fig. 8. At the top of the figure, we show
the cumulative distribution function (CDF) of the measured
end-to-end network throughput, i.e. the objective function
specified by the NO, for different control schemes. The box-
plots in the bottom part of the figure instead report the average
values of those experiments. The proposed DRL-based control
outperforms NC and BR, achieving 1.8x and 3.3x better
performance.

B. Flexibility

Now, we analyze how the optimization performance changes
when we increase the degrees of freedom of the DRL agent
by extending the control action space. Thanks to the flexibility
of our framework, the NO can select among a wide number
of UAV control parameters and we can easily carry out this
evaluation. We extend the control parameters to include UAVs’
Physical layer TX power together with UAVs’ location. The
performance of this new control problem is reported in Fig.
8. Over 100 testing experiments, the proposed DRL-based
control overcomes NC and BR, achieving 3.2x and 5.5x end-
to-end network throughput. By extending the range of controls
each agent can leverage, we add a degree of freedom to the
solution space. This results in a better optimal operational
point for the UAV network which reports an increase in
performance of 1.7x on the case with location control only.

Figure 9 illustrates the DRL optimization convergence dy-
namics for a single experiment for the network scenario in
Quote (A) processed in Listing 1. The top and bottom-left
parts of the figure show the UAVs’ location and UAVs’ TX
power over time, respectively. The bottom-right part of the
figure reports the performance metric for this experiment, that

is, the sum of the two end-to-end sessions’ throughput. From
the top part of the figure, we notice how the UAVs’ locations
are optimized by the DRL agents and go unchanged after the
10-th iteration, while, from the bottom-left part of the figure,
we notice that the TX Powers already stabilized at the 4-
th iteration. When the UAVs’ parameters operational points
stabilize, the UAV network can be deemed to have reached
convergence and have achieved the NO’s desired behavior
(apart from small fluctuations at regime due to the stochastic
nature of the wireless environment).

Fig. 10: Average performance results for Max-sum-throughput and different
control schemes (100 experiments) under 8 UAVs network.

Fig. 11: Average performance results for Max-sum-throughput and different
control schemes (100 experiments) under 12 UAVs network.

Fig. 12: Average performance results for Max-sum-throughput and different
control schemes (100 experiments) under 20 UAVs network.

C. Scalability

Here we assess the scalability performance of our data-
driven optimization approach on larger-scale scenarios than
that considered in Quote (A). In Fig. 10, we report the opti-
mization performance for an 8-UAV network with 2 sensing

13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2021.3092690, IEEE Open
Journal of the Communications Society

Fig. 13: Average performance results for Min-average-latency and different
control schemes (100 experiments) under 6 UAVs network.

areas and 2 report areas (control objective is again to maximize
the sum of the two end-to-end sessions’ throughput and the
controls are again UAVs’ locations and TX power). For this
mission, 4 UAVs are tied to sensing and reporting tasks and
are location-constrained, while the remaining 4 UAVs are
free to move and operate as traffic relays to support multi-
hop communications. Over 100 testing experiments, DRL
outperforms NC and BR by 5.6x and 8.4x.

We assess the performance of our optimization on another
test experiment with 12 UAVs, 3 sensing areas, and 3 report
areas; keeping control objective and controls unchanged. This
time, 6 nodes are location-constrained while the remaining 6
operate as relays. For this experiment we constrain the UAVs’
relocation range to a 90 000m2 box. The performance results
are reported in Fig. 11. In this test, DRL performs 9.9x and
2.1x better than NC and BR, respectively (measures averaged
over 100 experiments).

Last, we test our solution on a complex scenario with 5
sensing areas, 5 report areas, and a total of 20 UAVs. This
larger-scale scenario is characterized by strong interference
due to the higher number of nodes. Therefore, to achieve
the NO’s intent, combating interference via efficient network
control becomes a paramount task. The results reported in Fig.
12 indicate that, without optimization, the harsh interference
conditions impair basic communication procedures. Indeed,
under NC and BR control schemes, the network operates at
less than a packet per second. Nonetheless, the proposed DRL-
based optimization proves its effectiveness even in complex,
interference-prone scenarios that are hard to optimize. DRL
reports throughput of 3 packets per second with gains of 4.1x
and 5.3x over NC and BR, respectively.

