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Abstract— Gastric cancer (GC) is the third leading cause of cancer death in the world. It is associated with the stimulation of 

microenvironment, aberrant epigenetic modification, and chronic inflammation. However, few researches discuss the GC 

molecular progression mechanisms from the perspective of the system level. In this study, we proposed a systems medicine 

design procedure to identify essential biomarkers and find corresponding drugs for GC. At first, we did big database mining to 

construct candidate protein-protein interaction network (PPIN) and candidate gene regulation network (GRN). Secondly, by 

leveraging the next-generation sequencing (NGS) data, we performed system modeling and applied system identification and 

model selection to obtain real genome-wide genetic and epigenetic networks (GWGENs). To make the real GWGENs easy to 

analyze, the principal network projection method was used to extract the core signaling pathways denoted by KEGG pathways. 

Subsequently, based on the identified biomarkers, we trained a deep neural network of drug-target interaction (DeepDTI) with 

supervised learning and filtered our candidate drugs considering drug regulation ability and drug sensitivity. With the proposed 

systematic strategy, we not only shed the light on the progression of GC but also suggested potential multiple-molecule drugs 

efficiently. 

Index Terms—Machine learning, Modeling techniques, Biology and genetics, Molecular biology. 

——————————      —————————— 

1 INTRODUCTION

   Gastric cancer (GC), an important cancer worldwide, is 
responsible for over 1,000,000 new cases in 2018 and an es-
timated 783,000 deaths, making it the fifth most frequently 
diagnosed cancer and the third leading cause of cancer 
death [1]. The current optimal GC therapy is surgical re-
section with intent and adjuvant chemotherapy or radio-
therapy [2]. Although there are many molecularly targeted 
drugs entering clinical trials for GC, none of them is ap-
proved by U.S. Food and Drug Administration (FDA) ex-
cept for Trastuzumab and Ramucirumab targeting HER2 
and VEGFR, respectively [3]. With the lower response rate 
to both of them and the emergence of secondary-resistance 
to Trastuzumab, there is an urgent need to find new thera-
pies for GC patients [4]. 
   MicroRNAs (miRNAs) are small non-coding RNAs (usu-
ally 20-22 nucleotides long) which play an essential role in 
all biological pathways in multicellular organisms includ-
ing mammals [5]. It is known that miRNAs participate in 

the progression of cancers by modulating cell develop-
ment, differentiation, proliferation, and apoptosis. To the 
target of miRNA, the alteration in miRNA expression 
would lead to change its function as a tumor suppressor or 
promoter of tumorigenesis [6]. Moreover, the other types 
of non-coding RNAs that exceed 200 nucleotides in length 
are long non-coding RNAs (lncRNAs). They mediate epi-
genetic regulation on cancer-related genes, such as DNA 
methylation, DNA hydroxymethylation, and post-transla-
tional modifications, and the regulation of miRNAs [7]. 
The dysregulation of oncogenes and tumor suppressor 
genes due to multiple genetic and epigenetic alterations 
caused by miRNAs and lncRNAs is considered a driving 
force of tumorigenesis, including GC. Recent evidence 
shows that the microenvironments of GC are associated 
with lymphatic invasion, vascular invasion, lymph node 
metastasis and the survival of GC patients [8]. Therefore, 
both microenvironments of GC and the molecular mecha-
nisms triggered by the corresponding cascade signaling 
pathways are important for improving the management of 
GC and discovering potential therapeutic targets. 
     On average, for traditional drug discovery, the pipe-
lines take 12 to 16 years from inception to market and cost 
one to two billion dollars [9]. However, drug repurposing, 
which is a strategy for identifying new uses for approved 
or investigational drugs differing from their original objec-
tive and purpose, could be done in less than half a time at 
a quarter of the cost [10]. The general approaches used in 
drug repurposing are novel data sources, retrospective 
clinical analysis, pathway mapping, genetics association, 
molecular docking and, signature matching [11]. For sig-
nature matching, the connectivity map (CMap), which was 
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established by the Broad Institute, consists of gene expres-
sion profiles generated by dosing of more than 1300 com-
pounds in numbers of cultivated cell lines. It has widely 
been applied in several human disease investigations, in-
cluding colon cancer, prostate cancer, breast cancer, diet-
induced obesity, and Alzheimer’s disease [12-15]. 
     In this study, we propose a systems medicine design 
procedure using systems biology approaches for finding 
essential biomarkers and recommending potential candi-
date drugs by the application of DeepDTI and two filters 
considering drug regulation ability and drug sensitivity. 
For systems biology approaches, firstly, candidate PPI and 
GRN networks are constructed by big databases mining, 
respectively. Integrating interaction and regulation infor-
mation from multiple databases, a candidate GWGEN is 
built and used for system modeling of NGS data. Secondly, 
with the help of gene expression profiles for each stage of 
GC, we conduct systems identification by solving the con-
strained linear least-squares problem and the system order 
detection scheme by Akaike information criterion (AIC) to 
obtain real GWGENs. Thirdly, the principal network pro-
jection approach is used to extract the core GWGENs from 
the real GWGENs. According to the projection values, the 
core signaling pathways are obtained in respect of the an-
notation of KEGG pathways. Based on the analyses of the 
core signaling pathways, the progression molecular mech-
anisms for each stage of GC could be found as well as es-
sential biomarkers. In order to recommend candidate 
drugs for the selected biomarkers, we train a DeepDTI in 
advance. The drug-target pairs are transferred to feature 
vectors by PyBioMed under python 2.7 environment [16]. 
The trained DeepDTI, which is applied to predict candi-
date drugs based on our selected biomarkers, is with test-
ing AUC of 0.982. Moreover, considering drug regulation 
ability and drug sensitivity, two filters are designed to pro-
pose multiple-molecule drugs for preventing the progres-
sion from early stage to middle stage and middle stage to 
the late stage of GC. Nowadays, few studies propose sys-
tematic design procedure from identifying potential bi-
omarkers for one disease to recommending their potential 
candidate drugs from the viewpoint of systems engineer-
ing. Systems medicine design procedure, an interdiscipli-
nary approach to understand disease progression mecha-
nisms by interpreting heterogeneous data, gives us an al-
ternative way for drug discovery to overcome GC. 

2. RELATED WORK 

     Over the past decade, many researchers have been ded-
icated to analyzing protein-protein interactions (PPIs) da-
taset combining with functional information by different 
algorithms. It not only improves the accuracy of protein 
complex detection but also broadens our understanding of 
biological processes mediated through protein interac-
tions. Based on topological features of the PPI network and 
Gene Ontology (GO) annotations, cancer genes were iden-
tified and validated by well-known classifiers, support 
vector machines (SVMs) [17]. Carried out by walking on 
the fingerprints similarity network randomly, a multi-level 
PPINs reconstruction method (MLPR) was proposed [18]. 

Clustering-based on maximal cliques (CMC) algorithm 
with iterative scoring method has shown to be more robust 
toward random noise and achieve better performance of 
protein complex prediction. By applying the shortest path 
algorithm in PPI networks, candidate genes which are as-
sociated with the formation and development of gastric 
cancer could be found [19]. The surge of public next-gen-
eration sequencing (NGS) data availability has facilitated 
the application of systems biology by integrating heteroge-
neous data to investigate pathogenetic mechanisms of var-
ious human diseases with computational modeling ap-
proaches. Based on constructing the pathway logic sym-
bolic systems model via genomic, transcriptional and pro-
teomic profiles, the subnetworks within EgfR-MAPK path-
way are identified [20]. Bayesian networks, which could 
describe direct molecular interaction as well as indirect in-
fluences that proceed through additional unobserved com-
ponents, have demonstrated to be useful for understand-
ing the operation of cell signaling networks [21]. Moreover, 
one study has proposed a mathematical model of the plant 
clock using biological hypotheses and parameters solved 
by optimization methods to gain insights into the clock 
components within core mechanisms [22]. Systems biology 
approaches have been used to identify essential bi-
omarkers and propose potential drugs based on molecular 
mechanisms and pathogenic mechanisms in papillary thy-
roid cancer and two strains of Candida albicans infection [23, 
24]. Systems biology approaches with modeling tech-
niques enable us to elucidate the pathways, which are crit-
ically involved in tumor formation and progression, con-
sequences of altered cell behavior in tissue environment 
and effects of molecular therapeutics [25]. 
     Drug-target interaction (DTI) could be divided into 
three main categories, which are ligand-based, docking 
simulation, and chemogenomic approaches. Ligand-based 
methods compare candidate ligand to the known ligands 
of a target protein to predict its binding via machine learn-
ing methods. However, insufficient knowledge between 
ligands and the given target would lead to poor prediction 
performance [26]. Docking simulation has been used to 
predict DTI successfully [27] whereas it heavily relies on 
the available three-dimensional native structure of the pro-
tein target. It also should be noted that three-dimensional 
structures obtained from methods of nuclear magnetic res-
onance (NMR) spectroscopy and X-ray crystallography are 
quite costly and time-consuming. Meanwhile, docking 
simulation cannot be applied to ion channel proteins and 
G-protein coupled receptors (GPCRs) whose structures are 
too complex to get [28]. Chemogenomic methods, namely 
feature-based methods, combine drugs and targets into 
sets of descriptors (i.e. feature vectors). For instance, He et 
al. have turned drugs into a vector-based on 28 common 
chemical functional groups, encoded target proteins into 
another vector with the pseudo amino acid composition by 
incorporating biochemical and physicochemical features, 
and applied the nearest neighbor algorithm to predict DTI 
[29]. Moreover, Li et al. have represented drugs by their 
substructure fingerprints capturing the existence of certain 
functional groups or fragments and transformed target 
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protein sequence data to make drug-target interaction clas-
sifier by discriminative vector machine [30]. 
     Inspired by the previous works, we proposed a systems 
medicine design procedure including reverse engineering, 
system order detection, and principal network projection 
approaches for identifying essential biomarkers as shown 
in Fig. 1. Moreover, in order to explore the drug-target in-
teraction among these identified biomarkers, a DeepDTI is 
trained in advance. Considering drug regulation ability 
and drug sensitivity, we design two filters for candidate 
small molecule compounds. Consequently, we suggest 
two multiple-molecule drugs to prevent the progression 
from early to middle and middle to late stage of GC. 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The Flowchart of Systems medicine design procedure. 

Candidate genome-wide genetic and epigenetic network (GWGEN) 

consisting of candidate protein-protein interaction network (PPIN), 

gene regulatory network (GRN), lncRNA regulatory network (LRN), 

and miRNA regulatory network (MRN) was constructed by big data-

base mining. Afterward, with the help of NGS gastric cancer data, false 

positives of the candidate GWGEN were pruned to build up real 

GWGENs by system identification and system order detection meth-

ods. By the principal network projection (PNP) approach, we could 

extract core GWGENs from the real GWGENs. Based on the projec-

tion values, the differential core pathways from early to middle and 

middle to late stages could be obtained by the annotation of KEGG 

pathways. Subsequently, we identify essential biomarkers based on 

the molecular progression mechanisms and compared their signa-

tures with the normal stomach tissues. Consequently, the potential 

candidate small-molecule compounds are predicted by DeepDTI. 

