
Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

24

A WAVE DIGITAL FILTER MODELING LIBRARY FOR THE FAUST
PROGRAMMING LANGUAGE

Dirk ROOSENBURG(droosenb@oberlin.edu)1, Eli STINE(estine@oberlin.edu)1,
Romain MICHON(michon@grame.fr)2, and Jatin CHOWDHURY(jatin@ccrma.stanford.edu)3

1TIMARA, Oberlin College and Conservatory, OH USA
2GRAME-CNCM, Lyon, France
3CCRMA, Stanford University, CA USA

ABSTRACT

In this paper, we present WDmodels, a wave-digital mod-
eling library for the Faust programming language. Recent
advancements have made wave-digital models a popular
method for simulating analog audio circuits. Despite this,
wave-digital modeling techniques have remained challeng-
ing to implement for amateurs due to high model complex-
ity. Our library provides a straightforward platform for im-
plementing wave-digital models as real-time digital audio
effects.

In this paper, we demonstrate how WDmodels is used
to implement wave-digital models containing nonlinear
dipoles, such as diodes, and linear R-type adaptors. We
describe the library-specific implementation of the con-
nection tree, a data structure commonly used when imple-
menting wave-digital models. We also detail the use of
common wave-digital adaptors that have already been im-
plemented in the library. We show how the library may
be extended to complex wave-digital models through the
implementation of custom adaptors. In order to demon-
strate the flexibility of the library, we also present imple-
mentations of several audio circuits, including the equal-
ization section of the Pultec EQP-1a program equalizer.
Finally, we compare benchmarks from WDmodels and a
C++ wave-digital modeling library to demonstrate code ef-
ficiency.

1. INTRODUCTION

Faust is a programming language for digital signal process-
ing (DSP) that has grown in popularity in recent years. Its
high-level approach to DSP has led to its use by both mu-
sicians and experienced DSP programmers [1]. Further-
more, Faust’s ability to compile into highly optimized C++
and other low-level coding languages makes it a platform
suitable for large, computationally intensive physical mod-
els [2].

Despite these advantages, Faust’s functional method for
describing DSP algorithms is incompatible with imple-
mentations of physical models that rely on object-oriented

Copyright: c○ 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

data structures. Faust does not currently support direct im-
plementation of multi-directional digital waveguide struc-
tures that are commonly found in physical models [3, 4].
To implement a model with multi-directional wave travel
in Faust, it must be transformed by inspection into its cor-
responding direct DSP structure. This process is tedious
and unsuitable for large or complex models.

Specific physical modeling methods are supported in
Faust through the Faust Libraries 1 . For example,
physmodels.lib supports the creation of digital-
waveguide models of musical instruments by creating cus-
tom methods for representing bidirectional traveling waves
[5]. mi.lib works in conjunction with an external script-
ing language to generate systems of mass-spring interac-
tions.

In this paper, we present WDmodels, a new addition to
the Faust Libraries, that simplifies the creation of wave-
digital models of analog audio circuits. Wave-digital
models are described by a symbolic representation of the
model’s connection tree, implemented in Faust using meta-
programming. The library uses the Faust compiler to in-
terpret the symbolic connection tree and produce the cor-
responding direct DSP structure. Many common adaptor
types are included in the library, allowing users to easily
generate simple models. The library also can be used to
create circuit-bendable models of analog-audio circuits for
use in real-time processing.

Wave-digital models are a discrete wave-domain rep-
resentation of physical systems [4]. For circuits,
the Kirchoff-based representation is transformed into a
traveling-wave-based representation through the bilinear
transform. Recent developments extending their capabil-
ities have made wave-digital techniques a popular choice
for creating virtual-analog audio effects of analog audio
circuits. Their use as a flexible platform for real-time audio
simulations has been thoroughly researched [6–8]. Until
now, no wave-digital modeling libraries existed in higher-
level audio programming languages that are targeted for
easy use by artists and musicians. Libraries do exist for
C++ [9], a language which is often challenging for begin-
ners, and MATLAB [10], which can be challenging to im-
plement for real-time audio processing. As a result, the
modeling technique has remained opaque to many and dif-
ficult to learn.

