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Abstract

Biomedical research papers often combine disjoint concepts in novel ways, such as when

describing a newly discovered relationship between an understudied gene with an important

disease. These concepts are often explicitly encoded as metadata keywords, such as the

author-provided terms included with many documents in the MEDLINE database. While

substantial recent work has addressed the problem of text generation in a more general con-

text, applications, such as scientific writing assistants, or hypothesis generation systems,

could benefit from the capacity to select the specific set of concepts that underpin a gener-

ated biomedical text. We propose a conditional language model following the transformer

architecture. This model uses the “encoder stack” to encode concepts that a user wishes to

discuss in the generated text. The “decoder stack” then follows the masked self-attention

pattern to perform text generation, using both prior tokens as well as the encoded condition.

We demonstrate that this approach provides significant control, while still producing reason-

able biomedical text.

Introduction

Scientific papers often combine a range of disconnected concepts in novel patterns, following

the typical research strategies of many scientists [1]. Therefore, we anticipate that future

applications, such as scientific writing assistants, will produce more usable results if they are

informed of the user’s particular concepts of interest. This presents two challenges that we find

to be unexplored in the modern text generation literature. Firstly, the number of concepts a

user might wish to include is highly variable. Secondly, the range of concepts a user might

wish to select from is large (tens of thousands). Therefore, we present the Conditional Biomed-

ical Abstract Generation (CBAG) model, which enables controlled generation of biomedical

abstracts.

While many transformer-based [2] Natural Language Processing (NLP) models have

debuted in recent years, such as the popular BERT [3] and GPT/GPT-2 models [4, 5], as well

as derivative models specialized for scientific text, including SciBERT [6] and BioBERT [7],

there has been less work on conditional language modeling. The CTRL model [8], while

enabling conditional text generation, does so by specifying a small fixed set of tokens that
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prefix an input sentence before applying the GPT-2 architecture. We find that this technique,

while effective for applications like style transfer, where the number of “styles” is relatively

small, is not expressive enough for conditioned generation of biomedical text. We find the

same limitation with older conditional models, such as those designed for image captioning

systems [9], that generate text given a single image encoding. More generalizable methods,

such as those produced by variational auto-encoders [10], can capture rich latent language

semantics, but cannot straightforwardly encode domain-based information, such as a set of

keywords one wishes to include in the output text.

The CBAG model is a transformer featuring a shallow encoder stack to encode qualities of

the condition and a deep decoder stack to produce a high quality language model. We train

this model using semi-supervised multi-task generative pre-training, wherein to minimize our

proposed objective function, the model must predict successive tokens, parts of speech, depen-

dency tags, as well as entity labels. We train this model using over 20-million biomedical rec-

ords provided by the National Library of Medicine (NLM) through the MEDLINE database.

Each record consists of a title, abstract, publication year, and an optional set of author-pro-

vided keywords. Text processing and annotations are provided by a biomedical NLP model

trained on the “BIONLP13CG” BioCreative training set [11]. This pre-trained domain-specific

model allows the CBAG model to apply the knowledge gain from the relatively small human-

annotated dataset to a much larger set of unstructured text from MEDLINE. We train the pro-

posed model by sampling textual windows from within MEDLINE abstracts. The publication

date, and any author-supplied Medical Subject Headings (MeSH terms, a set of biomedical

keywords and phrases) form the condition. Windows are split into subword units using the

unigram subword-regularization [12]. Using masked-self attention, we train the model to pre-

dict each subword i + 1 using only the condition and tokens 1, . . ., i.
We compare the CBAG model to two versions of GPT-2. First, we consider the 1.5B param-

eter version of the model, but due to technical limitation we do not finetune this model for

abstract generation. However, prior work has identified that the GPT-2 “huge” model can,

without finetuning, succeed in a range of specific tasks across domains, such as language trans-

lation, question answering, and commonsense reasoning [5], as well as function as a general-

purpose knowledge base [13]. We secondly consider a smaller finetuned version of GPT-2

(124-million parameters) for abstract generation. Across all models, we compare generation

quality through n-gram recall metrics.

We evaluate computer-generated abstracts based on their ability to produce relevant n-

grams that occur in the human-written abstract associated with the input title. We leverage a

range of Natural Language Generation (NLG) metrics [14], such as Bleu, METEOR, ROU-

GE-L and CIDEr, including a version of CIDEr that omits input n-grams from consideration.

We find that even though CBAG was only trained on biomedical abstracts, a much smaller

dataset than the GPT-2 models were initialized on, it performs similarly to the GPT-2 fine-

tuned model on n-gram recall. However, we also demonstrate qualitatively that the CBAG

model is capable of generating highly controlled textual output by speficiying different condi-

tions to the same input text.

The remainder of this paper is organized as follows: In Background we provide an overview

of language modeling and the transformer architecture. In Multi-Conditional Language

Model we describe the methodology behind the CBAG model, which specializes the trans-

former architecture for generating biomedical abstracts. In Data Preparation we describe the

implementation details related to processing the MEDLINE database for input into CBAG. In

Results we present both qualitative and quantitative comparisions between abstracts generated

by CBAG, original human-authored abstracts, and abstracts generated by the similar GPT-2

model. In Related Work we discuss the similarities and differences between our proposed
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method and a collection of contemporary techniques for working with similar textual data. In

Future Challenges and Ethical Considerations we discuss the future direction of works like

CBAG as well as the ethical implications therein.

