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ABSTRACT This paper is concerned with the finite-time stochastic synchronization of a chaotic system 

without linear term and its application in secure communication based on synchrosqueezed wavelet 

transform (SWT). In order to improve the anti-jamming ability of chaotic systems and forecast the 

synchronization time, proper controllers are designed to achieve finite-time stochastic synchronization for 

the chaotic system with random perturbation. Based on the proposed chaotic synchronization systems, we 

present secure communication scheme about secondary encryption to enhance the level of security. 

Moreover, a novel SWT algorithm is introduced to correctly recover information signals at the end of the 

scheme. The SWT based scheme can decompose the information signal into a set of intrinsic mode type 

(IMT) function components. Then, instantaneous frequency and instantaneous amplitude of each IMT 

component are calculated through Hilbert transform. Simulation results confirm that both the 

synchronization approach and the security communication scheme are effective. For multi-component 

signals with adjacent frequency, the accuracy of recovered signals by SWT based on our scheme is higher 

than that recovered by the other time-frequency denoising methods. 

 

INDEX TERMS Finite-time synchronization, random perturbation, synchrosqueezed wavelet transform, 

secure communication 

I.
 
INTRODUCTION 

Synchronization of chaotic systems has been investigated 

since it was studied by Pecora and Carroll [1] in 1990. 

Chaotic systems display unpredictable behavior, and they 

are sensitive to initial conditions [2]. Therefore, chaotic 

systems have been used to resolve many engineering 

problems, especially for secure communication [3]. 

Many secure communication schemes based on chaotic 

synchronization have been proposed. Theesar et al. [4] 

apply synchronization of Lur’e systems using sampled-data 

control to the secure communication problem. Wang et al. 

[5] investigate a communication strategy based on the 

adaptive synchronization of the coupling Hindmarsh-Rose 

neuron model. Li et al. [6] propose secure communication 

approach based on chaos shift keying. Wang et al. [7] 

present secure communication approach with the neural 

networks based on the fixed-time synchronization. Most 

existing works mainly study the chaotic systems with linear 

term and consider how to achieve synchronization. Few 

researches focus on the performance of chaotic secure 

communication.  

A new chaotic system without linear term and its 

impulsive synchronization is introduced in [8]. Exponential 

synchronization of this new chaotic system is applied to 

secure communication in [3]. There are few researches on 

this new chaotic system, and thus its application in secure 

communication can reduce the possibility of being decoded. 

The existing works focus on the infinite time synchroniza-

tion, which means that the time of recovering the 

transmitted signal may be infinite. However, in secure 

communication process, we want to synchronize chaotic 

systems as quickly as possible. Just as pointed out in [9], if 
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the decoding time does not correspond to the time during 

which the chaotic oscillators are synchronized, the message 

may unfortunately not be recovered or sent. Finite-time 

control technique is an effective method to achieve faster 

synchronization in control systems. However, most of the 

existing works mainly focus on how to achieve 

synchronization in finite-time. There are few researches on 

improving performance in chaotic secure communication. 

In addition, stochastic effects exist in real systems. A lot of 

dynamical systems have variable structures subject to 

stochastic abrupt changes, which may result in abrupt 

phenomena such as stochastic failures and repairs of 

components, changes in the interconnections of subsystems, 

sudden environment changes [10-11], etc. Therefore, it is 

necessary to study the stability of stochastic chaotic system 

in finite-time for secure communication. 

How to correctly abstract information signal from noisy 

situation is important in secure communication. The 

traditional information signal extraction methods are based 

on time domain reconstructs phase space [12] or strange 

attractor characteristic [13]. These methods require a more 

complex condition and a large quantity of calculations.  

In recent years, some scholars apply time-frequency 

analysis methods to extract the harmonic signal from noisy 

interference in chaotic secure communication. An et al. [14] 

apply the continuous wavelet transform (CWT) to remove 

noise from the information signal. Wang et al. [15] propose a 

method of extracting the harmonic signal from chaos 

interference based on empirical mode decomposition (EMD). 

Zhou et al. [16] use the complete ensemble empirical mode 

decomposition (CEEMD) to denoise chaotic signals. 

Although EMD and CEEMD can achieve a better effect than 

CWT in harmonic extraction, they are very sensitive to noise 

[17]. Synchrosqueezed wavelet transform (SWT) can 

accurately separate the mixed signal disturbed by noise, as it 

has better robustness than EMD and CEEMD [18]. How to 

apply SWT to improve the accuracy of extraction method as 

well as enhance the security level in secure communication 

has been an unsolved problem. 