3.IDENTIFYING BIOMARKERS BASED ON MOLECULAR 

PROGRESSION MECHANISMS     

      To identify potential biomarkers as drug targets for the 
progression stages of GC (early stage to middle stage, mid-
dle stage to late stage) based on molecular progression 
mechanisms, we apply big data mining, model construc-
tion, network identification, and principal network projec-
tion methods. The related flowchart is shown in Fig. S1. 
The procedure could be divided into four steps: (1) Big da-
tabase mining. (2) Construction of the candidate GWGEN 
consisting of PPIN and GRN. (3) Identifying the real 
GWGEN in each stage (early stage, middle stage, and late 
stage) with the help of NGS gastric cancer data. (4) Extrac-
tion of the core GWGENs from the real GWGENs via the 
principal network projection (PNP) approach. After get-
ting the core GWGENs, we can find core signaling path-
ways in the annotation of KEGG pathways and analyze 
molecular progression mechanisms of the GC to obtain po-
tential biomarkers. 
 

3.1 Datasets 

     In order to construct the candidate GWGEN, we refer to 
numbers of databases. For the candidate protein-protein 
interaction, we use the following databases: DIP [31], 
BIND [32], Biological General Repository for Interaction 
Datasets (BIOGRID) [33], IntAct [34], and MINT [35]. Be-
sides, for the transcriptional regulations between tran-
scription factors (TFs) and their target genes, we consider 
the following databases: Integrated Transcription Factor 
Platform (ITFP) [36], the Human Transcriptional Regula-
tion Interactions database (HTRIdb) [37], and the candi-
date TRANScription FACtor database (TRANSFAC) [38]. 
Moreover, for the post-transcriptional regulation between 
miRNA, lncRNA and their target genes, corresponding da-
tabases we look up are shown below: TargetScanHuman 
[39], CircuitDB [40], and StarBase2.0 [41]. Based on the in-
formation above, we successfully construct the candidate 
GWGEN comprising candidate PPIN and candidate GRN. 
     The genome-wide NGS data are downloaded from the 
Cancer Browser website (https://genome-can-

cer.ucsc.edu/). The data which we used in our analyses are 
gene, miRNA, lncRNA expression profiles. They were 
both measured experimentally using the Illumina HiSeq 
2000 RNA Sequencing platform by the British Columbia 
Cancer Agency TCGA genome characterization center. Ac-
cording to the seventh edition of the “TNM classification of 

malignant tumors” published by the UICC, the GC could be 
classified into stage IA/IB, stage IIA/IIB, stage 
IIIA/IIIB/IIIC and stage IV. In this study, we take stage 
IA/IB as early stage; stage IIA/IIB as middle stage; stage 
IIIA/IIIB/IIIC/IV as late stage. In order to avoid overfit-
ting problem caused by few samples in stage IV, we put 
stage III and IV together to be our late stage. After preserv-

https://genome-cancer.ucsc.edu/
https://genome-cancer.ucsc.edu/
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ing common samples in gene, miRNA, and lncRNA ex-
pression profiles, there are 46, 106, 149 samples in early 
stage, middle stage and advanced stage, respectively. 
     To compare selected biomarker gene expression with 
normal stomach tissue, we used GSE20795, which col-
lected from 142 solid tissue samples representing 20 or-
gans. They were taken from post-mortal human healthy 
donors of different ages killed in road accidents no later 
than 36 hours after death [42]. For drug regulation ability, 
we explored gastric cancer related cell line in the library of 
integrated network-based cellular signature (LINCS) 
L1000 (level 5) dataset [43]. It has over a million gene ex-
pression profiles treated with 19811 small molecule com-
pounds across 75 human cell lines. Considering drug sen-
sitivity, profiling relative inhibition simultaneously in mix-
tures (PRISM) repurposing 19Q3 primary screen, devel-
oped by the Broad Institute of MIT and Harvard, was 
downloaded from the DepMap portal [44]. 

3.2 Systematic Interaction Models for the 
Candidate GWGEN 

      We integrate interaction and regulation information 
from multiple databases to build the candidate GWGEN 
represented by the Boolean matrix (i.e. 0 or 1 if the interac-
tion is nonexistent or existent). Here, to get real GWGENs 
for each stage of GC, we build systematic models for pro-
teins, genes, miRNAs, and lncRNAs. For the candidate 
PPIN, which is a part of the candidate GWGEN, the sys-
tematic interaction model of the kth protein is given as fol-
lows: 
 
 
 

for k=1, …, K, and n=1, …, N.                                            (1) 

 
where [n]ky  and            denote the expression level of the 
kth protein and the gth protein for the nth sample, respec-
tively;        indicates the interaction ability between the kth 
protein and the gth protein; ,k PPIN  is the basal level of 
protein k ; [n]kv  represents the stochastic noise of the kth 
protein caused by the model uncertainty and measurement 
noise for sample n; K is the number of proteins; and N is 
the number of samples. The systematic models of GRN, 
lncRNAs regulation network (LRN), and miRNA regula-
tion network (MRN) could be found in the Supplementary 
Materials. 

3.3 Parameter estimation for the systematic 
interaction model via system identification and 
system order detection methods 

     In order to identify the parameters         and ,k PPIN  for 
the candidate PPI;                                        for the candidate 
GRN; ,,  ,  ,  and qk qs qt q LRN    for the LRN; 

,,  ,  ,  and  pk ps pt p MRN    for the MRN in the candidate 
GWGEN, we apply system identification method and sys-
tem order detection scheme on our systematic models in 
equations (1), (S1), (S2) and (S3). We rewrite PPIN interac-
tive equation (1) in the following regression form: 
 
 

 
 
 
 
 
 
 
 
                                                                                                (2) 
 
where [ ]k n  denotes the regression vector which can be 
obtained from the NGS data and k  represents the un-
known parameter vector to be estimated for the kth protein 
in PPIN. The equation (2) of the kth protein can be aug-
mented for N samples of the NGS data as below: 
 
 
 
 
                                                                                                (3) 
 
 
 
which could be simply represented as: 
 
                                                                                               (4) 
 
where 
 
 
                                                                                               (5) 
 
 
 
Therefore, the parameters in the vector k  can be esti-
mated by solving the following constrained linear least-
squares problem, 
 
                                                                                               (6) 
                         
ˆ
k  is the estimated interaction parameters for the kth pro-

tein. By the similar parameter identification method in 
equations (S4)-(S15) in Supplementary Materials, we could 
also estimate the interaction parameters of GRN, LRN, and 
MRN in the candidate GWGEN. 
      Due to various experimental conditions might lead to 
errors within data coming from different databases, the 
candidate GWGEN constructed by big databases mining 
would exist false-positives of interactions. We employed 
the system order detection scheme on PPIN model in (4) as 
well as the GRN, LRN, and the MRN models, which could 
be found in Supplementary Materials to prune these false-
positives. According to the system order detection scheme 
by Akaike information criterion (AIC), the insignificant in-
teractions and regulations in candidate GWGEN, which 
were out of the system order, were removed. Finally, we 
obtained the real GWGENs in early, middle, and late stage 
of GC cells.  
      For the PPIN model in (4), AIC for detecting the num-
ber of interactions of the kth protein could be defined in the 
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following equation: 
  
                                                                                                 (7) 
where       indicates the estimated interaction parameters 
vector of the kth protein by solving the least square prob-
lem in (6);                                                is the estimated 
residual error. According to the AIC theory, the real sys-
tem order        would minimize                       . To each 
protein, we used forward and backward search to find the 
real system order by AIC. The insignificant protein inter-
actions which are out of the real system order would be 
pruned away to get the real PPIN consequently. By doing 
so, we could obtain the real GWGENs of three stages of GC 
in Figs. S1-S3 by pruning false-positives in candidate 
GWGEN with the help of system order detection scheme 
in (7). The total number of nodes containing receptors, pro-
teins, lncRNAs, TFs and miRNAs and edges of their inter-
action in candidate GWGEN and real GWGENs are shown 
in Table S1. It is noted that the nodes and edges decrease a 
lot compared to those in the candidate GWGEN. This phe-
nomenon indicated that the false-positives were removed 
by system order detection scheme. Moreover, the real sys-
tem order detection of GRN, LRN, and MRN are demon-
strated in the Supplementary Materials.  

3.4 Extracting core GWGENs from the real GWGENs 
by using the principal network projection method 

     To the real GWGENs in three stages of GC as shown in 
Figs. S1-S3, they are still too complicated to further inves-
tigate molecular progression mechanisms directly. There-
fore, we propose the principal network projection (PNP) 
method to obtain the core GWGENs. In order to apply PNP 
method to extract the core GWGEN from the real GWGEN 
for each stage of GC, we have to construct a combined net-
work matrix H that contains all estimated parameters in 
the real GWGEN as follows: 
 
 
 
 
 
 

 

                                                                                                   
                                                                                               
 
                                                                                                   
                                                                                                  (8) 

 

                                                                                    

 
 
 
 
 
 
where         could be obtained in         by solving the equation 
(6) and pruning false-positives by AIC method in (7). With 

the same concept, the rest of parameters could be com-
puted and found in the Supplementary Materials. For the 
combined network matrix H, the first K rows denote the 
PPI network; the following I rows denote the gene regula-
tion network; the following Q rows denote the lncRNA 
regulation network and the last P rows denote the miRNA 
regulation network. Furthermore, in the PPI network, pro-
teins do not have interactions between lncRNAs and miR-
NAs so that we set zeros in the combined matrix H. 
     The PNP method is based on the singular value decom-
position of H in (8) as bellows: 
 
                                                                                                  (9) 
 
where ( * * * *) ( * * *)K I Q P K S TU       , 

( * * *) ( * * *)T K S T K S TV      , and 

1 * * *( ,  ..., )K S TD diag d d   . D  is a diagonal matrix 
which is composed of * * *K S T   singular values of 
H  in a descending order ( i.e. 1 ... K S Td d    ). The 
fraction of eigenexpression { }mE  is calculated from 
the eigenexpression levels {d }m  which are listed in the 
diagonal of D . The eigenexpression fraction mE  is de-
fined as below: 
 
 
                                                                                               (10) 
 
 
In terms of energy, we chose minimum Z singular vec-
tors of U and V  with energy (i.e.       ) satisfying             
               . The top Z principal singular vectors con-
struct 85% principal network structure of the real 
GWGEN. Subsequently, we define the projection of H 
to the top Z right-singular vectors of V for extracting 
important downstream nodes in the following: 
 
 
 
for 1,..., * * *c K S T   ; 1,..., .n Z                                       (11) 
 
where :,ch  is the c-th column vector of H; ,:

T

nv  is the n-th 
row vector of TV . 
     Afterward, we defined the 2-norm projection value of 
each downstream node in the real GWGEN to the top Z 
right-singular vectors which also stands for 85% principal 
network structure as follows: 
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where ( )D c  is the 2-norm projection value of each down-
stream c-th node including TFs, genes, lncRNAs, miRNAs 
and proteins in the real GWGEN on the top Z right-singu-
lar vectors. If the projection value ( )D c  approximates zero, 
it means that the corresponding c-th node is almost inde-
pendent to the principal network structure. In other words, 
the larger the projection value of a node in real GWGEN, 
the higher possibility the node will be an essential compo-
nent of the principal network structure. Similarly, we 
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could use the same method to calculate the upstream 
nodes' projection values by taking each row vector of com-
bined network matrix H to project on the top Z left-singu-
lar vectors. In conclusion, the core GWGENs shown as Figs 
S4-S6 could be extracted from the real GWGENs based on 
the top-ranked 3000 projection values of the downstream 
and upstream nodes, which reflected 85% of the real 
GWGENs in GC cells. 
 

