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ABSTRACT Images are susceptible to various kinds of noises, which corrupt the pictorial information 

stored in the images. Image de-noising has become an integral part of the image processing workflow. It is 

used to attenuate the noises and accentuate the specific image information stored within. Machine learning 

is an important tool in the image-de-noising workflow in terms of its robustness, accuracy, and time 

requirement. This paper explores the numerous state-of-the-art machine-learning-based image de-noisers 

like dictionary learning models, convolutional neural networks and generative adversarial networks for a 

range of noises like Gaussian, Impulse, Poisson, Mixed and Real-World noises. The motivation, algorithm 

and framework of different machine learning de-noisers are analyzed. These de-noisers are compared using 

PSNR as quality assessment metric on some benchmark datasets. The best de-noising results for different 

noise type is discussed along with future prospects. Among various Gaussian noise de-noisers, GCBD, 

BRDNet and PReLU network prove to be promising. CNN+LSTM, and MC2RNet are most suitable CNN-

based Poisson de-noisers. For impulse noise removal, Blind CNN, and CNN+PSO perform well. For mixed 

noise removal, WDL, EM-CNN, CNN, SDL, and Mixed CNN are prominent. De-noisers like GRDN and 

DDFN show accurate results in the domain of real-world de-noising. 

INDEX TERMS Convolutional Neural Networks, Dictionary Learning, Generative Adversarial Networks, 

Image De-noising, Machine Learning 

I. INTRODUCTION 
 

Image de-noising has played a pivotal role in recent years 

with the advent of many latest computer vision 

applications. The digital image is prone to noise corruption 

due to camera sensors, illumination level, transmission 

error, timing error of A/D converters, storage sensor faulty 

memory location, capturing medium, transmission channel 

interference, and compression artifacts.  In biological 

imaging, low-light conditions and shorter exposure time 

degrade the image quality [1]. Image restoration is required 

in various fields such as medical imaging, remote sensing, 

underwater de-noising, dehazing applications [2]. The 

different medical imaging modalities like computed 

tomography (CT), magnetic resonance imaging (MRI), X-

ray, PET, etc. use appropriate de-noising methods for 

proper diagnosis. Moreover, image pre-processing also 

includes de-noising procedure prior to the medical image 

classification or segmentation problem to attain higher 

accuracy. Remote sensing de-noising restores relevant data 

from synthetic aperture radar images, satellite images, 

hyperspectral images, and underwater images. 

A. TYPES OF NOISES 

The noise classification is done based on its probability 

distribution function, correlation, nature, and its source. The 

different types of noise based on pdf are Gaussian, 

Rayleigh, Uniform, Impulse, Poisson, etc. According to the 

correlation, noise is classified into white and color noise. 

The white noise has uniform power spectral density and 

zero autocorrelation, unlike color noise. If an image is 

corrupted with white noise, it implies that all the pixels are 

uncorrelated with each other. It is additive or multiplicative 

(speckle) according to nature, i.e., noisy pixels are added or 

multiplied with the reference image. It is termed as 

quantization noise or photon noise as per source 

classification. The description of commonly used noise 

types is given as follows: 

Gaussian Noise: It is statistical and additive in nature 

which follows normal distribution with zero mean and 𝜎 

standard deviation and affects all the pixels in the image. 

The cause of its occurrence is sensor temperature 

fluctuation and environmental illumination variations. It is 

commonly found in magnetic resonance imaging, and 

confocal laser scanning microscopy imaging [3]. The 

probability distribution function of Gaussian noise is given 

by the following equation. 

𝑝(𝑥) =
1

𝜎√2п
𝑒

−
(𝑥−𝜇)2

2𝜎2                                                           (1)                                                                                                                    

where 𝑥 is image pixel value, 𝜇 is mean and σ is the 

standard deviation.  
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Impulse Noise: It is an additive noise which occurs due to 

faulty sensors and transmission error. It affects only certain 

pixels in the entire image, unlike Gaussian noise. It is 

divided into two parts, i.e., salt and pepper impulse noise 

(SPIN) and random valued impulse noise (RVIN). In salt 

and pepper noise corruption, some image pixels take either 

maximum or minimum value of image dynamic range. 

Whereas RVIN corruption changes some image pixels with 

a random value, its detection is more difficult than salt and 

pepper noise detection. The salt and pepper impulse noise is 

given by [4] 

𝑝(𝑥) = {
𝑃𝑎  𝑓𝑜𝑟 𝑥 = 𝑎
𝑃𝑏  𝑓𝑜𝑟 𝑥 = 𝑏
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}                                                     (2)                                                                                                     

where 𝑎 and 𝑏 are minimum and maximum pixel values of 

an image dynamic range. 𝑃𝑎 and 𝑃𝑏  are probabilities are 

equal for salt and pepper noise.  

Poisson  or Photon Noise: The Poisson distribution is used 

to model photon noise caused by the photon’s random 

arrival on the image sensor [5]. The applications of Poisson 

noise removal include astronomy, medical imaging, and 

low-light photography. The conditional probability of 

Poisson distributed image 𝑦  for clean image 𝑥 is given by 

[6] 

𝑝(𝑦 |𝑥) = ∏
𝑒

−𝑥𝑖,𝑗𝑥𝑖,𝑗
𝑦𝑖,𝑗

𝑦𝑖,𝑗!

𝑁
𝑖,𝑗=1                                                (3)                                                                                

where 𝑖, 𝑗 denotes pixel indices. 

Gamma Noise: The speckle noise in ultrasound images 

occurs due to coherent imaging mechanisms from the 

scatters [7]. It reduces the image sharpness and creates 

difficulty for lesion diagnosis. It is modeled by Gamma 

distribution, whose probability distribution function is 

given by the following equation. 

𝑝(𝑥) = {
𝑎𝑏𝑥𝑏−1

(𝑏−1)!
𝑒−𝑎𝑧 ,    𝑥 ≥ 0

0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                            (4)                                                                                     

where parameters 𝑎 and 𝑏 are positive integers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rayleigh Noise: The noise in synthetic aperture radar 

(SAR) images is granular in nature, and it is modeled by 

Rayleigh distribution [8]. Sometimes, ultrasound images 

are also prone to Rayleigh noise corruption. The Rayleigh 

distribution is given by the following probability density  

𝑝(𝑥) = {
2

𝑏
(𝑥 − 𝑎)𝑒

−(𝑥−𝑎)2

𝑏

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
     𝑓𝑜𝑟 𝑥 ≥ 𝑎                           (5)                                                                                   

Cauchy Noise: The atmospheric and underwater acoustic 

signals of radar and sonar imaging are corrupted with 

additive heavy-tailed impulse like noise, known as Cauchy 

noise [9]. The probability distribution function of Cauchy 

distribution is given by: 

𝑝(𝑥;  𝛿, 𝛾) =
1

𝜋𝛾
  

𝛾2

𝛾2+(𝑥−𝛿)2                                                 (6)                                                                                                         

where 𝛾 > 0 denotes the scale parameter, and δ∈ ℝ denotes 

the localization parameter. 

Mixed Noise: In many real-life applications, images are 

corrupted by more than one noise type. The mixture of 

Gaussian and impulse noise is found in computed 

tomography (CT) images and cDNA microarray imaging 

[10], [11]. The mixed noise in cDNA microarray imaging 

occurs due to photon and electronic noise interaction, dust 

particles on surface of glass slides, and laser reflection. In 

hyperspectral images, the combination of signal 

independent additive Gaussian noise and signal dependent 

multiplicative Poisson noise is found [12]. 

B. CLASSIFICATION OF IMAGE DE-NOISING 
TECHNIQUES 

The image de-noising methods can be grouped into spatial 

domain techniques, transform domain techniques, fuzzy 

filtering-based techniques, and machine learning techniques 

[13], [14]. The block diagram illustrating the classification 

of image de-noising techniques is given in Fig.1. 

The spatial domain filtering is widely used for image 

restoration in which filtering operation is directly applied to 

the image pixels. They are further divided into linear and 

FIGURE 1.  Block Diagram illustrating classification of image de-noising techniques 
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non-linear filters. The most common linear filters are the 

mean filter, Gaussian filter, and Weiner filter. The basic 

mean filter replaces the particular pixel of operation with 

the mean value from the pre-defined neighborhood. 

Similarly, Gaussian filters use a Gaussian kernel with a 

particular mean and deviation. They suffer from the 

problem of over-smoothening and blurring of edges. To 

overcome this problem, Wiener filter was introduced but it 

is also unsuccessful while operating on sharp edges. Later, 

non-linear filters were introduced in which output is a non-

linear function of input for edge, detail, and texture 

preservation. The primary examples of non-linear filters are 

total variation filters, anisotropic diffusion filters, bilateral 

filter, and fourth-order partial differentiation filter. The 

bilateral filter replaces pixel value with neighborhood 

weights which are function of both Euclidian distance and 

range difference [15],[16]. The detailed comprehensive 

review of impulse and Gaussian de-noising filters is given 

in [14]. 

The transform domain techniques convert the image into 

the transform domain, and then mathematical operations are 

carried out on transform domain coefficients. It is followed 

by inverse transform to restore de-noised image. These 

techniques are divided into data-adaptive and non-data 

adaptive techniques based on the transform basis function. 

The independent component analysis (ICA) and principal 

component analysis (PCA) are data-adaptive transform 

methods. The ICA is successfully utilized for non-Gaussian 

de-noising. PCA is a de-correlation method that transforms 

the original image dataset into the PCA domain and selects 

the most significant principal components (maximum 

Eigen-vectors) for image restoration [17]. Wavelet-based 

image de-noising is a multi-resolution image analysis 

technique that uses different mother wavelets such as 

Daubechies, Haar etc., to obtain wavelet coefficients. It has 

been used to de-noise Gaussian, salt and pepper, and 

Poisson noise using the appropriate thresholding operator 

[18], [19]. In recent years, the most promising non-local 

means, collaborative filtering method in the transform 

domain is block-matching and 3D filtering (BM3D) [20]. In 

this approach, similar 2D image patches are compiled into 

3D groups by the block matching process. The 

collaborative Wiener filtering is done in the transform 

domain on this 3D group. The improved versions of BM3D 

are given in [21], [22].  Curvelet filter is based on theory of 

multiscale geometry (i.e., position, scale, and orientation 

usage). It gives a better de-noising performance on edges 

and borders than state-of-the-art wavelet de-noising 

methods [23]. It uses ridgelet transform as a primary step, 

and curvelet sub-bands are formed with a filter-bank 

structure formed by trous wavelet filters. The 2-D 

contourlet transform provides spatial and directional 

resolution to keep contours and details intact [24]. 

The image restoration using fuzzy-based methods considers 

the image as a fuzzy set and its pixel values as its member. 

Fuzzy-based filters use fuzzy rules to design membership 

functions by calculating the gradient’s degree in various 

directions. The fuzzy impulse noise detection and reduction 

method calculate the gradient in eight directions for noisy 

pixel detection prior to the filtering [25]. In histogram fuzzy 

de-noising filters, the membership function is derived from 

the input histogram [26]. It consists of the fuzzy detection 

phase and cancellation phase. A detailed explanation of 

fuzzy-based techniques is given in [27], [14]. 

The image de-noising models can be grouped into 

analytical models (stochastic and deterministic) and 

machine learning-based models. In analytical models, 

forward de-noising model is explicitly known to the user, 

and the solution approach is used based on certain chosen 

criteria. The deterministic modeling of spatial filters is 

challenging for each image type. The edge deterioration and 

blurring are common artifacts in spatial and transform 

domain techniques. On the other hand, in the machine 

learning models, the inverse model is learned with the help 

of image datasets containing clean and noisy image pairs. 

The most important question arises: what is the relative 

advantage of machine (deep) learning approach over 

analytical methods? In deep learning models, computational 

burden exists in the learning phase, whereas the testing 

phase consists of a feed-forward model. Whereas analytical 

methods rely on a computationally demanding optimization 

process and heuristic selection of hyper-parameters is not 

the solution for getting good de-noising results. It has been 

observed that machine learning models give superior 

performance compared to analytical methods, as feature 

learning makes a single model apt for considerable 

variation in the noise level. 

Some de-noisers are based on an analytical optimization, 

which involves iterative process based on some stopping 

criteria. Although, analytical optimization is involved but it 

cannot be directly categorized in the machine learning 

domain which is basically a numerical optimization 

problem. Some of the important analytical optimization 

methods are total variation regularization [28] and weighted 

nuclear norm minimization (WNNM) [29]. Variational- 

based methods find the appropriate priors such as low-rank 

priors, non-local self-similarity priors, sparse priors, low-

rank priors, and gradient priors. WNNM assigns the weight 

to the singular value of an image and analytical 

optimization is done based on some energy function. 

 In recent years, there is a paradigm shift from analytical 

models to machine learning models owing to improved 

image quality assessment metrics. In the following section, 

machine learning-based image de-noisers are explained in 

detail. In this paper, the following convention is followed in 

explaining methods: 𝒚 is the noisy input image, 𝒙 is the 

clean image or ground-truth image, 𝒗 is the noise 

component added  𝒙 to generate 𝒚, and the final predicted 

de-noised image from de-noiser is 𝒙. 