Motivated by the above discussion, in this paper, we 

propose a novel multistage stochastic chaotic secure 

communication scheme based on SWT. The main 

contributions of this paper are as follows. 1) We establish 

the finite-time stochastic synchronization criterion of the 

new chaotic systems without linear term. Different from the 

existing control scheme in [3, 8], the time of synchroniza-

tion is finite. In addition, this criterion solves possible 

problems of robustness and disturbances for chaotic systems 

applied in secure communication. 2) We design a simple 

controller and obtain a fixed synchronization time. This 

fixed synchronization time does not depend on the 

parameters of the controller, which is different from the 

conventional finite-time synchronization works. Thus the 

time for decryption is predictable, and it will greatly 

improve the reliability of the secure communication. 3) We 

present a novel time-frequency extraction scheme based on 

the synchrosqueezed wavelet transform (SWT) in the secure 

communication. The SWT based scheme can decompose the 

information signal into a set of intrinsic mode type (IMT) 

function components. The instantaneous frequency (IF) and 

the instantaneous amplitude (IA) of each IMT component 

can be calculated through Hilbert transform. Simulation 

results verify the effectiveness of both the synchronization 

approach and security communication scheme. For multi-

component signals with adjacent frequency, the accuracy of 

recovered signals by SWT based on our scheme is higher 

than that recovered by the other time-frequency denoising 

methods. 

The outline of this paper is organized as follows. In 

Section II, the main results for achieving finite-time 

stochastic synchronization of the chaotic system without 

linear term are presented. In Section III, we introduce the 

SWT method in order to extract the information signal from 

the noisy interference. The multistage stochastic chaotic 

secure communication scheme based on SWT is detailed in 

Section IV. In Section V, numerical studies are given to 

verify the proposed scheme. Finally, this paper is wrapped 

up with some concluding remarks. 

Notations: The Euclidean norm is denoted as ⋅ , 

accordingly, 
2 Tx x x= , where Tx  denotes the transposition 

of vector x . ( )E ⋅  stands for the mathematical expectation of 

a stochastic process. I  represents an identity matrix with 

appropriate dimension. 0A >  implies A  is a positive 

definite matrix. 

II.
 
Finite-time stochastic synchronization of the chaotic 

system without linear term 

A new chaotic system without linear term was found by Xu 

Y and Wang Y in 2014 [8], which can be described by the 

following differential equation: 
2 1

1

2 1 3

3 1 2

ln( )

,

x x
x a e

x x x

x b x x

−= +

=

= −

ɺ

ɺ

ɺ

                                             (1) 

where 1 2 3, ,x x x  are state variables and ,a b  are positive 

constants. When 0.1, 0.25= =a b , it has a chaotic attractor. 

Suppose the drive system with stochastic perturbations as 

follows: 
2 1

1 1 1

2 1 3 2 2

3 1 2 3 3

ln( ) ( , ) ( )

( , ) ( )

( ) ( , ) ( ),

x x
dx a e dt H t x dw t

dx x x dt H t x dw t

dx b x x dt H t x dw t

−= + +

= +

= − +

          (2) 

where ( )w t  is a white noise (i.e. ( )w t is a Brownian motion) 

and satisfies: ( ( )) 0=E dw t , 2( ( ) ) =E dw t dt . 

( , )
i

H t x  satisfies the Lipschitz condition, which means 

there exists a constant 0
i

L >  such that  

( , ) ( , ) ( )i i iH t x H t y L y x− ≤ − .                 (3) 

We suppose (2) is the master system and define the slave 

system as follows: 
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2 1

1 1 1 1

2 1 3 2 2 2

3 1 2 3 3 3

[ln( ) ] ( , ) ( )

[ ] ( , ) ( )

[ ] ( , ) ( ).

y y
dy a e u dt H t y dw t

dy y y u dt H t y dw t

dy b y y u dt H t y dw t

−= + + +

= + +

= − + +

   (4) 

To fulfil the synchronization of slave system (4) and 

master system (2), we set the error state as: 

1 1 1

2 2 2

3 3 3
.

e y x

e y x

e y x

= −

= −

= −

                                           (5) 

From (2), (4), and (5), we obtain the synchronization error 

system described by 
2 1 2 1

2 1
1 1 1 1 1 1

2 1 3 1 3 3 1 2 2 2 2 2

3 1 2 1 2 2 1 3 3 3 3 3

[ln( ) ] [ ( , ) ( , )] ( )

( ) [ ( , ) ( , )] ( )

( ) [ ( , ) ( , )] ( ).

e e x x

x x

a e e
de u dt H t y H t x dw t

a e

de e e e x e x u dt H t y H t x dw t

de e e e x e x u dt H t y H t x dw t

− −

−

+
= + + −

+
= + + + + −

= − + + − + −

(6) 

Remark 1: In order to eliminate the synchronization error 

and achieve the complete synchronization, some controllers 

have been designed in [3, 8]. They are all based on the 

infinite time synchronization, which is not adapted to 

secure communication. Therefore, we will design the 

controller to realize synchronization in finite time, and 

consider the interference of random noise for practicality. 

Now we give the definition of stochastic synchronization 

in finite time between the master system (2) and the slave 

system (4) and some lemmas which will be used in Theorem 

1. 