3.5 Investigating molecular progression 
mechanisms by differential core signaling 
pathways from early to middle stage of gastric 
cancer cells 

Based on each element’s projection value in the core 
GWGEN, we could obtain the differential core signaling 
pathways from early-stage to middle-stage GC cells shown 
in Fig. 2. For the first core signaling pathway in the early-
stage GC cells, the receptor, ITPR1, a ligand-gated ion 
channel that mediates calcium release from the endoplas-
mic reticulum [45]. Upon the stimulation by ligand inositol 
1,4,5-trisphosphate, the mutated receptor ITPR1 would 
trigger downstream signals through BCL2, BECN1, and 
SNAI1 to activate TF GATA2, which was affected by meth-
ylation [46]. TF GATA2 could positively regulate target 
gene PRKAA2 to induce autophagy and inhibit apoptosis. 
Moreover, the BECN1 might be modified by phosphoryla-
tion [47]. In the second core signaling pathway, the ligand 
IL6 bound to the receptor IL6R and activated TF ZEB1 
through signaling transduction proteins TRAF6, WWC3, 
and MACF1. The TF ZEB1 would positively regulate its 
target genes ATG5 and WNT5A, bringing about autophagy 
and inflammatory, respectively. Moreover, the gene ATG5 
with mutation might contribute to cancer development by 
deregulating the autophagy process [48]. Accompanying 
with the post translational effect from the miR200, TF ZEB1 
might alleviate cancer progression in primary tumors [49]. 
In the last core signaling pathway in the early-stage GC 
cells, the ligand calcium ion interacting with receptor 
PLSCR1 transmitted signaling to TF STAT1 through a cas-
cade of proteins MYL6, RAB37, and MAP2K1, which was 
influence by mutation and phosphorylation [50-52]. Subse-
quently, the TF STAT1 would positively regulate its target 
genes TXNIP, which led to apoptosis, and IRF1, which pro-
moted cell cycle and inflammatory response and inhibited 
cell proliferation. It is noted that the interaction between 
TF STAT1 and miR155 is associated with responding to in-
flammatory signals or infection. Furthermore, compared 
with middle-stage GC cells, we found that miR155 had a 
lower regulation ability on STAT1. We inferred the 
stronger regulation ability of miR155 would cause STAT1-
deficient and make gastric cancer cells susceptible to viral 
and bacterial infection [53]. 
     For the core signaling pathways of middle stage GC 
cells shown in Fig. 2, the ligand CCL25 combined with re-
ceptor CCR9 would modulate TF ELK1 through the medi-
ation of signaling transduction proteins PCM1, MOS, 
KRTAP4-2, OSR1, and MARS. The TF ELK1 would posit-
tively regulate its target genes PDCD10 resulting in the 

promotion of angiogenesis and the inhibition of cell prolif-
eration, and NAP1L1 leading to cell proliferation as well. It 
is known that the OSR1 is a tumor suppressor [54]. Modi-
fied by methylation, it would lose its original functions, in-
cluding inhibition of cell growth, arrested cell cycle, and 
induced apoptosis against GC [55]. In the next core signal-
ing pathway in the middle-stage GC cells, the ligand M6P 
bound to receptor M6PR and transmitted the signal to TF 
FOXP3, which was influenced by methylation and acetyla-
tion [56, 57]. Regulated by the TF FOXP3, the first target 
gene LST1 would have an inflammatory response; the sec-
ond target gene MTDH would result in the promotion of 
autophagy and angiogenesis and the inhibition of apopto-
sis; the third target gene ATG16L1 would lead to autoph-
agy. The regulation of miR384 on MTDH suppressed the 
growth, migration, and invasion of GC cells [58]. However, 
the identified lncRNA CRNDE negatively regulated 
miR384, which might promote cell proliferation, migra-
tion, and invasion in GC cells [59]. According to the differ-
ential core signaling pathways analysis results and consid-
ering the overlap nodes with the LINCS dataset, we iden-
tified PLSCR1, BCL2, BECN1, and STAT1 to be the essen-
tial biomarkers for preventing the progression from early 
stage to middle stage of GC. Comparing these identified 
biomarkers’ expressions with the normal stomach tissues 
from GSE120795 [42], we find that they have higher expres-
sions than normal stomach tissues, which are marked in 
red in Fig. 2. 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Differential core signaling pathways from early to middle 

stage of gastric cancer. The green background covers the core sig-

naling pathways in early-stage GC; the yellow background covers the 

core signaling pathways in middle-stage GC; the black dotted lines 

and the black solid lines represent protein-protein interactions in early 
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and middle stage of GC, respectively; the black solid line with an arrow 

stands for activation; the black solid line with a dot denotes repression; 

the red nodes, which are identified biomarkers with abnormal up-reg-

ulation; the blue nodes, which are identified biomarkers with abnormal 

down-regulation. 

3.6 Investigating molecular progression 
mechanisms by differential core signaling 
pathways from middle to late stage of gastric cancer 
cells 

     The differential core signaling pathways from mid-
stage to late-stage GC are shown in Fig. 3. For the first core 
signaling pathway, the ligand estrogen binds to receptor 
ESR1 with mutation triggering downstream cascade trans-
mitting signaling to TF PRDM14 through signaling trans-
duction proteins TUSC3 and CDH1. The aforementioned 
signaling also transmitted to TF JUN through RAB12.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Differential core signaling pathways from middle to late 

stage of gastric cancer. The yellow background covers the core sig-

naling pathways in middle-stage GC; the purple background covers 

the core signalings pathways in late-stage GC; the black dotted lines 

and the black solid lines represent protein-protein interactions in mid-

dle and late stage of GC, respectively; the black solid line with an ar-

row stands for activation; the black solid line with a dot denotes re-

pression; the red nodes, which are identified biomarkers with abnor-

mal up-regulation; the blue nodes, which are identified biomarkers 

with abnormal down-regulation.  

 
Among them, we found that both TUSC3 and CDH1, 
which are tumor suppressors, were affected by mutation 
and methylation [60, 61]. The TF PRDM14 would regulate 
gene TXNRD1 resulting in cell proliferation. Owing to the 
regulation of miR125b2 on TXNRD1, cell proliferation 
might slow down. However, we inferred that TXNRD1 
with overexpression would abolish the inhibitory effect of 

miR125b2,ˊwhich is the same as the phenomenon found 
in hepatocellular carcinoma, and promote the progression 
from mid-stage to late-stage GC [62]. Moreover, the TF 
JUN would regulate gene BFAR to inhibit apoptosis. For 
the second pathway in the Fig. 3, receptor LGR5 interacting 
with R-spondin ligand could trigger the canonical path-
way and transmit signaling to TF NFKB1 through LCK, 
ZNF26, AKT1, KLF5, and VCAM1. It is noted that the 
AKT1 modulated by phosphorylation would contribute to 
gastric cancer progression [63]. After receiving the signal-
ing, TF NFKB1 would regulate EGFR to inhibit apoptosis 
and induce cell migration. The low expression compared 
with normal cells might be influenced by methylation and 
the regulation of lncRNA LINC00596. For the third core 
signaling pathway, the ligand androgen combining with 
receptor AR transmitted the signaling to TF YBX1 through 
ZEB2. The TF YBX1 would regulate TGFB3 modulated by 
methylation and lead to epithelial-to-mesenchymal (EMT) 
[64]. Along with the enhanced expression of receptor 
EGFR, the ligand TGFA bound to EGFR initiating the sig-
nal transduction cascade through NFKB1, MT1F, 
MAP3K7, BCL11A to TF EGR1. One of signaling transduc-
tion proteins, MT1F, was modulated by methylation, re-
sulting in gastric carcinogenesis [65]. After receiving the 
signaling, TF EGR1 regulated EAPP to promote cell prolif-
eration in the middle stage GC. 
     For the core signaling pathways of late-stage GC, the 
hypermethylation and mutation maintained the receptor 
EGFR with overexpression in gastric cancer cells. There-
fore, the ligand TGFA bound to the receptor EGFR initiat-
ing signal transduction cascade through FOXJ1 and GDF5. 
The activated TF ETS1 would regulate SOX9 mediating 
EMT and cell migration. For the second core signaling 
pathway of late-stage GC, the receptor ERBB4, which was 
activated by the ligand NRG4, transmitted the signaling to 
GRB2 and triggered three core signaling pathways. The 
first one went through LCP1, MYH9, and CASP14 to acti-
vate the TF YBX1. It would regulate FGF10 inhibiting cell 
proliferation and ARF4 promoting cell migration. The sec-
ond one passed the signaling to the TF PDX1 directly. After 
receiving signaling, the TF PDX1 would regulate ABL1 re-
sulting in cell migration and ANGPTL2 leading to cell mi-
gration and cell invasion. The third one delivered signaling 
through HSFX2 and RTN4 to TF GATA1 modified by acet-
ylation [66]. The activated TF GATA1 would regulate 
MIEN1 to inhibit apoptosis and induce cell migration. It is 
noted that MIEN1 modulated by demethylation was asso-
ciated with the inhibition of cell proliferation and support 
of cell migration [67]. According to the differential core sig-
naling pathways analysis results and considering the over-
lap nodes with the LINCS dataset, we identified PCM1, 
AKT1, JUN, EAPP, and EGR1 to be the essential bi-
omarkers for preventing the progression from middle 
stage to late stage of GC. Comparing these identified bi-
omarkers’ expressions with the normal stomach tissues 
from GSE120795 [42], we find that JUN, EGR1, and EAPP 
owing higher expressions than normal stomach tissues 
and PCM1 and AKT1 owing lower expressions than nor-
mal stomach tissues, which are marked in red and blue in 
Figs. 1-2, respectively. 
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4. Systems drug discovery based on deep neural 
network and filtering method for identified 
biomarkers of gastric cancer 

4.1 Deep neural network of drug-target interaction 
prediction 

     In order to explore the drug-target interaction toward 
our identified biomarkers, as shown in Table S2-S3, we 
trained DeepDTI in advance. The flowchart of designing 
DeepDTI for drug discovery is in Fig. S7. The drug-target 
interaction data used in this study were from BindingDB 
[68]. In our collected dataset, there are 38015 drugs and 
7292 targets. Among them, the number of known and un-
known interactions is 80291 and 19966109, respectively. 
The descriptors of drugs and targets were transformed by 
PyBioMed [16]. The PyMolecule module in PyBioMed, 
which we used to transform the drug descriptors, is re-
sponsible for calculating the commonly used structural 
and physicochemical descriptors. The drug features in-
clude constitutional and geometrical descriptors among 
other molecular properties. The PyProtein module in Py-
BioMed, which we applied to transforming target de-
scriptors, is responsible for calculating the widely used 
structural and physicochemical properties of proteins and 
peptides from amino acid sequences. The descriptor trans-
formation is under python 2.7 environment. After the 
transformation, the properties of drugs and targets could 
be described by a feature vector, respectively. The total 
number of drug features is 363 and the total number of tar-
get feature is 996. Every drug-target pair is represented by 
concatenating drug feature vector and target feature vec-
tor. A drug-target pair is described by the feature vector in 
the following: 
 