C. MACHINE LEARNING BASED IMAGE DE-NOISING 

The machine learning image de-noising techniques have 

made considerable progress with introducing benchmark 

datasets for a particular application, deep learning 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3092425, IEEE Access

 

4 
 

advancements, and increased computational power with 

Graphical Processing Unit's (GPU's). They are further 

broadly classified into sparsity-based dictionary learning 

models, multi-layer perceptron models, convolutional 

neural network-based models, and generative adversarial 

network-based models. 

1) SPARSITY-BASED DICTIONARY LEARNING MODELS 

In the sparsity-based techniques, every image patch is 

constituted as a linear combination of several patches from 

an overcomplete dictionary 𝑫. The image encoding is done 

with the coding vector 𝜶 over a complete dictionary and 𝑙1-

norm sparse regularizer on coding vector 𝜶, i.e., 

‖𝜶‖1 𝑠. 𝑡. 𝒙 = 𝑫𝜶𝜶
𝑚𝑖𝑛 , following a generalized model given 

by [30], [31]: 

𝜶̂ = 𝑎𝑟𝑔 ‖𝒚 − 𝑫𝜶‖2
2

𝜶
𝑚𝑖𝑛 + 𝜆‖𝜶‖1                                     (7)                                                                                                

Here, 𝜆 is a sparseness-balancing regularization parameter, 

and ‖𝜶‖1 is 𝜶′𝑠 1-norm. Another design of the model uses 

‖𝜶‖0 (𝜶′𝑠 0-norm) in place of ‖𝜶‖1. K-Singular Value 

Decomposition (K-SVD) technique is the pioneering work 

that uses dictionary learning to frame the sparse 

representation model. The learning of this model can take 

place from the benchmark datasets as well as from the input 

image by K-SVD [32]. The K-SVD is the iterative process 

in which two consecutive steps take place sparse coding of 

the examples using the current dictionary and updating the 

dictionary atoms for optimum data fitting. Some other 

works as in  [33], [34] follow the same workflow like that 

of K-SVD with variation in dictionary and optimization 

problem. The clustering-based sparse representation 

involves a cost function (double header 𝑙1 optimization 

problem) in which both structural structuring and dictionary 

learning is used as the regularizer. A typical sparsity-based 

image de-noising algorithm is given in Algorithm 1. 

Algorithm 1: De-noising algorithm of sparsity-based de-

noiser [30] 

1. Input: 𝒚, where 𝒚 is the image observed in the noisy 

environment 

2. Find 𝒙 = 𝑫𝜶̂, where 𝑫 is a sparse dictionary 

constructed to suit 𝒙, 𝜶̂ is the sparsity constraint,  and 

𝜶 is an unknown parameter, 𝜆 is a sparseness-

balancing regularization parameter set according to: 

𝐿 =
1

2
‖𝒚 − 𝑫𝜶‖2

2 + 𝜆‖𝜶‖0 (‖𝜶‖0 may be replaced 

by ‖𝜶‖1) 

Such that 𝐿 is as low as possible 

3. Find the estimate of 𝒙 according to the following: 

𝜶̂ = 𝑎𝑟𝑔 min
𝜶

‖𝜶‖0  𝑠. 𝑡. ‖𝒚 − 𝑫𝜶‖2 < 𝛬, 𝒙 = 𝑫𝜶̂, 

where 𝛬 is a small-value limiting parameter  

4. Solve the above non-deterministic polynomial 

problem by using greedy pursuit or convex relaxation 

5. Output: 𝒙 

2) MULTI-LAYER PERCEPTRON MODELS 

The multi-layer perceptron (MLP) network, as shown in 

Fig. 2, is the feed-forward model that maps the input image 

vector (𝒚) with the output image vector (𝒙) with several 

intermediate hidden layers. The general equation of MLP 

network with two hidden layers is given by  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒙 = 𝒃𝟑 + 𝒘𝟑𝑡𝑎𝑛ℎ (𝒃𝟐 + 𝒘𝟐 tanh(𝒃𝟏 + 𝒘𝟏𝒚))               (8)                                                                                        

where 𝒘 is the weight matrix, 𝒃 is vector-valued bias, and 

an activation function is 𝑡𝑎𝑛ℎ, which operates component-

wise. The stochastic gradient is used for training with noisy 

and clean image pairs. The parameters of MLP are updated 

by back-propagation, minimizing the mean-square error. To 

increase the training efficiency, data normalization, proper 

weight initialization, and learning rate division is done. The 

noisy image is broken into overlapping patches, and each 

patch is de-noised separately. MLP estimates the de-noised 

version of the overlapping noisy patches, and then the 

average is calculated for overlapped de-noised patches [35]. 

There is an improvement in de-noising performance when 

de-noised patches are weighted by the Gaussian window. 

The MLP with four hidden layers uses time-series images 

and has shown significant improvement in keeping details 

and edges intact for SAR images [36]. The trainable non-

linear reaction-diffusion model [37] is a feed-forward 

Algorithm 2: De-noising algorithm of multi-layer 

perceptron-based de-noiser [35] 

1. Multi-layer perceptron (MLP) (supervised) learns a 

function 𝑓(. ): ℝ𝑚

 
→ ℝ𝑜 by training on a dataset, 

where 𝑚 and 𝑜 are the input dimensions and the output 

dimensions, respectively 

2. Given 𝒀 = {𝑦1 , 𝑦2, 𝑦3, … , 𝑦𝑚} and a target 𝑥, it learns a 

non-linear function approximator for either regression 

or classification  

3. Features 𝒀 are input to the MLP architecture, which 

has an input layer, one or more non-linear hidden 

layers, and an output layer that outputs 𝑓(𝒀) 

4. Each neuron in the hidden layer transforms the values 

from the previous layer as 𝑔(𝑤1𝑦1 + ⋯ + 𝑤𝑚𝑦𝑚), 

where 𝑔(. ): ℝ
 

→ ℝ is a non-linear activation function 

like hyperbolic tan function 

5. The output layer transforms the values received from 

the hidden layer into output values 

Sum 

Tanh Sum 

Weights 
Weights 

First Hidden Layer 

Output 

Layer Input 
Layer 

FIGURE 2. Multi-layer Perceptron Network [35] 
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architecture that embeds a standard non-linear diffusion 

model in the neural network. The number of layers of MLP 

is less because of vanishing gradient compared to 

convolutional neural networks that limit their performance. 

A multi-layer perceptron de-noising algorithm is given in 

Algorithm 2. This algorithm is in accordance with Fig. 3, 

which depicts a single hidden layer MLP. 

 

 

 

 

 

 

 

 

 

 

 

 

3) CNN-BASED DE-NOISING MODELS 

In recent years, the convolutional neural network (CNN) 

based models have shown significant improvement in 

various image quality metrics compared to other state-of-

the-art methods [39]. The success of CNN models can be 

attributed to large modeling capacity and significant 

advancement in network training and design. The CNN is 

designed for grid or matrix kind of data as input taking 

inspiration from the visual cortexes of animals. In CNN 

models, the convolutional kernel with learnable parameters 

is shared across all image positions. The convolutional 

kernel can be visualized as a feature extractor for a 

particular image restoration application. The convolutional 

layers have a cascade connection, so extracted features 

become more complex, hierarchically, and progressively. 

CNN model consists of an input layer, series of 

intermediate hidden layers, and the output layer. The 

convolutional kernel with learnable weights is applied on 

each layer, followed by some activation function. The 

output of each layer is fed as the input of the next one. The 

output of intermediate layers is termed as feature maps. The 

general equation of the intermediate feature maps (𝐹𝑀) of  

𝑙𝑡ℎ layer of CNN is given by [40] 

𝑭𝑴𝑗 = 𝐴(∑ 𝑭𝑴𝑖
𝑙−1 ∗ 𝒘𝑗𝑖

𝑙
𝑖𝜖𝑆𝑗

+ 𝒃𝑗 
𝑙 )                                   (9)   

where 𝑺𝑗  represents selection of the input feature 

map,  𝑭𝑴𝑖
𝑙−1 is the previous feature map, 𝒘𝑗𝑖

𝑙  is the weight 

of the convolution kernel of the 𝑙𝑡ℎ layer, 𝐴 is the activation 

function which can be a rectified linear unit, sigmoid 

function etc. and 𝒃𝑗 
𝑙  is the bias in the 𝑙𝑡ℎ layer. The training 

procedure involves optimizing parameters such as kernels 

by using clean and noisy image labels with stochastic 

gradient descent, Adam’s algorithm, etc. The Cost function 

optimization takes place during the training process. The 

mean square error between the clean image and its de-

noised version is the fundamental cost function. Fig. 4 

illustrates the basic architecture of CNN. Algorithm 3 gives 

CNN de-noising process. 
 

Algorithm 3: De-noising  algorithm of CNN based de-

noiser [38] 

1. Input noisy image 𝒚, noise standard deviation 𝜎 and 

clean image 𝒙 

i.e. 𝒚 = 𝒙 + 𝒗 

2. CNN Module: Input: input image or image plus noise 

level maps 

Intermediate units: Convolution + Batch Normalization 

+ Activation function 

Output unit: Convolution+ Residual learning 

3. Intermediate output is feature maps given by: 

𝑭𝑴𝑗𝑖 = 𝐴(∑ 𝑭𝑴𝑖
𝑙−1 ∗ 𝒘𝑗𝑖

𝑙 + 𝒃𝑗
𝑙

𝑖𝜖𝑀𝑗
), where 𝑭𝑴𝑖

𝑙−1 

represents the feature map of 𝑙 − 1 layer, 𝒘𝑗𝑖
𝑙  and 𝒃𝑗

𝑙are 

weight and bias of 𝑙 layer, 𝐴 is activation function, 𝑀𝑗 

is selection operator of feature maps. 

4. Residual learning implies 𝒙 = 𝒚 − 𝑅(𝒚) , where 𝑅 

represents residual learning CNN operator.                    

5. Loss function: 𝑙(Ɵ) =
1

2𝑁
∑ ‖𝑅(𝒚𝑖,Ɵ) − (𝒚𝑖 − 𝒙𝑖)‖

2𝑁
𝑖=1  

, where Ɵ denotes CNN parameters, 𝑁 are the number 

of images in the training dataset, 𝒚 and 𝒙 represent a 

noisy and clean image, 𝑅 is residual learning.                                                                                                           

6. If 𝑙(Ɵ) ≅ 0, model is trained, else retrain for the next 

epoch. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

3) GAN-BASED DE-NOISING MODELS 

The generative adversarial network (GAN)  uses generative 

modeling with two sub-models, termed generator and 

discriminator [41]. This network is designed to overcome 

deep generative model difficulty of learning complex 

probabilistic distributions. The generator model is used for 

extracting new plausible images from the problem domain, 
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FIGURE 3:  One hidden-layer MLP 
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         FIGURE 4: CNN Architecture for image restoration [39] 
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whereas the discriminator determines whether the generated 

image samples are real or fake. The discriminator model 

acts as an adversarial network. The main motive of the 

generator network is to obtain image samples that can 

disguise the discriminator network. Usually, the generator 

network maps the noisy image with the ground-truth, and 

the discriminator network uses the loss function to find the 

difference between the output image of the generator and 

the ground truth. The discriminator finds whether the 

predicted image by generator output 𝒙 = 𝐺(𝒚) is real or 

fake. The other de-noising methodology involves the 

extraction of noise blocks from the input noisy images with 

the GAN. Thereafter, generated noise blocks along with 

clean images form a training dataset for CNN to produce 

de-noised output [42]. The following equation represents 

GAN objective function : 
min 𝑚𝑎𝑥 

𝐺      𝐷
𝑉(𝐷, 𝐺) = 𝐸𝒙~𝑝𝑑𝑎𝑡𝑎(𝒙)[𝑙𝑜𝑔𝐷(𝒙)] +

𝐸𝒚~𝑝𝒚(𝒚)[log (1 − 𝐷(𝐺(𝒚)))]                                         (10) 

where 𝐷(𝒙) is the discriminator model, 𝐺(𝒚) is the 

generator model, 𝑝𝑑𝑎𝑡𝑎(𝒙) is the real data distribution, 

𝑝𝑦(𝒚) is the generated data distribution (i.e., input noisy 

image 𝒚), and 𝐸 is the expected output. Fig. 5 shows the 

architecture of GAN for image restoration. Algorithm 4 

gives GAN de-noising pseudocode. TABLE I gives 

advantages and disadvantages of different machine learning 

image de-noisers. 
Algorithm 4: Image de-noising for GAN-based image de-

noiser [41], [42] 

1. Input noisy image (𝒚) to Generator 𝐺; 𝑝𝒚(𝒚) being the 

noise distribution. 