Definition 1: [19] The master system (2) and the slave 

system (4) are said to be stochastic synchronized in finite 

time if, for a suitable designed feedback controller, there 

exists a constant 
1

0t >  (
1

0t >  depends on the initial state 

vector value 
1 2(0) ( (0), (0), , (0))T

nx x x x= ⋯ ), such that 

1

lim ( ) ( ) 0
t t

E x t y t
→

− = , 

and ( ) ( ) 0x t y t− ≡  for 
1

t t> . 

Lemma 1: [19] Assume that a continuous, positive-

definite function ( )V t  satisfies the following differential 

inequality: 

( ) ( )V t V tθη≤ −ɺ , 
0

t t∀ ≥ , 
0

( ) 0V t ≥ , 

where 0η > , 0 1θ< <  are constants. Then, for any given 

0
t , ( )V t  satisfies the following inequality： 

1 1

0 0( ) ( ) (1 )( )V t V t t tθ θ η θ− −≤ − − − , 
0 1

t t t≤ ≤ , 

and ( ) 0V t ≡ , 
1

t t∀ ≥ , with 
1
t  given by 

1

0

1 0

( )

(1 )

V t
t t

θ

η θ

−

= +
−

.                                 (7) 

Lemma 2: [20]
 
(The one-dimensional Ito

⌢
formula). Let 

( )x t be an Ito
⌢

 process on 0≥t  with the stochastic 

differential 

( ) ( ) ( ) ( )= +dx t f t dt g t dw t . 

Then ( ( ), )V x t t is also an Ito
⌢

 process with the stochastic 

differential given by 

21

2
( ( ), ) [ ( , ) ( , ) ( ) ( , ) ( )]

t x xx
dV x t t V x t V x t f t V x t g t dt′ ′ ′′= + +  

( , ) ( ) ( ).
x

V x t g t dw t′+                                       (8) 

Lemma 3: [21] For any Rρ +∈ , ,X Y R∈ , the inequality 

2 1 21
( )

2
ρ ρ −≤ +X Y X Y  holds. 

Now we establish the synchronization criterion between 

the master system (2) and the slave system (4). 

Theorem 1: Let the controller be 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

( )

( )

( ) ,

u A k e sign e e

u k e sign e e

u k e sign e e

θ

θ

θ

η

η

η

= − − −

= − −

= − −

                  (9) 

where 0η >  is a tunable constant, the real number θ  

satisfies 0 1θ< < . Suppose that constant A  and the 

feedback gains 0>
i

k  ( 1,2,3)=i  satisfy 

2 1 2 1

2 1

2

1 1 2 1

1 2

2 1 2

1 2

3 2 3

ln( )

1
( )

2

1

2

1
,

2

e e x x

x x

a e e
A

a e

k M L

k M L

k M L

ρ ρ

ρ

ρ

− −

−

−

−

+
>

+

> + +

> +

> +

                         (10) 

where 1 2 3max{ , , }=M x x x  and 1 2,ρ ρ  are positive 

constants. Then the master system (2) and the slave system 

(4) are stochastic synchronized in a finite time 

1

2

1

(0)

(1 )

V
t

θ

η θ

−

=
−

, 

where 
3

2

1

1
(0) (0)

2
i

i

V e
=

= ∑ , (0)ie  is the initial condition of 

( )ie t . 

Proof: Choose the Lyapunov function as 

( ) ( ) ( )TV t e t Pe t= ,                                         (11) 

where 
1 1 1

( , , )
2 2 2

=P diag , 
1 2 3( ) ( , , )Te t e e e= . 

Set 

( , ) ( , ) ( , )= −ɶ
i i i i i iH t e H t y H t x . 

By (8), differentiating both side of (11) we obtain： 

             
1 1 1

2 2 2 3 3 3

( , ( )) ( , ( )) ( , ) ( )

( , ) ( ) ( , ) ( ),

dV t e t LV t e t dt e H t e dw t

e H t e dw t e H t e dw t

= +

+ +

ɶ

ɶ ɶ
 

where  
2 1 2 1

2 1
1 1 2 1 3 1 3 3 1 2( , ( )) (ln( ) ) ( )

e e x x

x x

a e e
LV t e t e u e e e e x e x u

a e

− −

−

+
= + + + + +

+
 

3 1 2 1 2 2 1 3
( )e e e e x e x u+ − − − +  

2 2 2

1 1 2 2 3 3( , ) ( , ) ( , )+ + +ɶ ɶ ɶH t e H t e H t e .                 (12) 

Substituting (9) and (3) into (12) yields 
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2 2 2

1 1 2 2 3 3 1 2 1 3
( , ( )) ( )LV t e t k e k e k e M e e M e e≤ − + + + +  

2 2 2 2 2 2

1 1 2 2 3 3 1 1 1( )L e L e L e e sign e e
θη+ + + −  

2 2 2 3 3 3( ) ( ) .e sign e e e sign e e
θ θη η− −  

By Lemma 3, we have 
1

2 21 1
1 2 1 2

2 2
e e e e

ρ ρ −

≤ + ,
1

2 22 2
1 3 1 3

2 2
e e e e

ρ ρ −

≤ + . 