Our contribution

We present CBAG, a transformer-based language model for conditional biomedical abstract

generation. Trained using MEDLINE records and informed by semi-supervised domain-spe-

cific annotations, this model captures biomedical jargon, entities, and pattern of scientific dis-

cussion. We compare this model to two instances of GPT-2, both original and finetuned, and

find competitive quantitative results.

All code, data, pre-trained models, preprocessing pipelines, and experimental parameters

are available online at https://sybrandt.com/2020/cbag. We additionally supply a set of over

13,000 automatically generated abstracts for a wide range of test set titles. Using the generaliz-

able precondition approach presented here, we hope to enable future applications, such as

descriptive hypothesis generation. However, we are also cognisant of the potential for abuse

surrounding high quality domain-specific language models. We discuss these concerns further

in Future Challenges and Ethical Considerations.

Background

While recent language models receive a newfound popularity in proportion to their surprising

capacity across a range of tasks [5], their study predates modern machine learning techniques

[15]. Formally, a language model is a probabilistic model that captures the conditional proba-

bility of each next element in a sequence given all prior elements. Specifically, this is described

by the function:

PrðsÞ ¼
Yn

i¼1

Prðsijs1; . . . ; si� 1Þ:

Here, s is a sequence of n elements. The probability of observing sequence s is determined by

the product of the conditional probabilities of observing each token si given all prior tokens.

These models can generate new text by iteratively sampling new elements from the probability

distribution Pr(si+1|s1, . . ., si).

The conditional language model introduces a new term c into the above equation. The con-

dition can allow applications to alter the resulting sequence based on a priori knowledge [10].

Formally, the conditional language model is defined as:

PrðsjcÞ ¼
Yn

i¼1

Prðsijs1; . . . ; si� 1; cÞ:

Modern neural network language models [5, 8] handle these probability distributions by

minimizing the negative log-likelihood of these distributions over a large training set of

sequences. The loss associated with a dataset of m sequences is defined as:

Lððsð1Þ; cð1ÞÞ; . . . ; ðsðmÞ; cðmÞÞÞ ¼ �
Xm

j¼1

Xn

i¼1

logPryðs
ðjÞ
i js

ðjÞ
1 ; . . . ; sðjÞi� 1; cðjÞÞ;

where sðjÞi denotes the ith element of sequence s(j). Here, Prθ indicates the parameterized model

that approximates the language model distribution. Modern systems often use the transformer

architecture [5, 8, 16] for state-of-the-art quality estimating Prθ.
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The transformer [2], a sequence-to-sequence model built through multi-headed attention

layers, has been customized for a number of NLP tasks, as best demonstrated by BERT [3],

GPT-2 [5], and a range of notable follow-ups [17–19]. Conceptually, the attention mechanism

works by learning multiple weighted averages per-element of the input sequence. Specifically,

this includes three projections of each element’s embedding, represented as matrices: Q, K,

and V. The rows of each matrix correspond to different projections of the input sequence

embeddings. The Q matrix acts as a “query” that is compared against “keys” K and “values” V.

The specific mechanism is defined as follows, with d representing the dimensionality of each Q
and K embedding:

AðQ;K;VÞ ¼ softmax
QK⊺

ffiffiffi
d
p

� �

V:

The “multi-headed” aspect of the transformer indicates that the attention mechanism is

applied multiple times per-layer, per-element of the sequence. These multiple heads, hi, are

then recombined through a feed-forward layer. If X and Y are comprised of row-wise embed-

dings, and the values Y
ð1Þ
;Y

ð2Þ

i ;Y
ð3Þ

i ;Y
ð4Þ

i correspond to four different trainable weight matri-

ces, and all but Θ(1) are associated with the ith attention head, then multi-headed attention is

defined as:

MHðX;YÞ ¼ ½h1; . . . ; hk�Y
ð1Þ
;

where hi ¼ AðXY
ð2Þ

i ;YY
ð3Þ

i ;YY
ð4Þ

i Þ:

The transformer model presented by Vaswani et al. [2] uses the attention mechanism in

three different ways. Within the encoder stack, which processes the input sequence in their

proposed sequence-to-sequence model, the K, Q, and V embeddings all come from the same

sequence of tokens. This is referred to as “self attention.” In the decoder stack, the part of the

model that uses the encoder output to generate a new sequence, these embedding matrices are

masked during the attention function such that the output embedding for position i can only

depend on prior elements. This is called “masked self attention”. Following this operation,

each decoder embedding is attended with all of the encoder embeddings. Specifically, Q values

are derived from the decoder, while K and V values depend on the encoder. We refer to this

operation as “Encoder-Decoder Attention.” Note that BERT [16] uses only the encoder self-

attention layers, while GPT-2 [5] uses the decoder’s masked self-attention layers. The work

presented here uses all three.

The multi-head components are combined with a feed-forward operation, denoted FF, that

projects the concatenated embedding into a larger dimensionality, applies the Rectified Linear

Unit (ReLU) activation function, and then reduces back to the set embedding rank. Here, Θ(5)

and Θ(6) are two new matrices of trainable weights.