2. Generator generates reconstructed image data 𝐺(𝒚) 

with distribution 𝑝𝒈(𝒚)  

3. Pass original image data (𝒙) with distribution 𝑝𝒙(𝒙) 

and reconstructed image data 𝐺(𝒚) to the 

discriminator  

4. Discriminator 𝐷 outputs the probability of the input 

belonging to the original data  

5. 𝐺 and 𝐷 play a two-player minimax game in an 

adversarial setup, in which 𝐺 and 𝐷 try to minimize 

and maximize a value function based on binary cross-

entropy function 𝑉(𝐺, 𝐷) = 𝐸𝒙~𝑝𝒙
[𝑙𝑛𝐷(𝒙)] +

𝐸𝒚~𝑝𝒚
[𝑙𝑛(1 − 𝐷(𝐺(𝒚))] respectively 

6. Training of GAN: optimize the value function as 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐺, 𝐷) 

a) Fix the learning of G: update generator 

parameters (θD) by gradient ascent using 𝑚 

data samples and 𝑚 fake samples as 
𝜕

𝜕𝜃𝐷

1

𝑚
[𝑙𝑛𝐷(𝒙) + 𝑙𝑛(1 − 𝐷(𝐺(𝒚))] 

For fixed G, 𝑉(𝐺, 𝐷) will be maximum for 

𝐷(𝒙) =
𝑝𝒙(𝒙)

𝑝𝒙(𝒙)+𝑝𝒈(𝒚)
 

b) Fix the learning of D: update discriminator 

parameters (θG) by gradient descent using 𝑚 

fake samples as 

𝜕

𝜕𝜃𝐺

1

𝑚
[𝑙𝑛(1 − 𝐷(𝐺(𝒚))] 

For fixed 𝐷, 𝑚𝑖𝑛𝐺𝑉 = 2𝐽𝑆(𝑝𝒙||𝑝𝒈) − 2𝑙𝑛2 is 

evaluated, where 𝐽𝑆(. ) is known as Jensen-Shannon 

divergence. 

7. Training of GAN ends when 𝐽𝑆(𝑝𝒙||𝑝𝒈) becomes 0, 

i.e., 𝑝𝒙 = 𝑝𝒈 and 𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐺, 𝐷) = −2𝑙𝑛2 

 

 
 
 
 
 
 
 
 
 
II. MACHINE LEARNING BASED GAUSSIAN DE-
NOISERS 

The Gaussian noise de-noisers are used in many important 

applications such as MRI de-noising, optical coherence 

tomography images, natural images, etc. The CNN-based 

machine learning model has shown tremendous 

improvement in image quality assessment metrics as 

compared to other state-of-the-art networks. The CNN 

based de-noisers have excelled in Gaussian noise de-

noising but real world image de-noising is still a 

challenging problem. The Gaussian de-noisers are being 

designed for adaptive white Gaussian, spatially variant 

Gaussian noise, and blind Gaussian noise. The two 

important benchmark datasets BSD-68 and Set-12 are used 

for comparative analysis for Gaussian de-noisers. The 

CNN-based models follow discriminative learning while 

GAN’s are generative learning models. CNN models 

require supervised learning, i.e., the availability of noisy 

and clean image pairs in training datasets. In the recent 

works, we are progressing towards unsupervised learning 

due to the lack of clean-noisy image pairs for real-world 

applications. The training of deep learning models involves 

optimization of the loss function, which consists of data 

fidelity term and regularizar. The different de-noiser 

variants are designed by changing the loss function, the 

number of layers, training dataset size, activation functions, 

and so on. The following section describes some 

benchmark machine learning models which are used for 

image de-noising: 

A. METHODOLOGIES OF DICTIONARY LEARNING 
MODELS (GAUSSIAN NOISE) 

The dictionary learning models achieve sparse 

representation by updating the dictionary with the training 

images. The fixed dictionary is limited to a specific type of 

images, whereas atoms of the learned basis dictionary are 

empirically learned for any family of images. The learned 

dictionary provides more efficient image priors for 

Bayesian estimation as compared to the fixed dictionary. 

The Gaussian dictionary learning techniques are K-SVD  

Noisy Image Generator Fake Images 

Discriminator Real Images 

FIGURE 5: Basic GAN Architecture for image restoration 
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[32], locally learned dictionary (KLLD) [43], non-local 

hierarchical learning with wavelets [44], mean-corrected 

atoms dictionary learning [45]. The K-SVD algorithm finds 

the best dictionary for the 𝑁 image samples by solving the 

following sparsity equation in which dictionary 𝑫 is 

initialized with 𝑙2 normalized columns 

||𝒚 − 𝑫𝜶||𝐹
2

𝑫,𝜶
𝑚𝑖𝑛  such that ||𝜶𝑖||0 ≤ 𝑇0                            (11)                                                           

In the above equation, 𝑇0is the no. of non-zero entries in 

representation vector 𝜶. The two iterative steps are the 

sparse coding stage and the codebook or dictionary update 

stage. In the sparse coding step, pursuit algorithm is used 
for the computation of the representation or sparse vector 𝜶 

for each input image 𝒚, by solving the following equation 

||𝒚𝑖 − 𝑫𝜶𝑖||2
2

𝛼𝑖
𝑚𝑖𝑛  such that ||𝜶𝑖||0 ≤ 𝑇0                         (12) 

The next step is the dictionary update stage. Out of 𝐾 

columns of the dictionary, i.e., 𝐾 atoms, each atom is 

updated considering one at a time. The image input 

examples that use a particular atom are retained, the rest of 

the examples are discarded. The contribution of other atoms 

is also subtracted from the representation vector. Now, the 

overall representation error is minimized by singular vector 

decomposition (SVD) to update the dictionary. The 

flowchart of K-SVD algorithm is given in Fig. 6. 

KLLD algorithm involves clustering, dictionary selection, 

and coefficient calculation. In clustering local, features 

capture the local structures of the image data. The next step 

that is dictionary selection is the optimization according to 

the clustering done in the first step. In the final step, 

coefficients are calculated for dictionary atoms, which are 

linearly combined subjected to the kernel weights. The non-

local hierarchical dictionary learning is achieved by sparsity 

and multiresolution analysis of wavelets in each 

decomposition level. Recently, K-SVD algorithm is 

modified based on dictionary learning with mean corrected 

atoms, which outperformed K-SVD in terms of PSNR. In 

[46], the authors propose to break up the noisy image into 

patches and treat the vectorized version of each patch as 

signals, thereby restricting the dimensionality of each atom 

in the dictionary. The size of the patch is chosen to allow 

for enough details of the underlying signal. Overlapping 

patches are chosen to reduce blocking artifacts that might 

result at the boundaries. Dealing with patches as signals, the 

K-SVD algorithm can be effectively scaled to de-noise 

large images. The algorithm is given in Algorithm 5. 

Algorithm 5: De-noising algorithm of sparsity-based 

dictionary learning models [46] 

1. Input image 𝒀 = 𝑨 = {𝐴1, 𝐴2, … , 𝐴𝑛} (𝒀 is expressed 

as a set of 𝑨 signals) 

2. De-noise 𝒀 via an ill-posed problem of finding patches 

𝒁, where 𝑨 = 𝒁 + 𝒗 

3. De-noised image patches 𝒁 are obtained with the help 

of an optimization problem, which aims at minimizing 

the following cost function: 

𝑿̂, 𝒁̂ = arg 𝑚𝑖𝑛𝑿,𝒁 ‖𝒁 − 𝑨‖2
2 + 𝛽‖𝑫𝑿 − 𝒁‖𝐹

2

+ ∑ 𝜇𝑖
𝑖

‖𝒙𝑖‖0 

4. It is solved in terms of smaller optimization problems 

defined as: 

𝒙𝑖̂, 𝒁̂ = arg 𝑚𝑖𝑛𝒙𝑖,𝒁 ‖𝒁 − 𝑨‖2
2 + 𝛽‖𝑫𝒙𝑖 − 𝑹𝑖𝒁‖𝐹

2 +

∑ 𝜇𝑖𝑖 ‖𝒙𝑖‖0, where 𝑹𝑖 selects 𝑖𝑡ℎ particle from 𝒁, i.e., 

𝒛𝑖 = 𝑹𝑖𝒁, and 𝛽 is a parameter that depends on noise 

variance 

5. The cost function minimizes the error between the 

restored image and the input noisy image, under the 

assumption that each patch in the input image can be 

represented as a sparse linear combination of patches in 

the dictionary 𝑫 

6. The closed form solution of the above optimization 

problem: 

𝒁̂ =
𝛽𝑨 + ∑ 𝑹𝑖𝑫𝒙𝑖𝑖

𝛽𝑰 + ∑ 𝑹𝑖
𝑻𝑹𝑖𝑖

 

B. METHODOLOGIES OF CNN-BASED MODELS 
(GAUSSIAN NOISE) 
 

The de-noising CNN ( DnCNN) is the benchmark de-noiser 

which is being used for image restoration tasks like image 

super-resolution and JPEG image de-blocking apart from 

the Gaussian image de-noising [38]. DnCNN model 

overcomes the disadvantage of trainable non-linear 

reaction-diffusion (TNRD) and a cascade of shrinkage 

fields [47], which uses specific priors based on the analysis 

model. So, the priors fail to capture image structures 

effectively. Moreover, many handcrafted parameters are 

used during stage-wise greedy training in combination with 

joint fine-tuning.  

The additive noise (𝒗) is combined with the clean image 

(𝒙) to form the noisy image (𝒚). The DnCNN model uses 

residual learning with the batch normalization module. In 

residual learning, the CNN learns the noise component 

instead of a de-noised image. The residual learning model 

is given by 𝑅(𝒚) ≈ 𝒗, and the desired output image is 𝒚 −
𝑅(𝒚). The batch normalization achieves faster training by 

mini-batch stochastic gradient by reducing the internal co-

variate shift. It is implemented by normalization and scale + 

shift step before non-linearity in each layer. In the 𝑙 depth 

network, the first layer is a convolutional layer with ReLU 

activation, which uses sixty-four filters (3 x 3 x no. of 

image channel) to give sixty-four feature maps as output. 

The intermediate layers are repeated units of convolution 

(sixty-four filters of size 3 x 3 x 64) and 

Input 

Noisy 

Image 
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Coding Step 

Dictionary 
Update Step 

De-noised 

Output 

Image 

Fix 
dictionary 

𝑫,  find 
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representatio
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FIGURE6: Flow Chart of K-SVD algorithm [32] 
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ReLU activation with batch normalization. The concluding 

layer is a convolutional layer which uses same number of 

filters as the number of image channels of size 3x3x64.  

The model gives same de-noising results with both 

stochastic gradient descent and Adam’s algorithm by 

optimizing the following loss function: 

𝑙(Ɵ) =
1

2𝑁
∑ ‖𝑅(𝒚𝑖,Ɵ) − (𝒚𝑖 − 𝒙𝑖)‖

2𝑁
𝑖=1                           (13)                                                                                          

where Ɵ denotes DnCNN parameters, 𝑁 are the number of 

images in training dataset, 𝒚 and 𝒙 represent a noisy and 

clean image, 𝑅 is residual learning. There are other de-

noisers variants whose basic architecture resembles with 

DnCNN network. Wavelet de-noising CNN i.e., WDnCNN 

[48] uses residual learning in the novel feature space of the 

wavelet domain.  In this method, the network is trained 

with four decomposed wavelet sub-bands, and the 

architecture is the same as that of DnCNN. SCNN [49] is 

residual learning-based model which uses soft shrinkage 

activation function for varying noise levels of the input 

image. 

 IDCNN [40] is another deep convolutional neural network 

that follows the same residual learning architecture as that 

of DnCNN without incorporating batch normalization. This 

network fails to converge with stochastic gradient descent 

because of the gradient explosion. So, this network clips the 

gradient in the specific pre-defined interval, i.e., gradient 

clipping procedure. It has been observed that network 

performance improves as the depth of the network increases 

from four to ten. In this model, a non-fixed noise mask is 

used during the process so that a single model can be used 

for different noise levels. The loss function of IDCNN is 

given by 

𝑙(Ɵ) = ‖𝒙 − 𝒙‖2    (14), where 𝒙 and 𝒙 denote clean and 

estimated images respectively.  

The ECNDNet [50]  is a residual learning model which 

follows the loss function given in equation (13). The 

architecture is the same as that of DnCNN. The main 

feature of the ECNDNet network is the usage of dilated 

convolution to increase the receptive field size. It reduces  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the computational cost and enhances the extraction of more 

context information. Batch Normalization Residual 

Network (BRDNet) also uses residual learning, batch re-

normalization, and dilated convolution to address the 

problem of internal co-variate shift for extraction of more 

features [51]. Deep iterative down-up CNN (DIDN), 

densely connected hierarchial denoising network (DHDN) 

[52], and multi-level wavelet CNN (MWCNN) [53] are 

based on UNet [54] architecture which was designed for the 

semantic segmentation. The deep iterative down-up CNN 

(DIDN) [55] is also based on receptive field size variation 

for improving de-noising results. It consists of four stages: 

initial feature extraction, down-up block, reconstruction, 

and enhancement. The initial feature maps are extracted by 

convolution followed by iterative up and down sampling of 

feature maps by down-up block. The outputs of all the 

down-up blocks are fed into the reconstruction block, which 

has convolutional and parametric rectified linear units. The 

concatenated output of the reconstruction block is fed into 

an enhancement block with a convolution unit. DHDN 

network uses modified Unet architecture to learn large 

number of parameters, solves vanishing gradient by 

residual learning and dense connectivity to convolution 

layers. In MWCNN, multiwavelet transform is integrated 

into UNet architecture to increase the receptive field size by 

reducing the resolution of feature maps. 

