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ABSTRACT: Reliable, spatiotemporally continuous runoff records are necessary for identifying 
climate change impacts and planning effective water management strategies. Existing Chinese 
runoff data to date have been produced from sparse, poor-quality gauge measurements at differ-
ent time scales. We have developed a new, quality-controlled gridded runoff dataset, the China 
Natural Runoff Dataset version 1.0 (CNRD v1.0), which provides daily, monthly, and annual 0.25° 
runoff estimates for the period 1961–2018 over China. CNRD v1.0 was generated using the Variable 
Infiltration Capacity (VIC) model. A comprehensive parameter uncertainty analysis framework 
incorporating parameter sensitivity analysis, optimization, and regionalization with 200 natural 
or near-natural gauge catchments was used to train the VIC model. Overall, the results show 
well-calibrated parameters for most gauged catchments except arid and semiarid areas, and the 
skill scores present high values for all catchments. For the pseudo-/test-ungauged catchments, 
the model parameters estimated by the multiscale parameter regionalization technique offer the 
best regionalization solution. CNRD v1.0 is the first free public dataset of gridded natural runoff 
estimated using a comprehensive model parameter uncertainty analysis framework for China. These 
results indicate that CNRD v1.0 has high potential for application to long-term hydrological and 
climate studies in China and to improve international runoff databases for global-scale studies.
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W ater is a key natural resource on which all life on Earth depends, and it is essential 
for societies to flourish (Gudmundsson et al. 2017). Although it is believed that 
the amount of water will not diminish on shorter than geological time scales (Oki 

and Kanae 2006), the extremely low fraction of available freshwater and the increasing 
water demand from a continuously growing human population have made water scarcity 
one of the major problems of the twenty-first century. Meanwhile, changes in atmospheric 
thermodynamics in the context of ongoing global warming—seen in, for example, increasingly 
extreme precipitation events (Papalexiou and Montanari 2019; Miao et al. 2019), higher 
potential evapotranspiration, and earlier snowmelt seasons—have intensified the global water 
cycle (Huntington 2006; Miao et al. 2016; Oki and Kanae 2006), further aggravating global 
water stress. In addition, water is also one of the most direct mediums through which people 
can perceive the effects of climate change. Changes in frequency and duration of hydrological 
extremes, such as droughts (Samaniego et al. 2018), floods (Ficchì and Stephens 2019), and 
glacial melting (Gao et al. 2019), are prime ways to experience climatic change impacts on 
the environment and the socio-economic conditions of a region. In this context, better tools, 
such as improved hydrological flow databases, are needed for managing terrestrial water 
resources and detecting the effect of climate change in space and time at resolutions suitable 
for hydrometeorology studies (e.g., Berghuijs et al. 2017; Gudmundsson et al. 2017).

Generally, ground-based hydrological gauge networks are the main sources of stream-
flow data. Observed river flow data have been widely used in various hydroclimate studies 
for applications such as the design of water distribution systems and irrigation networks 
(Hu et al. 2010; Tetzlaff et al. 2017) and studies of climate change impacts on water resources 
(Tang et al. 2019). Although gauges can directly measure streamflow from river channels 
and the hillslope, such point measurements are sparse; also, the number of hydrometric 
stations has declined in many parts of the world (Mishra and Coulibaly 2009). Previous 
studies have also highlighted that current data collection networks are inadequate for 
providing the information required to understand and explain changes in natural systems 
(Mishra and Coulibaly 2009; Mitchell and Shrubsole 1994). For example, there is an extreme 
lack of gauged streamflow data in the Arctic and the Tibetan Plateau owing to their harsh 
environments. In addition, flow measurements usually have data gaps due to technical or 
maintenance issues; for instance, hydrological stations can be damaged during flood events 
(Gao et al. 2018; Tencaliec et al. 2015). These missing records in the datasets can cause 
erroneous summary data interpretation or unreliable scientific analysis (Tencaliec et al. 2015). 
At the same time, anthropogenic influences on natural processes are large and widespread. 
The global area of irrigated agriculture constitutes 40% of the total area used for agricultural 
production (Fig. 1a; Meier et al. 2018), and the unprecedented numbers of dams and reservoirs 
constructed have resulted in about 7,320 large dams (capacity ≥ 0.1 km3) being in operation 
worldwide in 2019 (Fig. 1b; the Global Reservoir and Dam Database v1.3, http://globaldamwatch 
.org/data/). Thus, natural hydrological cycles have been dramatically modified by human 
activities such as domestic water withdrawal, irrigation, reservoir regulation, and river di-
versions (Oki and Kanae 2006), and so gauge measurements cannot solely represent natural 
hydrological processes. Overall, hydrometeorologists face a great challenge in using gauged 
flow data to capture the variability signal and assess long-term trends of natural hydrologi-
cal cycles.
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Reconstruction of continuous natural flow data records has been an emerging research area 
in the past three decades. Since the 1980s, the Global Runoff Data Base (GRDB) that operates 
under the auspices of the World Meteorological Organization has been steadily updated based 
on submissions from national authorities (Do et al. 2018). To date, the GRDB comprises dis-
charge data from more than 9,900 gauging stations worldwide and is the primary dataset used 
in large-scale hydroclimate studies (e.g., Ficchì and Stephens 2019; Markonis et al. 2018). The 
Global Streamflow Indices and Metadata (GSIM) archive is a worldwide collection of stream-
flow metadata and indices, which is derived from a total of 35,002 hydrological stations used 
in 12 global or regional streamflow databases (Do et al. 2018). The Dai and Trenberth Global 
River Flow and Continental Discharge Dataset has recorded the historical monthly streamflow 
into the oceans at the farthest downstream stations for the world’s 925 largest ocean-reaching 
rivers (Dai 2017). The Global Streamflow Characteristics Dataset (Beck et al. 2015) and the 
Global Runoff Reconstruction dataset (GRUN; Ghiggi et al. 2019) are two other global flow 
datasets developed by a neural network and a machine learning algorithm, respectively. 
These global flow datasets undoubtedly provide fundamental records for water resources 
management and climate change monitoring around the world. However, construction of 
these global datasets remains resource intensive, and they contain notable data gaps in some 
regions, especially in China (Figs. 1c–d and Fig. ES1; GRDB and GSIM are two examples).