1 https://github.com/grame-cncm/faustlibraries



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

25

−+𝑣in

𝑅1 𝑅2

𝐶1 𝐶2

(a) Reference Circuit

a

b
c

d

1

2

3

4

5

(b) Reference Circuit Graph.

b

c

a

𝒮1

1

1′

2
d

c

a

𝒮2

5

2′

4

c

a
𝒫1

1′ 3 2′

(c) Reference Circuit Graph Separated.

2′

1′

1

2

3

4 5

𝒮1

𝒮2

𝒫1

root:

(d) SPQR Connection Tree (CT).

−+

𝑣in

𝑅2

𝐶1

𝑅1

𝐶2

root

𝒮1

𝒮2

𝒫1

(e) Wave Digital Model.

𝐶2

𝑅2

𝑅1

−+

𝑣in

𝐶1

(f) Reference Circuit Rearranged.

Figure 1: The process for creating the wave-digital model of a second-order RC lowpass filter using SPQR decomposition.

WDmodels uses a simple process for implementing
wave-digital models, allowing those unfamiliar with wave
digital modeling to explore the technique for the first time.
The block-diagram algebra representation of the DSP pro-
cesses produced by the library can offer insights into how
the compiled model actually functions. The compiled code
created by the library runs at speeds comparable to wave-
digital model code written in low-level languages. Models
may be easily exported to various audio formats for numer-
ous platforms through the faust2... tools [11].

In section 2, we provide background information on
the creation of connection tree implementations of wave-
digital models from analog circuits. Section 3 provides
general instructions for using the library. Section 4 intro-
duces two example models and discusses specifics aspects
relating to their implementations. Section 5 compares the
benchmarking results for WDmodels and a modern wave-
digital modeling library written in C++. Section 6 con-
cludes the paper and discusses possible future research di-
rections for this library.

2. BACKGROUND

2.1 Wave-Digital Adaptors

Wave-digital models are networks of connected waveg-
uides called adaptors. When modeling analog circuits,
adaptors correspond to parts of the physical system. For
example, for each capacitor in the circuit there will be a
corresponding adaptor in the wave-digital model. Each
adaptor is a wave-scattering junction composed of ports;
each port is characterized by an incoming wave, 𝑎, a trans-
mitted wave, 𝑏, and a port resistance 𝑅. The behavior of
linear adaptors is described by a scattering equation of the

form
b = Sa, (1)

where b is a vector of transmitted waves, a is a vector of
incident waves, and S is a scattering matrix. A port of an
adaptor is defined to be non-reflective if the port’s transmit-
ted wave is not dependent on the current incident wave. An
adaptor which includes a non-reflective port is described as
“adapted” [4].

The voltage wave definition relates the Kirchhoff behav-
ior of an element to its wave-digital adaptor.

b = 𝑣 + R𝑖 (2)
a = 𝑣 −R𝑖 (3)

Where v is a vector of voltages across the component, i
is a vector of currents through the component, and R is a
vector of port resistances [12].

Typically, simple circuit components have corresponding
one-port adaptors while circuit topology is represented by
adaptors with two or more ports. Many linear circuit ele-
ments, such as voltage sources, resistors, parallel connec-
tions, and series connections, may be digitized directly us-
ing the parametric wave definition. Reactive circuit ele-
ments are digitized using a conformal frequency mapping,
generally the bi-linear transform [8]. The resulting adaptor
formulation will rely on sample delay and is said to contain
part of state of the system [4].

2.2 The Connection Tree

The connection tree of a model is formed by performing
SPQR decomposition on the graph of a circuit. In this pro-
cess, the circuit’s graph is broken into simpler sections by
recursively removing series and parallel elements. From



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

26

1 secondorder(R2, C2, in1) = wd.buildtree(tree)
2 with{
3 //declare components
4 vs1(i) = wd.u_voltage(i, in1);
5 r1(i) = wd.resistor(i, 4700);
6 c1(i) = wd.capacitor(i, 2.2e-6);
7 r2(i) = wd.resistor(i, R2);
8 c2(i) = wd.capacitor_Vout(i, C2);
9 //form connection tree

10 tree = vs1 : wd.series : (r1, (wd.parallel :
(c1, (wd.series : (r2, c2)))));

11 };

Figure 2: The implementation of a second-order RC low-
pass filter simulation in Faust using WDmodels. The cor-
responding wave-digital model is shown in Figure 1

these sections, a tree is formed. Each node in the tree cor-
responds to an adaptor in the wave-digital model [12, 13].
This process is shown in Figure 1. The leaf nodes (ter-
minating nodes with no downward-going connections) of
the connection tree represent circuit components, such as
resistors and capacitors. Connection nodes (nodes with
both upward-going and downward-going connections) rep-
resent circuit topology, denoting elements connected in se-
ries or parallel.