In conclusion, DRL improves the performance of the UAV
network by an average 3.7x with respect to the second-best
performer.

D. Reconfigurability

As discussed in Section II, the presented control architecture
facilitates network reconfigurability and can be employed to
reconfigure the UAV network to achieve several network con-
trol objectives. To achieve different desired network behaviors,
the NO only needs to change the desired control objective
through the Control Interface (e.g., modify the objective on
Line 26 in Listing 1) while the presented Control Framework

Fig. 14: Average performance results for Min-average-latency and different
control schemes (100 experiments) under 8 UAVs network.

takes care of generating and dispatching the new Neural
Network configurations over the wireless interface. In the
following, we demonstrate the programmability features of the
presented control approach by measuring the performance of
our data-driven optimization for a new control objective. We
assess the performance of the 6-UAV and 8-UAV networks
presented above for the min-average-latency control objective,
which aims at minimizing the average end-to-end latency
across the UAV network’s sessions (i.e., from sources to
destinations). The average testing results for 100 experiments
are reported in Fig. 13 and Fig. 14 for the two UAV networks,
respectively.

For this new control objective, our DRL-based optimization
reports an average end-to-end latency reduction of 0.4x, and
0.2x over the second-best performer for the two UAV net-
works, respectively.

E. Data-driven Optimization vs Convex Optimization

We conclude our evaluation by presenting the performance
comparison between the convex optimization-based control
approach presented in [1] and the data-driven control ap-
proach presented in this article. Specifically, we compare
the performance of the two control solutions on Scenario
6 considered in [1], which involves 8 UAVs, two sensing
areas, and two reporting areas. The controls are again UAVs’
locations and TX power. For both schemes, we consider the
same experimental configuration described at the beginning
of this section. As shown in Fig. 15, the proposed data-driven
optimization control scheme (DRL) outperforms the convex
optimization-based control schemes (SC) in [1], achieving
1.7x better performance. The reason behind this performance
gap is that the performance of the model-based optimization
proposed in [1] is tightly coupled to the accuracy of the models
employed in the problem formulation and to the quality of
the approximation and relaxation necessary to solve the UAV
network control problem via convex optimization. On complex
UAV networks, which require a conspicuous modeling and
approximation effort, these effects combined can result in sub-
optimal solutions that result in a performance gap between
modeling and performance assessment. On the contrary, the
performance of the data-driven optimization proposed in this
work is driven by the performance data itself. In conclusion,
data-driven solutions such as the one proposed in this paper

14

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2021.3092690, IEEE Open
Journal of the Communications Society

Fig. 15: Average performance results for Max-sum-throughput and different
control schemes, included the convex optimization-based control scheme
employed in [1] (100 experiments) under 8 UAVs network.

Convergence

Fig. 16: Left: average reward versus training iterations for 6 UAVs network
discussed in Sec. V-A; Right: number of training iterations to train DRL agents
for different UAV network size.

have the potential to bridge the gap between UAV network
control and network performance optimization.