The fast and flexible de-noising convolutional neural 

network (FFDNet) is the fastest in terms of implementation 

time, and it can handle spatially variant Gaussian noise 

[56]. The unique feature of this model is that unlike other 

networks, the mapping function contains a noise level map 

in the input. The noise level map plays a crucial role in 

keeping the trade-off between noise reduction and detail 

preservation. Conventionally, the mapping function learns 

de-noised images from noisy images, CNN parameters, and 

Gaussian noise standard deviation. In FFDNet, the CNN 

parameters are not affected with variation in Gaussian noise 

level. It works on downsampled sub-images, which tend to 

increase the receptive field. The architecture of FFDNet has 

the same units as that of DnCNN, i.e., convolutional  
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FIGURE 7: Block diagram depicting the architecture of DnCNN, IDCNN, SCNN and FFDNet 
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operator in the first layer, repeated units of convolution, 

batch normalization, and ReLU activation, concluded with  

the convolutional layer. The Adam’s algorithm [57] is used 

for training to minimize the following loss function. 

𝑙(Ɵ) =
1

2𝑁
∑ ‖𝐹(𝒚𝑖,𝑴𝑖,Ɵ) − (𝒙𝑖)‖

2𝑁
𝑖=1                              (15)                                                                                          

where 𝐹 denotes FFDNet learning function and 𝑴 is noise 

level map. 

Some models like NN3D [58] and graph CNN [59] which 

exploits non-local and local similarities through non-local 

filter and graphical signal processing. The NN3D uses 

standard pre-trained CNN in cascade connection with 

standard non-local filter. The DnCNN, IDCNN, and 

FFDNet focus towards local features with biased receptive 

field. The NN3D integrates non-local features in a single 

modular framework to further improve de-noising 

performance. Similarly, graph CNN also exploits the non-

local similarities by incorporation a graphical convolutional 

layer. The graph CNN layer works on feature maps to 

aggregate similar spatially adjacent and spatially distant 

pixels. The averaging of local and non-local pixels is done 

to produce the desired feature map. Universal Denoising 

network (UNet and UNLNet) is another network that 

integrates convolution and non-local filtering layers for 

both gray and color image denoising [60]. Fig 7 depicts the 

block diagram of the combined architecture of DnCNN, 

IDCNN, SCNN, and FFDNet. 

The models, namely PDNN[61], IRCNN [62] and DRUNet 

[63] integrate the observational model with deep CNN’s 

discriminative learning. The model-based methods require 

several iterative steps to solve the optimization problem, 

but they are utilized to solve different image restoration 

tasks like de-blurring, super-resolution, and de-noising with 

the single model with the help of an image degradation 

matrix. They utilize the powerful de-noising capabilities of 

CNN and prior of the observational models in a single 

modular framework. In [61], [62], model based 

optimization is merged with robust image priors with 

variable splitting technique. The variable splitting reduces 

the number of CNN parameters and enhances the CNN 

training efficiency. The observation model is unfolded into 

discriminating CNN learning, which is composed of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

multiple de-noisers modules interleaved with back-

projection (BP) that ensure the observation consistencies. 

DRUNet [63] is the improved version of IRCNN and its 

methodology involves usage of CNN as deep denoiser prior 

accompanied by half quadratic splitting based iterative 

algorithm for solving deblurring, super-resolution, 

denoising and color image demosacking. 

Recently, the attention-guided de-noising convolutional 

neural network (ADNet) [64] has outperformed all previous 

CNN’s. They are specifically designed to overcome the 

disadvantage of increment in network length. As the length 

of the network increases, the influence of shallow layers 

becomes weak in de-noising performance. It is divided into 

four major modules; sparse block (SB), feature 

enhancement block (FEB), attention block (AB) and 

reconstruction block (RB). The SB reduces the depth and 

improves the efficiency of the network with the usage of 

convolution and dilated convolution operator. It is twelve 

layer block with dilated Conv + BN + ReLU (second, fifth, 

ninth, and twelfth layer) and Conv + BN + ReLU in the rest 

of the layers. The next (13th to 16th) layers form FEB to 

create robust features by merging global and local features. 

The first three layer of FEB is Conv + BN + ReLU, and the 

fourth layer is Conv. The output of the Conv layer and 

input noisy is concatenated to improve the representation 

capability further. It is followed by the usage of tanh 

activation for the non-linearity. The AB consists of just one 

Conv layer, which compresses the features into the weights 

to modify the previous layer output. RB is the final stage, 

which incorporates subtractor for the residual learning 

process. The architecture of ADNet is given in Fig. 8. The 

fully convolutional encoder-decoder structure with skip 

connections is also used for Gaussian and speckle noise 

removal [65]. 

The PReLU (parameteric rectified linear units) and edge 

aware based CNN de-noiser is one of the latest works that 

has produced good PSNR results for both BSD-68 and Set-

12 compared to other networks [66]. It is improvised 

DnCNN network with PReLU as an activation function 

which learns the slope in negative direction as well. The 

inclusion on principal component analysis on the feature  

 Tanh Cat Conv 

AB FEB 

Input 
Noisy 

Image 

                     
SB 

Output 

Image 

Conv+BN+ReLU 

FIGURE8: Architecture of ADNet [64] 
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TABLE I 

ADVANTAGES AND DISADVANTAGES OF DIFFERENT MACHINE-LEARNING MODELS 

Machine-

learning model 

Advantages Disadvantages 

Dictionary- 
learning model 

• Dictionary-learning models are powerful tools for 

many image restoration, de-noising and 

recognition tasks 

• Most local image patches can be well 

approximated by a sparse linear combination of 

basis atoms 

• Constructing dictionaries adaptive to the input 

image via some learning process helps achieve 
better sparsity that fixed orthogonal dictionaries 

like DCT, and wavelets 

• Dictionary-based learning models help preserve 

minute details and texture of images that undergo 

noise addition 

• Most dictionary-learning methods consider an 

over-complete dictionary and formulate the 

learning process as a minimization problem 

• Minimization problems are very challenging and 

mostly non-convex 

• Minimization in such a case is usually greedy and 

computational demanding 

• If correlations among dictionary atoms are not well 

constrained, the redundancy of the dictionary does 

not necessarily improve the performance of sparse 
coding 

Multi-layer 

perceptron 
model 

• Capability to learn non-linear models 

• Capability to learn models in real-time (on-line 

learning) 

• MLP with hidden layers have a non-convex loss 

function where there exists more than one local 
minimum. Therefore different random weight 

initializations can lead to different validation 

accuracy 

• MLP requires tuning a number of hyper-parameters 

such as the number of hidden neurons, layers, and 
iterations 

• MLP is sensitive to feature scaling 

CNN • Less number of parameters as compared to fully 

connected neural networks 

• Apt for both known and blind Gaussian de-noising 

• Concept of transfer learning i.e. the weights 

learned by CNN can be used by other network. 

• Many methodologies are being designed owning 

to simple architecture and mathematical modelling 
. 

• Analytical approaches have advantage over CNN 

in merging prior into the inverse problem solution 

• Non-avaibaility of image databases for medical 

image de-noising and classification 

• Difficulty in case of unsupervised learning in real 

world scenario. 

GAN • Unsupervised learning method; can be trained 

using unlabelled image data as they learn internal 

representations of data 

• Generate data similar to real image data; can 

generate images indistinguishable from the real 

data 

• Learn complex distributions of image data 

• Discriminator is a classifier that can classify 

objects 

• Fail to model a multimodal probability distribution 

of data; suffer from mode collapse. Sometimes, 

suffer from complete collapse (generated samples 

are virtually identical) 

• Suffer from the problem of vanishing gradients; 

training of the initial layers in the net is either 
extremely slow or effectively stops  

• Internal covariance shift is induced by a change in 

the input distribution; this slows down the training 

• Training of GANs can be comparatively slow 

owing to the above reasons  

maps in sixteenth layer has led to the extraction of more 

features. The final step is cascading the network with an 

adaptive bilateral edge aware filter to further refine the edge 

and texture details. 

C. METHODOLOGIES OF GAN-BASED MODELS 
(GAUSSIAN NOISE) 

The GAN network given [67] in uses DenseNet CNN as the 

generator network to ease up the vanishing-gradient 

problem and Wasserstein-GAN as the loss function.  The 

generator network outputs an estimated ground truth image 

from the noisy image, whereas the discriminator eliminates 

the difference between the generator output and the ground-

truth image. The generator network follows the architecture 

of DenseNet with eight Dense Blocks, along with input, 

output, and bottleneck convolution block. The generator 

extracts both low-level and high-level features efficiently. 

The discriminator network uses leaky ReLU as the 

activation function and layer normalization instead of batch 

normalization. It has eight convolutional layers and two 

fully connected layers, which assign a probability to 

generated images and ground-truth images. The value 

function of de-noising GAN network is given by  
min 𝑚𝑎𝑥 

𝐺      𝐷 ∈ 𝐷
𝑉(𝐷, 𝐺) = 𝐸𝒙~𝑝𝑑𝑎𝑡𝑎(𝒙)[𝐷(𝒙)] − 𝐸𝒚~𝑝𝒚(𝒚)[𝐷(𝒚)]                                                                             

(16) 

where 𝐷 is the set of 1-Lipschitz functions. The objective is 

to make an approximation of  𝐾. 𝑊(𝑝𝑑𝑎𝑡𝑎(𝑥), 𝑝𝑦(𝑦)), in 

which 𝐾 is a Lipschitz constant and 𝑊 is a Wasserstein 

distance. The gradient penalty term is added so that the 

gradient of the discriminator network does not exceed 𝐾, 

and is given by 

𝜆𝐸𝒚~𝑝𝒚(𝒚)[(‖𝛻𝒚𝐷(𝒚) − 1)2]‖
2
                                        (17)                                                                                                            

Loss function is the combination of content loss and 

adversarial loss given as 

𝑙 = 𝜆𝑙𝐺𝐴𝑁 + 𝑙𝑐𝑜𝑛𝑡𝑒𝑛𝑡                                                        (18)                                                                                                

where, content loss is given by 𝑙1 or 𝑙2 norm, and 
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adversarial loss is given by Wasserstein-GAN critic 

function. 

The GAN-CNN based blind de-noiser (GCBD) model [42] 

extracts noise blocks from the clean images. The GAN 

produces a noisy block instead of the de-noised image. The 

noisy blocks extracted from the GAN are used for the 

creation of a training dataset for CNN. The GCBD model is 

a cascade connection of GAN followed by CNN. The 

generated blocks by GAN along with extracted noise blocks 

are used for training the discriminative learning based 

CNN. The GCBD can be used when there is an absence of 

paired data for the supervised training of CNN. It gives 

promising results for Gaussian noise, mixed noise, and real-

world noisy images. The limitation is that noise is taken 

only as additive white noise with zero-mean. 

 
III. MACHINE LEARNING BASED IMPULSE DE-NOISERS 

A. METHODOLOGIES OF DICTIONARY LEARNING 
MODELS (IMPULSE NOISE) 

Wang et al. have proposed an adaptive dictionary-learning-

based method to preserve image structure in impulse-

contaminated images with the help of a robust 𝑙1-norm 

data-fidelity term to help impulse noise cancellation [68]. In  

this algorithm, the restoration problem is mathematically 

formulated into an  𝑙1 − 𝑙1 minimization objective and 

solved under the augmented Lagrangian framework through 

a two-level nested iterative procedure. The algorithm has 

high image restoration power to produce restored images 

with a high PSNR value. Guo et al. [69] have introduced a 

novel algorithm to enhance image sparsity to help remove 

salt and pepper noise removal with a fast multiclass 

dictionary learning, and then both the sparsity 

regularization and robust data fidelity are formulated as 

minimizations of 𝑙0 − 𝑙0 norm for impulse noise removal. 

Additionally, a numerical algorithm of modified alternating 

direction minimization is derived to solve the proposed de-

noising model. This algorithm excels in image detail 

preservation. Deka et al. in [70] have proposed a novel two-

stage de-noising method for removing random-valued 

impulse noise from an image. In the first stage, an impulse 

noise detection scheme is used to detect the pixels which 

are likely to be corrupted by the impulse noise, viz., noise 

candidates. In the second stage, the noise candidates are 

reconstructed by the image impainting method based on 

sparse representation in an iterative manner until 

convergence is achieved. This algorithm works well in 

terms of both visual and quantitative aspects. 

B. METHODOLOGIES OF CNN-BASED MODELS 
(IMPULSE NOISE) 

Chen et al. have proposed a blind CNN architecture for 

random-value impulse noise (RVIN) removal [71]. This 

improvised de-noising mechanism for RVIN suppression 

works on the principle of flexible noise ratio prediction, 

which proved to be better than DnCNN-based RVIN 

suppression by eliminating unnecessary dependence on the 

exact perception of the noise ratio. Random patches are 

selected from the RVIN-corrupted test image and feature 

vectors that indicate whether the centre pixel is 

contaminated or extracted by the predictor. These feature 

vectors are composed of numerous statistics, viz., the 

multiple rank-ordered absolute differences (ROADs), the 

clean pixel median deviation (CPMD), and the edge pixel 

difference (EPD). They are rapidly mapped to noisy/clean 

(1 for noisy, 0 for clean) labels by the pre-trained noise 

detector. According to the ratio of the obtained noisy labels 

to the total number of selected patches, the predictor 

provides the noise ratio of the whole image. From the 

output of the NRP, i.e., the predicted noise ratio, the most 

appropriate DnCNN specifically trained for this noise ratio 

is exploited for de-noising. Under the guidance of the NRP, 

the proposed method has the ability to handle unknown 

noise ratios. This method performs well in terms of 

execution efficiency and image restoration. Turkmen  [72] 

has proposed an artificial neural network for de-noising 

RVIN-incorporated images by detecting the noisy pixels. 