Hence 

2 2 1 2 21 2

1 1 1 2 1 2 2

1
( , ( )) ( ) ( )

2 2 2
LV t e t k M M L e k M L e

ρ ρ
ρ −≤ − − − − − − −  

            1 2 2

3 2 3 3 1 1 1

1
( ) ( )

2
k M L e e sign e e

θρ η−− − − −  

2 2 2 3 3 3
( ) ( ) ,e sign e e e sign e e

θ θη η− −  

where 
13 3

1
2

1 1

( ) [2 ( )]i i i i

i i

e sign e e e V t
θ

θ θ
+

+

= =

= =∑ ∑ . 

As (d ( )) 0E w t = , if feedback gains 0ik > ( 1,2,3)i =  

satisfy (10), we can prove 
13

2

1

( ( , ( ))) ( ( ) ) 2 ( ( , ( )))i i i

i

E V t e t E e sign e e E V t e t
θ

θη η
+

=

≤ − ≤ −∑ɺ . 

For any 
0

0t > , we have 

1 1

2 2
0 0 0 0( ( , ( ))) ( ( , ( )))E V t e t E V t e t

θ θ+ +

= , 

so 

1

2( ( , ( ))) 2 ( ( , ( )))E V t e t E V t e t
θ

η
+

≤ −ɺ . 

By Lemma 2, ( ( , ( )))E V t e t  converge to zero in the finite 

time 1t , and 1t  is estimated by (7): 

1 1
1

2 2

1

(0) (0)

1 (1 )
2 (1 )

2

V V
t

θ θ

θ η θη

+ −
−

= =
+ −−

.                          (13) 

According to Definition 1, the slave system (4) is finite-

timely stochastic synchronized with the master system (2). 

Remark 2: Theorem 1 provides an effective method to 

design the desired controller by (9). In fact, given scalars 

1, ,η θ ρ  and 2ρ , one can obtain the desired feedback gains 

ik  by solving (10). 

Remark 3: In secure communication, we can estimate the 

synchronization time 1t  by (13), to ensure the decryption 

after the systems achieved the complete synchronization. 

However, the synchronization time 1t  depends on the 

parameters θ  of the controllers. Once the controllers change, 

1t  changes accordingly, which in not convenient for the 

application of secure communication. 

In secure communication process, we want to synchronize 

chaotic systems as quickly as possible. Therefore, we try to 

discuss the minimum value of synchronization time 1t . Then, 

we get the following corollary. 

Corollary 1: If the master system (2) and the slave system 

(4) are stochastic synchronized in a finite time 

1

2

1

(0)

(1 )

V
t

θ

η θ

−

=
−

 

as mentioned in Theorem 1, when 2(0)V e> , there is a 

minimum value of 

1

ln (0)ˆ( )
2

e V
t θ

η
= ,                                      (14) 

where 
2ˆ 1

ln (0)V
θ = − . 

Proof: Denote 

1

2

1

(0)
( ) 0

(1 )

V
t

θ

θ
η θ

−

= >
−

,  

so 1

1
ln ( ) (0) ln ln(1 )

2
t V

θ
θ η θ

−
= − − − . 

Differentiating both side of the former equation, it yields 

1

1

( ) 1 1
ln (0)

( ) 2 1

t
V

t

θ
θ θ

′
= − +

−
.  

Let 1
( ) 0t θ′ = , we obtain 

2ˆ 1
ln (0)V

θ = − .  

As 
2

1 1 2

1 1 1
( ) ( ){[ ln (0) ] } 0

2 1 (1 )
t t Vθ θ

θ θ
′′ = − + + >

− −
, there 

is a minimum value of 1

ln (0)ˆ( )
2

e V
t θ

η
= . 

While 
2ˆ0 1 1

ln (0)V
θ< = − < , so 2(0)V e> . 

Remark 4: If η  increases, then 
1t  decreases. The above 

analysis provides guidance on how to regulate these 

parameters to achieve minimum synchronization time. For 

example, if 2(0)V e> , we can take 1ˆ 1 2(ln (0))Vθ −= −  to 

obtain the fixed synchronization time 
1

ˆ( )t θ . It does not 

depend on the parameters of the controller, which is 

different from the conventional finite-time synchronization 

works. Thus the time for decryption is predictable, and it 

will greatly improve the reliability of the secure commu-

nication. 

Example 1: To demonstrate and verify the validity of our 

proposed synchronization criterion, we present and discuss 

the numerical results. In these numerical simulations, the 

initial states for the master system and the slave system are 

given by 
1 2 3

( (0), (0), (0)) (1,1,3)x x x = , 
1 2 3

( (0), (0), (0))y y y  

(1, 2,1)= , respectively. Stochastic perturbations are set as 

1 1 2 2 3 3
( , ) (0.9(sin sin ), 0.8( ), 0.7( ))TH t y x y x y x y x− = − − − . 