                                                                          (13) 

 
where                    denotes a feature vector of drug-target 
pair; D represents the feature vector of the corresponding 
drug; id  denotes the i-th drug feature; T indicates the 
feature vector of the corresponding target; 𝑡𝑗  is the j-th 
target feature; I is the total number of drug features; J is the 
total number of target features. Moreover, since features in 
the drug-target pair are measured in different scales, they 
do not contribute equally to the model fitting and might 
make model suffer from poor performance. To deal with 
this potential problem, we did data scaling by 
standardization. Consequently, we applied the principal 
component analysis (PCA) to remove noisy features and 
reduce memory consumption, which makes feature di-
mension in (13) decreased from 1359 to 1000 features [69]. 
     For DeepDTI, it has four hidden layers with the rectified 
linear unit (ReLU) activation function. We used sigmoid 
function as an activation function for the output layer, 
which could make the output in the range of 0 to 1. Since 
drug-target interaction is a binary classification problem, 
we choose binary cross-entropy to be the loss function as 
below: 
 
                                                                            (14) 

 

where ŷ  is the predicted probability distribution and y  is 
the actual probability distribution. N is the number of sam-
ples. 

ny  and ˆ
ny  are the n-th label and the n-th predicted 

probability, respectively. Moreover, the loss function in 
(15) is the summation of binary cross-entropy for each sam-
ple. 
 
                                                                           (15) 

 

Here, we want to obtain the optimal network parameter set 
*  to achieve the minimization of the objective function as 

follows: 
 
                                                                           (16) 

 

which could be achieved by the backpropagation algo-
rithm. In the deep neural network, the update of network 
parameter set, including weight           and bias ( )eb for the 
i-th layer, is described in the following form: 
 
                                                                                              (17) 
 
where   is the learning rate, and 1i   and 1( )iL    are 
given as follows: 
 
 
 
 
 
 
                                                                                             (18) 

  

 

 
 
 
 
 
The backpropagation algorithm containing forward pass 
and backward pass helps us compute 1( )iL    which is a 
high dimension vector efficiently. Before using the 
DeepDTI to predict potential candidate drugs, we have to 
turn our selected essential biomarkers into drug-target 
pair feature vectors, which were the input data of 
DeepDTI. If the predicted result approximates one, it re-
flects the higher probability that the drug-target pair 
would have interaction. 
 
4.2 The application of deep neural network of drug-
target interaction 
     As shown in Fig. S7, in order to propose the potential 
candidate multiple-molecule drugs having a higher prob-
ability of drug-target interaction for the identified bi-
omarkers, we trained a DeepDTI in advance. The interac-
tion dataset used for constructing DeepDTI is collected 
from BindingDB [68]. In total, there are 80291 known drug-
target interactions between 38015 drugs and 7292 proteins. 
It is noted that the number of unknown drug-target inter-
actions is 19966109. In order to address the class imbalance 
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problem, we randomly choose the number of negative in-
stances (unknown drug-target interactions) in the same 
size of our positive instances (known drug-target interac-
tions). 
      We trained the entire model using 70% of data together 
with 10% being the validation set. The remaining 30% of 
the data were used for testing. Subsequently, we did fea-
ture scaling by standardization. Assisted with principal 
component analysis (PCA) for dimensionality reduction, 
we obtained 1000 out of 1359 features. For the architecture 
of DeepDTI, we used Adam as an optimizer (learning rate 
= 0.003) with binary cross-entropy loss. The input layer 
had 1000 neurons, followed by four hidden layers with 
512, 256, 128, and 64 neurons. The output layer has one 
neuron. The activation function was set as ReLU except for 
the output layer using a sigmoid function. Moreover, to 
mitigate the overfitting problem, we applied dropout 0.5, 
0.4, 0.3, and 0.1 to the hidden layers, respectively. In addi-
tion, early stopping was used to terminate model training 
once the model performance stop improving on the vali-
dation set. In terms of model selection, we used 5-fold 
cross-validation to search for the optimal hyperparame-
ters, including the number of node, batch size, and drop-
out rate based on the validation accuracy. The training and 
validation accuracy and the training and validation loss of 
5-fold cross-validation are shown in Fig. S8. and Fig. S9, 
respectively. Taking the found hyperparameter settings, 
we retrained the DeepDTI. For the retrained DeepDTI, the 
training accuracy, validation accuracy, and testing accu-
racy are 95.162%, 93.061%, and 93.351%, respectively. 
Meanwhile, the loss of training and testing sets and the ac-
curacy of training and testing sets for the retrained 
DeepDTI are shown in Fig. S10. Furthermore, the area un-
der receiver operating characteristic curve (AUC) is useful 
for organizing binary classifiers and visualizing their per-
formance. The training ACU, validation AUC, and testing 
AUC are 0.983, 0.983, and 0.982, respectively. From the per-
spective of the DeepDTI application, we used it to predict 
potential candidate drugs for the identified biomarkers. 
Based on the DeepDTI prediction results, the candidate 
drugs with a score approaching one would be selected, 
which means that they hold a higher probability of inter-
acting with our identified biomarkers. 
  
4.3 Design two filters for drug regulation ability and 
drug sensitivity 
      In order to narrow down our candidate drugs pre-
dicted by DeepDTI, we designed two filters for consider-
ing the drug regulation ability and drug sensitivity as de-
sign specifications. For considering drug regulation ability 
(perturbation signature) on our identified biomarkers, we 
used the LINCS L1000 level 5 dataset consisting of assay 
results from 978 genes within 75 cell lines treated with 
19811 small molecule compounds. With the help of LINCS 
L1000, we could know whether a gene was up-regulated 
or down-regulated after treating it with a small molecule 
compound. The first filter goal is to select candidate drugs, 
which could reverse the abnormal gene expression to nor-
mal expression, as shown in Tables S2-S3. In the LINCS 
L1000 dataset, we pulled out the information of AGS, 

which was a stomach cell line. If one drug is with a nega-
tive value, we regard it as a down-regulator to a specific 
gene; if one drug has a positive value, we regard it as an 
up-regulator to a particular gene.  
      Afterward, we used the drug sensitivity (PRISM Re-
purposing Primary Screen) dataset containing 4518 drugs 
tested across 578 human cancer cell lines to consider drug 
sensitivity. The second filter aims to find the candidate 
drugs with negative values implying that they are much 
more sensitive toward the stomach cell line. Consequently, 
we suggested sulforaphane, neratinib, pimozide, fosta-
matinib, and parthenolide as a potential multiple-molecule 
drug for preventing the progression from early stage to 
middle stage GC; elesclomol, fostamatinib, parthenolide, 
rucaparib, bortezomib, and YM-155 as a potential multi-
ple-molecule drug for preventing the progression from 
middle stage to late-stage GC. The corresponding drug tar-
gets for each small molecule compound are shown in Ta-
bles 1-2. 

5. DISCUSSION 

5.1 The identified biomarkers and their correspond-
ing potential multiple-molecule drug to prevent the 
progression from early to middle stage of gastric 
cancer 
     Considering the drug regulation ability and drug sensi-
tivity as design specifications for the identified bi-
omarkers, we proposed a multiple-molecule drug contain-
ing sulforaphane, neratinib, pimozide, fostamatinib, and 
parthenolide to prevent the progression of GC from early 
stage to middle stage. The corresponding drug targets 
were PLSCR1, BCL2, BECN1, and STAT1 as shown in Ta-
ble 1. In terms of drug regulation ability, these small-mol-
ecule compounds are able to restore to the normal expres-
sion of four target genes. The results showed that the ex-
pressions of PLSCR1, BCL2, BECN1, and STAT1 were de-
creased through the treatment with the proposed potential 
multiple-molecule drug.  
      Among them, sulforaphane has been found to be active 
against several forms of cancers by protecting cells from 
DNA damage to the modulation of the cell cycle via pro-
apoptotic, anti-angiogenesis and anti-matastasis activities 
[70]. Treatment of neratinib could attenuate the invasive 
ability of gastric cancer cells [71]. There is a study suggest-
ing neratinib interacts with BCL2 inhibitor to kill mam-
mary cancer cells [72]. Pimozide is a clinical drug, which is 
used to treat psychotic disease. However, more and more 
studies have indicated that it also held the ability to sup-
press cancer cells [73-75]. Furthermore, pimozide has been 
demonstrated that its treatment resulted in the decreased 
level of BCL2 [76]. In addition to the treatment of chronic 
immune thrombocytopenia [77], there is a study showing 
that repurposing of fostamatinib is an effective treatment 
to inhibit metastatic tumor outgrowth in breast cancer [78]. 
Moreover, evidence has demonstrated that fostamatinib 
could also prevent the promotion of pro-tumorigenic mi-
croenvironment mediated by B-cell [79]. To parthenolide, 
a natural compound extracted from Pyrethrum partheni-
uma, is primarily used for the treatment of fever, arthritis, 
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and migraine [80, 81]. In one synergistic analysis, par-
thenolide has been demonstrated to facilitate apoptosis 
and inhibit proliferation, migration, and invasion by inhib-
iting the STAT3 signaling pathway in human gastric carci-
noma cells [82]. Notably, parthenolide not only induced 
cellular apoptosis in many types of tumors but also inhib-
ited cell growth in gastric cancer cell lines significantly [83, 
84]. 
 
5.2 The identified biomarkers and their correspond-
ing potential multiple-molecule drug to prevent the 
progression from middle to late stage of gastric 
cancer 
      For preventing the progression from middle to late 
stage of GC, we proposed a multiple-molecule drug com-
prising of elesclomol, rucaparib, bortezomib, YM-155, fos-
tamatinib, and parthenolide. The corresponding drug tar-
gets were PCM1, AKT1, JUN, EGR1, and EAPP as shown 
in Table 2. From the viewpoint of drug regulation ability, 
the expression of PCM1 and AKT1 were increased and the 
expression of JUN, EGR1, EAPP were decreased after the 
treatment with the proposed potential multiple-molecule 
drug. In other words, it has the ability to reverse the abnor-
mal expression toward the five drug targets. 
 

TABLE 1  

Drug targets and the multiple-molecule drug for the therapeautic 

treatment of early to middle stage of gastric cancer. 

 

              Target 

     Drug 

PLSCR1 BCL2 BECN1 STAT1 

sulforaphane   ● ● 

neratinib ● ●   

pimozide  ●   

fostamatinib  ●  ● 

parthenolide    ● 

 

TABLE 2 

Drug targets and the multiple-molecule drug for the therapeautic 

treatment of middle to late stage of gastric cancer. 