FFðXÞ ¼ maxð0;XYð5ÞÞYð6Þ:

Then, combined with a learned layer-wise normalization, these components combine to

form encoder and decoder blocks. Omitting the standard dropout between each operation, the

encoder block is defined as:

EðXÞ ¼ LayerNormðFFðaÞ þ aÞ

a ¼ LayerNormðMHðX;XÞ þ XÞ;
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while the decoder block is defined as:

DðX;YÞ ¼ LayerNormðFFðaÞ þ aÞ

a ¼ LayerNormðMHðb;YÞ þ bÞ

b ¼ LayerNormðMHðX;XÞ þ XÞ:

Multi-conditional language model

The CBAG model follows the transformer architecture [2] with a shallow “condition” encoder,

and a deep “language model” decoder. Our adaptation of the transformer model is depicted in

Fig 1. The condition is specified as a set of embeddings that enable a high degree of control. To

capture information that is particular to language within biomedical domain, we add terms in

our objective representing not only elements of the textual sequence, but also the part-of-

speech, dependency tags, and entity class labels associated with each textual element. For each

class of prediction, we minimize the sum of negative log-likelihood:

Lðt; p; d; e; cÞ ¼ LTðt; t; cÞ þ LPðp; t; cÞ þ LDðd; t; cÞ þ LEðe; t; cÞ;

where t = t1, . . ., tn are the set of ground-truth textual elements, each with associated pi 2 p
part-of-speech tags, di 2 d dependency labels, ei 2 e entity labels. The term c = c1, . . ., cm indi-

cates the set of conditions associated with t, and captures information such as metadata key-

words and the publication year of the ground truth elements. Each term of L follows the form

Fig 1. Abstract generator model. Adapted from [2].

https://doi.org/10.1371/journal.pone.0253905.g001
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of:

L½��ð‘; t; cÞ ¼
Xn

i¼1

� pðiÞ‘i þ log
X

j6¼i

exp ðpðiÞj Þ

 !

where pðiÞ ¼ softmaxðHðft1; . . . ; ti� 1g; cÞY½��Þ

and the symbol [�] is replaced by T, P, D, or E for each classification objective. The sequence ℓ
indicates the ground-truth labels associated with each element of t with respect to the particu-

lar classification task. Additionally, Hðt; cÞ is the proposed transformer model, which accepts

all text elements {t1, . . ., ti−1} and c in order to produce an encoding for ti. This model is

defined as:

Hðt; cÞ ¼ Dk

Diþ1 ¼ DðDi;ElÞ and D0 ¼ t þ PE

Eiþ1 ¼ EðEiÞ and E0 ¼ c:

Each input element of t and c is first assigned an input encoding and put through their

respective stacks of encoder and decoder layers. Additionally, k and l refer to the number of

decoder and encoder layers respectively. The symbol PE references the positional encoding

defined by the sinusoidal function presented in [2]. This encoding enables the transformer

model to take position into account when considering embeddings, and is defined as:

PEpos;2i ¼ sin pos=10000

2i
d

0

@

1

A

PEpos;2iþ1 ¼ cos pos=10000

2i
d

0

@

1

A;

where pos indicates the embedding’s position in the input sequence, and i denotes the dimen-

sion along each size-d embedding.

Initial input encodings are provided by an embedding table that begins randomly initial-

ized. We determine textual elements through the unigram word-part tokenizer [12], and con-

textual elements consist of a learned embedding per-publication year, as well as embeddings

for each Medical Subject Heading (MeSH term).

Hyperparameters

We selected hyperparameters similar to the GPT-2 “medium” model. This includes an embed-

ding dimensionality of dk = 1024, k = 16 attention heads per multi-headed attention layer,

e = 2 encoder blocks, d = 16 decoder blocks, a fully-connected size of 3072, and an inner-block

dropout rate of 0.1. We additionally use a max sequence length of n = 128. Our set of initial

embeddings contains 16,000 text tokens, 48,133 MeSH headings, and 230 year embeddings.

Optimization

We minimize L using the large-batch optimizer LAMB [20] across 40 Nvidia V100 GPUs

using an effective batch size of 480. We selected a learning rate of 0.001, with a 500-batch linear

warm up. We check pointed the model each epoch after viewing 5% of the training data (about

700,000 abstracts). Note that each time an abstract is viewed, we select from it a different
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training window. We trained this model for 72 hours using PyTorch Lightning [21] to aid in

the distribution and check pointing.

Data preparation

In order to train the model described in Multi-Conditional Language Model, we collect train-

ing samples (t, c) from the set of publicly available biomedical abstracts provided in the MED-

LINE database. This dataset contains publication dates, author-supplied MeSH terms, titles,

and abstracts for more than 30-million citations. We filter for documents that were originally

published in English, as well as documents that contain at least one non-title sentence. Docu-

ments without metadata keywords are allowed. We split the remaining abstracts into a training

and test sets following a 70–30 split.

Within the domain of biomedical text mining, there are relatively few annotated training

sources [11, 22]. To endow the CBAG model with biomedical-domain knowledge, we auto-

matically annotate the entire MEDLINE training set using the ScispaCy model [23] trained

on the “BIONLP13CG” BioCreative dataset [11]. We selected this particular model because it

produces the widest range of entity labels when performing named entity recognition. These

consist of: cancer, organ, tissue, organism, cell, amino acid, gene or gene product, simple

chemical, anatomical system, immaterial anatomical entity, multi-tissue structure, developing

anatomical structure, organism subdivision, and cellular component. We add a class corre-

sponding to “not an entity” as well.