Since wave-digital models are a complex network of in-
terconnected scattering junctions, it is critical that adap-
tors in wave-digital models are arranged in order to pre-
vent delay-free loops within the structure. This process is
performed by “adapting” the model, where the port resis-
tances of adaptors are set in order to eliminate these loops
by making ports non-reflective. Commonly, this is per-
formed by exploiting the properties of the connection tree.
By setting port resistances such that the upward-facing port
of each node is non-reflective, this guarantees the resulting
structure will contain no delay-free loops. Since the root
node is the only node with no upward-facing ports, it is
the only node left unadapted. All other nodes within the
tree are adapted [14]. Many wave-digital adaptors cannot
be adapted, such as ideal voltages sources or nonlinear de-
vices. Thus, an unadaptable adaptor often is chosen as the
root of the connection tree.

3. LIBRARY IMPLEMENTATION OVERVIEW

3.1 Approaching Wave-Digital Models in Faust

The library uses meta-programming to simplify imple-
menting a wave-digital model in Faust. For each node in
the model’s connection tree, a separate function in Faust is
declared that describes that node’s behavior. To describe
the connection tree, the node functions are combined into
a single symbolic function using Faust compositional op-
erators. Finally, the symbolic connection tree function is
passed to a build-function that generates the model by re-
cursively inspecting the symbolic function.

3.2 Component Declaration

3.2.1 Common Nodes

The library includes many pre-written nodes that corre-
spond to common wave-digital adaptors. These include

both nodes of component adaptors, such as resistor, capac-
itor, and inductor adaptors, and topological adaptors, such
as series and parallel adaptors [8, 10]. A current list of all
nodes included in the library can be found as part of the
Faust Library Documentation 2 .

Code lines 4-8, in Figure 2, shows the declaration of
nodes for the component adaptors of the second-order RC
lowpass filter; its wave-digital model is shown in Figure
1e. Line 5 declares a resistor adaptor node with a compo-
nent value of 4.7 kΩ.

1 r1(i) = wd.resistor(i, 4700);

Note the parameter i, an index parameter required by the
model-building function. Each node in the model must be
declared using this form. The prefix u_ to a node name,
as seen in line 4, denotes a node corresponding to the un-
adapted version of that adaptor.

3.2.2 Model Inputs

Model inputs within the library must be declared explicitly
as named parameters of the model. A wave-digital model
may receive inputs in the form of voltage, resistance, or
any other component value. By declaring inputs as param-
eters of the enclosing function, they may be called explic-
itly as component values. This convention is shown in Fig-
ure 2; the variables R2, C2, and in1 are model parameters
that are used to set component values. Note that the empty
signal operator “ ” should never be used as a component
value, as it will break the internal signal flow of the model.

3.2.3 Model Outputs

Outputs of the model are declared by calling specialized
nodes, such as in code line 8, Figure 2.

1 c2(i) = wd.capacitor_Vout(i, C2);

The model will output the voltage across 𝐶2 as an audio
signal.

Nodes which include a model output will have a suffix
that describes its output. Only voltage across a component
(suffix _Vout) and current through a component (suffix
_Iout) are currently supported as possible outputs from
the model.

3.2.4 Custom Nodes

Since a wave-digital model might include a specialized
adaptor unique to the circuit, the library also includes
several functions that help generate nodes from wave-
scattering junctions of custom adaptors. Wave scatter-
ing junctions can be formed formed according to methods
in [3]. Each sequential input-output pair of the scattering
junction will correspond to a port of the node. The au-
tomatic adapting process requires the scattering junction
have the upward-facing port resistances declared as param-
eters.
u_genericNode forms an unadapted node from the

scattering junction. genericNode forms an adapted
node from the scattering junction. The function as-
sumes that the first input-output pair is the non-reflective

2 https://faustlibraries.grame.fr/libs/
wdmodels/



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

27

Connection Tree
Structure

Representation in Faust

𝐴

𝐵

root:

(a) Simplest two-level tree

1 A : B

𝐵

𝑋 𝑌

root:

(b) Layers with multiple ele-
ments

1 B : (X, Y)

𝐴

𝐵

𝑋 𝑌

root:

(c) Representation of multi-
level trees through subtrees

1 A : (B : (X , Y))

Figure 3: The meta-programming based representation of
the connection tree implemented by the library. The se-
quence composition denotes a downward going connec-
tion. Parallel composition denotes a multi-element layer.
Sub-tree based associativity is used to represent multi-level
trees.

pair. It also depends on the port resistance rule that cre-
ates the non-reflective behavior. genericNode_Vout
and genericNode_Iout form leaf nodes similarly to
genericNode while also treating the node as a model
output.