The statistics used to detect the RVIN noisy centres are 

rank-ordered absolute differences (ROADs), and rank-

ordered logarithmic difference (ROLD) values. These are 

the inputs to the ANN for the detection process. After the 

detection process is completed, the corrupted pixels are 

restored by the edge-preserving regularization (EPR) 

method, allowing edges and noise-free pixels to be 

preserved. This mechanism works well in the presence of 

high-density RVIN. 

Li et al. [73] have improvised the usage of densely 

connected convolutional networks (DenseNet) to de-noise 

images  corrupted by impulse noise with the help of CNN 

to learn pixel-distribution features from noisy images. The 

proposed method, viz., a densely connected network for 

impulse noise removal (DNINR), captures the pixel-level 

distribution information using wide and transformed 

network learning. This mechanism shows significantly 

better results in terms of edge preservation and noise 

suppression.  

Khaw et al. [74] have used an efficient CNN with particle 

swarm optimization (PSO) for high-density impulse noise 

removal. This high-density impulse noise detection and 

removal model mainly consists of two parts: impulse noise 

removal and impulse noisy pixel detection for restoration. 

The deep CNN architecture facilitates the de-noising 

procedure to filter out noise from the noisy images. The 

PSO algorithm optimizes the threshold values for detecting 

impulse noisy pixels. The method is robust and works well 

on both gray and colour images in terms of both qualitative 

and quantitative aspects.  

The RVIN can also be removed with the combination of 

classifier and regression CNN [75]. Classifier network 

separates noisy and noise-free pixels. Thereafter, the 

regression network uses noise-free pixels along with the 

original noisy input image to predict the output image. 

Batch Normalization is embedded in both classifier and 

regression network to accelerate the de-noising 

performance.   
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Fig.9 shows the overall architecture of the Impulse-noise 

removal model. The first step is the extraction of a random  

patch from the noise-corrupted image, and then a classifier 

N/W is used to predict noisy labels. Thus, the noise-

contamination determiner determines the predicted labels 

(PLs) in case of Jin et al., and extracts feature vectors (FVs) 

in case of Chen and Turkmen. These feature vectors are 

composed of numerous statistics, viz., ROADs, CPMD, 

EPD, ROLD, etc. Finally, a de-noiser N/W is used to de-

noise the contaminated image based of the identified noisy 

centres. 
IV. MACHINE LEARNING BASED POISSON DE-
NOISERS 

Poisson noise is a special type of noise that is not additive 

in nature. Unlike the Gaussian noise, the noise power is 

measured by the peak value as its strength is dependent on 

the image intensity. It is natural to define the noise power in 

an image by the maximal value in the image, i.e., its peak 

value. Thus, Poisson de-noisers are described in terms of 

the peak value as the strength of the noise power.  

A. METHODOLOGIES OF DICTIONARY LEARNING 
MODELS (POISSON NOISE) 

Giryes et al. [76] have proposed a novel method to apply 

the sparse-representation technique to image patches 

extracted, adopting the same exponential idea. The 

proposed algorithm uses greedy pursuit with boot-strapping 

based stopping condition and dictionary learning within the 

de-noising process. The stopping criterion is novel in its 

nature. The paper effectively migrates from the Gaussian 

Mixture model (GMM) to a dictionary-learning based 

model by resolving the difficulties involved in the 

conversion process. The reconstruction performance of the 

proposed scheme is competitive with leading methods in 

high SNR, and achieving state-of-the-art results in cases of 

low SNR. 

B. METHODOLOGIES OF CNN-BASED MODELS 
(POISSON NOISE) 

Kumwilaisak et al. [77] have proposed a method 

(CNN+LSTM) based on Deep Convolutional Neural and  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Multi-directional Long-Short Term Memory Networks to 

de-noise images of Poisson noise. CNN layers are used to 

extract image features and to estimate noise bases in the 

images, and the multi-directional LSTM layers are 

efficiently used to memorise the statistics of residual noise 

components, which possess long-range correlations and are 

sparse in the spatial domain. The Blahut-Arimoto algorithm 

is used to numerically derive a distortion-mutual 

information function for the image de-noising algorithm. 

The algorithm shows state-of-the-art performance in terms 

of objective and subjective qualities. Su at al. [78] have 

proposed a novel method to tackle the problems caused due 

to Poisson noise in the low-light imaging field. This 

proposal is that of a deep multi-scale cross-path 

concatenation residual network (MC2RNet) which 

incorporates cross-path concatenation modules for de-

noising. MC2RNet learns the remnant residue between the 

noisy and the latent clean image to facilitate the model 

training procedure. This method opts for blind Poisson 

training over discriminative de-noising algorithms to train a 

single model for handling Poisson noise with different 

levels. The algorithm shows a better performance in terms 

of peak signal-to-noise ratio and visual effects. Ramez et al. 

[79] have proposed a flexible and data-driven method to de- 

noise Poisson-corrupted images, which reduces the heavy 

ad hoc engineering load occurring due to computational 

post-processing in the contemporary de-noising procedures. 

They have used a powerful framework of deep CNNs and a 

training mechanism that trains the same network with 

images having a specific peak value. Thus, by using a 

supervised approach and the representation capabilities of 

deep CNNs, and using a specific class of images for 

training, the authors have presented a comparatively simple 

method that shows state-of-the-art performance both 

qualitatively and quantitatively and is an order of 

magnitude faster than other methods. Ramez et al. [80] 

have introduced a methodology that exploits the 

architecture of a fully convolutional CNN that uses shallow 

layers to handle local noise statistics and deeper layers to 

recover edges and enhance textures. The de-noiser is made 
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FIGURE 9: Block Diagram depicting the basic concept of impulse de-noisers 
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class-aware by exploiting semantic class information that 

boosts performance, and enhances textures, and reduces 

artifacts. The residual learning based Gaussian de-noiser 

(DnCNN) [38], discussed in section 2.2 can also be trained 

for Poisson noise removal with training with Poisson noise 

corrupted data patches and relevant hyper-parameter 

settings  [77]. 
V. MACHINE LEARNING BASED MIXED NOISE DE-
NOISERS 

The extraction of the clean image from mixed noise 

corrupted image is very complex problem because of the 

high-level of non-linearity in the noise distribution. The 

combination of Gaussian and impulse noise is present in 

many practical applications. The CNN based transfer 

learning models, dictionary learning model, and variational 

based mixed noise model are the machine learning models 

developed for mixed-noise removal. The comparative 

analysis of various mixed noise models is difficult as mixed 

noise can be modeled in different ways. The expression of 

noisy image pixel 𝑦 obtained by corruption with the 

Gaussian and SPIN noise is given by 

𝑦 = {

𝑑𝑚𝑖𝑛 with probablity 𝑝/2
𝑑𝑚𝑎𝑥   with probablity 𝑝/2

𝑥 + 𝑣   with probablity 1 − 𝑝
}                              (19) 

 

where 𝑑𝑚𝑖𝑛 and  𝑑𝑚𝑎𝑥  are minimum and maximum value in 

the entire image dynamic range with probability of 𝑝/2. 

The AWGN noise 𝑣 is added with the probability 1 − 𝑝. 

Similarly, the expression of noisy image pixel 𝑦 obtained 

by the corruption with the SPIN, RVIN and Gaussian noise 

is given by: 

𝑦 = {

𝑑𝑚𝑖𝑛 with probablity 𝑝/2
𝑑𝑚𝑎𝑥   with probablity 𝑝/2

   𝑑  with probablity   𝑟(1 − 𝑝)

𝑥 + 𝑣   with probablity (1 − 𝑟)(1 − 𝑝)

}            (20)                                                                                      

where 𝑑 is random pixel value with the probability 𝑟(1 −
𝑝). 

A. METHODOLOGIES OF DICTIONARY LEARNING 
MODELS (MIXED NOISE) 

The dictionary learning models are designed for mixed 

Gaussian noise of different standard deviation and mixed 

Gaussian-impulse noise [84]. The energy minimization 

model with the weighted 𝑙2 − 𝑙0 norm is being used for 

mixed noise removal such as Gaussian-Gaussian mixture, 

impulse noise, and Gaussian-impulse noise. It integrates 

maximum likelihood estimation and sparsity over the 

learned dictionary. Modified-SVD is used for low rank 

approximation. In the recent structured dictionary learning 

model [87], two structured dictionary learning models are 

combined together. The data-fidelity term uses 𝑙𝑝-norm 

fidelity to fit image patches and 𝑙𝑞-norm regularizar for the 

sparse coding. The authors in [32] propose a novel 

algorithm to tackle mixed Gaussian noise, i.e., the K-SVD 

algorithm, which generalizes the K-means clustering 

process for adapting dictionaries in order to achieve sparse 

signal representations on a given set of training signals. A 

dictionary is sought for that leads to the best representation 

for each member in the set, under strict sparsity constraints. 

B. METHODOLOGIES OF CNN-BASED MODELS (MIXED 
NOISE) 

 

The CNN-based transfer learning, four-stage convolutional 

filtering model is mixed noise de-noiser designed for a 

mixture of Gaussian and impulse noise [82]. It uses a rank 

order filter in the preprocessing step, which is Cai’s filter in 

case of Gaussian and SPIN, whereas the combination of 

adaptive median filter and adaptive center weighted median 

filter is used in the case of Gaussian, SPIN, and RVIN. The 

bilinear interpolation is performed on rank order filter 

output to get a slightly smoother version of the noisy image. 

The purpose of bilinear interpolation is to suppress high-

frequency components that occurred due to rank order  

TABLE II 

COMPARISION OF PSNR (IN dB) VALUE OF DIFFERENT MACHINE LEARNING MODELS ON SET-12 DATASET 
Images C.Man Hous

e 
Pepper
s 

Starfis
h 

Monar
ch 

Airpla
ne 

Parrot Lena Barbara Boat Man Couple Average 

Gaussian noise level σ=15 

K-SVD [32] - 34.30 - - - - 30.97 - - - 30.46 - - 
K-LLD [43] - 33.81 - - - - 30.91 - - - 30.65 - - 
CSF [47] 31.95 34.39 32.85 31.55 32.33 31.33 31.37 34.06 31.92 32.01 32.08 31.98 32.32 
TNRD [37] 32.19 34.53 33.04 31.75 32.56 31.46 31.63 34.24 32.13 32.14 32.23 32.11 32.50 
DnCNN [38] 32.61 34.97 33.30 32.20 33.09 31.70 31.83 34.62 32.64 32.42 32.46 32.47 32.86 
IDCNN1[40] 32.54 34.87 33.24 - 35.49 32.79 - 33.75 33.15 31.81 - - - 
IDCNN2 [40] 32.24 34.83 33.11 - 35.38 32.68 - 33.70 32.98 31.73 - - - 
FFDNet [56] 32.42 35.01 33.10 32.02 32.77 31.58 31.77 34.63 32.50 32.35 32.40 32.45 32.75 
PDNN[61] 32.44 35.40 33.19 32.08 33.33 31.78 31.48 34.80 32.84 32.55 32.53 32.51 32.91 
GraphCNN 

[59] 
32.58  35.13  33.27  32.42  33.25  31.84  31.89  34.57  32.84  32.41  32.42  32.40  32.917 

ECNDNet[50] 32.56 34.97 33.25 32.17 33.11 31.70 31.82 34.52 32.41 32.37 32.39 32.39 32.81 

IRCNN [62] 32.55 34.89 33.31 32.02 32.82 31.70 31.84 34.53 32.43 32.34 32.40 32.40 32.77 
BRDNet[51] 32.80 35.27 33.47 32.24 33.35 31.85 32.00 34.75 32.93 32.55 32.50 32.62 33.03 
ADNet [64] 32.81 35.22 33.49 32.17 33.17 31.86 31.96 34.71 32.80 32.57 32.47 32.58 32.98 
ADNet-B [64] 31.98 35.12 33.34 32.01 33.01 31.63 31.74 34.62 32.55 32.48 32.34 32.43 32.77 
PReLU  [66] 33.18 35.59 33.54 33.17 34.20 32.65 32.73 35.21 32.25 32.90 32.76 32.78 33.41 