Using the ScispaCy model and a cluster of 100 machines, we quickly identify every token,

part-of-speech, dependency tag, and entity label for all 14-million training-set MEDLINE doc-

uments. We depict examples of these automatic annotations in Fig 2. However, in order to for-

mulate these textual features for input into the CBAG model, we also leverage the unigram

subword regularization method from Kudo et al. [12]. This method learns an efficient tokeni-

zation sentences. Each token corresponds to a “chunk” of characters, many of which corre-

spond to subword components. The unigram approach adds a normalization factor wherein

the specific tokenization for each word is probabilistic determined from the set of ambiguous

subword sequences. These subword sequences, along with special “start of abstract” and “end

of abstract” tokens, create input t.
We train the unigram tokenization method on one-million randomly sampled sentences

from the training set, specifying a fixed-size vocabulary of 16,000 subword tokens. We addi-

tionally lowercase the entire training corpus, and enforce that every character within the sam-

pled training set receive its own token. Using the resulting model, we tokenize the entire

training set, and cross reference the subwords with the multi-task labels provided by ScispaCy.

This way, each subword token ti in the training set is associated with a part-of-speech pi,

dependency tag di, and entity label ei.

Fig 2. Annotations provided by ScispaCy “BIONLP13CG”. (a) Typed entity recognition. (b) Dependency tags and parts of speech.

https://doi.org/10.1371/journal.pone.0253905.g002
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Next we index each training-set publication years and author-supplied MeSH keywords,

which form the condition c. For publication years, we simply identify the earliest year within

the training set, 1790, and add an index for each year between then and 2020. We identify over

4-million author-supplied keywords within MEDLINE, which is prohibitively large for our

model to capture. We prune any keyword that occurs fewer than ten times, reducing that set to

a manageable 48,133. We add each to our excising embedding index, which contains nearly

50,000 total embeddings.

When training, we select a batch of abstracts, and for each abstract we select a window of

128 subword tokens to form t, restricted such that the first token of each window corresponds

to the first token of a sentence. In addition, we supply the condition indices c. The sequence of

labels ℓ is formulated by shifting the subword token window by one token, such that ti−1 is

used to predict ti, pi, di, and ei.

An example of model input and output is depicted in Fig 3.

Results

While NLP benchmarks such as GLUE [24] and its biomedical counterpart BLUE [22] help

researchers compare performance across a range tasks, we are unaware of a benchmark for the

generation of biomedical abstracts. In lieu of such a dataset, we leverage our held-out test set of

Medline abstracts, and a set of traditional NLG metrics [14]. We generate abstracts by provid-

ing a title t and condition c from a test set abstract. We extend t by sampling from the resulting

probability distribution over subword tokens p(i) until observing the “end of abstract” special

token, or until the generated text has reached a pre-determined maximum token length. We

Fig 3. Abstract generator example input.

https://doi.org/10.1371/journal.pone.0253905.g003
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then compute, Bleu [25], METEOR [26], ROUGE-L [27], and CIDEr [28], by comparing each

generated sentence against the set of “reference” sentences comprising the corresponding

human-written abstract.

To add context to our reported performance numbers, we also generate text using Open-

AI’s recently released 1.5-billion parameter “huge” GPT-2 model [5]. This model has been

shown to excel on a number of tasks without modification, inducing as a replacement to tradi-

tional knowledge bases [13]. However, as this model was trained to generate language found

online, such as in the BooksCorpus and English Wikipedia, it is at a disadvantage when gener-

ating domain-specific text. Because GPT-2 does not produce any “end of document” indicator,

we generate the same number of subword tokens as present in the human-written counterpart,

and truncate the potential partial sentence at the end of the abstract.

We present a full abstract from both CBAG and GPT-2 in Tables 1 and 2. Note, newline

characters produced by GPT-2 are replaced with “[\n]” due to space limitations. In this

example, we observe that the CBAG model recovers a set of relevant biomedical entities.

Unsurprisingly, the model parrots some entities that appear in the title, such as, “micro- and

nanopatterned topographical cues,” as well as “cellular functions” in this example. However, it

is also able to produce more advanced concepts including “multiple imaging modalities,” and

“multiscale substrates” that do not appear in the title but do appear in the corresponding

human-written abstract (not reproduced here for space concerns, but is publicly available).

The GPT-2 model does recover some biomedical entities, such as “damaged retinal pathway”

and “retinal pigment epithelium,” however these keywords are unrelated to the considered

document. Other out-of-context entities such as “artificial neural network,” “computer

screen,” and reference to a blog reduce the ability of a human reader to extract any meaningful

biomedical information from this text. We find that these example abstracts help motivate the

need for domain-specific language models.

Table 1. (Part I) full abstracts generated with respect to the same title.

(PMID: 28026780) Hierarchically Micro- and Nanopatterned Topographical Cues for Modulation of Cellular

Structure and Function.