Moreover, the states are bounded with 3.3=M . By simple 

computation, we get 2(0) 8.5V e= > , 
1
t  has a minimum 

value at ˆ 0.065θ = . Take 5A =  and 10η = . By computing 

(14), we get fixed synchronization time 
1

0.2909=t s . 

According to Theorem 1, 
1 2 3

10, 15, 17k k k= = =  are chosen 

for control law. The synchronization errors are plotted in 

Fig. 1. It can be seen that the controller (9) can synchronize 

the chaotic system at about 0.24
s

T s≈ , which is smaller 

than the fixed synchronization time 
1

0.2909=t s . 
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FIGURE 1.  Time responses of the error variables under the controller. 
 
 
 

Remark 5: The result demonstrates that our technique 

cannot only achieve synchronization within the fixed 

synchronization time as in [7], but also achieve stochastic 

synchronization by considering the influence of random 

perturbation, which improves the anti-jamming ability of 

the chaotic systems. 

III.
 
 Multi-component signal extraction from noisy 

interference by SWT 

The SWT proposed by Daubechies et al. [22] is a new time-

frequency reassigned method based on the CWT. It aims at 

improving the time-scale representation resulted from CWT 

and allowing for mode reconstruction. For a given signal 
2 ( )

1 1
( ) k

K K i t

k kk k
f f A t e

πφ

= =
= =∑ ∑ , the CWT is defined as: 

1

*2( , ) ( ) ( )
f

t b
W a b f t a dt

a
ψ

− −
= ∫  

where b  is the time shift factor and a  is the time scale 

factor. ψ ∗  is the complex conjugate of mother wavelet. 

The instantaneous frequency is obtained:  

1
( , )

( , ) ( , )
f

f f

W a b
a b iW a b

b
ω −

∂
= −

∂
. 

After obtaining the instantaneous frequency ( , )
f

a bω , the 

synchrosqueezing ( , )
f

W a b  is defined by 

( ) ( )
( )

( ),
, 3 2

,1
, ,

f b

f

f f
A

a b da
S b W a b h

aε

δ
ε

ω ω
ω

δ δ

− 
=   

 
∫ , 

where ( ) ( ) ( ){ },
; ,ff b

A b a R W a bε ε+= ∈ > . 

If ε  is small enough, kf  can be completely reconstructed 

by 

( )
( )'

1

,
0

( ) lim ,
k

k f
b

f b R S b dδ
ψ εω ϕ εδ

ω ω−

− <→

 =  
 ∫ɶ . 

At present, most of the research on the secure 

communication is based on complete synchronization [3,8]. 

In this case, the extraction of the information signal is 

relatively simple. However, the channel is often mixed with 

noise. The noise can be regarded as an error term e . 

Consider the signal g f e= + , where e  satisfies e ε≤ ɶ . 

The SWT can extract the signal f  from error term by the 

following equation [23]: 

( )
( )'

1

,
0

( ) lim ,
k

k g
b

f b R S b d
δ

ψ εω ϕ εδ
ω ω−

− <→

 =  
 ∫ ɶ

ɶ . 

 

IV.
 
 Multistage chaotic secure communication system 

based on SWT 

The synchronization criterion that we proposed in Section II 

plays an important role in chaotic communication. The 

secure communication theory is that the information signal 

is mixed with the chaos signal to be the pretend transmitted 

signal, which is transmitted to the receiver. The information 

signal is extracted by means of a synchronous regime 

between the master and slave systems. In addition, the level 

of security mostly depends on the complexity level of 

dynamics for chaotic systems. Therefore, we propose a 

secure communication scheme about secondary encryption 

based on this chaotic synchronized system to enhance the 

level of security. The secure performance of our secure 

communication scheme will be displayed in Section V. 

This paper proposes a scheme about secondary encryption 

based on multistage chaos synchronized system for secure 

communication. A sketch design for the communication 

scheme is shown in Fig.2. Based on the sensitive of chaotic 

system to the initial value, we apply the new chaotic system 

(1) with three different initial values to Transmitter 1, 

Transmitter 2, and Receiver respectively. By multiplying the 

compression ratio constant k , the original message ( )f t  is 

added to the first stage chaotic system variable 1x . Then we 

get the first stage pretend chaos signal 
1 1
( ) ( )s t kf t x= + , 

which is transmitted to Transmitter 2. Then, 1( )s t  is added 

to the second stage chaotic system variable 2y  to be the 

second stage pretend chaos signal 2 1 2( ) ( )s t s t y= + , which 

is transmitted to Receiver. Suppose 1 2 1R s z= −  is the first 

recovery of information signal and 2 1 2R R z= −  be the 

second one, where 1 2,z z  are the third stage chaotic system 

variables. By employing the mentioned controllers from 

Theorem 1 in Section II, the synchronization will be 

achieved among the three chaos systems in the fixed 

synchronization time 
1

ˆ( )t θ , then 2 2 0z y− →  and 1 1z x−  

0→ . Therefore, we can recover the original signal by 
1 1

2 1 1 2 2( ) ( ( ) ) ( )R t k R k kf t x z y z f t− −= = + − + − =ɶ  at the rece-

iver end. 
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FIGURE 2.  Diagram of multistage chaotic secure communication system based on SWT. 
 