3.3 Connection Tree Formation

To describe the connection tree, WDmodels implements
a custom symbolic representation of trees using existing
Faust operators. Sequence composition declares a parent
(𝑃 ) to child (𝐶) relationship between nodes:

𝑃 : 𝐶. (4)

If a parent node has multiple children, they are declared in
a list using parallel composition:

𝑃 : (𝐶1, 𝐶2, . . . 𝐶𝑛) (5)

More complex trees are implemented by using this defini-
tion recursively. A complex tree can be broken into simple
functions representing subtrees, then each subtree function
is treated like a single node. This symbolic representation
is detailed for several example trees in Figure 3. The dec-
laration of the connection tree for the model in Figure 2
occurs in line 10.

The implemented connection tree must be properly
formed along wave-digital model conventions. All nodes
in the connection tree must be adapted, except for the root,
which must be unadapted. Each node also expects a spe-
cific number of parent and child nodes based on its internal

−+𝑣in

𝑅1

𝐷1 𝐷2 𝐶2

+
𝑣out

−

(a) schematic

1

2 3

𝒫1

root:

(b) connection tree −+

𝑣in

𝑅1

𝐶1

𝐷𝒫
root

𝒫1

(c) wave-digital model

1 diode-clipper(in1) = wd.builtree(tree)
2 with{
3 //declare components
4 c1(i) = wd.capacitor(i, c1)
5 vres(i) = wd.resVoltage(i, in1);
6 dp(i) = wd.u_diodeAntiparallel(i, Is, Vt);
7 //declare connection tree
8 tree = dp : wd.parallel : (c1, vres);
9 }

(d) Faust implementation

Figure 4: The wave-digital model and simplified Faust im-
plementation of a one-capacitor diode clipper. The antipar-
allel diode is modeled using Schottky’s diode law and im-
plemented with an iterative Lambert 𝒲 function solver.

characteristics. For example, an adapted node implement-
ing a three-port parallel adaptor must have two children
and one parent in the connection tree.

3.4 Building the Model

To create a working model, the connection tree function is
passed to the model-building function buildtree. This
step is declared in Figure 2, line 1. buildtree interprets
the meta-programming of the connection tree and produces
the final model function. As part of the model-building
process, the wave-digital model is adapted. The port re-
sistances of all adaptors are automatically set to the proper
values.

Most implementations of wave-digital filters rely on a
tree data structure to implement the connection tree. Adap-
tors are implemented as node objects in the tree. A recur-
sive tree traversal of the connection tree data-structure is
performed for each computation cycle of the connection
tree [9, 13].

The library uses an alternative implementation of wave-
digital models. Instead of performing a tree-traversal at
each step, we perform a tree inspection during compi-
lation, generating an instructional method for computing
the model. In the tree inspection, the buildtree re-
cursively inspects the connection tree function and cre-
ates three functions corresponding to the computations of
downward-going waves, upward-going waves, and root-



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

28

−+𝑣in 𝑅a

𝑃HB

𝐶HBF

𝐿HBF

𝑃HBQ

𝑃LC 𝑃HC

𝑅d

𝐶LCF

𝑃HC

𝑃BL

𝐶LFa

𝑅c

𝑅b

𝐶LFb

+

𝑣out

−

𝑃+
HB

𝑃−
HB

𝑃+
HC

𝑃−
HC

(a) simplified schematic

𝐶LFb

−+𝑣in

𝑃BL

𝐶LFa

𝑅c

𝑃−
HC𝑃+

HC𝑅b𝑅d

𝑅a 𝑃+
HB

𝐶HBF

𝐿HBF 𝑃HBQ 𝑃−
HB

𝐶HBF

𝑃LC 𝑃−
HC

ℛ1𝒮0 𝒮1 𝒮2𝒮3

𝒮4

𝒮5

𝒮5

𝒫1

𝒫2

𝒫3

𝒫4

𝒫5

A

B
CD

E

F

(b) wave-digital model

1′

2′

3′

4′

10′

10′

8′

10′

8′

4′

9′

5′

1 2 3

4

5 6

7 8

9

10

11 12

13

14 15

16

17 18

𝒮1𝒮2

𝒮3

𝒮4

𝒮5 𝒮6

𝒮0

𝒫1

𝒫2

𝒫3

𝒫4 𝒫5

ℛ1

root:

(c) connection tree

1 pultec(in1) = wd.buildtree(tree)
2 with{
3 //declare components
4 ...
5 //declare the R-type by declaring a scattering matrix
6 u_6port(i) = u_genericNode(i, scatterJunction)
7 with{ scatterJunction(Ra, Rb, Rc, Rd, Re, Rf) =
8 ro.matrix(6, 6, scatter)
9 with{ scatter = case{

10 (1, 1) => S_11
11 (1, 2) => S_12
12 ...
13 (6, 6) => S_66
14 };};};
15 //declare connection tree
16 tree = u_6port : (P_1 : ...), (S_3 : ...), Rb, Rd,
17 (S_5 : ...) , (S_6 : ...);
18 };

(d) simplified faust code

Figure 5: The wave-digital model and simplified Faust implementation of the Pultec EQP 1-A passive equalization section.
The R-node is implemented by creating 6 × 6 scattering junction and using library tools to form a custom node.

reflected waves. Each function consists of parametrized
node functions and specialized routing for signals.

4. IMPLEMENTATION EXAMPLES

4.1 Diode Clipper

The one-capacitor diode clipper circuit has been thor-
oughly studied as a virtual analog model [15, 16]. As a
wave-digital model, it can be simulated using four adap-
tors. Figure 4 shows the implementation of a one capacitor
diode-clipping circuit as a wave-digital model using WD-
models. The resistive voltage source adaptor encloses both
𝑣in and 𝑅1. The antiparallel diode pair is modeled using a
single nonlinear adaptor chosen as the root of the tree.

The diode pair adaptor is formed using Schottky’s ideal
diode law, as shown in [17]. The diode adaptor’s behavior
is described by

𝑏 = 𝑎+ 2sgn(𝑎)
[︂
𝑅𝐼𝑠 − 𝑉𝑇𝒲

(︂
𝑅𝐼𝑠
𝑉𝑇

𝑒
sgn(𝑎)𝑎+𝑅𝐼𝑠

𝑉𝑇

)︂]︂
,

where 𝒲(𝑥) is the Lambert 𝒲 function, 𝐼𝑠 is the diode’s
saturation current, and 𝑉𝑇 is the diode’s thermal volt-
age. The library node which implements an antiparallel
diode pair adaptor, u_diodeAntiparallel, relies on
lambert, a custom Lambert 𝒲 function approximation
that uses Newton-Raphson iteration to approximate the so-
lution [18]. Since compiled Faust code cannot contain

loops, lambert uses a set number of iterations that will
be performed at each sample.

4.2 Pultec EQP-1A

The library also provides several functions which allow the
implementation of user-generated adaptors as nodes. This
allows for the simulation of complex circuits through the
implementation of R-type adaptors.

Here we present an implementation of the Pultec EQP-
1a’s passive equalization section. The EQP-1a is a pro-
gram equalizer popular with audio engineers for master bus
equalization and general mastering [19]. The equalization
is performed by an passive RLC network. The output is
then passed through a tube makeup-gain stage.

We implemented the passive RLC network as a wave-
digital model as shown in Figure 5. Figure 5a shows the
simplified schematic of the EQP 1-A RLC equalization
network. By performing SPQR decomposition, we found
the connection tree associated with the circuit, shown in
Figure 5c. The circuits equivalent wave-digital model is
shown in Figure 5b. A resistive voltage source with negli-
gible series voltage was chosen to model the voltage input.

The scattering matrix of this R-type adaptor was derived
using methods described in [12]. To implement this adap-
tor as a node in the library, we used u_genericNode.
First the adaptor’s scattering matrix was used to form a



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

29

C++ WDF WDModels
time (s) ratio time (s) ratio

Second-Order 0.197 50 0.0746 130
Large Network 0.606 16 0.162 61
Diode Clipper 0.176 57 0.507 20

Figure 6: A comparison of computation benchmarks for
WDmodels and a C++ wave-digital modeling library. Time
to compute for each was averaged over three runs. The
ratio of real time to computation time is also displayed for
comparison purposes; higher is better.