The complexity of the proposed data-driven control ap-
proach is reported in Fig. 16. The left of Fig. 16 illustrates the
reward function trend over the training iterations for the two
DRL control schemes and the 6 UAV network discussed in
Sec. V-A. When the DRL agents can only control the UAV’s
location, they require a fewer number of training iterations to
reach convergence, that is when the reward function cannot
be further improved and the system can be deemed ‘trained’.
The DRL agents require 60k iterations to converge in this case,
with respect to the 80k iterations necessary when the agents
add the UAV’s transmission power to the range of their control
parameters. However, it is important to notice that despite
requiring a longer number of iterations to reach convergence,
a wider range of control parameters corresponds to a higher
reward, both at convergence and at every previous iteration.
This trend suggests that augmenting the degrees of freedom
of the DRL agents always results in improved performance.
The right of Fig. 16 reports the number of iteration required to
deem the DRL agents ‘trained’ in the networks with 6, 8, 12,
and 20 UAVs presented earlier in this section. As shown in the
figure, the required number of iterations to reach convergence
grows with the number of UAVs. This is motivated by the
fact that the presence of more agents corresponds to a larger
solution space to be explored in order to find the optimal
network configuration. As mentioned in Section IV-D, each
training iteration requires 5 seconds of emulated execution
time to allow the agent to gather statistically relevant perfor-

mance measurements. For these UAV networks, the simulation
time required to reach training convergence is approximately
166, 332, 830, and 1660 hours, respectively. Even though
such training times might be excessively long for experimental
performance data collection, in Section IV-D we explained
in detail how to leverage parallelism in our Virtual Training
Environment to collect extensive performance data. Thanks to
this feature of the proposed Virtual Training Environment, the
total training time cost can be efficiently reduced by running
multiple containers in parallel.

VI. RELATED WORK

Recent years have seen a surge in interest toward the inte-
gration of UAVs and the wireless infrastructure for a variety of
applications such as 5G-and-beyond cellular networks [2, 7],
millimeter-wave and terahertz networks [5, 6, 36], Wi-Fi [37],
and ad-hoc tactical networks [1, 4, 38, 39], to name a few. In
this context, AI-based control approaches are on the rise thanks
to their effectiveness and applicability to motion-controllable
UAV-based wireless nodes [40–51]. For example, [44–47]
investigate the placement optimization of multiple UAV-based
aerial base stations to maximize the coverage rate of ground
users. The latter also optimizes for the energy consumption
of the UAVs’ recharging and landing operations, while [47]
tailors its RL approach to emergency response scenarios.
[48] utilized DRL for UAV-based BSs path planning so as
to minimize the interference with ground infrastructure and
optimize the BS-to-user latency.

Other works, instead, mainly focus on wireless network-
ing operations optimization via machine learning. Machine
learning and its flavors are employed to predict the data size
of computing tasks for efficient UAV-based MEC [52]; to
combat adversarial attacks for cellular-connected UAVs [41];
to optimize content caching on UAV-based BS [42]; or a mix
of those [43]. The works in the literature that are the closest to
the one presented in this paper are those focusing on the joint
optimization of motion and wireless operations. Specifically,
[40], [50], and [53] use DRL to optimize the trajectory and
the power control for UAV-assisted service networks. [51] pro-
poses a DRL technique to optimize UAVs’ trajectory and time
resource allocation in UAV wireless-powered IoT networks.
The readers are referred to [54] for an extensive survey on
AI-based control and optimization for wireless networks.

Different from the above works, which mainly rely on an
abstraction of the underlying communication infrastructure
and limit their contribution to a mix of analytical results and
simulation, we propose a novel two-tier architecture that pro-
vides the communication infrastructure and the architectural
innovations to design and implement data-driven control and
optimization for real UAV network fieldings. With respect to
our previous work [1], we extended the Drone Programmable
Protocol Stack with data-driven functionalities (DRL DPPS).
We integrated the new DRL DPPS into a new full-fledged
emulation environment for UAV networks that we systemat-
ically employed to train and assess the performance of our
DRL-based solution with a high degree of realism.