MWCNN [53] - - - - - - - - - - -- - 33.20 

 Gaussian noise level σ=25 

K-SVD [32] - 32.12 - - - - 28.12 - - - 27.59 - - 
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K-LLD [43] - 31.77 - - - - 28.40 - - - 28.17 - - 
MLP [35] 29.61 32.56 30.30 28.82 29.61 28.82 29.25 32.25 29.54 29.97 29.88 29.73 30.03 
CSF[47] 29.48 32.39 30.32 28.80 29.62 28.72 28.90 31.79 29.03 29.76 29.71 29.53 29.83 
TNRD[37] 29.72 32.53 30.57 29.02 29.85 28.88 29.18 32.00 29.41 29.91 29.87 29.71 30.06 
DnCNN[38] 30.18 33.06 30.87 29.41 30.28 29.13 29.43 32.44 30.00 30.21 30.10 30.12 30.43 
IDCNN1[40] 30.06 32.94 30.79 - 32.85 30.06 - 31.13 30.45 29.18 - - - 
IDCNN2[40] 29.98 32.87 30.71 - 32.77 30.00 - 31.08 30.18 29.12 - - - 
FFDNet [56] 30.06 33.27 30.79 29.33 30.14 29.05 29.43 32.59 29.98 30.23 30.10 30.18 30.43 
PDNN[61] 30.12 33.54 30.90 29.43 30.31 29.14 29.28 32.69 30.30 30.34 30.15 30.24 30.54 
GraphCNN[59] 30.12 33.22 30.87 29.76 30.51 29.30 29.48 32.42 30.28 30.17 30.10 29.99 30.516 
ECNDNet[50] 30.11 33.08 30.85 29.43 30.30 29.07 29.38 32.38 29.84 30.14 30.03 30.03 30.39 
IRCNN [62] 30.08 33.06 30.88 29.27 30.09 29.12 29.47 32.43 29.92 30.17 30.04 30.08 30.38 
BRDNet[51] 31.39 33.41 31.04 29.46 30.50 29.20 29.55 32.65 30.34 30.33 30.14 30.28 30.61 
ADNet[64] 30.34 33.41 31.14 29.41 30.39 29.17 29.49 32.61 30.25 30.37 30.08 30.24 30.58 
ADNet-B[64] 29.24 33.38 30.99 29.22 30.38 29.16 29.41 32.59 30.05 30.28 30.01 30.15 30.46 
PReLU [66] 31.20 34.37 31.86 31.06 32.02 30.60 30.73 33.03 30.68 30.82 30.73 30.74 31.49 

MWCNN[53] - - - - - - - - - - - - 30.84 

 Gaussian noise level σ=50 

MLP [35] 26.37 29.64 26.68 25.43 26.26 25.56 26.12 29.32 25.24 27.03 27.06 26.67 26.78 
TNRD [37] 26.62 29.48 27.10 25.42 26.31 25.59 26.16 28.93 25.70 26.94 26.98 26.50 26.81 
DnCNN[38] 27.03 30.00 27.32 25.70 26.78 25.87 26.48 29.39 26.22 27.20 27.24 26.90 27.18 
IDCNN1[40] 26.80 29.89 27.22 - 29.23 26.52 - 27.69 26.50 25.87 - - - 
IDCNN2[40] 26.82 29.76 27.20 - 29.18 26.45 - 27.68 26.51 25.87 - - - 
FFDNet [56] 27.03 30.43 27.43 25.77 26.88 25.90 26.58 29.68 26.48 27.32 27.30 27.07 27.32 
PDNN [61] 27.12 31.04 27.44 25.95 27.00 25.97 26.42 29.85 27.21 27.42 27.32 27.23 27.50 
GraphCNN 

[59] 
27.00 30.16 27.40 25.92 26.89 25.93 26.43 29.32 26.56 27.05 27.19 26.75 27.217 

ECNDNet[50] 27.07 30.12 27.30 25.72 26.82 25.79 26.32 29.29 26.26 27.16 27.11 26.84 27.15 
IRCNN [62] 26.88 29.96 27.33 25.57 26.61 25.89 26.55 29.40 26.24 27.17 27.17 26.88 27.14 
BRDNet [51] 27.44 30.53 27.67 25.77 26.97 25.93 26.66 29.73 26.85 27.38 27.27 27.17 27.45 
ADNet [64] 27.31 30.59 27.69 25.70 26.90 25.88 26.56 29.59 26.64 27.35 27.17 27.07 27.37 
ADNet-B[64] 27.22 30.43 27.70 25.63 26.92 26.03 26.56 29.53 26.51 27.22 27.19 27.05 27.33 
PReLU [66] 28.00 31.75 28.74 27.52 28.57 27.54 27.56 29.62 28.13 27.59 27.65 27.40 28.34 
MWCNN[53] - - - - - - - - - - - -- 27.79 

TABLE III 

COMPARISION OF PSNR (IN dB) VALUE OF DIFFERENT MACHINE LEARNING MODELS ON BSD-68 

BSD-68 

σ 15 25 50 

DnCNN [38] 31.72 29.23 26.23 

IRCNN [62] 31.63 29.15 26.16 
SCNN [49] 31.48 29.03 26.08 

PDNN [61] 32.29 29.88 - 

FFDNet [56] 31.62 29.19 26.30 
UNLNet [60] 31.95 29.51 26.41 

ECNDNet[50] 31.71 29.22 26.23 

ADNet [64] 31.74 29.25 26.29 
BRDNet [51] 31.79 29.29 26.36 

DRUNet [63] 31.91 29.48 26.59 

MWCNN[53] 31.91 29.46 26.58 
PReLU [66] 32.60 30.48 27.20 

σ 10 20 30 40 50 75 

DnCNN-S [38] 33.88 30.27 28.36 27.11 26.23 24.64 

IRCNN [62] 33.74 30.16 28.26 27.08 26.19 - 
NN3D(WDnCNN) 

[58] 
- - 28.56 - 26.42 24.91 

FFDNet [56] 33.76 30.23 28.38 27.18 26.29 24.79 

DIDN [55] 33.98 30.44 28.58 27.37 26.47 - 

NN3D(DnCNN) 
[58] 

- - 28.41 - 26.27 24.71 

NN3D(FFDNet) 

[58] 
- - 28.37 - 26.29 24.80 

DIDN+ [55] 34.01 30.47 28.61 27.40 26.50 - 

WDnCNN [48] - - 28.56 - 26.39 24.85 

DHDN [52] 34.04 - 28.58 - 26.43 - 

Kodak-24 

σ 10 20 30 40 50 

DnCNN-S [38] 34.90 31.47 29.62 28.37 27.49 

IRCNN [62] 34.76 31.38 29.52 28.37 27.45 

FFDNet [56] 34.81 31.47 29.69 28.51 27.62 
DIDN [55] 35.16 31.83 30.04 28.84 27.96 

DIDN+[55] 35.20 31.87 30.08 28.88 28.01 
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DHDN [52] 35.24 - 30.11 - 28.01 

σ 15 25 35 50  75  

      

BRDNet [51] 34.88 32.41 30.80 29.22 27.49 

ADNet [64] 34.76 32.26 30.68 29.10 27.40 

TABLE IV 

PSNR (in dB)  VALUES OF COLOR DE-NOISING NETWORKS 
CBSD-68 

σ 10 20 30 40 50 

CBM3D [81] 35.89 31.89 29.72 28.08 27.36 

DnCNN-S [38] 36.12 32.37 30.32 28.95 27.92 
IRCNN [62] 36.06 32.27 30.22 28.85 27.86 

FFDNet [56] 36.14 32.34 30.31 28.96 27.96 

DIDN [55] 36.48 32.73 30.71 29.36 28.35 
DIDN+ [55] 36.52 32.77 30.75 29.40 28.40 

DHDN [52] 36.48 - 30.54 - 28.01 

σ 15 25 50 

DRUNet [63] 34.30 31.69 28.51 

Kodak-24 

σ 10 20 30 40 50 

CBM3D [81] 36.57 32.92 30.89 29.17 28.62 

DnCNN-S [38] 36.58 33.20 31.28 29.95 28.94 
IRCNN [62] 36.70 33.19 31.24 29.91 28.92 

FFDNet [56] 36.80 33.32 31.39 30.08 29.10 

DIDN [55] 37.32 33.88 31.97 30.68 29.72 
DIDN+ [55] 37.37 33.94 32.03 30.75 29.80 

DHDN [52] 37.37 - 32.01 - 29.74 

σ 15 25 50 

DRUNet [63] 35.31 32.89 29.86 

TABLE V 
PSNR(in dB)  COMPARISION OF DIFFERENT METHODS ON LIVE1 DATASET ON POISSON NOISE 

Peak Value DnCNN [38] DenoiseNet[79] CNN+LSTM[77] 

0.1 18.90 19.15 19.61 

1 22.68 22.59 22.87 

10 27.77 27.49 27.77 
40 30.92 30.72 31.01 

80 32.65 32.31 32.71 

TABLE VI 

AVERAGE PSNR (IN dB) VALUES ON DIFFERENT DATASETS FOR POISSON NOISE 

Method Peak Boats Airplane 
Baboo

n 
Barbara Flower Goldhill lenna Monarch Pens Pepper 

Averag

e 

DnCNN [38] 0.1 19.63 18.60 17.34 18.84 19.50 20.89 19.30 18.39 19.92 18.66 19.11 
DenoiseNet [79] 0.1 20.10 19.35 17.29 18.98 19.79 21.16 19.26 18.36 19.89 19.23 19.35 
CNN+LSTM [77] 0.1 20.56 19.66 17.52 19.20 20.21 21.63 20.40 19.03 20.18 19.62 19.80 
DnCNN [38] 1 24.37 22.98 19.30 22.03 24.52 24.46 24.33 23.70 24.30 23.60 23.36 
DenoiseNet [79] 1 24.24 22.94 19.35 21.89 24.18 24.47 24.28 23.52 23.99 23.42 23.23 
CNN+LSTM [77] 1 24.74 23.54 19.44 22.23 25.22 24.79 24.72 23.82 24.45 23.62 23.66 
DnCNN [38] 10 29.76 28.40 22.95 2.20 30.74 28.62 29.27 29.96 29.64 28.32 28.48 
DenoiseNet [79] 10 29.44 28.15 22.90 26.57 30.39 28.45 29.03 29.61 29.21 28.19 28.19 
CNN+LSTM [77] 10 29.80 28.43 23.01 27.15 30.73 28.68 29.38 29.94 29.56 28.49 28.52 
DnCNN [38] 40 32.78 31.23 25.38 30.43 33.66 31.01 31.27 33.23 32.48 30.35 31.18 
DenoiseNet [79] 40 32.58 31.14 25.40 30.00 33.48 30.88 31.25 32.98 32.18 30.62 31.05 
CNN+LSTM [77] 40 32.91 31.64 25.56 30.49 33.86 31.11 31.58 33.32 32.56 30.90 31.40 
DnCNN [38] 80 34.29 32.57 26.78 31.95 35.07 32.34 32.33 34.85 34.10 31.47 32.56 
DenoiseNet [79] 80 33.90 32.61 26.80 31.50 34.52 32.16 32.11 34.35 33.46 31.63 32.30 
CNN+LSTM [77] 80 34.37 33.16 26.98 32.02 35.16 32.40 32.50 34.97 34.03 31.99 32.76 

TABLE VII 

AVERAGE PSNR (in dB) VALUE ON SET-10 DATASET FOR POISSON NOISE 
Method Peak Flag House Camera Man Bridge Saturn Peppers Boat Couple Hill 

DenoiseNet [79] 

1 

19.45 22.87 21.59 22.49 19.83 26.26 21.43 22.38 22.11 22.82 
MC2RNet6−B 

[78] 
19.97 23.04 21.95 22.52 19.88 26.93 21.69 22.48 22.15 22.80 

MC2RNet6−S 
[78] 

20.04 23.17 21.97 22.54 19.94 27.35 21.70 22.60 22.20 22.94 

DenoiseNet [79] 

2 

21.38 24.77 23.25 23.64 20.80 28.37 23.19 23.66 23.30 23.95 

MC2RNet6−B 
[78] 

21.87 24.99 23.42 23.66 20.86 29.01 23.20 23.69 23.40 23.99 

MC2RNet6−S 

[78] 
21.92 25.23 23.66 23.76 20.87 29.22 23.35 23.80 23.57 24.07 

DenoiseNet [79] 4 23.18 26.59 24.87 24.77 21.81 30.02 24.83 24.86 24.60 25.01 
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MC2RNet6−B 

[78] 
24.13 26.78 24.84 24.84 21.81 30.94 24.96 24.29 24.76 25.10 

MC2RNet6−S 
[78] 

24.24 27.18 25.03 24.95 21.91 31.29 24.97 25.08 24.93 25.25 

DenoiseNet [79] 

8 

25.73 28.42 26.35 26.10 22.91 32.28 26.45 26.23 26.11 26.26 

MC2RNet6−B 
[78] 

26.61 28.56 26.39 26.06 22.95 33.28 26.66 26.24 26.26 26.34 

MC2RNet6−S 

[78] 
26.71 28.75 26.45 26.24 23.01 33.71 26.68 26.46 26.41 26.43 

DenoiseNet [79] 

30 

28.94 31.67 29.21 28.74 25.42 36.20 29.77 29.06 29.13 28.71 

MC2RNet6−B 

[78] 
30.57 31.52 29.04 28.71 25.37 36.40 29.71 28.99 29.16 28.77 

MC2RNet6−S 

[78] 
30.95 31.90 29.23 28.83 25.48 36.99 29.84 29.21 29.34 28.93 

TABLE VIII 

AVERAGE PSNR(in dB)  VALUE ON BSD-68 DATASET FOR POISSON NOISE 
Method Peak=1 Peak=2 Peak=4 Peak=8 