 

              Target 
    Drug 

PCM1 AKT1 JUN EGR1 EAPP 

elesclomol ● ●  ● ● 

rucaparib  ●    

bortezomib    ●  

YM-155     ● 

fostamatinib ●  ●   

parthenolide ●     

 
Elesclomol, a novel small molecule compound, induces 
apoptosis in cancer cells through the induction of oxidative 
stress [85]. One study has suggested that elesclomol-elic-
ited apoptosis was influenced by AKT survival signaling 

in breast cancer cells [86]. Moreover, it has been granted 
orphan drug and fast track designation from the U.S. Food 
and Drug Administration (FDA) for the treatment of met-
astatic melanoma [86, 87]. Rucaparib has been used to treat 
ovarian cancer or used as maintenance therapy in adult pa-
tients with recurrent or relapsed ovarian cancer who are in 
a complete or partial response to platinum-based chemo-
therapy [88]. It is noted that rucaparib has been found to 
share the key benzamide moiety with a weak AKT inhibi-
tor [89]. Bortezomib, a proteasome inhibitor, is one of the 
clinically approved molecular drugs for multiple myeloma 
[90]. Additionally, it has been shown to display anti-tumor 
effects in several solid tumors including gastric, prostate, 
and pancreatic cancer [91-94]. Functional cooperation of 
MYC and EGR1 is required for bortezomib-induced cell 
death [95]. YM-155 is identified as a specific inhibitor of 
survivin. The treatment of YM-155 significantly inhibited 
cell proliferation and induced apoptosis of gastric cancer 
cells [96]. Moreover, most of the proposed small-molecule 
compounds are approved by the U.S. Food and Drug Ad-
ministration (FDA) except for sulforaphane, parthenolide, 
elesclomal, and YM-155. Sulforaphane, ClinicalTrials.gov 
Identifier NCT03232138, has been in the phase 2 clinical 
trial studying about whether it is a useful dietary supple-
ment for prevention of lung cancer in human. YM-155, 
ClinicalTrials.gov Identifier NCT00281541, is in the phase 
2 clinical trial for patients with unresectable stage III or 
metastatic stage IV melanoma. Taken together, repurpos-
ing old drugs to treat both common and rare disease is 
gradually becoming an attractive proposition. Drug repur-
posing with the help of computation approaches leads to 
reducing overall development costs and shorten develop-
ment timelines. Identifying new uses for approved or in-
vestigational drugs that are outside the scope of the origi-
nal medical indication might bring new hope to cancer 
therapeutics. 
 
5.3 The Model evaluation for systems identification 
to infer the core signaling pathways of gastric can-
cer 
      In drug discovery, biomarker identification is an im-
portant problem. The ligand in the microenvironment 
binds to receptor triggering downstream signaling cascade 
and leads to the progression of tumor cells. To investigate 
the core signaling pathways of GC and identify biomarkers 
based on the molecular progression mechanisms, we lev-
eraged NGS data to do system identification using re-
versed engineering method. Afterward, we applied AIC, 
which could prune the false positives of interactions and 
regulations and conquer the overfitting and underfitting 
problems, to system order detection for obtaining real 
GWGENs. For model evaluation, we took another inde-
pendent dataset (GSE26899), including 11 early-stage GC 
samples, 18 middle-stage GC samples, and 63 late-stage 
GC samples and calculated the AIC values for the common 
symbols. Subsequently, we executed random permutation 
for 1000 times on our original data. To the new data, taking 
one common symbol as an example, if the common sym-
bol’s AIC value could be lower than all of the AIC values 
after random permutation in the original dataset, we 
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would say that the common symbol has significant p-value 
(p-value = 0.001). For the original data, during 1000 times 
random permutation, if we could not find the AIC value, 
which is lower than the identified AIC value, we would 
say the symbol with significant p-value (p-value = 0.001). 
Here, we would like to know how many significant genes 
in independent data overlap with significant genes in the 
original data. In other words, it reflects the robustness of 
our proposed model. According to the model evaluation 
results for each stage of GC in the independent data, the 
overlap proportion is 0.28, 0.3, and 0.47, respectively. Even 
if the sample size is small coming from a different plat-
form, the proposed model could still be robust to provide 
some significant reliable results. Moreover, the more sam-
ples we have from new data, the more significant results 
we obtain from our proposed model. 

6. CONCLUSION AND FUTURE WORKS 

     According to our proposed systems medicine design 
procedure, we applied systems biology approaches, in-
cluding system modeling, reversed engineering, system 
order detection, and principal network projection methods 
to identify biomarkers. Moreover, we trained a DeepDTI 
in advance to predict drug-target interaction for the iden-
tified biomarkers. Considering drug regulation and drug 
sensitivity as design specifications by the two designed fil-
ters, two multiple-molecule drugs are proposed to prevent 
the progression from early to middle and middle to late 
stage of GC, respectively. The data-driven computational 
approaches involving systemic analyses and deep neural 
network learning scheme lead to the formulation of repur-
posing hypotheses. With the proposed systems medicine 
design procedure, we provide alternative methods to med-
icine design for the therapeutics of GC. In this study, we 
demonstrated the validity of our pipeline for the identifi-
cation of stage-specific biomarkers. It should be noticed 
that only gene expression data is being used in the current 
pipeline. Along with the development of NGS technology, 
more and more genomics data have become publicly avail-
able giving us a great opportunity to enhance pipeline. For 
example, epigenetics (e.g. histone modification) has been 
proved to play pivotal rules and such regulation could be 
modeled by integrating Chip-seq data into our pipeline; 
similarly, by integrating Bisulfite-seq data, we can charac-
terize the regulation of DNA methylation on gene expres-
sion; in addition, by integrating Hi-C (or CHIA-PET) data, 
we can model the regulatory effect of long-range chromo-
some interactions (e.g. enhancer-promoter, enhancer-en-
hancer) on gene expression. In summary, we expect that as 
multiple types of genomics data being considered, the pro-
posed pipeline could help us reveal a much more compre-
hensive gene regulatory landscape of GC cells and speed 
up drug repurposing efficiency. The DeepDTI and model 
evaluation analysis code are available upon request to the 
corresponding. 

 

REFERENCES 
 
 

[1] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, 

and A. Jemal, “Global cancer statistics 2018: GLOBOCAN 

estimates of incidence and mortality worldwide for 36 

cancers in 185 countries,” CA Cancer J Clin, vol. 68, no. 6, 

pp. 394-424, Nov, 2018. 

[2] S. Wang, L. Ran, W. Zhang, X. Leng, K. Wang, G. Liu, J. 

Song, Y. Wang, X. Zhang, Y. Wang, L. Zhang, Y. Ma, K. Liu, 

H. Li, W. Zhang, G. Qin, and F. Song, “FOXS1 is regulated 

by GLI1 and miR-125a-5p and promotes cell proliferation 

and EMT in gastric cancer,” Sci Rep, vol. 9, no. 1, pp. 5281, 

2019. 

[3] M. Apicella, S. Corso, and S. Giordano, “Targeted therapies 

for gastric cancer: failures and hopes from clinical trials,” 

Oncotarget, vol. 8, no. 34, pp. 57654-57669, Aug 22, 2017. 

[4] G. Jomrich, and S. F. Schoppmann, “Targeted therapy in 

gastric cancer,” Eur Surg, vol. 48, no. 5, pp. 278-284, 2016. 

[5] K. B. Reddy, “MicroRNA (miRNA) in cancer,” Cancer Cell 

Int, vol. 15, pp. 38, 2015. 

[6] J. Hwang, B.-H. Min, J. Jang, S. Y. Kang, H. Bae, S. S. Jang, 

J.-I. Kim, and K.-M. Kim, “MicroRNA Expression Profiles in 

Gastric Carcinogenesis,” Scientific Reports, vol. 8, no. 1, 

pp. 14393, 2018/09/26, 2018. 

[7] Z. Zhou, Z. Lin, X. Pang, M. A. Tariq, X. Ao, P. Li, and J. 

Wang, “Epigenetic regulation of long non-coding RNAs in 

gastric cancer,” Oncotarget, vol. 9, no. 27, pp. 19443-

19458, Apr 10, 2018. 

[8] H. Sawayama, T. Ishimoto, and H. Baba, 

“Microenvironment in the pathogenesis of gastric cancer 

metastasis,” Journal of Cancer Metastasis and Treatment, 

vol. 4, no. 10, 2018. 

[9] N. Nosengo, “Can you teach old drugs new tricks?,” Nature, 

vol. 534, no. 7607, pp. 314-6, Jun 16, 2016. 

[10] J. W. Scannell, A. Blanckley, H. Boldon, and B. Warrington, 

“Diagnosing the decline in pharmaceutical R&D efficiency,” 

Nat Rev Drug Discov, vol. 11, no. 3, pp. 191-200, Mar 1, 

2012. 

[11] S. Pushpakom, F. Iorio, P. A. Eyers, K. J. Escott, S. Hopper, 

A. Wells, A. Doig, T. Guilliams, J. Latimer, C. McNamee, A. 

Norris, P. Sanseau, D. Cavalla, and M. Pirmohamed, “Drug 

repurposing: progress, challenges and recommendations,” 

Nat Rev Drug Discov, Oct 12, 2018. 

[12] K. S. Garman, C. R. Acharya, E. Edelman, M. Grade, J. 

Gaedcke, S. Sud, W. Barry, A. M. Diehl, D. Provenzale, G. 

S. Ginsburg, B. M. Ghadimi, T. Ried, J. R. Nevins, S. 

Mukherjee, D. Hsu, and A. Potti, “A genomic approach to 

colon cancer risk stratification yields biologic insights into 

therapeutic opportunities,” Proc Natl Acad Sci U S A, vol. 

105, no. 49, pp. 19432-7, Dec 9, 2008. 

[13] S. R. Setlur, K. D. Mertz, Y. Hoshida, F. Demichelis, M. 

Lupien, S. Perner, A. Sboner, Y. Pawitan, O. Andrén, L. A. 

Johnson, J. Tang, H. O. Adami, S. Calza, A. M. Chinnaiyan, 

D. Rhodes, S. Tomlins, K. Fall, L. A. Mucci, P. W. Kantoff, 

M. J. Stampfer, S. O. Andersson, E. Varenhorst, J. E. 

Johansson, M. Brown, T. R. Golub, and M. A. Rubin, 

“Estrogen-dependent signaling in a molecularly distinct 

subclass of aggressive prostate cancer,” J Natl Cancer Inst, 

vol. 100, no. 11, pp. 815-25, Jun 4, 2008. 

[14] S. E. Wang, B. Xiang, M. Guix, M. G. Olivares, J. Parker, C. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCBB.2021.3095369, IEEE/ACM Transactions on Computational Biology and Bioinformatics

12 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

 

H. Chung, A. Pandiella, and C. L. Arteaga, “Transforming 

growth factor beta engages TACE and ErbB3 to activate 

phosphatidylinositol-3 kinase/Akt in ErbB2-overexpressing 

breast cancer and desensitizes cells to trastuzumab,” Mol 

Cell Biol, vol. 28, no. 18, pp. 5605-20, Sep, 2008. 