 

However, the recovered signal by traditional scheme is 

( ) ( ) ( )R t f t n t= +ɶ , as the channel is often mixed with noise. 

Fortunately, SWT has been found to be a useful tool for 

analyzing and decomposing multi-component. So, we apply 

SWT at the receiving terminal to accurately recover the 

multi-component signal 
2 ( )

1 1
( ) k

K K i t

k kk k
f f A t e

πφ
= =

= =∑ ∑ , 

and separate each component kf . 

The steps of extracting the information signal and each 

component from mixed signal ( )ɶR t  based on SWT are 

briefly described as: 

1) Calculate the continuous wavelet coefficients of signal. 

Choose the mother wavelet as 
2

2 / 21
( )

2

i t tt e eπψ
π

−= . 

Calculate the continuous wavelet coefficients ( , )
R

W a bɶ  

of the output signal ( )ɶR t  at the receiving terminal, and 

discretize it as ( , )
R

W a bɶ . Calculate the instantaneous 

frequency as 
( ( , ))

( , )
2 ( , )

t j nR
j nR

j nR

W a t
a t

i W a t
ω

π

∂
=

⋅

ɶ

ɶ

ɶ

ɶ

ɶ
ɶ

. 

2) Divide the frequency interval. The length of mixed 

signal ( )ɶR t  is 
12LN +

= , and the sampling time inter-

val is t∆ . Set 2

1
32, , log ( )

1 2
v a v

a

N
n n Ln

n
ω= = ∆ =

−
, 

and 0

1

N t
ω =

∆
. Fix 02l

l

ωω ω∆= , 0,1, , 1al n= −⋯ , and 

then the whole frequency will be divided into different 

intervals as 1 1[ , ]
2 2

l l l l
lW

ω ω ω ω− ++ +
= . 

3) Calculate the synchrosqueezed value in the time-

frequency plane： 

1

2

0 1,{ : ( , }

log 2
( , ) ( , )

a j n l

l j n jR R

j n j a t W v

T b W a t a
nω

ω
−

≤ ≤ − ∈

= ∑ɶ ɶ

ɶ

ɶ ɶ . 

4) Extract each component of the mixed signal. Calculate 

the curve qc∗
 according to [18]. Set the interval 

* *
( ) [ / 2, / 2]

k n q q
L t c nv c nv= − + , then calculate each 

component by 
( )

2
( ) Re( ( , ))

k n

k n l nR
l L t

f t T t
Rψ

ω
∈

= ∑ ɶ

ɶ ɶ . 

5) Calculate modal parameters of each component. 

Calculate the Hilbert transform of ( )kf t  by ( )ky t =
 ( )1

dkf t

t
τ

τ

+∞

−∞ −∫
π

. Calculate the IA of each component 

by 
2 2( ) ( ) ( )k k kA t f t y t= +ɶ , and calculate the IF by 

arctan( ( ) ( ))1
( )

2

k k

k

d y t f t
t

dt
ω

π
=ɶ . Then use the least 

squares method to fit the 
k

Aɶ  and 
k

ωɶ . 

Remark 6: The overall computational complexity is 
2
2( log )vO n N N .  

V.
 
 Numerical results 

In this section, we provide several numerical examples to 

illustrate the ideas in Section IV. Moreover we show how 

SWT compares to other time-frequency denoising 

algorithms, such as EMD [15], CEEMD [16], WT [24]. All 

the experiments are carried out in the Matlab (R2015b) 

environment running on a PC with Intel(R) Core(TM) i7-

3770 CPU 3.40GHz. 

In these numerical simulations, the initial states of chaotic 

systems are given by (0) (1,1,3)x = , (0) (1, 2,1)y =  and 

(0) ( 1, 2, 1)z = − − . Compression ratio constant is set as 

0.01=k . The abstraction process of the information signal 

is after the finite time 
1

0.2909=t s  under controller 

1 2 3
10, 15, 17k k k= = = . We consider the signal: ( )f t +  

1 2 3 1 1 2 2
( ) ( ) ( ) ( ) ( )= cos(2 ) cos(2 )n t f t f t f t n t A t A tπω πω= + + + +

3 3
cos(2 )A tπω+ . 