Original Author’s Abstract

Living cells receive biochemical and physical information from the surrounding microenvironment and respond to

this information. Multiscale hierarchical substrates with micro- and nanogrooves have been shown to mimic the

native extracellular matrix (ECM) better than conventional nanopatterned substrates; therefore, substrates with

hierarchical topographical cues are considered suitable for investigating the role of physical factors in tissue

functions. In this study, precisely controllable, multiscale hierarchical substrates that could mimic the micro- and

nanotopography of complex ECMs were fabricated and used to culture various cell types, including fibroblasts,

endothelial cells, osteoblasts, and human mesenchymal stem cells. These substrates had both microscale wrinkles

and nanoscale patterns and enhanced the alignment and elongation of all the cells tested. In particular, the

nanotopography on the microscale wrinkles promoted not only the adhesion, but also the functions of the cells.

These findings suggest that the hierarchical multiscale substrates effectively regulated cellular structure and

functions and that they can be used as a platform for tissue engineering and regenerative medicine.

CBAG

the ability to integrate multiple physiological cues and thereby mediate many cellular functions is critical for many

complex life history processes. despite recent advances in high-throughput imaging of biomolecules and their

spatiotemporal integration into dynamic structure and function, the precise structural organization and temporal

structure of tissue architecture remains poorly understood. here, we present an efficient system for temporally and

spatially mapping micro- and nanopatterned topographical cues in organ-specific spatial and temporal properties

using multiple imaging modalities. the micro-/nanopatterned geometrical cues can be localized to cell membranes,

cells, and proteins. the spatial and temporal dynamics of these local signals are precisely represented by the cross-

correlation function, which forms the basis of a geometrical model that accurately provides spatiotemporal

information about the spatial location and spatial coordinate of the labels and their functionalities. the model is also

capable of correlating the properties of neural cells within their network without affecting the spatial and temporal

organization of their spatial features, as well as those of their surrounding tissue. as an example of this model, cell

types grown as multilayers are described.

https://doi.org/10.1371/journal.pone.0253905.t001
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Because CBAG is a conditional language model, we explore the range of responses the

model can produce given different conditions. In Table 3 we present the first sentence pro-

duced by the model for the input “In this study, we found. . .” given different conditions. The

results indicate that the condition has a significant impact in the resulting text. When condi-

tioned with the MeSH term for contraceptive agents, the model discusses a patient study on

cardiac side-effects. The output conditioned on the pesticide DDT describes fruit and toxicity.

The output on gold describes gold-nanoparticle sensitivity. These results demonstrate the abil-

ity for the CBAG model to learn domain-specific research content provided by various key-

word preconditions.

To provide further qualitative comparison between the considered models, we additionally

provide a few first-sentences produced given various test set titles in Table 4. In these sen-

tences, and across the test set, we observe that CBAG produces a number of scientific clichés.

Table 2. (Part II) full abstracts generated with respect to the same title.

(PMID: 28026780) Hierarchically Micro- and Nanopatterned Topographical Cues for Modulation of Cellular

Structure and Function.

GPT-2 Huge Unmodified

[\n][\n] The first example of what happens when an artificial neural network’see’ complex features on a computer

screen is provided by the vision of people with sight loss. The most recent results (e.g., see Krueger’s blog) suggest

that a person who has a damaged retinal pathway for visual light-scattering called LID is able to’see’ objects using

low power laser sources. The finding is unexpected because it suggests an adaptive mechanism for recovering

limited visual function. The finding has profound implications for understanding how the retina and brain develop,

how vision is learned, and how people can potentially regain impaired vision with new retinal implants. [\n] The

retinotopic map shows which parts of the retina belong to what parts of the visual field (more details in the video

below). [\n] The following images are from a retinotopic map showing a person who has lost some peripheral vision

due to an injury in his optic nerve and retinal pigment epithelium. Note that he can make out details when looking

toward the left, and when looking toward the right, details become distorted or are obscured.

GPT-2 Small Finetuned

The development of new materials for biomedical applications is a major challenge. Here, we report a novel

approach to the fabrication of hierarchical microand nanostructures for the modulation of cellular structure and

function. The hierarchical micro- and nanostructures are fabricated by a simple one-pot process using a simple one-

pot method. The hierarchical micro- and nanostructures are fabricated by a simple one-pot method using a simple

one-pot method. The hierarchical micro- and nanostructures are fabricated by a hybridize the nanostructures are

fabricated by a hybridize the nanostructures are fabricated by a two-based on the nanostructures. The

nanostructures are fabricated by a nanostructures. The nanostructures are fabricated by a nanostructures are

fabricated by a nanostructures are fabricated by a nanostructures are fabricated by a nanostructures. The

nanostructures are fabricated by a nanostructures are fabricated by a nanostructures are fabricated by a

nanostructures.

https://doi.org/10.1371/journal.pone.0253905.t002

Table 3. Differing generations of the same prompt given various MeSH preconditions. We record the first sentence

completing the prompt “In this study, we found. . .”.

Condition CBAG’s Response

D003270: Contraceptive

Agents

. . .that, during a prospective observational period, the patients were aware of the

possibility of adverse cardiac events.

D003634: DDT . . .that the aromatic (g)-tse, which is often produced in fruit, is potentially useful to

suppress green algae as well as pesticide toxicity.

D004042: Unsaturated

Dietary Fats

. . .that vitamin e levels are associated with early childhood health consequences.

D006046: Gold . . .that the nanoparticles provide improved sensitivity to gold nanoparticles, and they

are sensitive to ag-b interaction rather than ca-a interaction.