6 × 6 scattering junction, scatterJunction, using
methods in [3]. The six upward-facing port resistances
(𝑅𝑎, 𝑅𝑏, . . . , 𝑅𝑓 ) were declared as parameters. The scat-
tering junction was passed to u_genericNode to form
it into an unadapted node.

5. COMPARISON

To determine both the realizability and optimization of the
WDmodels, we benchmarked it against a personal wave-
digital modeling library 3 written in C++. The bench-
marks were performed on a desktop PC with an AMD
Ryzen 2600x processor and 16GB of RAM running Man-
jaro Linux. Three models were tested: the second-order
RC lowpass filter shown in Figure 1e, the diode clipper
shown in Figure 4c, and an arbitrary large linear model.
The three models were first implemented in both libraries.
For the Faust library, the Faust code was then compiled
into C++. Each implementation was then tested to deter-
mine the time it took to process 10 sec of randomized au-
dio at 192 kHz sample rate. A high sample rate was chosen
to show the potential for oversampling, as oversampling is
commonly used to improve the accuracy of physical mod-
els. Three runs for each implementation were performed
and times were averaged together to determine a mean
computation time for each implementation. The results are
displayed in Figure 6. The full code used for testing is
available on GitHub 4 .

Our benchmarks show that both libraries produce simula-
tions capable of easily running in real time at high sample
rates. For the linear networks, WDmodels outperforms the
C++ library by a factor of 2-3. This can be attributed to
the Faust compiler, which is designed to produce highly
optimized DSP processes. It should be noted that the C++
library used is already optimized through templating; com-
parison to C++ libraries that perform recursion through
the model’s connection tree in real time would likely have
slower performance.

WDmodels is outperformed by the C++ library on the
diode clipper by a factor of about 3. This is likely due the
C++ library using a more optimized method for computing
the Lambert 𝒲 function. Further optimization lambert
would be helpful to improve the performance of the diode
clipper.

3 https://github.com/Chowdhury-DSP/chowdsp_
utils

4 https://github.com/jatinchowdhury18/
wdf-bakeoff

These benchmarks show that WDmodels is an excellent
platform for real-time simulation using wave-digital mod-
els. The highly optimized code produced by the Faust com-
piler is suitable for use in digital audio effects or other real-
time applications.

6. CONCLUSION

In this paper, we presented a new Faust library, WDmod-
els. The library greatly simplifies the process of imple-
menting wave-digital models in Faust by creating a sym-
bolic representation of the connection tree data structure
using meta-programming. We explained how the symbolic
representation is used within the context of the library and
showed examples that demonstrate its use.

Typical wave-digital modeling libraries rely on recursion
through a tree for the computation of each sample, which
can be computationally expensive. In the library, a tree
traversal is only performed once at compilation instead of
every sample at runtime, resulting in a significant reduc-
tion of computational complexity of the model. We have
also shown that the Faust compiler is able to produce C++
code that rivals or outperforms C++ wave-digital modeling
libraries, in some cases. The code produced is suitable for
implementation in real-time digital audio effects.

Currently, the library only includes nodes for some one-
port nonlinearties, specifically the diode. Most complex
audio circuits rely on complex nonlinear elements, such
as transistors and vacuum tubes, which are modeled us-
ing multiport nonlinearties [20]. Thus, the development of
methods to support multiport nonlinear adaptors in faust
would greatly widen the scope of models which can cre-
ated with default library nodes and functions.

Acknowledgments

Thanks to Kurt Werner for assisting with wave-digital
model figures and to Rob Owen, Julius O. Smith, Stéphane
Letz, and Yann Oraley for aiding with the development of
the library.