15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2021.3092690, IEEE Open
Journal of the Communications Society

VII. CONCLUSIONS

In this article, we presented a novel two-tier architecture
to control and optimize UAV networks based on Deep-
reinforcement learning (DRL). The presented architecture fea-
tures a new ‘ready-to-fly’ virtual environment that integrates
fully-reconfigurable wireless protocol stacks for software-
defined UAVs with the CORE/EMANE emulation tools. Our
‘ready-to-fly’ virtual environment allows us to collect exten-
sive high-fidelity UAV network performance data without the
burden of carrying out time- and energy-consuming flight
experiments thus simplifying the modeling and training pro-
cedures for data-driven control solutions. In this work, we
showed how our system can be employed to model different
UAV network control problems as multi-agent DRL problems,
collect extensive performance data, and use the data collected
to train a set of DRL agents for mission-specific goals. The
proposed DRL architecture implements distributed data-driven
optimization (with up to 3.7x throughput gains and 0.2x
latency reduction if compared to other approaches), facilitates
network reconfigurability, and provides a scalable solution for
large UAV networks (up to 20 nodes).

As future work, we will take these research directions:
Experimental Assessment: We intend to assess our DRL-based
optimization on real-world UAVs and validate the performance
we have tested in our Virtual Testing Environment. Thanks to
our ‘ready-to-fly’ framework design, the trained DRL agents
can be easily instantiated on real hardware, a procedure that
is straightforward and only involves enabling the hardware
drivers in the DRL DPPS. We will carefully analyze the
performance of future experimental fieldings to identify dis-
crepancies with the simulation environment [55] and employ
techniques of transfer learning to further reduce the emulation-
experimental performance gap.
On-line learning: We will also focus on how to optimize the
performance of the distributed DRL agents in the case of com-
promised nodes and outages. Future research threads in this
context include hybrid off- and on-line training to investigate
the flexibility and adaptability of multi-agent learning in the
case of previously unseen network conditions.

REFERENCES

[1] L. Bertizzolo, S. D’Oro, L. Ferranti, L. Bonati, E. Demirors, Z. Guan,
T. Melodia, and S. Pudlewski, “SwarmControl: An automated distributed
control framework for self-optimizing drone networks,” in IEEE INFO-
COM 2020-IEEE Conference on Computer Communications. IEEE,
2020, pp. 1768–1777.

[2] L. Bertizzolo, T. X. Tran, J. Buczek, B. Balasubramanian, R. Jana,
Y. Zhou, and T. Melodia, “Streaming from the Air: Enabling High
Data-rate 5G Cellular Links for Drone Streaming Applications,” arXiv
preprint arXiv:2101.08681, 2021.

[3] L. Ferranti, S. D’Oro, L. Bonati, E. Demirors, F. Cuomo, and T. Melodia,
“Hiro-net: Self-organized robotic mesh networking for internet sharing
in disaster scenarios,” in 2019 IEEE 20th International Symposium on”
A World of Wireless, Mobile and Multimedia Networks”(WoWMoM).
IEEE, 2019, pp. 1–9.

[4] R. K. Sheshadri, E. Chai, K. Sundaresan, and S. Rangarajan, “SkyHaul:
An Autonomous Gigabit Network Fabric in the Sky,” arXiv preprint
arXiv:2006.11307, 2020.

[5] L. Bertizzolo, M. Polese, L. Bonati, A. Gosain, M. Zorzi, and T. Melo-
dia, “mmBAC: Location-aided mmWave backhaul management for
UAV-based aerial cells,” in Proceedings of the 3rd ACM Workshop on
Millimeter-wave Networks and Sensing Systems, 2019, pp. 7–12.

[6] M. Polese, L. Bertizzolo, L. Bonati, A. Gosain, and T. Melodia, “An
Experimental mmWave Channel Model for UAV-to-UAV Communica-
tions,” in Proceedings of the 4th ACM Workshop on Millimeter-Wave
Networks and Sensing Systems, 2020, pp. 1–6.

[7] L. Bertizzolo, T. X. Tran, B. Amento, B. Balasubramanian, R. Jana,
H. Purdy, Y. Zhou, and T. Melodia, “Live and let live: flying UAVs
without affecting terrestrial UEs,” in Proceedings of the 21st Interna-
tional Workshop on Mobile Computing Systems and Applications, 2020,
pp. 21–26.