[15] J. Lamb, E. D. Crawford, D. Peck, J. W. Modell, I. C. Blat, 

M. J. Wrobel, J. Lerner, J. P. Brunet, A. Subramanian, K. N. 

Ross, M. Reich, H. Hieronymus, G. Wei, S. A. Armstrong, 

S. J. Haggarty, P. A. Clemons, R. Wei, S. A. Carr, E. S. 

Lander, and T. R. Golub, “The Connectivity Map: using 

gene-expression signatures to connect small molecules, 

genes, and disease,” Science, vol. 313, no. 5795, pp. 1929-

35, Sep 29, 2006. 

[16] J. Dong, Z.-J. Yao, L. Zhang, F. Luo, Q. Lin, A.-P. Lu, A. F. 

Chen, and D.-S. Cao, “PyBioMed: a python library for 

various molecular representations of chemicals, proteins 

and DNAs and their interactions,” Journal of 

Cheminformatics, vol. 10, no. 1, pp. 16, 2018/03/20, 2018. 

[17] L. Li, K. Zhang, J. Lee, S. Cordes, D. P. Davis, and Z. Tang, 

“Discovering cancer genes by integrating network and 

functional properties,” BMC Medical Genomics, vol. 2, no. 

1, pp. 61, 2009/09/19, 2009. 

[18] B. Xu, Y. Liu, C. Lin, J. Dong, X. Liu, and Z. He, 

“Reconstruction of the Protein-Protein Interaction Network 

for Protein Complexes Identification by Walking on the 

Protein Pair Fingerprints Similarity Network,” Front Genet, 

vol. 9, pp. 272, 2018. 

[19] Y. Jiang, Y. Shu, Y. Shi, L. P. Li, F. Yuan, and H. Ren, 

“Identifying gastric cancer related genes using the shortest 

path algorithm and protein-protein interaction network,” 

Biomed Res Int, vol. 2014, pp. 371397, 2014. 

[20] L. M. Heiser, N. J. Wang, C. L. Talcott, K. R. Laderoute, M. 

Knapp, Y. Guan, Z. Hu, S. Ziyad, B. L. Weber, S. Laquerre, 

J. R. Jackson, R. F. Wooster, W. L. Kuo, J. W. Gray, and P. 

T. Spellman, “Integrated analysis of breast cancer cell lines 

reveals unique signaling pathways,” Genome Biol, vol. 10, 

no. 3, pp. R31, 2009. 

[21] K. Sachs, O. Perez, D. Pe'er, D. A. Lauffenburger, and G. P. 

Nolan, “Causal protein-signaling networks derived from 

multiparameter single-cell data,” Science, vol. 308, no. 

5721, pp. 523-9, Apr 22, 2005. 

[22] M. N. Zeilinger, E. M. Farré, S. R. Taylor, S. A. Kay, and F. 

J. Doyle, 3rd, “A novel computational model of the circadian 

clock in Arabidopsis that incorporates PRR7 and PRR9,” 

Mol Syst Biol, vol. 2, pp. 58, 2006. 

[23] S. J. Yeh, C. Y. Lin, C. W. Li, and B. S. Chen, “Systems 

Biology Approaches to Investigate Genetic and Epigenetic 

Molecular Progression Mechanisms for Identifying Gene 

Expression Signatures in Papillary Thyroid Cancer,” Int J 

Mol Sci, vol. 20, no. 10, May 23, 2019. 

[24] S. J. Yeh, C. C. Yeh, C. Y. Lan, and B. S. Chen, 

“Investigating Common Pathogenic Mechanisms between 

Homo sapiens and Different Strains of Candida albicans for 

Drug Design: Systems Biology Approach via Two-Sided 

NGS Data Identification,” Toxins (Basel), vol. 11, no. 2, Feb 

15, 2019. 

[25] P. K. Kreeger, and D. A. Lauffenburger, “Cancer systems 

biology: a network modeling perspective,” Carcinogenesis, 

vol. 31, no. 1, pp. 2-8, Jan, 2010. 

[26] R. Chen, X. Liu, S. Jin, J. Lin, and J. Liu, “Machine Learning 

for Drug-Target Interaction Prediction,” Molecules, vol. 23, 

no. 9, Aug 31, 2018. 

[27] H. Li, Z. Gao, L. Kang, H. Zhang, K. Yang, K. Yu, X. Luo, W. 

Zhu, K. Chen, J. Shen, X. Wang, and H. Jiang, “TarFisDock: 

a web server for identifying drug targets with docking 

approach,” Nucleic Acids Res, vol. 34, no. Web Server 

issue, pp. W219-24, Jul 1, 2006. 

[28] F. Rayhan, S. Ahmed, S. Shatabda, D. M. Farid, Z. 

Mousavian, A. Dehzangi, and M. S. Rahman, “iDTI-

ESBoost: Identification of Drug Target Interaction Using 

Evolutionary and Structural Features with Boosting,” Sci 

Rep, vol. 7, no. 1, pp. 17731, Dec 18, 2017. 

[29] Z. He, J. Zhang, X. H. Shi, L. L. Hu, X. Kong, Y. D. Cai, and 

K. C. Chou, “Predicting drug-target interaction networks 

based on functional groups and biological features,” PLoS 

One, vol. 5, no. 3, pp. e9603, Mar 11, 2010. 

[30] Z. Li, P. Han, Z.-H. You, X. Li, Y. Zhang, H. Yu, R. Nie, and 

X. Chen, “In silico prediction of drug-target interaction 

networks based on drug chemical structure and protein 

sequences,” Scientific Reports, vol. 7, no. 1, pp. 11174, 

2017/09/11, 2017. 

[31] L. Salwinski, C. S. Miller, A. J. Smith, F. K. Pettit, J. U. 

Bowie, and D. Eisenberg, “The Database of Interacting 

Proteins: 2004 update,” Nucleic Acids Res, vol. 32, no. 

Database issue, pp. D449-51, Jan 1, 2004. 

[32] G. D. Bader, D. Betel, and C. W. Hogue, “BIND: the 

Biomolecular Interaction Network Database,” Nucleic Acids 

Res, vol. 31, no. 1, pp. 248-50, Jan 1, 2003. 

[33] A. Chatr-Aryamontri, B. J. Breitkreutz, R. Oughtred, L. 

Boucher, S. Heinicke, D. Chen, C. Stark, A. Breitkreutz, N. 

Kolas, L. O'Donnell, T. Reguly, J. Nixon, L. Ramage, A. 

Winter, A. Sellam, C. Chang, J. Hirschman, C. Theesfeld, J. 

Rust, M. S. Livstone, K. Dolinski, and M. Tyers, “The 

BioGRID interaction database: 2015 update,” Nucleic Acids 

Res, vol. 43, no. Database issue, pp. D470-8, Jan, 2015. 

[34] S. Orchard, M. Ammari, B. Aranda, L. Breuza, L. Briganti, F. 

Broackes-Carter, N. H. Campbell, G. Chavali, C. Chen, N. 

del-Toro, M. Duesbury, M. Dumousseau, E. Galeota, U. 

Hinz, M. Iannuccelli, S. Jagannathan, R. Jimenez, J. 

Khadake, A. Lagreid, L. Licata, R. C. Lovering, B. Meldal, 

A. N. Melidoni, M. Milagros, D. Peluso, L. Perfetto, P. 

Porras, A. Raghunath, S. Ricard-Blum, B. Roechert, A. 

Stutz, M. Tognolli, K. van Roey, G. Cesareni, and H. 

Hermjakob, “The MIntAct project--IntAct as a common 

curation platform for 11 molecular interaction databases,” 

Nucleic Acids Res, vol. 42, no. Database issue, pp. D358-

63, Jan, 2014. 

[35] L. Licata, L. Briganti, D. Peluso, L. Perfetto, M. Iannuccelli, 

E. Galeota, F. Sacco, A. Palma, A. P. Nardozza, E. 

Santonico, L. Castagnoli, and G. Cesareni, “MINT, the 

molecular interaction database: 2012 update,” Nucleic 

Acids Res, vol. 40, no. Database issue, pp. D857-61, Jan, 

2012. 

[36] G. Zheng, K. Tu, Q. Yang, Y. Xiong, C. Wei, L. Xie, Y. Zhu, 

and Y. Li, “ITFP: an integrated platform of mammalian 

transcription factors,” Bioinformatics, vol. 24, no. 20, pp. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCBB.2021.3095369, IEEE/ACM Transactions on Computational Biology and Bioinformatics

AUTHOR ET AL.:  TITLE 13 

 

2416-7, Oct 15, 2008. 

[37] L. A. Bovolenta, M. L. Acencio, and N. Lemke, “HTRIdb: an 

open-access database for experimentally verified human 

transcriptional regulation interactions,” BMC Genomics, vol. 

13, pp. 405, Aug 17, 2012. 

[38] E. Wingender, “The TRANSFAC project as an example of 

framework technology that supports the analysis of 

genomic regulation,” Brief Bioinform, vol. 9, no. 4, pp. 326-

32, Jul, 2008. 

[39] V. Agarwal, G. W. Bell, J. W. Nam, and D. P. Bartel, 

“Predicting effective microRNA target sites in mammalian 

mRNAs,” Elife, vol. 4, Aug 12, 2015. 

[40] O. Friard, A. Re, D. Taverna, M. De Bortoli, and D. Cora, 

“CircuitsDB: a database of mixed microRNA/transcription 

factor feed-forward regulatory circuits in human and 

mouse,” BMC Bioinformatics, vol. 11, pp. 435, Aug 23, 

2010. 

[41] J. H. Li, S. Liu, H. Zhou, L. H. Qu, and J. H. Yang, “starBase 

v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-

RNA interaction networks from large-scale CLIP-Seq data,” 

Nucleic Acids Res, vol. 42, no. Database issue, pp. D92-7, 

Jan, 2014. 

[42] M. Suntsova, N. Gaifullin, D. Allina, A. Reshetun, X. Li, L. 

Mendeleeva, V. Surin, A. Sergeeva, P. Spirin, V. Prassolov, 

A. Morgan, A. Garazha, M. Sorokin, and A. Buzdin, “Atlas 

of RNA sequencing profiles for normal human tissues,” Sci 

Data, vol. 6, no. 1, pp. 36, Apr 23, 2019. 

[43] A. Subramanian, R. Narayan, S. M. Corsello, D. D. Peck, T. 

E. Natoli, X. Lu, J. Gould, J. F. Davis, A. A. Tubelli, J. K. 

Asiedu, D. L. Lahr, J. E. Hirschman, Z. Liu, M. Donahue, B. 

Julian, M. Khan, D. Wadden, I. C. Smith, D. Lam, A. 

Liberzon, C. Toder, M. Bagul, M. Orzechowski, O. M. 

Enache, F. Piccioni, S. A. Johnson, N. J. Lyons, A. H. 

Berger, A. F. Shamji, A. N. Brooks, A. Vrcic, C. Flynn, J. 

Rosains, D. Y. Takeda, R. Hu, D. Davison, J. Lamb, K. 