D005395: Fish Oils . . .that the combination of pinkland and fish oil intakes (ca-like and ca-like)

improves the antioxidant effect of yinneria (tricapsa vul) and that can significantly

decrease food intake.

https://doi.org/10.1371/journal.pone.0253905.t003
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Most clearly, the model captures biomedical turns of phrase such as “in clinical practice.”

Additionally we observe that it is common for CBAG to produce an entity followed by an

abbreviation that it will repeat throughout the text. However, we observe that some abbrevia-

tions are not sensible from a human perspective, such as “in-field navigation (oif).” In these

cases, the incorrect abbreviation will still be repeated by the model.

Not seen in these first-sentences is a trend for the model to follow major abstract claims

with a fictional p-value or sample-size. We find p-values in approximately 10% of abstracts,

with a median value of 0.02, and when plotting this distribution of generated p-values we find

it matches the expected (and troubling) trend of p-values in real-world science [29]. Additional

examples of these trends can be found in our supplemental data online https://sybrandt.com/

2020/cbag.

Quantitative analysis

In order to understand quantitative relationships between each model, we turn to a set of NLG

metrics, which are nicely summarized by [14]. At a high level, each metric rewards models that

generate text that is similar to that produced by human authors for the same prompt. Each

metric would then assign a numeric value to our model’s generated text based on whether it

shared similar characteristics with any of the human-provided responses. In our case, we

adapt these metrics for scientific text. We consider an article’s title to be the “prompt” and we

consider the body of the abstract to be a single “response” that our algorithm will be judged

against.

The different metrics we consider each value different textual characteristics. The simplest

is the Bleu metric [25], which rewards models that generate n-grams that are present in the

reference text. An n-gram is simply a series of n words in a specific order. The word “Hello”

would be a 1-gram, while “my name is” would be a 3-gram. Typically it is infeasible to consider

Table 4. CBAG (left) compared to GPT-2 huge unmodified with 1.5B parameters (right). Both systems are given

the same title as a prompt. CBAG receives metadata. Results truncated for space.

(PMID: 28029317) Laparoscopy to Predict the Result of Primary Cytoreductive Surgery in Patients With

Advanced Ovarian Cancer: A Randomized Controlled Trial.

laparoscopic surgery is the standard treatment for

patients with advanced ovarian cancer; however, these

patients do not receive a standard palliative regimen.

J Natl Cancer Inst 2008;100:1567–1572. 24. The focus of

this review is the effect of apoE4 levels on the risk of

poor surgical outcome in patients with advanced

ovarian cancer.

(PMID: 27993387) Low vitamin D does not predict statin associated muscle symptoms but is associated with

transient increases in muscle damage and pain.

in clinical practice, patients with moderate-to-severe

hypervitaminosis d present with debilitating side effects

related to statin use.

ow vitamin d does not predict statin associated muscle

symptoms but is associated with transient increases in

muscle damage and pain.

(PMID: 28012718) Skin-Resident Effector Memory CD8+CD284− T Cells Exhibit a Profibrotic Phenotype in

Patients with Systemic Sclerosis.

systemic sclerosis (ssc) is an inflammatory disease

characterized by the infiltration of t cells into skin and

skin surfaces. the presence of autoantibodies can lead to

the development of cutaneous t-cell hyperactivity.

J. Clin. Invest. 117: 2748–2759; Dilating collagen in

chronic neuropathic pain. Arch. Neurol. 63: 983–989

(PMID: 27999935) Laparoscopic sentinel node navigation surgery for early gastric cancer: a prospective

multicenter trial.

to compare the feasibility and safety of laparoscopic

sentinel node navigation surgery with that of

conventional in-field navigation (oif) surgery in the

treatment of early gastric cancer (egc).

Patel S et al. (2003) Age associated factors associated

with false-positive result of prognostic biomarkers in

prostate and breast cancer.

https://doi.org/10.1371/journal.pone.0253905.t004
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all n-grams of a given text, so instead Bleu is typically restricted to a range of n values. Specifi-

cally, if we wanted to compute Bleuk (the Bleu value considering only k-grams) for a generated

hypothesis text H with respect to a single reference text R, we would compute:

Bleuk ¼ jGkj
� 1
X

Gk

min ðCountðGk;HÞ;CountðGk;RÞÞ

where Gk is the set of all k-grams in H, and Count(Gk, X) produces the number of occurrences

of Gk in text X.

In this work we consider Bleu1, as well as Bleu1+2+3+4, which sums the Bleu-scores for 1–4

grams. We also consider similar metrics such as METEOR [26], CIDEr [28], and ROUGE-L

[27]. METEOR is similar to Bleu, but first applies stemming, synonym matching, and imposes

a constraint regarding the ordering of n-grams. CIDEr weights Bleu-scores by the Term-Fre-

quency Inverse-Document-Frequency (TF-IDF) of n-grams in the reference. ROUGE-L is a

slightly different metric in that it considers only the longest common subsequence shared

between the hypothesis and reference. Specifically, if S is the longest common subsequence

shared between H and R, then ROUGE-L is defined as:

p ¼
LengthðSÞ
LengthðHÞ

r ¼
LengthðSÞ
LengthðRÞ

ROUGE � L ¼
ð1þ b

2
Þpr

r þ b2p

where β is a constant that balances the tradeoff between p and r (typically, β = 1.2).