[8] L. Ferranti, L. Bonati, S. D’Oro, and T. Melodia, “Skycell: A prototyping
platform for 5g aerial base stations,” in 2020 IEEE 21st International
Symposium on” A World of Wireless, Mobile and Multimedia Net-
works”(WoWMoM). IEEE, 2020, pp. 329–334.

[9] M. Abolhasan, J. Lipman, W. Ni, and B. Hagelstein, “Software-defined
wireless networking: centralized, distributed, or hybrid?” IEEE Network,
vol. 29, no. 4, pp. 32–38, 2015.

[10] A. Gudipati, D. Perry, L. E. Li, and S. Katti, “Softran: Software defined
radio access network,” in ACM SIGCOMM workshop on Hot topics in
software defined networking, 2013, pp. 25–30.

[11] S. Baidya, Z. Shaikh, and M. Levorato, “Flynetsim: An open source
synchronized uav network simulator based on ns-3 and ardupilot,” in
ACM Intl. Conf. on Modeling, Analysis and Simulation of Wireless and
Mobile Systems, 2018, pp. 37–45.

[12] Z. Guan, L. Bertizzolo, E. Demirors, and T. Melodia, “WNOS: An
optimization-based wireless network operating system,” in Proc. of ACM
International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc), Los Angeles, CA, USA, 2018, pp. 241–250.

[13] Guan, Zhangyu and Bertizzolo, Lorenzo and Demirors, Emrecan and
Melodia, Tommaso, “Demo Abstract WNOS: An optimization-based
wireless network operating system,” in Proc. of IEEE Conference on
Computer Communications (INFOCOM), Honolulu, HI, USA, 2018.

[14] L. Bonati, S. D’Oro, L. Bertizzolo, E. Demirors, Z. Guan, S. Basagni,
and T. Melodia, “Cellos: Zero-touch softwarized open cellular net-
works,” Computer Networks, vol. 180, p. 107380, 2020.

[15] J. Liu, B. Krishnamachari, S. Zhou, and Z. Niu, “Deepnap: Data-driven
base station sleeping operations through deep reinforcement learning,”
IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4273–4282, 2018.

[16] Z. Wang, L. Li, Y. Xu, H. Tian, and S. Cui, “Handover control in wireless
systems via asynchronous multiuser deep reinforcement learning,” IEEE
Internet of Things Journal, vol. 5, no. 6, pp. 4296–4307, 2018.

[17] Y. Yu, T. Wang, and S. C. Liew, “Deep-reinforcement learning multiple
access for heterogeneous wireless networks,” IEEE Journal on Selected
Areas in Communications, vol. 37, no. 6, pp. 1277–1290, 2019.

[18] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, “Deep reinforce-
ment learning for dynamic multichannel access in wireless networks,”
IEEE Transactions on Cognitive Communications and Networking,
vol. 4, no. 2, pp. 257–265, 2018.

[19] O. Naparstek and K. Cohen, “Deep multi-user reinforcement learning for
distributed dynamic spectrum access,” IEEE Transactions on Wireless
Communications, vol. 18, no. 1, pp. 310–323, 2018.

[20] H.-H. Chang, H. Song, Y. Yi, J. Zhang, H. He, and L. Liu, “Distribu-
tive dynamic spectrum access through deep reinforcement learning: A
reservoir computing-based approach,” IEEE Internet of Things Journal,
vol. 6, no. 2, pp. 1938–1948, 2018.

[21] M. Feng and S. Mao, “Dealing with limited backhaul capacity in
millimeter-wave systems: A deep reinforcement learning approach,”
IEEE Communications Magazine, vol. 57, no. 3, pp. 50–55, 2019.

[22] Y. He, N. Zhao, and H. Yin, “Integrated networking, caching, and com-
puting for connected vehicles: A deep reinforcement learning approach,”
IEEE Transactions on Vehicular Technology, vol. 67, no. 1, pp. 44–55,
2017.

[23] Y. Sun, M. Peng, and S. Mao, “Deep reinforcement learning-based mode
selection and resource management for green fog radio access networks,”
IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1960–1971, 2018.