IRCNN [62] [80] 21.66 22.86 24.00 25.27 
DenoiseNet [79] 21.79 22.90 23.99 25.30 

MC2RNet6−B [78] 21.92 23.00 24.13 25.39 

MC2RNet6−S [78] 22.00 23.08 24.25 25.51 

TABLE IX 
AVERAGE PSNR (in dB) COMPARISION OF MIXED NOISE (RVIN+AWGN) ON DIFFERENT NATURAL IMAGES 

Image 
Noise 
level 

Lena Barbara Bridge Boat Airplane Pepper Hill 

Mixed CNN  [82] σ=15, 

ρ=0.15 

32.28 25.67 28.86 29.12 32.52 34.07 31.61 

[83] 32.56 29.43 29.16 30.30 32.87 33.49 31.73 
Mixed CNN  [82] σ=15, 

ρ=0.30 

29.10 24.17 26.54 27.02 28.81 29.90 29.04 

[83] 31.71 28.32 28.09 29.19 31.88 33.66 30.98 

Mixed CNN  [82] σ=15, 
ρ=0.45 

24.87 21.67 22.86 23.62 23.32 24.54 24.69 
[83] 30.36 26.25 26.53 27.60 30.44 32.09 29.86 

Mixed CNN  [82] 
σ=25, 

ρ=0.15 
29.87 24.52 26.61 27.61 30.34 31.65 29.48 

[83]  30.46 27.28 26.72 28.31 30.73 31.76 29.55 

Mixed CNN  [82] 
σ=25, 

ρ=0.30 
27.93 23.36 25.10 26.08 28.00 28.70 27.80 

[83]  29.79 26.35 25.97 27.39 29.90 31.30 28.99 

Mixed CNN  [82] 
σ=25, 

ρ=0.45 
24.88 21.65 22.62 23.45 23.97 24.87 24.59 

[83]   28.54 24.75 24.81 26.10 28.40 30.04 28.01 

TABLE X 
DE-NOISING RESULTS FOR MIXED GAUSSIAN NOISE ON BARBARA IMAGE (PSNR=19.02 dB) 

Method  PSNR (dB) Method  PSNR (dB) 

WDL (case 1) [84] 

TYPE-I 

32.39 
K-SVD (known parameters) 

[32] 
TYPE-II (𝑟1 ∶  𝑟2  =  0.7 ∶
 0.3, 𝜎1  =  10, 𝜎2 =  50) 

27.66 

WDL (case 2) [84] 30.07 
W-KSVD (unknown 
parameters) [84] 

29.35 

K-SVD [85] 26.95 IRCNN [62] 28.95 

  EM-CNN [86] 30.68 

TABLE XI 
RESULTS FOR BLIND DE-NOISING 

Noise Type Gaussian noise 

Mode Non-blind Blind 

Method BM3D [20] DnCNN-B [38] GCBD[42] 

𝜎 = 15 31.07 31.61 31.59 

𝜎 = 25 28.57 29.16 29.15 

Noise Type Mixed noise 

Mode Non-blind Blind 

Method BM3D [20] DnCNN-B[38] GCBD[42] 

𝑠 = 15 41.08 40.75 42.00 

𝑠 = 25 37.85 37.54 39.87 

filtering on the Gaussian noise. It is followed by the four-

stage convolutional filtering. The first stage consists of the 

the conv layer and ReLU activation function followed by 

the max-pooling layer. The second and third stages consist 

of the conv layer and ReLU activation function. The fourth 

stage is the conv layer. The squared Frobenius norm is used 

as the loss function, and training is done by the back 

propagation algorithm. The other CNN model for mixed 

Gaussian and impulse noise involves two parts: the first 

half for impulse noise removal and the second half for the 

Gaussian noise removal [83]. It consists of the input layer, 

intermediate layers of convolution, batch normalization, 

and leaky ReLU followed by the convolutional output 

layer. The second part of Gaussian noise removal has a skip 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3092425, IEEE Access

 

17 
 

connection for residual learning. CNN model given in ,has 

conv+ReLu+BN as basic building block and shows best 

structural metrics results for both known and unknown 

noise level of mixed Gaussian-Impulse noise [88].  The 

CNN is used as a regularizar in traditional variational based 

methods for mixed noise removal [86]. The mixed noise 

parameters are iteratively estimated by variational method 

followed by noise classification according to the statistical 

parameters. The methodology is implemented by 

optimization of sub-problem involving four steps which are 

regularization, synthesis, parameters estimation and noise 

classification. 
VI. REAL WORLD-DENOISERS 

Xu et al. have constructed a benchmark dataset to de-noise 

real-world images [89]. The authors have used different 

cameras with different camera settings. They have 

evaluated different de-noising methods on the new 

proposed dataset as well as previous datasets for a proper 

comparison and subsequent analysis. Extensive 

experimental results demonstrate that the methods designed 

specifically for realistic noise removal based on sparse or 

low rank theories, achieve good de-noising performance 

and are robust. Another observation made by the authors 

suggests that the proposed dataset is more challenging for 

the state-of-the-art methods. In Kim et al. [90], a grouped 

residual dense network (GRDN) is proposed, which is an 

extended and generalized architecture of the state-of-the-art 

residual dense network (RDN) [91]. The core part of RDN 

is the grouped residual dense block (GRDB) and used as a 

building module of GRDN. Cascading GRDNs aids the de-

noising performance significantly. Inspired by the GAN 

modeling technique, the authors have made their own 

generator and discriminator for real-world noise modeling. 

Lin et al. [92] have constructed a new dataset to solve the 

problem of low availability of proper datasets and obtained 

the corresponding ground truth by averaging, and then they 

extended them through noise domain adaptation. 

Furthermore, they went on to propose an attentive 

generative network by injecting visual attention into the 

generative network. During the training, the visual attention 

map learns noise regions. The generative network pays 

more attention to noise regions, which contributes in 

balancing between noise removal and texture preservation. 

Extensive experiments show that this method performs well 

both qualitatively and quantitatively. Chen et al. have 

proposed a Deep Boosting Framework (DBF) [93] for real-

world image denoising by combining the deep learning into 

the boosting algorithm. The DBF replaces conventional 

boosting units by elaborate convolutional neural networks. 

The outcome is a lightweight Dense Dilated Fusion 

Network (DDFN) as the boosting unit, which addresses the 

vanishing gradient problem during training due to the 

cascading of networks while promoting the efficiency of 

limited parameters. This method reduces the domain-shift 

issue with the one-shot domain transfer scheme. This is a 

strong technique in terms of real-world de-noising. Real-

world de-noising has been tested and evaluated on different 

datasets like DND and NIGHT. DND is a novel benchmark 

dataset which consists of realistic photos from 50 scenes 

taken by 4 consumer cameras. The NIGHT dataset is 

divided into 20 images (denoted as NIGHT-A) and the 

other 5 images (denoted as NIGHT-B). Another dataset 

used is RID. It has 20 representative scenes, which are 

captured under different shooting conditions. The problems 

faced in real-world de-noising are as follows: (1) The noise 

in real-world noisy images is very complex, which cannot 

be described by simpler distributions like Gaussian or 

Poisson. (2) The inherent practicality of real-world noisy 

images makes the de-noising more difficult than the 

synthetic case. (3) the noise distribution may change along 

with the in-camera imaging pipeline [94]. It thus makes the 

noise distribution in a captured RGB image different from 

its Gaussian assumption in the RAW space. (4) The 

problem of domain shift cannot be neglected in the practical 

scenario. It can neither be neglected between the synthetic 

and the real-world noise, but the characteristics of real-

world noise can also exhibit differences pertaining to 

different camera settings (viz., sensor or aperture size), 

shooting conditions (viz., light, environment, and 

temperature), and imaging pipelines (viz., smartphone and  

   
(a) Original Image (b) Noisy Image (𝜎 = 25) (c) DnCNN (PSNR 30.28 dB) [38] 
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(d) FFDNet (PSNR 30.08 dB) [56] (e)IRCNN (PSNR 30.09 dB) [62] (f) ECNDNet(PSNR 30.30 dB) [50] 

 

 

 

 (g) BRDNet (PSNR 30.50 dB) [51]  
FIGURE 10: Butterfly image (Set-12) de-noising results at 𝝈 = 𝟓𝟎 

Random-Valued Impulse Noise 

Plane Image 

    

(a) Original Image 
(b) Noisy Image 

(20% RVIN) 

(c) ANN De-noised Image 

(PSNR=28.96 dB) [72] 

(d) Blind CNN De-noised 

Image (PSNR=37.37 dB) 

[71] 

Boat Image 

    

(e) Original Image 
(f) Noisy Image 

(60% RVIN) 

(g) ANN De-noised Image 

(PSNR=25.89 dB) [72] 

(h) Blind CNN De-noised 

Image (PSNR=27.32 dB) 

[71] 
FIGURE 11: RVIN de-noising results for Plane and Boat image 

 

 

 

Real-World De-noising 

    
Original Image 

Noisy Image 

(PSNR=37 

 

MLP De-noised (PSNR=39 

DnCNN De-noised Image 

(PSNR=37.26 
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dB/SSIM=0.9345) dB/SSIM=0.9695) Image 

[35], [89] 

 

dB/SSIM=0.9389) [38][89] 

    

Original Image 

Noisy Image 

(PSNR=26.32 

dB/SSIM=0.7576) 

 

RDN De-noised Image [91], 

[90] 

(PSNR=39.11 

dB/SSIM=0.9899) 

 

GRDN De-noised Image 

[90] 

(PSNR=39.59 

dB/SSIM=0.9902) 
FIGURE 12: De-noising results for real-world noisy images 

 

 

Gaussian + RVIN (σ=10, ri=10%) 

Barbara Image 

   

Original Image Noisy Image 

(PSNR=18.6041 dB) 

 

SDL De-noised Image (7th iteration) 

[87] 

(PSNR=31.7117 dB) 
Gaussian + SPIN (σ=10, 𝑝=0.30) 

Boat Image 

   

Original Image Noisy Image 

(PSNR=10.65 dB/SSIM=0.0731) 
CNN De-noised Image [83] 

(PSNR=31.92 dB/SSIM=0.8596) 
High-Density Impulse Noise 

Flower Image 

   

Original Image 
Noisy Image (90%) 

 
CNN+PSO De-noised Image [74] 

Gaussian Mixture Noise 

Barbara Image 
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Noisy (PSNR=19.02 dB) WDL (Case 1) 

(PSNR=32.39 dB) [84] 
WDL (Case 2) 

(PSNR=30.07 dB) [84] 
K-SVD (PSNR=26.95 dB) 

[85] 
Gaussian Mixture Noise (𝑟1 ∶  𝑟2  =  0.7 ∶  0.3, 𝜎1  =  10, 𝜎2 =  50) 

    

Noisy (PSNR=19.02 dB) 
IRCNN [62] 

(PSNR=28.95 dB) [62] 

K-SVD (known parameters) 

(PSNR=27.66 dB) [32] 

W-KSVD (unknown 

parameters) 

(PSNR=29.35 dB) [84] 

 
EM-CNN [86] 

(PSNR=30.68 dB) 
FIGURE 13: De-noising results for mixed noise 

Blind De-noising 

Uniform noise (10%, [−𝑠, 𝑠]) + Gaussian noise (20%, 𝑁(0,1)) + Gaussian noise (70%, 𝑁(0,0.01)) 

     

Ground Truth 
Noisy 

(PSNR=34.86 dB) 

BM3D (non-blind) 

(PSNR=38.36 dB) 

DnCNN-B (blind) 

(PSNR=38.12 dB) 

GCBD (blind) 

(PSNR=40.30 dB) 
FIGURE 14: De-noising results for mixed noise on BSD68  

professional camera) even under the same ISO values [93]. 

These problems make real-world image de-noising difficult 

and still a challenging task. 
VII. BLIND IMAGE DE-NOISERS 

The noise models are defined for particular noise type with 

known probability distribution function. For example, in 

case of Gaussian noise the standard deviation of the noisy 

image is known and the corresponding de-noised images 

are calculated. However, in real life scenario, the noise can 

be due to combined effect of various sources and noise 

modelling input parameters may not be well-defined. So, 

de-noisers which produce de-noised image even when noise 

level of input image is not defined are termed as blind de-

noisers. The models are trained in such a way that it can 

incorporate wide range of unknown noise levels. The 

another approach is to estimate noise levels of the input 

image, which does not produce accurate de-noised images 

due to inaccurate noise approximation. BM3D is the non-

learning blind denoiser based on leveraging self-similarity 

by joint filter application on self-similarity image patches.  

 The DnCNN [38] model based on residual learning and 

batch normalization is the blind Gaussian denoiser in which 

single model is trained with varying noise levels from zero 

to fifty-five, down-sampled images with different upscaling 

factors and images (JPEG) with multiple quality factors. 