1 2 3
=20, =25, =30ω ω ω  are their IFs of each 

component and 
1 2 3

1, 2, 0.5A A A= = =  are their IAs. ( )n t  is 

the Gaussian white noise with different noise level. The 

noise level (NL) is defined as 100%n fNL σ σ= × , where 

nσ  is the standard deviation of noise, and 
f

σ  is the standard 

deviation of signal. 
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In Experiment 1, we first show the secure performance of 

the multistage chaotic secure communication system. As 

mentioned in Section IV, after the information signal ( )f t  

masked by the states of chaotic systems, 
1 1
( ) ( ) ( )s t kf t x t= +  

is the first transmitted signal and 
2 1 2
( ) ( ) ( )s t s t y t= +  is the 

second transmitted signal. Fig. 3 depicts the numerical 

results of encryption process for the multi-component 

signal ( )f t . Obviously, the information signal is masked 

after a short transmission and the secondary encryption 

method can enhance the security of communication.  

In Experiment 2, we show the inaccuracy of the 

traditional extraction method in noisy situation with 

60%NL = . As can be seen from Fig. 4 (a) and (c), with the 

Gaussian noise perturbing, the curve is not as smooth as 

before. The correlation coefficient (CC) between ( )ɶR t  and 

( )f t  here is 0.693 1< . The closer the CC is to 1, the better 

the accuracy of the recovered signal should be. Thus we 

cannot use ( )ɶR t  as a recovery of information signal as 

shown in [3]. So, we apply SWT at the end of the receiving 

terminal, in order to eliminate the influence by noise so as 

to abstract the information signal accurately. 

In Experiment 3, we discuss the extraction performance 

of SWT over EMD and CEEMD under 60%NL = . Fig. 5-

Fig. 6 are the extraction results by EMD and CEEMD 

respectively. The mixed signal ( )ɶR t  is decomposed into 3 

intrinsic mode-type functions
1

imf , 
2

imf  and 
3

imf . As can 

be seen from Fig. 5, 
1

imf  and 
2

imf  are composite signal of 

high-frequency noise, and the 
3

imf  is the approximation of 

the information signal. The CCs here are respectively 

0.4198, 0.8038 and 0.2076, which means EMD cannot 

separate the three components. As can be seen from Fig. 6, 

although CEEMD has better denoising effect than EMD, it 

still cannot separate the three components. The CCs here 

are respectively 0.2558, 0.8231 and 0.3924. Obviously, 

neither EMD nor CEEMD can separate the three 

components of the information signal. 

Fig. 7- Fig. 9 show the extraction performances of 

extracting the information signal ( )f t  from the mixed 

signal ( )ɶR t  by our SWT based scheme mentioned in 

Section IV. Fig. 7 (b)-(d) are the comparison of the three 

original components 1 2 3( ), ( ), ( )f t f t f t  and their extraction 

results. The CCs here are respectively 0.9977, 0.9995, and 

0.9879. That means SWT based scheme can separate the 

three components from the information signal. The least 

squares fitting curves of IA and IF extracted by SWT based 

scheme are shown in Fig. 8- Fig. 9. The fitting values of IA 

are respectively 1.0083, 2.0085, 0.4989, which is closed to 

the real values 1, 2, 0.5.The fitting values of IF are 

respectively 19.996, 24.995, 29.994, which is closed to the 

real values 20, 25, 30. As can be seen, the SWT based 

scheme can separate the three components from the 

information signal, and the frequency and amplitude of the 

extracted signal are almost the same as those of the original 

signal. Therefore, when the noise level NL 60%= , the 

extraction precision of SWT based scheme is higher than 

that of EMD and CEEMD. 

 

 
FIGURE 3.  The secure performance display in time domain: (a) the 

information signal ( )f t ; (b) the first encrypted signal 1( )s t ; (c) the 

second encrypted signal 2 ( )s t . 

 

 

 

 

 

 
FIGURE 4.  The extraction performance by traditional method under 

60%NL = : (a) the signal ( )f t ; (b) the first recovered signal 1( )R t ; (c) the 

traditional recovered signal ( )R tɶ . 
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FIGURE 5.  The EMD extraction results of the information signal under 60%NL = : (a) The information signal ( )f t ; (b) The imf1 by EMD; (c) The imf2 

by EMD; (d) The imf3 by EMD. 

 
FIGURE 6.  The CEEMD extraction results of the information signal under 60%NL = : (a) The information signal ( )f t ; (b) The imf1 by CEEMD; (c) 

The imf2 by CEEMD; (d) The imf3 by CEEMD. 

 
FIGURE 7.  The SWT extraction results of the information signal under 60%NL = : (a) The extraction results of ( )f t ; (b) The extraction results of 1( )f t ; 

(c) The extraction results of 2 ( )f t ; (d) The extraction results of 3 ( )f t . 
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TABLE I 
The detection results of amplitude for each component with different noise intensity 

Noise 

level/% 

EMD CEEMD WT SWT 

1Aɶ  2Aɶ  3Aɶ  1Aɶ  2Aɶ  3Aɶ  1Aɶ  2Aɶ  3Aɶ  1Aɶ  2Aɶ  3Aɶ  

40 0.4143 2.1157 0.3278 1.1487 1.9250 0.5283 1.0835 1.7164 0.3706 1.0069 2.0021 0.4980 