Ardlie, L. Hogstrom, P. Greenside, N. S. Gray, P. A. 

Clemons, S. Silver, X. Wu, W. N. Zhao, W. Read-Button, X. 

Wu, S. J. Haggarty, L. V. Ronco, J. S. Boehm, S. L. 

Schreiber, J. G. Doench, J. A. Bittker, D. E. Root, B. Wong, 

and T. R. Golub, “A Next Generation Connectivity Map: 

L1000 Platform and the First 1,000,000 Profiles,” Cell, vol. 

171, no. 6, pp. 1437-1452.e17, Nov 30, 2017. 

[44] S. M. Corsello, R. T. Nagari, R. D. Spangler, J. Rossen, M. 

Kocak, J. G. Bryan, R. Humeidi, D. Peck, X. Wu, A. A. Tang, 

V. M. Wang, S. A. Bender, E. Lemire, R. Narayan, P. 

Montgomery, U. Ben-David, Y. Chen, M. G. Rees, N. J. 

Lyons, J. M. McFarland, B. T. Wong, L. Wang, N. Dumont, 

P. J. O’Hearn, E. Stefan, J. G. Doench, H. Greulich, M. 

Meyerson, F. Vazquez, A. Subramanian, J. A. Roth, J. A. 

Bittker, J. S. Boehm, C. C. Mader, A. Tsherniak, and T. R. 

Golub, “Non-oncology drugs are a source of previously 

unappreciated anti-cancer activity,” bioRxiv, pp. 730119, 

2019. 

[45] L. Huang, J. W. Chardon, M. T. Carter, K. L. Friend, T. E. 

Dudding, J. Schwartzentruber, R. Zou, P. W. Schofield, S. 

Douglas, D. E. Bulman, and K. M. Boycott, “Missense 

mutations in ITPR1 cause autosomal dominant congenital 

nonprogressive spinocerebellar ataxia,” Orphanet J Rare 

Dis, vol. 7, pp. 67, Sep 17, 2012. 

[46] S. H. Song, M. S. Jeon, J. W. Nam, J. K. Kang, Y. J. Lee, J. 

Y. Kang, H. P. Kim, S. W. Han, G. H. Kang, and T. Y. Kim, 

“Aberrant GATA2 epigenetic dysregulation induces a 

GATA2/GATA6 switch in human gastric cancer,” Oncogene, 

vol. 37, no. 8, pp. 993-1004, Feb 22, 2018. 

[47] M. B. Menon, and S. Dhamija, “Beclin 1 Phosphorylation - 

at the Center of Autophagy Regulation,” Front Cell Dev Biol, 

vol. 6, pp. 137, 2018. 

[48] M. R. Kang, M. S. Kim, J. E. Oh, Y. R. Kim, S. Y. Song, S. 

S. Kim, C. H. Ahn, N. J. Yoo, and S. H. Lee, “Frameshift 

mutations of autophagy-related genes ATG2B, ATG5, 

ATG9B and ATG12 in gastric and colorectal cancers with 

microsatellite instability,” J Pathol, vol. 217, no. 5, pp. 702-

6, Apr, 2009. 

[49] A. C. Title, S. J. Hong, N. D. Pires, L. Hasenohrl, S. 

Godbersen, N. Stokar-Regenscheit, D. P. Bartel, and M. 

Stoffel, “Genetic dissection of the miR-200-Zeb1 axis 

reveals its importance in tumor differentiation and invasion,” 

Nat Commun, vol. 9, no. 1, pp. 4671, Nov 7, 2018. 

[50] S. I. Nikolaev, D. Rimoldi, C. Iseli, A. Valsesia, D. Robyr, C. 

Gehrig, K. Harshman, M. Guipponi, O. Bukach, V. Zoete, O. 

Michielin, K. Muehlethaler, D. Speiser, J. S. Beckmann, I. 

Xenarios, T. D. Halazonetis, C. V. Jongeneel, B. J. 

Stevenson, and S. E. Antonarakis, “Exome sequencing 

identifies recurrent somatic MAP2K1 and MAP2K2 

mutations in melanoma,” Nat Genet, vol. 44, no. 2, pp. 133-

9, Dec 25, 2011. 

[51] Y. L. Choi, M. Soda, T. Ueno, T. Hamada, H. Haruta, A. 

Yamato, K. Fukumura, M. Ando, M. Kawazu, Y. Yamashita, 

and H. Mano, “Oncogenic MAP2K1 mutations in human 

epithelial tumors,” Carcinogenesis, vol. 33, no. 5, pp. 956-

61, May, 2012. 

[52] A. M. Gardner, R. R. Vaillancourt, C. A. Lange-Carter, and 

G. L. Johnson, “MEK-1 phosphorylation by MEK kinase, 

Raf, and mitogen-activated protein kinase: analysis of 

phosphopeptides and regulation of activity,” Mol Biol Cell, 

vol. 5, no. 2, pp. 193-201, Feb, 1994. 

[53] G. Kohanbash, and H. Okada, “MicroRNAs and STAT 

interplay,” Semin Cancer Biol, vol. 22, no. 1, pp. 70-5, Feb, 

2012. 

[54] Y. Zhang, Y. Yuan, P. Liang, X. Guo, Y. Ying, X. S. Shu, M. 

Gao, Jr., and Y. Cheng, “OSR1 is a novel epigenetic 

silenced tumor suppressor regulating invasion and 

proliferation in renal cell carcinoma,” Oncotarget, vol. 8, no. 

18, pp. 30008-30018, May 2, 2017. 

[55] K. Otani, Y. Dong, X. Li, J. Lu, N. Zhang, L. Xu, M. Y. Go, E. 

K. Ng, T. Arakawa, F. K. Chan, J. J. Sung, and J. Yu, “Odd-

skipped related 1 is a novel tumour suppressor gene and a 

potential prognostic biomarker in gastric cancer,” J Pathol, 

vol. 234, no. 3, pp. 302-15, Nov, 2014. 

[56] J. K. Polansky, K. Kretschmer, J. Freyer, S. Floess, A. 

Garbe, U. Baron, S. Olek, A. Hamann, H. von Boehmer, and 

J. Huehn, “DNA methylation controls Foxp3 gene 

expression,” Eur J Immunol, vol. 38, no. 6, pp. 1654-63, 

Jun, 2008. 

[57] H. S. Kwon, H. W. Lim, J. Wu, M. Schnolzer, E. Verdin, and 

M. Ott, “Three novel acetylation sites in the Foxp3 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCBB.2021.3095369, IEEE/ACM Transactions on Computational Biology and Bioinformatics

14 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

 

transcription factor regulate the suppressive activity of 

regulatory T cells,” J Immunol, vol. 188, no. 6, pp. 2712-21, 

Mar 15, 2012. 

[58] F. Wang, “miR-384 targets metadherin gene to suppress 

growth, migration, and invasion of gastric cancer cells,” J Int 

Med Res, vol. 47, no. 2, pp. 926-935, Feb, 2019. 

[59] Z. Chen, C. Yu, L. Zhan, Y. Pan, L. Chen, and C. Sun, 

“LncRNA CRNDE promotes hepatic carcinoma cell 

proliferation, migration and invasion by suppressing miR-

384,” Am J Cancer Res, vol. 6, no. 10, pp. 2299-2309, 2016. 

[60] X. Yu, C. Zhai, Y. Fan, J. Zhang, N. Liang, F. Liu, L. Cao, J. 

Wang, and J. Du, “TUSC3: a novel tumour suppressor gene 

and its functional implications,” J Cell Mol Med, vol. 21, no. 

9, pp. 1711-1718, Sep, 2017. 

[61] X. W. Li, B. Y. Shi, Q. L. Yang, J. Wu, H. M. Wu, Y. F. Wang, 

Z. J. Wu, Y. M. Fan, and Y. P. Wang, “Epigenetic regulation 

of CDH1 exon 8 alternative splicing in gastric cancer,” BMC 

Cancer, vol. 15, pp. 954, Dec 16, 2015. 

[62] S. Hua, Y. Quan, M. Zhan, H. Liao, Y. Li, and L. Lu, “miR-

125b-5p inhibits cell proliferation, migration, and invasion in 

hepatocellular carcinoma via targeting TXNRD1,” Cancer 

Cell Int, vol. 19, pp. 203, 2019. 

[63] Z. Han, K. Wu, H. Shen, C. Li, S. Han, L. Hong, Y. Shi, N. 

Liu, C. Guo, Y. Xue, T. Qiao, and D. Fan, “Akt1/protein 

kinase B alpha is involved in gastric cancer progression and 

cell proliferation,” Dig Dis Sci, vol. 53, no. 7, pp. 1801-10, 

Jul, 2008. 

[64] H. Cardenas, E. Vieth, J. Lee, M. Segar, Y. Liu, K. P. 

Nephew, and D. Matei, “TGF-beta induces global changes 

in DNA methylation during the epithelial-to-mesenchymal 

transition in ovarian cancer cells,” Epigenetics, vol. 9, no. 

11, pp. 1461-72, Nov, 2014. 

[65] D. W. Yan, J. W. Fan, Z. H. Yu, M. X. Li, Y. G. Wen, D. W. 

Li, C. Z. Zhou, X. L. Wang, Q. Wang, H. M. Tang, and Z. H. 

Peng, “Downregulation of metallothionein 1F, a putative 

oncosuppressor, by loss of heterozygosity in colon cancer 

tissue,” Biochim Biophys Acta, vol. 1822, no. 6, pp. 918-26, 

Jun, 2012. 

[66] J. Boyes, P. Byfield, Y. Nakatani, and V. Ogryzko, 

“Regulation of activity of the transcription factor GATA-1 by 

acetylation,” Nature, vol. 396, no. 6711, pp. 594-8, Dec 10, 

1998. 

[67] P. P. Kushwaha, S. Gupta, A. K. Singh, and S. Kumar, 

“Emerging Role of Migration and Invasion Enhancer 1 

(MIEN1) in Cancer Progression and Metastasis,” Front 

Oncol, vol. 9, pp. 868, 2019. 

[68] M. K. Gilson, T. Liu, M. Baitaluk, G. Nicola, L. Hwang, and 

J. Chong, “BindingDB in 2015: A public database for 

medicinal chemistry, computational chemistry and systems 

pharmacology,” Nucleic Acids Res, vol. 44, no. D1, pp. 

D1045-53, Jan 4, 2016. 

[69] M. Ringnér, “What is principal component analysis?,” 

Nature Biotechnology, vol. 26, no. 3, pp. 303-304, 

2008/03/01, 2008. 

[70] M. Russo, C. Spagnuolo, G. L. Russo, K. Skalicka-

Woźniak, M. Daglia, E. Sobarzo-Sánchez, S. F. Nabavi, and 

S. M. Nabavi, “Nrf2 targeting by sulforaphane: A potential 

therapy for cancer treatment,” Crit Rev Food Sci Nutr, vol. 

58, no. 8, pp. 1391-1405, May 24, 2018. 

[71] S. Hamzehlou, M. Momeny, Z. Zandi, B. Kashani, H. 