So, the same network can be used as blind Gaussian 

denoiser, JPEG image de-blocker and single-image super-

resolution. Although FFDNet [56] improves DnCNN 

performance at noise level fifty and seventy-five on BSD-

68 dataset, it is a non-blind de-noiser as it requires noise 

level map at the input. Similarly [60] involves two sub-

networks which are trained separately based on noise-level 
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choice at inference time making it inappropriate for blind 

level denoising. Blind Universal Image Fusion De-

noiser[95]  is the network that extracts features to learn an 

image prior and intermediate noise level values, which is 

fed into the fusion part of model for final de-noising. The 

latest de-noisers such as ADNet[64], BRDNet[51] , SCNN 

[49], PReLU [66], [78], [42] are designed for blind 

denoising. The blind de-noiser for mixed Gaussian impulse 

noise is also being designed [83].The recent research trend 

in the field of computer vision is progressing towards the 

development of universal and blind de-noiser for real-world 

de-noising. 
VII. DESCRIPTION OF DATASET AND SOFTWARE 
TOOLS 

Software: The tremendous success of machine learning 

particularly deep learning is because of the parallel 

computing of GPU. TABLE XII describes popular 

machine-learning libraries used for various computer vision 

tasks. 
TABLE XII 

POPULAR SOFTWARE PACKAGES 

Software 

Packages 
Developer Description 

Caffe 
Berkeley AI 
Research 

C++, Python and Matlab 

interfaces 
Widely used for object 

detection tasks. 

Matconvnet 
Oxford Visual 

Geometry Group 

Matlab interface, C++ 
compiler 

Pre-trained models for 

computer vision tasks. 

Pytorch 
Facebook AI 

Research Lab 

Python interface, Open 

source software 

Theano 

Montreal Institute 

of Learning 

Algorithms 

Python library for fast 
numerical computation 

Used for image de-

noising, classification, 
super-resolution 

Tensorflow 
Google Brain 
Team 

Faster than Theano 

compiler 
C++ and Python 

interfaces 

Keras ONEIROS project 
Python interface 
Acts as interface for 

Tensorflow library 

MXNet 
Apache Software 

Foundation 

Scalable, Flexible, 
Multiple programming 

languages 

 

Datasets: The machine leaning based methods have shown 

significant progress due to availability of open access 

benchmark datasets. The datasets are available for gray 

scale de-noising, color image de-noising, medical image de-

noising and real-world de-noising. The training dataset is 

used for training the model, whereas testing dataset images 

are used to assess the de-noising results. The peak signal to 

noise ratio (PSNR) and structural similarity index (SSIM) 

are most commonly used image quality assessment metrics. 

However, there are many image quality assessment metrics 

which are given in [39]. The performance comparison of 

de-noisers can be done if they use common testing dataset. 

In case of Gaussian de-noisers, Set-12 dataset comprises of 

twelve scenes and BSD-68 dataset, i.e. Berkeley 

Segmentation Dataset comprises of sixty eight natural 

images is commonly used. Kodak-24, LIVE and McMaster 

are also being used for synthetic de-noising. RENOIR, 

NAM, DND, SIDD and Xu are datasets for real world de-

noising [89]. Some of the benchmark datasets are given in 

[96]. 
TABLE XIII 

MODELS USED IN MULTI-DOMAIN IMAGE DE-NOISING 

MODEL SPECIALITY 
NOISE SUPPRESSION IN 

VARIOUS MODELS  

DnCNN 

[38] 

Intuitively removes 
latent clean image in 

the hidden layers 

utilizing the residual 
learning strategy 

1. Single DnCNN 
model for blind 

Gaussian 

denoising 
2. Single image 

super-resolution 

3. JPEG image 
deblocking 

EM-CNN 
[86] 

Uses an integration 

of CNN and EM-
based mixed noise 

removal to give a 

variational method 
that can estimate the 

noise parameters 
iteratively to 

categorize noise 

types and levels in 
each pixel 

1. Removal of 
Gaussian mixture 

noise 
2. Removal of 

Gaussian-Impulse 

noise 

W-KSVD 

[84] 

Uses maximum 

likelihood estimation 
framework and 

sparse 

representations over 
a trained dictionary 

and uses a self-

determined 
weighting data 

fidelity function that 

detects noise in 
terms of different 

estimated noise 

parameters 

1. Gaussian-Gaussian 

mixture 
2. Impulse noise 

3. Gaussian-impulse 

noise 
4. Modified K-SVD 

for weighted rank-

one approximation 

IRCNN [62] 

Uses variable 

splitting technique to 

bring strong image 
prior into model-

based optimization 

methods and learned 
CNN de-noisers are 

used as modules in 

model-based 
optimization 

1. Gaussian noise 
(grey and color) 

2. Mixed Gaussian 

noise 
3. Various low-level 

vision applications 

GCBD [42] 

Constructs paired 

training data from 
the given noisy 

images, and then 

trains a deep 
denoising network 

for removing the 

noise; GAN is used 
to build the dataset 

1. Blind Gaussian 

noise 
2. Blind Mixed noise 

BM3D [20] 

Uses enhanced 

sparse representation 
in transform domain 

where enhancement 

of sparsity is 
achieved by 

grouping similar 2-D 

image fragments into 

1. Gaussian noise 

2. Color image de-

noising 
3. Mixed noise 
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3-D data arrays 

VIII. RESULT AND DISCUSSION 

Out of all machine learning methods, dictionary learning 

models performance is inferior in terms of PSNR. The 

disadvantages of dictionary learning are heuristic selection 

of the hyperparameters like sparsity level, number of atoms 

and iterations [97]. It fails to learn invariant features such as 

translational, rotation and scale invariance and it is apt for 

low dimensional signal only. The machine learning models 

have evolved from fully connected neural networks to CNN 

based de-noisers. CNN’s have various advantages over 

fully connected neural networks such as multi-layer 

perceptron. The spatial information is intact in the case of 

CNN whose input is multi-dimensional image data. The 

parameters of CNN are reduced due to weight sharing as a 

fixed weight kernel is used. Therefore, reduction in number 

of learning parameters, translational invariance and locality 

due to convolutional operation has given edge to CNN over 

other fully-connected models [98].Most of the CNN de-

noisers require application oriented large datasets for 

supervised learning. The availability of medical image 

datasets is still challenging as it requires manual 

intervention for its annotation. Moreover, the de-noising 

results are almost stagnant after the network attains certain 

depth and there is no significant change by increasing the 

number of training images. The CNN methodologies 

involve change in activation function, network depth, loss 

function, training dataset, etc. In order to solve this problem 

there is a gradual shift from discriminative learning CNN 

model to generative learning model GAN model. It uses 

two neural networks generator and the discriminator, where 

generator model creates plausible images and discriminator 

model constantly evaluates the generator images as real or 

fake. Therefore, both networks work in synchronization and 

act as an adversarial for each other. The fundamental design 

of GAN is based on indirect training of the generator by the 

discriminator. This falls under the category of semi-

supervised learning. The training efficiency of GAN is 

more than that of CNN as more features are learned in 

GAN in the same number of epochs as compared to CNN 

[99]. The GAN’s achieve better results with less training 

images as compared to CNN. 

TABLE II shows de-noising results in terms of PSNR for 

dictionary learning and CNN based networks. The models 

progressed from K-SVD, KLLD i.e., from dictionary 

learning models to CNN based models. The DnCNN model 

is the benchmark residual learning-based Gaussian de-

noiser, which has led to the further development of many 

de-noisers. The methodologies involve a change in loss 

function, increase in receptive field size, the change in 

number of layers, integration of transform, spatial domain 

methods with CNN and inclusion of graph theory in CNN. 

It can be inferred from the TABLE II that PSNR values 

obtained by different CNN based methods are very close to 

each other. However, ADNet [64] network with four 

modules suppresses the effect of network length on shallow 

layers and gives good PSNR results on Set-12 dataset. In 

the CNN network, after an optimum number of layers, 

PSNR values attain saturation. It implies that further 

increment in network length does not improve the de-

noising performance. Apart from ADNet, BRDNet is the 

other network that integrates residual learning with batch 

renormalization and dilated convolutions to enhance de-

noising performance. The de-noising performance of 

BRDNet can be attributed to an increase in receptive field 

size by dilated convolutions and an increase in network 

width by concatenation of two networks. Therefore it 

overcomes the disadvantages of the previous networks, 

such as (a) training difficulty and stagnation of results due 

to an increase in network length (b) mini-batch and internal 

co-variate shift problems. Further, PReLU [66] based edge 

aware filter has attained best PSNR results both on Set-12 

and BSD-68 dataset at different sigma levels. It has used 

parameteric rectified linear units as activation, which 

overcomes the disadvantage of ReLU by learning in the 

negative direction. The success can be attributed to the fact 

that this is a hybrid methodology which has the inclusion of 

principal component analysis and edge aware bilateral 

filter. Moreover, CNN uses supervised learning which is 

becoming computationally demanding with an increase in 

dataset size. Therefore, the generative learning model of 

Generative Adversarial Network is being used. The GCBD 

model gives promising result even in the absence of 

supervised learning data. Its PSNR value is same as that of 

the DnCNN network on the BSD-68 dataset for noise 

level=15, and 25. TABLE III gives a comparative analysis 

of machine learning methods on the BSD-68 and Kodak-24 

datasets. It has been observed that there is no significant 

difference in the PSNR values of different networks. The 

DIDN network designed with receptive field variation and 

modification of U-net architecture designed for semantic 

segmentation perform better for color images too as shown 

in TABLE IV. DRUNet [63] network which is based on 

deep learning CNN based image prior plugged into the half 

quadratic splitting-based de-noising iterative algorithm 

shows good results on both gray and color images. 

The impulse de-noisers predict pixels affected by noise in 

the first step. It is followed by a noise contamination 

determiner and post noise detection processing. The 

dictionary learning and CNN-based models are designed for 

impulse noise removal. However, the noise ratios are varied 

in a very large range. To overcome the problem of less 

flexibility due to the unknown severity of contamination, 

[70] uses a noise ratio predictor that can measure the 

severity of corruption, i.e., the noise ratio of the image 

rapidly and efficiently. Fig. 11 (d) shows that blind CNN 

achieves a higher value of PSNR, compared to ANN [72]. 

Blind CNN removes the noise and retains image details, the 

reason being the NRP. It converts the noise mask into a 

noise ratio, and, according to this ratio, the most 

appropriate CNN model is selected for de-noising, rather 

than restoring image by removing the detected RVIN noise 

pixel-by-pixel. 

The Poisson noise is modeled by its peak value and it is 

also categorized into dictionary learning models and CNN 
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based models. There is just one dictionary learning model 

which perform de-noising by greedy pursuit algorithm and 

boot strapping based stopping criterion. Gaussian de-

noisers such as DnCNN and IRCNN are also being used for 

Poisson de-noising with different parameter settings. 

Although Gaussian de-noisers are being used for the 

poisson noise, the heuristic setting of network parameters is 

again a big challenge. TABLE V gives poisson de-noising 

performance on Live1 dataset. DenoiseNet is the first 

residual learning based CNN de-noiser designed for poisson 

noise. Later, CNN+LSTM and MC2RNet models have 

outperformed DenoiseNet. The CNN + LSTM Poisson de-

noiser, which uses CNN for feature extraction and LSTM 

layers to store noise components, outperforms DenoiseNet 

as given in TABLE V and VI. The inclusion of Blahut-

Arimoto algorithm to determine number of CNN layers and 

learning of residual noise statistics by LSTM improves the 

de-noising results of CNN+LSTM. Deep multi-scale cross-

path concatenation residual network (MC2RNet) which 

incorporates cross-path concatenation modules for de-

noising also outperforms CNN based DenoiseNet as given 

in TABLE VII and TABLE VIII on Set 10 and BSD-68 

dataset respectively. Therefore, CNN+LSTM, DenoiseNet 

and MC2RNet are the available CNN based Poisson de-

noisers which are less in number as compared to Gaussian 

de-noisers.  

The mixed noise can be modeled mathematically in 

different ways. There are models designed for mixture of 

impulse and Gaussian noise.  The four-stage residual 

learning-based mixed network [82] and de-noiser with two-

stage cascade connection of impulse and Gaussian de-

noiser are used for mixed Gaussian Impulse noise given in 

TABLE IX. TABLE X discusses mixed Gaussian noise. 

And, TABLE XI discusses blind de-noising. Figs. 10 to 14 

depict qualitative results of different images with different 

noise types, i.e., Gaussian noise, impulse noise, mixed 

noise, real-world, and blind noise. TABLE XIII discusses 

the methods that extend into multiple domains of image de-

noising. 
IX. CONCLUSION AND FUTURE SCOPE 

In this paper, comprehensive study and analysis of machine 

learning models for removal of different noises is provided. 

The categorization of different de-noisers is done into 

dictionary learning models such as CNN based models and 

GAN based models. The comparative analysis PSNR 

results of different de-noisers on some benchmark datasets 

are provided for better understanding of reader. It has been 

observed that integration of analytical methods in machine 

learning model can further improve the results.  Although 

there are numerous networks designed for synthetic 

datasets, but real-world image de-noising is still a 

challenging problem. The GAN based de-noisers are still in 

primitive stage. However, the generative learning based 

GAN and deep belief networks can perform unsupervised 

learning to certain extent unlike CNN. The future prospects 

lie in design of real-world de-noisers with unsupervised 

learning framework for practical applications. The transfer 

learning approach, graph theory inclusion in neural 

network, prior design, and receptive field enhancement are 

some of the areas for future research. 
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