[24] R. Li, Z. Zhao, Q. Sun, I. Chih-Lin, C. Yang, X. Chen, M. Zhao, and
H. Zhang, “Deep reinforcement learning for resource management in
network slicing,” IEEE Access, vol. 6, pp. 74 429–74 441, 2018.

[25] H. Zhang, W. Li, S. Gao, X. Wang, and B. Ye, “Reles: A neural
adaptive multipath scheduler based on deep reinforcement learning,” in
IEEE INFOCOM 2019-IEEE Conference on Computer Communications.
IEEE, 2019, pp. 1648–1656.

[26] L. Zhang, J. Tan, Y.-C. Liang, G. Feng, and D. Niyato, “Deep re-
inforcement learning-based modulation and coding scheme selection
in cognitive heterogeneous networks,” IEEE Transactions on Wireless
Communications, vol. 18, no. 6, pp. 3281–3294, 2019.

[27] J. Jagannath, N. Polosky, A. Jagannath, F. Restuccia, and T. Melodia,
“Machine learning for wireless communications in the internet of things:

16

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2021.3092690, IEEE Open
Journal of the Communications Society

A comprehensive survey,” Ad Hoc Networks, vol. 93, p. 101913, 2019.
[28] J. Ahrenholz, T. Goff, and B. Adamson, “Integration of the core and

emane network emulators,” in IEEE Military Communications Confer-
ence (MILCOM), 2011, pp. 1870–1875.

[29] Ardupilot, “Autopilotsuite,” http://ardupilot.org/, accessed: 2020-2-1.
[30] Ettus Research. Universal Software Radio Peripheral (USRP). https://

www.ettus.com/products/.
[31] F. K. Jondral, “Software-defined radio—basics and evolution to cognitive

radio,” EURASIP journal on wireless communications and networking,
vol. 2005, no. 3, pp. 1–9, 2005.

[32] B. Company, “Core documentation,” https://coreemu.github.io/core/
emane.html, accessed: 2020-12-30.

[33] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[34] P. Hernandez-Leal, B. Kartal, and M. E. Taylor, “A survey and critique of
multiagent deep reinforcement learning,” Autonomous Agents and Multi-
Agent Systems, vol. 33, no. 6, pp. 750–797, 2019.

[35] J. Wang, C. Jiang, Z. Han, Y. Ren, R. G. Maunder, and L. Hanzo,
“Taking drones to the next level: Cooperative distributed unmanned-
aerial-vehicular networks for small and mini drones,” IEEE Vehicular
Technology Magazine, vol. 12, no. 3, pp. 73–82, 2017.

[36] S. K. Moorthy and Z. Guan, “Letera: Stochastic beam control through
esn learning in terahertz-band wireless uav networks,” in IEEE INFO-
COM 2020-IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). IEEE, 2020, pp. 1039–1044.

[37] A. Guillen-Perez, R. Sanchez-Iborra, M. Cano, J. C. Sanchez-Aarnoutse,
and J. Garcia-Haro, “Wifi networks on drones,” in 2016 ITU Kaleido-
scope: ICTs for a Sustainable World (ITU WT), 2016, pp. 1–8.

[38] Z. Guan, N. Cen, T. Melodia, and S. M. Pudlewski, “Distributed joint
power, association and flight control for massive-mimo self-organizing
flying drones,” IEEE/ACM Transactions on Networking, vol. 28, no. 4,
pp. 1491–1505, 2020.

[39] Z. Shaikh, S. Baidya, and M. Levorato, “Robust multi-path communi-
cations for uavs in the urban iot,” in 2018 IEEE International Confer-
ence on Sensing, Communication and Networking (SECON Workshops).
IEEE, 2018, pp. 1–5.

[40] X. Liu, Y. Liu, Y. Chen, and L. Hanzo, “Trajectory Design and Power
Control for Multi-UAV Assisted Wireless Networks: A Machine Learn-
ing Approach,” IEEE Transactions on Vehicular Technology, vol. 68,
no. 8, pp. 7957–7969, 2019.