In addition, we compute a customized “CIDER-Title” metric that sets the weight of any n-

gram that appeared in the title to zero. This quantified the ability of each model to produce

non-trivial n-grams in the abstract body. The cumulative sentence-wise score distribution for

all metrics for a sample of test set abstracts are depicted in Fig 4.

We find that both the CBAG and the GPT-2 Small Finetuned models perform almost iden-

tically in n-gram recall. The GPT-2 Huge Unmodified model, while capable of producing

some sentences that score highly on these recall-oriented metrics, does so less frequently. Note

that the above plots, being sentence-wise metrics, are unable to penalize a model for producing

repeated sentences. For instance, one GPT-2 Small Finetuned generation produces the correct

rare phrase “phosphatidylinositol” repeatedly, resulting in a high METEOR and Bleu-1 score.

As a result, we find the above quantitative measures demonstrate similar keyword recall capa-

bilities of both CBAG and GPT-2 Small Finetuned, even if they can produce qualitatively

different results. This finding emphasizes the need for new metrics when comparing text gen-

eration results with only single reference examples.

Related work

BERT [3] is a transformer-based model that consists a stack of unmasked multi-headed self-

attention, which means that every output embedding depends on all input embeddings. This

all-to-all dependency is what the authors mean when describing the model as “bidirectional,”

which departs from the more traditional left-to-right, right-to-left LSTM model.

When training BERT, input text is tokenized by the WordPiece algorithm [30], and two dif-

ferent types of training examples are input. In the first, some tokens are randomly replaced

with a masked reserve token. The objective of the model during the unsupervised pre-training
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phase is to predict the original token, using the rest of the input. In the second, two sentences

are supplied and, using the output embedding of the “start-of-input” character, the model

must determine whether the second sentence followed the first in the training data.

GPT [4] and GPT-2 [5] both use a transformer-decoder stack of masked multi-headed self-

attention. The mask, in this case, enforces that the output embedding of token i may only

depend on inputs 1, . . ., i). This masking formulation, which we adopt in this work, restricts

the GPT-models to function as pure language models. These models are pre-trained through a

generative objective. For each input sequence 1, � � �, n, the model is input 1, � � �, (n − 1) and

required to generate the sequence 2, � � �, n. Due to the masked-self-attention layers, this means

that each prefix sequence of the input is simultaneously predicted each follow-up word.

The major difference between the GPT and GPT-2 models is the larger training corpus,

which leads to state-of-the-art text generation. In [5], this model is even shown to improve the

state-of-the-art of other objectives such as question answering and translation, even without a

finetuning phase. Follow-up work [13] identifies that high-performance language models like

GPT-2 can even replace specialty knowledge-bases.

XLNet [31] modifies some of the assumptions underpinning the BERT model in order to

improve the pre-training of its Transformer-XL [32] inspired architecture. While the BERT

model pre-trains be predicting masked tokens from input sequences, XLNet learns the proba-

bility distribution of tokens based on the set of permutations in the factorization order of pre-

training sequences. As a result, XLNet can learn to use both forward and backward context

without introducing a mask token that is only used in pre-training. As a result this technique

outperforms BERT across a range of natural language understanding tasks. However, the

Fig 4. Cumulative score distributions comparing GPT-2 huge unmodified, GPT-2 small finetuned, and CBAG. Higher values for all considered

metrics are better. If a model achieves higher metric scores across a wider set of examples, the resulting cumulative score distribution will have a lower
area under the curve.

https://doi.org/10.1371/journal.pone.0253905.g004
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authors comment that the benefits of this technique come from the ability to better leverage

forward and backward context, which makes this technique hard to apply to text generation,

where backward context is not available.

Performers [33] are models that may provide a more efficient alternative to the self-atten-

tion mechanism of the transformer architecture without compromising on modeling quality.

Using the Fast Attention Via positive Orthogonal Random features (FAVOR+) approach, that

provides a provably accurate estimate of the transformer self-attention mechanism, using lin-

ear time and space. A modification of this approach, also in the initial Performer paper, uses a

prefix-sum operation to estimate forward-directional attention in a manner that would be

compatible with language modeling. As a result, it is likely that language generation models

will be able to use this technique to reduce the computational costs associated with today’s

state-of-the-art models. While this is an important step to making language model’s more

applicable to everyday tasks, the downstream performance of both neural architectures is very

comparable.

SciBert [6] achieves state-of-the-art performance across a range of scientific NLP bench-

marks by retraining the WordPeice tokenizer [30], and a BERT model [3] on 1.14-million

papers collected by semantic scholar. In [6], Beltagy et al. demonstrate that by performing

unsupervised pre-training on this scientific dataset, they are able to improve performance over

the standard BERT-pre-trained weights on their ultimate finetuned models for entity recogni-

tion, PICO extraction, text classification, relation classification, and dependency parsing.

These findings make the case that scientific text is sufficiently dissimilar from that found in

general language to require custom models.

BioBert [7] follows the same pattern as SciBert, but pre-trains on the biomedical texts sup-

plied by MEDLINE and PubMedCentral. As opposed to SciBert, this method does not replace

the general-language training data supplied by English Wikipedia and BooksCorpus, and

instead appends both biomedical text databases. In [7] Lee et al. explore the resulting finetuned

performance across a large range of small biomedical NLP tasks, and find mixed results. We

interpret these results to indicate the importance of finding training data that is not only suffi-

ciently large, but also relevant to the task at hand.