7. REFERENCES

[1] R. Michon and Y. Orlarey, “The faust online compiler:
a web-based ide for the faust programming language,”
in Linux Audio Conference, 2012. [Online]. Available:
http://lac.linuxaudio.org/2012/papers/22.pdf

[2] Y. Orlarey, D. Fober, and S. Letz, “Faust: An
efficient functional approach to dsp programming,”
2009, unpublished. [Online]. Available: https://hal.
archives-ouvertes.fr/hal-02159014

[3] J. O. Smith III, Audio Signal Processing in Faust,
CCRMA, Stanford, CA, USA, 2020. [Online]. Avail-
able: https://ccrma.stanford.edu/∼jos/aspf

[4] ——, Physical Audio Signal Processing, 1st ed.
http://www.w3k.org/books/: W3K Publishing, 2010.

[5] R. Michon, J. Smith, C. Chafe, G. Wang, and
M. Wright, “The faust physical modeling library: a



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

30

modular playground for the digital luthier,” in Inter-
national Faust Conference, 2018.

[6] J. Zhang and J. O. Smith III, “Real-time wave digital
simulation of cascaded vacuum tube amplifiers using
modified blockwise method,” in Proc. 21th Intl. Conf.
Digital Audio Effects (DAFx-18), 2018.

[7] J. Chowdhury, “A comparison of virtual analog
modelling techniques for desktop and embedded
implementations,” 2020. [Online]. Available: https:
//arxiv.org/pdf/2009.02833.pdf

[8] K. J. Werner, “Virtual analog modeling of audio cir-
cuitry using wave digital filters,” Ph.D. dissertation,
Stanford University, 2016.

[9] M. Rest, R. W. Dunkel, K. J. Werner, and J. O.
Smith III, “RTWDF—a modular wave digital filter li-
brary with support for arbitrary topologies and multiple
nonlinearities,” in Proc. 19th Intl. Conf. Digital Audio
Effects (DAFx-16), 2016.

[10] U. Zölzer, X. Amatriain, D. Arfib, J. Bonada,
G. De Poli, P. Dutilleux, G. Evangelista, F. Keiler,
A. Loscos, D. Rocchesso et al., DAFX-Digital Audio
Effects, 2nd ed. John Wiley & Sons, 2011.

[11] D. Fober, Y. Orlarey, and S. Letz, “Faust architectures
design and osc support.” in Proc. 14th Intl. Conf. Digi-
tal Audio Effects (DAFx-11), 2011, pp. 231–236.

[12] K. Werner, A. Bernardini, J. Smith, and A. Sarti,
“Modeling circuits with arbitrary topologies and ac-
tive linear multiports using wave digital filters,” IEEE
Transactions on Circuits and Systems I: Regular Pa-
pers, vol. PP, pp. 1–14, 06 2018.

[13] D. Franken, J. Ochs, and K. Ochs, “Generation of wave
digital structures for networks containing multiport el-
ements,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 52, no. 3, pp. 586–596, 2005.

[14] A. Sarti and G. De Sanctis, “Systematic methods for
the implementation of nonlinear wave-digital struc-
tures,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 56, no. 2, pp. 460–472, 2008.

[15] J. Parker, F. Esqueda, and A. Bergner, “Modelling of
nonlinear state-space systems using a deep neural net-
work,” in Proc. 23rd Intl. Conf. Digital Audio Effects
(DAFx-19), 2019.

[16] D. T. Yeh, J. S. Abel, and J. O. Smith, “Automated
physical modeling of nonlinear audio circuits for real-
time audio effects—part i: Theoretical development,”
IEEE transactions on audio, speech, and language pro-
cessing, vol. 18, no. 4, pp. 728–737, 2009.

[17] K. J. Werner, V. Nangia, A. Bernardini, J. O. Smith III,
and A. Sarti, “An improved and generalized diode clip-
per model for wave digital filters,” in Audio Engineer-
ing Society Convention 139. Audio Engineering So-
ciety, 2015.

[18] S. D’Angelo, L. Gabrielli, and L. Turchet, “Fast ap-
proximation of the lambert w function for virtual ana-
log modelling,” Proc. 23rd Intl. Conf. Digital Audio Ef-
fects (DAFx-19), vol. 100, 2019.

[19] Pultec model EQP-1A Manual, Pulse Techniques, Inc.,
West Englewood, NJ, 1951.

[20] K. J. Werner, V. Nangia, J. O. Smith, and J. S. Abel,
“A general and explicit formulation for wave digital
filters with multiple/multiport nonlinearities and com-
plicated topologies,” in 2015 IEEE Workshop on Ap-
plications of Signal Processing to Audio and Acoustics
(WASPAA). IEEE, 2015, pp. 1–5.