[41] U. Challita, A. Ferdowsi, M. Chen, and W. Saad, “Machine learning
for wireless connectivity and security of cellular-connected uavs,” IEEE
Wireless Communications, vol. 26, no. 1, pp. 28–35, 2019.

[42] M. Chen, W. Saad, and C. Yin, “Liquid State Machine Learning for
Resource Allocation in a Network of Cache-Enabled LTE-U UAVs,” in
GLOBECOM 2017 - 2017 IEEE Global Communications Conference,
2017, pp. 1–6.

[43] N. Kato, Z. M. Fadlullah, F. Tang, B. Mao, S. Tani, A. Okamura, and
J. Liu, “Optimizing Space-Air-Ground Integrated Networks by Artificial
Intelligence,” IEEE Wireless Communications, vol. 26, no. 4, pp. 140–
147, 2019.

[44] J. Qiu, J. Lyu, and L. Fu, “Placement optimization of aerial base stations
with deep reinforcement learning,” in IEEE International Conference on
Communications (ICC). IEEE, 2020, pp. 1–6.

[45] V. Saxena, J. Jaldén, and H. Klessig, “Optimal uav base station tra-
jectories using flow-level models for reinforcement learning,” IEEE
Transactions on Cognitive Communications and Networking, vol. 5,
no. 4, pp. 1101–1112, 2019.

[46] H. Bayerlein, P. De Kerret, and D. Gesbert, “Trajectory Optimization
for Autonomous Flying Base Station via Reinforcement Learning,” in
2018 IEEE 19th International Workshop on Signal Processing Advances
in Wireless Communications (SPAWC), 2018, pp. 1–5.

[47] P. Valente Klaine, J. Nadas, R. Souza, and M. Imran, “Distributed
Drone Base Station Positioning for Emergency Cellular Networks Using
Reinforcement Learning,” Cognitive Computation, vol. 10, 10 2018.

[48] U. Challita, W. Saad, and C. Bettstetter, “Interference Management for
Cellular-Connected UAVs: A Deep Reinforcement Learning Approach,”
IEEE Transactions on Wireless Communications, vol. 18, no. 4, pp.
2125–2140, 2019.

[49] D. Athukoralage, I. Guvenc, W. Saad, and M. Bennis, “Regret Based
Learning for UAV Assisted LTE-U/WiFi Public Safety Networks,” in
IEEE Global Communications Conference (GLOBECOM), 2016, pp. 1–
7.

[50] L. A. binti Burhanuddin, X. Liu, Y. Deng, U. Challita, and A. Za-
hemszky, “QoE Optimization for Live Video Streaming in UAV-to-UAV

Communications via Deep Reinforcement Learning,” 2021.
[51] J. Tang, J. Song, J. Ou, J. Luo, X. Zhang, and K. Wong, “Minimum

throughput maximization for multi-uav enabled wpcn: A deep reinforce-
ment learning method,” IEEE Access, vol. 8, pp. 9124–9132, 2020.

[52] G. Wu, Y. Miao, Y. Zhang, and A. Barnawi, “Energy efficient for UAV-
enabled mobile edge computing networks: Intelligent task prediction and
offloading,” Computer Communications, vol. 150, pp. 556–562, 2020.

[53] N. Zhao, Z. Liu, and Y. Cheng, “Multi-agent deep reinforcement learning
for trajectory design and power allocation in multi-uav networks,” IEEE
Access, vol. 8, pp. 139 670–139 679, 2020.

[54] J. Wang, C. Jiang, H. Zhang, Y. Ren, K.-C. Chen, and L. Hanzo,
“Thirty years of machine learning: The road to pareto-optimal wireless
networks,” IEEE Communications Surveys & Tutorials, vol. 22, no. 3,
pp. 1472–1514, 2020.