Covid-twitter-BERT (CT-BERT) [34] is a pretrained BERT model that was trained to

model tweets pertaining to the COVID-19 pandemic. This model demonstrates the ability for

NLP models of all varieties to specialize for different applications, and that one can expect a

significant improvement in task-specific tasks if one first derives a task-specific model. In this

work, CT-BERT outperforms the BERT-Large model by an average of 17.57% across five NLP

tasks. In this work we see a similar behavior wherein a biomedically specialized model can pro-

vide significant advantages over a more general NLP solution. As discussed for other BERT-

based models, the limitations of BERT for NLG remain a reason to consider specialized NLG-

specific architectures when generating scientific text.

Wang et al. [16] explore the capacity for a BERT model to effectively function as a Markov

random field language model. This technique takes advantage of the masked pre-training used

in the base BERT model to predict unknown tokens. This approach also departs from the tra-

ditional language model described here as every sequence element determines the probability

of every other element. Generation is performed by iterative freezing highest-probability ele-

ments from within a fixed-length sequence of initially free variables.

CTRL [8] is a conditional language generation method that extends GPT by including

“control codes” that prefix the sequence of text elements. For instance, each website repre-

sented in the training data is represented by a code, and as a result generated text can switch

styles based on these prefixes. Additionally, various model functions, such as question answer-

ing, are learned via generation with various codes. As a result, prefixing questions with the
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respective code results in a higher probability assigned to relevant answers. Furthermore, this

work includes some multi-code prefixes, such as “Rating 5.0” or “Sentence Title” to further

condition the generated result. While the CTRL model is the most similar to the method pre-

sented here, it has some key differences. Firstly, the CTRL model uses prefix tokens to condi-

tion generated text, while we apply a shallow transformer-encoder stack. As a result, the CTRL

approach is limited in that training requires a strict set of codes, or a small set of enumerable

code-pairs. In contrast, the CBAG approach allows the method proposed here to accept arbi-

trary-length sequences of keywords as a condition.

Future challenges and ethical considerations

Many readers have likely heard of paper generators similar to Scigen [35]. This particular proj-

ect generates computer science full-text articles by randomly sampling from a context-free

grammar, and has produced publications actually accepted by some venues. This 15-year-old

system, however, is incapable of fooling but the least-observant of gate keepers. However, high

quality text generation introduces NLP to a range of challenges currently posed by “deepfake”

images. These problematic pictures permeate the zeitgeist and stir a response reaching further

than computer science [36], extending into law [37], culture [38], and philosophy [39]. Mean-

while, misinformation spread by human actors online already cascades throughout social net-

work echo chambers at an alarming rate [40]. One needs very little imagination to conceive of

ways that the automatic generation of “pseudo-science” online could lead to public distrust of

the scientific community.

OpenAI is forming partnerships between computer-science and the social sciences in order

to understand these implications in society [41]. One major challenge they note is a distinct

lack of “correctness” measures for text generation. In completing this work, we find that some

correctness measures do exist, such as the SPICE metric to judge image caption correctness

[42]. Unfortunately, this technique does not scale well to large knowledge bases as it requires

the graph of predicate arguments induced by reference sentences. Not only are there a lack of

methods to extract arguments from text, but we need to find new algorithms for quantifying

correctness for large graphs induced by all of biomedical science.

Despite the potential for abuse, we designed CBAG with our own vision toward enabling

human-understandable hypothesis generation systems [43, 44]. For instance, our model archi-

tecture could be conditioned on more generalized forms of existing biomedical knowledge,

such as semantic graph embeddings, in order to produce textual descriptions of plausible

future research directions. These explanations could potentially persuade domain scientists to

pursue new research directions, as similar systems have already done [45, 46]. However, these

systems require specialized analysis and introduce new cognitive burdens for scientists to

understand and act on their outputs. If similar hypothesis generation systems instead could

produce human-readable arguments, then we could better utilize the wealth of publicly avail-

able information, improve the productivity of biomedical researchers, and ultimately find new

treatments and cures for people worldwide.

Conclusions

We present the Conditioned Biomedical Abstract Generation (CBAG) model for understand-

ing scientific abstracts. We train this model using publicly available biomedical data provide

through MEDLINE to predict text that is conditioned on publication year and arbitrary sets of

author-supplied keywords. This model leverages the transformer architecture [2], featuring a

shallow condition encoder, as well as a deep language model decoder. Across a range of NLG

metrics [14], we demonstrate competitive performance with a finetuned version of GPT-2,
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having only trained on biomedical abstracts. Qualitatively, we present generated sentences and

documents that exemplify the sort of quality and control that the CBAG model enables.

We anticipate that conditioned language generation can be used to build new applications

in the biomedical domain, such as a hypothesis generation system that produces textual

descriptions of proposed new research directions. To do so, the conditional aspect of the

CBAG model will likely be a necessity. However, we also acknowledge the ethical consider-

ations behind the proliferation of convincing scientific language generation models. We pro-

vide the pre-trained model, more than 13,000 generated abstracts, and all necessary training

and evaluation code to aid in exploration and reproducibility.
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