60 0.5908 2.1156 0.6653 0.9533 1.8179 0.6668 1.0591 1.7414 0.4092 1.0083 2.0085 0.4989 
80 0.8404 2.2614 0.9594 1.3109 1.7342 0.6971 1.0906 1.7637 0.4304 1.0089 2.0097 0.4827 

100 0.9316 2.3762 1.2984 1.5608 1.6874 1.0018 1.0351 1.7348 0.3893 1.0103 2.0110 0.4766 
120 1.1544 2.3668 1.6168 1.7972 1.6312 1.1045 1.1185 1.7177 0.3640 1.0113 2.0215 0.4691 

 

 
TABLE II 

 The detection results of frequency for each component with different noise intensity 

Noise 

level/% 

EMD CEEMD WT SWT 

1ωɶ  2ωɶ  3ωɶ  1ωɶ  2ωɶ  3ωɶ  1ωɶ  2ωɶ  3ωɶ  1ωɶ  2ωɶ  3ωɶ  

40 18.034 27.879 26.597 16.312 21.845 28.539 19.996 24.995 29.993 19.996 24.995 29.999 

60 17.676 28.070 28.396 16.500 25.907 27.980 19.996 24.994 29.993 19.996 24.995 29.994 

80 18.457 27.117 30.596 16.083 26.878 28.201 19.876 24.654 29.895 19.996 24.995 29.992 
100 18.569 28.394 32.590 16.893 27.890 29.783 19.823 24.657 29.689 19.995 24.995 29.991 

120 17.157 28.058 34.394 16.470 27.882 27.278 19.789 24.597 29.691 19.994 24.995 29.991 
 
 
 
 
 

 
FIGURE 8.  The least squares fitting curve of instantaneous amplitude 

extracted by SWT under 60%NL = : (a) fitting curve of 1Aɶ  for 1( )f t ; (b) 

fitting curve of 2Aɶ  for 2 ( )f t ; (c) fitting curve of 3Aɶ  for 3( )f t . 

 
 
 

 
FIGURE 9.  The least squares fitting curve of instantaneous frequency 

extracted by SWT under 60%NL = : (a) fitting curve of 1
ωɶ  for 1( )f t ; (b) 

fitting curve of 2
ωɶ  for 2 ( )f t ; (c) fitting curve of 3

ωɶ  for 3( )f t . 

 

 

 
In Experiment 4, we discuss the extraction effects of 

SWT, EMD, CEEMD and WT under different noise 

intensities. The values of the noise level (NL) are 

respectively set to 40%-120%. Table 1 and Table 2 show 

the detection results of amplitude and frequency of each 

component respectively by using the four time-frequency 

denoising algorithms. When =40%NL , the detection 

results of amplitude of each component by EMD are 

respectively 0.4143, 0.3278, 2.1157, which are too far from 

the real values 1, 2, 0.5. This is the same case for the 

frequency extraction by EMD. Obviously, EMD cannot 

abstract amplitude and frequency of each component, not to 

mention the high noise level. When =40%NL , the mean 

square errors (MSE) of amplitude abstracted by CEEMD, 

WT and SWT are respectively about 0.0095, 0.0347, 0.0002. 

When =120%NL , the MSE of amplitude abstracted by 

CEEMD, WT and SWT are respectively about 0.3790, 

0.0374, 0.0005. This is the same case for the frequency 

extraction by them. Therefore, SWT can achieve better 

extraction effect than the other methods, even if the noise 

level is higher. 

Based on the results achieved from the above 

experiments, the secure communication scheme about 

secondary encryption can enhance the level of security, and 

the SWT based scheme has a better extraction effect than 

EMD, CEEMD and WT, with noise interference. 

VI.
 
Conclusion 

In this paper, the finite-time stochastic synchronization of a 

chaotic system without linear term under vector-form 

stochastic perturbations has been solved. Most of existing 

work only studied the exponential or impulsive synchroniz-

ation of this new chaotic system, which means that the time 

of recovering the information signal may be infinite. The 

finite-time stochastic synchronization theorem proposed in 
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this paper can solve problems of robustness and 

disturbances for chaotic systems. In addition, we obtain a 

fixed synchronization time that does not depend on the 

parameters of the controller. The time for decryption is 

predictable. Therefore, the results are helpful to the 

application in secure communication. Moreover, we 

proposed a secure communication scheme about secondary 

encryption based on multistage chaos synchronized system. 

In this method, the information signal is decoded twice. 

Considering chaos signal depending on initial values, 

obviously, this method has greater security than original 

chaos masking mode. Finally, SWT is used at the receiver 

end in order to improve the accuracy of the recovered 

signal. Numerical simulations and the results have showed 

the effectiveness and feasibility of the proposed 

synchronization and secure communication scheme. For 

multi-component sinusoidal signal with adjacent frequency, 

the accuracy of signals recovered by SWT based scheme is 

higher than that recovered by EMD, CEEMD and WT. 
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