[55] D. Callegaro, S. Baidya, and M. Levorato, “A Measurement Study on
Edge Computing for Autonomous UAVs,” in ACM SIGCOMM 2019
Workshop on Mobile AirGround Edge Computing, Systems, Networks,
and Applications, 2019, p. 29–35.

Hai Cheng is a Ph.D. candidate in Computer Engineering at the Institute for
Wireless IoT at Northeastern University. He received his B.Eng degree in 2015
from Xidian University, China, and M.S. in 2018 from ShanghaiTech Univer-
sity, China. His research interests include machine learning and optimization
in wireless network systems.

Lorenzo Bertizzolo is a candidate for Ph.D. in Computer Engineering and re-
search assistant at the Institute for the Wireless IoT at Northeastern University.
He earned his B.S. and his M.S. with honors in Computer and Communication
Networks Engineering from Politecnico di Torino, Italy in 2014 and 2015,
respectively. His research focuses on 5G, software-defined networking for
wireless, network optimization, and non-terrestrial UAV networks. He is
also a collaborator of AT&T Labs Research, working on the integration of
Unmanned Aerial System into the next generations’ cellular networks.

Salvatore D’Oro [M’17] is a Research Assistant Professor with the Institute
for the Wireless Internet of Things (WIoT) at Northeastern University, USA.
He received his Ph.D. degree from the University of Catania in 2015. He
serves on the Technical Program Committee (TPC) of several international
conferences such as IEEE INFOCOM and is Associate Editor of the Elsevier
Computer Communications journal. His research interests include optimiza-
tion, learning, network slicing and their applications to 5G systems and
beyond.

John Buczek is currently pursuing a BSMS in Electrical Engineering with
concentration in Power Systems at Northeastern University, Boston, MA. He
is an undergraduate research assistant at the Institute for the Wireless IoT
at Northeastern University. His research interests include Power Electronics,
Unmanned Aerial Vehicles and UAV Networks, and the Internet of Things.

Tommaso Melodia [F’18] received the Ph.D. degree in electrical and
computer engineering from the Georgia Institute of Technology in 2007. He
is currently the William Lincoln Smith Professor with the Department of
Electrical and Computer Engineering, Northeastern University. He is also
the Director of the Institute for the Wireless Internet of Things, and the
Director of Research for the PAWR Project Office, a public-private partnership
that is developing four city-scale platforms for advanced wireless research
in the United States. His research focuses on modeling, optimization, and
experimental evaluation of wireless networked systems, with applications
to 5G networks and Internet of Things, software-defined networking, and
body area networks. His research is supported mostly by the U.S. federal
agencies, including the National Science Foundation, the Air Force Research
Laboratory, the Office of Naval Research, the Army Research Laboratory,
and DARPA. He is a Senior Member of the ACM. He is the Editor-
in-Chief of Computer Networks, and a former Associate Editor of the
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, the IEEE
TRANSACTIONS ON MOBILE COMPUTING, the IEEE TRANSACTIONS
ON MULTIMEDIA, among others.

Elizabeth Serena Bentley Elizabeth Serena Bentley has a B.S. degree in
Electrical Engineering from Cornell University, a M.S. degree in Electrical
Engineering from Lehigh University, and a Ph.D. degree in Electrical Engi-
neering from University at Buffalo. She was a National Research Council Post-
Doctoral Research Associate at the Air Force Research Laboratory (AFRL)
in Rome, NY. Currently, she is employed by the AFRL Information Direc-
torate, performing in-house research and development in the Communication
Technology & Systems Branch and managing the Cross-Layer Heterogeneous
Autonomous Resilient On-Demand Networks (CHARON) program that fo-
cuses on mission-responsive swarm networking. Her research interests are in
cross-layer optimization, swarm networking, directional networking, wireless
multiple-access communications, and modeling and simulation.

17

http://ardupilot.org/
https://www.ettus.com/products/
https://www.ettus.com/products/
https://coreemu.github.io/core/emane.html
https://coreemu.github.io/core/emane.html