Yousefi, A. R. Dehpour, J. Tavakkoly-Bazzaz, and S. H. 

Ghaffari, “Anti-tumor activity of neratinib, a pan-HER 

inhibitor, in gastric adenocarcinoma cells,” Eur J Pharmacol, 

vol. 863, pp. 172705, Nov 15, 2019. 

[72] L. Booth, J. L. Roberts, F. Avogadri-Connors, R. E. Cutler, 

Jr., A. S. Lalani, A. Poklepovic, and P. Dent, “The 

irreversible ERBB1/2/4 inhibitor neratinib interacts with the 

BCL-2 inhibitor venetoclax to kill mammary cancer cells,” 

Cancer Biol Ther, vol. 19, no. 3, pp. 239-247, Mar 4, 2018. 

[73] Y. Ren, J. Tao, Z. Jiang, D. Guo, and J. Tang, “Pimozide 

suppresses colorectal cancer via inhibition of Wnt/beta-

catenin signaling pathway,” Life Sci, vol. 209, pp. 267-273, 

Sep 15, 2018. 

[74] I. Elmaci, and M. A. Altinoz, “Targeting the cellular 

schizophrenia. Likely employment of the antipsychotic 

agent pimozide in treatment of refractory cancers and 

glioblastoma,” Crit Rev Oncol Hematol, vol. 128, pp. 96-

109, Aug, 2018. 

[75] J. Choi, Y. J. Lee, Y. J. Yoon, C. H. Kim, S. J. Park, S. Y. 

Kim, N. Doo Kim, D. Cho Han, and B. M. Kwon, “Pimozide 

suppresses cancer cell migration and tumor metastasis 

through binding to ARPC2, a subunit of the Arp2/3 

complex,” Cancer Sci, vol. 110, no. 12, pp. 3788-3801, Dec, 

2019. 

[76] D. Subramaniam, P. Angulo, S. Ponnurangam, P. 

Dandawate, P. Ramamoorthy, P. Srinivasan, T. Iwakuma, S. 

J. Weir, K. Chastain, and S. Anant, “Suppressing STAT5 

signaling affects osteosarcoma growth and stemness,” Cell 

Death Dis, vol. 11, no. 2, pp. 149, Feb 24, 2020. 

[77] D. C. Moore, T. Gebru, and A. Muslimani, “Fostamatinib for 

the treatment of immune thrombocytopenia in adults,” Am J 

Health Syst Pharm, vol. 76, no. 11, pp. 789-794, May 17, 

2019. 

[78] A. Shinde, S. D. Hardy, D. Kim, S. S. Akhand, M. K. Jolly, 

W. H. Wang, J. C. Anderson, R. B. Khodadadi, W. S. Brown, 

J. T. George, S. Liu, J. Wan, H. Levine, C. D. Willey, C. J. 

Krusemark, R. L. Geahlen, and M. K. Wendt, “Spleen 

Tyrosine Kinase-Mediated Autophagy Is Required for 

Epithelial-Mesenchymal Plasticity and Metastasis in Breast 

Cancer,” Cancer Res, vol. 79, no. 8, pp. 1831-1843, Apr 15, 

2019. 

[79] N. I. Affara, B. Ruffell, T. R. Medler, A. J. Gunderson, M. 

Johansson, S. Bornstein, E. Bergsland, M. Steinhoff, Y. Li, 

Q. Gong, Y. Ma, J. F. Wiesen, M. H. Wong, M. Kulesz-

Martin, B. Irving, and L. M. Coussens, “B cells regulate 

macrophage phenotype and response to chemotherapy in 

squamous carcinomas,” Cancer Cell, vol. 25, no. 6, pp. 809-

821, Jun 16, 2014. 

[80] L. Sun, W. Yuan, G. Wen, B. Yu, F. Xu, X. Gan, J. Tang, Q. 

Zeng, L. Zhu, C. Chen, and W. Zhang, “Parthenolide inhibits 

human lung cancer cell growth by modulating the 

IGF‑1R/PI3K/Akt signaling pathway,” Oncol Rep, vol. 44, 

no. 3, pp. 1184-1193, Sep, 2020. 

[81] Y. Kishida, H. Yoshikawa, and A. Myoui, “Parthenolide, a 

natural inhibitor of Nuclear Factor-kappaB, inhibits lung 

colonization of murine osteosarcoma cells,” Clin Cancer 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCBB.2021.3095369, IEEE/ACM Transactions on Computational Biology and Bioinformatics

AUTHOR ET AL.:  TITLE 15 

 

Res, vol. 13, no. 1, pp. 59-67, Jan 1, 2007. 

[82] H. Li, H. Lu, M. Lv, Q. Wang, and Y. Sun, “Parthenolide 

facilitates apoptosis and reverses drug-resistance of human 

gastric carcinoma cells by inhibiting the STAT3 signaling 

pathway,” Oncol Lett, vol. 15, no. 3, pp. 3572-3579, Mar, 

2018. 

[83] I. Sohma, Y. Fujiwara, Y. Sugita, A. Yoshioka, M. Shirakawa, 

J. H. Moon, S. Takiguchi, H. Miyata, M. Yamasaki, M. Mori, 

and Y. Doki, “Parthenolide, an NF-κB inhibitor, suppresses 

tumor growth and enhances response to chemotherapy in 

gastric cancer,” Cancer Genomics Proteomics, vol. 8, no. 1, 

pp. 39-47, Jan-Feb, 2011. 

[84] L. J. Zhao, Y. H. Xu, and Y. Li, “Effect of parthenolide on 

proliferation and apoptosis in gastric cancer cell line 

SGC7901,” J Dig Dis, vol. 10, no. 3, pp. 172-80, Aug, 2009. 

[85] J. R. Kirshner, S. He, V. Balasubramanyam, J. Kepros, C. 

Y. Yang, M. Zhang, Z. Du, J. Barsoum, and J. Bertin, 

“Elesclomol induces cancer cell apoptosis through oxidative 

stress,” Mol Cancer Ther, vol. 7, no. 8, pp. 2319-27, Aug, 

2008. 

[86] Y. Qu, J. Wang, M. S. Sim, B. Liu, A. Giuliano, J. Barsoum, 

and X. Cui, “Elesclomol, counteracted by Akt survival 

signaling, enhances the apoptotic effect of chemotherapy 

drugs in breast cancer cells,” Breast Cancer Res Treat, vol. 

121, no. 2, pp. 311-21, Jun, 2010. 

[87] R. S. Tuma, “Reactive Oxygen Species May Have 

Antitumor Activity in Metastatic Melanoma,” JNCI: Journal 

of the National Cancer Institute, vol. 100, no. 1, pp. 11-12, 

2008. 

[88] M. Shirley, “Rucaparib: A Review in Ovarian Cancer,” Target 

Oncol, vol. 14, no. 2, pp. 237-246, Apr, 2019. 

[89] A. A. Antolin, M. Ameratunga, U. Banerji, P. A. Clarke, P. 

Workman, and B. Al-Lazikani, “The kinase 

polypharmacology landscape of clinical PARP inhibitors,” 

Sci Rep, vol. 10, no. 1, pp. 2585, Feb 17, 2020. 

[90] G. Cengiz Seval, and M. Beksac, “The safety of bortezomib 

for the treatment of multiple myeloma,” Expert Opinion on 

Drug Safety, vol. 17, no. 9, pp. 953-962, 2018/09/02, 2018. 

[91] T. Fujita, H. Doihara, K. Washio, H. Ino, M. Murakami, M. 

Naito, and N. Shimizu, “Antitumor effects and drug 

interactions of the proteasome inhibitor bortezomib (PS341) 

in gastric cancer cells,” Anti-Cancer Drugs, vol. 18, no. 6, 

2007. 

[92] S. Williams, C. Pettaway, R. Song, C. Papandreou, C. 

Logothetis, and D. J. McConkey, “Differential effects of the 

proteasome inhibitor bortezomib on apoptosis and 

angiogenesis in human prostate tumor xenografts,” Mol 

Cancer Ther, vol. 2, no. 9, pp. 835-43, Sep, 2003. 

[93] S. T. Nawrocki, B. Sweeney-Gotsch, R. Takamori, and D. J. 

McConkey, “The proteasome inhibitor bortezomib 

enhances the activity of docetaxel in orthotopic human 

pancreatic tumor xenografts,” Mol Cancer Ther, vol. 3, no. 

1, pp. 59-70, Jan, 2004. 

[94] W. Nakata, Y. Hayakawa, H. Nakagawa, K. Sakamoto, H. 

Kinoshita, R. Takahashi, Y. Hirata, S. Maeda, and K. Koike, 

“Anti-tumor activity of the proteasome inhibitor bortezomib 

in gastric cancer,” Int J Oncol, vol. 39, no. 6, pp. 1529-36, 

Dec, 2011. 

[95] M. Wirth, N. Stojanovic, J. Christian, M. C. Paul, R. H. 

Stauber, R. M. Schmid, G. Häcker, O. H. Krämer, D. Saur, 

and G. Schneider, “MYC and EGR1 synergize to trigger 

tumor cell death by controlling NOXA and BIM transcription 

upon treatment with the proteasome inhibitor bortezomib,” 

Nucleic Acids Res, vol. 42, no. 16, pp. 10433-47, 2014. 

[96] X. J. Cheng, J. C. Lin, Y. F. Ding, L. Zhu, J. Ye, and S. P. Tu, 

“Survivin inhibitor YM155 suppresses gastric cancer 

xenograft growth in mice without affecting normal tissues,” 

Oncotarget, vol. 7, no. 6, pp. 7096-109, Feb 9, 2016. 

 
 

Shan-Ju Yeh received the B.S. degree in electrical engineer-
ing from National Chung Hsing University, Taichung, Tai-
wan, in 2012, the M.S. degree in electrical engineering from 
National Central University, Chungli, Taiwan, in 2014. She 
was the visiting student in the Department of Pediatrics 
and Human Development, College of Human Medicine, 
Michigan State University, MI, USA, from 2019 to 2021. She 
is currently pursuing the Ph.D. degree in electrical engi-
neering from National Tsing Hua University, Hsinchu, 
Taiwan. Her research interests include system modeling, 
machine learning, and deep neural network. 
 
Bor-Sen Chen (Life Fellow, IEEE) received the B.S. degree 
in electrical engineering from Tatung Institute of Technol-
ogy, Taipei, Taiwan, in 1970, the M.S. degree in geophysics 
from National Central University, Chungli, Taiwan, in 
1973, and the Ph.D. degree in electrical engineering from 
the University of Southern California, Los Angeles, CA, 
USA, in 1982. He has been a Lecturer, Associate Professor, 
and Professor at Tatung Institute of Technology from 1973 
to 1987. Currently, he is the Tsing Hua Distinguished Chair 
Professor of Electrical Engineering and Computer Science 
at National Tsing Hua University, Hsinchu, Taiwan. His 
current research interests are in control engineering, signal 
processing, and systems biology. Dr. Chen has received the 
Distinguished Research Award from the National Science 
Council of Taiwan four times. He is a National Chair Pro-
fessor of the Ministry of Education of Taiwan. 
 
 