China is climate vulnerable due to its remarkable topographic gradients, monsoon 
climate, and rapid economic development (Miao et al. 2016). Climate change has also in-
creased the urgency of understanding, regulating, and forecasting China’s freshwater flows 
(Piao et al. 2010). Such work requires reliable, spatiotemporally continuous runoff records; 
however, current flow datasets across China are inadequate. As with the global datasets, 
high-quality national-scale datasets, such as the Long-Term Land Surface Hydrologic Fluxes 
and States Dataset for China produced by Zhang et al. (2014), also use data from relatively 
few stations. Thus, this study presents a new long-term, high-quality runoff dataset, the 
China natural runoff dataset version 1.0 (CNRD v1.0), which spans 1961–2018 with daily 

Fig. 1. Distribution of (a) global irrigated areas, (b) constructed large dams (capacity ≥ 0.1 km3; 
according to GRanD), (c) Global Runoff Data Base (GRDB) hydrological stations, and (d) Global 
Streamflow Indices and Metadata archive (GSIM) hydrological stations.
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and monthly temporal and 0.25° spatial resolution. The gridded runoff record in CNRD v1.0 
was reconstructed based on a distributed land surface model combined with a comprehen-
sive parameter uncertainty analysis framework, i.e., one that includes parameter sensitivity 
analysis, optimization, and regionalization. The 200 natural or near-natural gauge stations 
with the lowest fractions of missing data were used to train the model—a larger number than 
in previous studies. All of these characteristics make CNRD v1.0 a useful data product for 
driving hydrological and climate studies over China, especially for ungauged or poorly gauged 
areas, and the data will also contribute to improving global runoff databases.

Methods and data sources
Hydrological modeling and data sources. The Variable Infiltration Capacity (VIC) macroscale 
hydrological model (Liang et al. 1994) was used to produce CNRD v1.0. VIC is an offline land 
surface model that is able to capture transient basin discharge (Gou et al. 2020) and project 
the terrestrial water cycle (X. G. He et al. 2020; Sheffield et al. 2014). In this study, we ran 
the VIC model version 4.2 in water balance mode in two stages: model training and data 
production. The former refers to the stage that creates a high-reliability land surface model 
to replicate “natural” hydrology processes based on the routing structure for the basin with 
natural or near-natural streamflow records. Given that China has experienced rapid economic 
development since the 1980s, the period 1960–79 was chosen for this model training stage 
to reduce anthropogenic influences, such as dam construction, urbanization, and land–use 
changes on natural hydrological processes (Gou et al. 2020). The data production stage forms 
a long-term natural runoff series covering the period 1961–2018. We ran the trained model 
with a 6-hourly time step at 0.25° spatial resolution, spanning a total of 15,775 grid cells 
across mainland China (hereinafter “China”).

To drive the model, we used 0.25° gridded daily precipitation, maximum temperature, 
minimum temperature, and wind speed from two gridded datasets for the period 1961–2018. 
The first group of meteorological datasets covers most of these years (1961–2014) and was 
constructed using data from ~2,400 weather stations (Fig. ES2) acquired from the China 
Meteorological Administration. The second dataset, the China Meteorological Forcing Dataset 
(J. He et al. 2020), which supplied the rest of the years (2015–18), was made through fusion 
of remote sensing products, reanalysis datasets, and in situ station data. These two meteo-
rological datasets passed the consistency test during the overlap period (Fig. ES3). Other 
climate forcing variables, such as downward shortwave radiation, longwave radiation, vapor 
pressure, and air pressure were simulated offline by the Mountain Microclimate Simulation 
module of VIC (Bohn et al. 2013). The required lower boundary conditions for the model in-
clude soil, vegetation, and topographical data and are detailed in our previous model work 
(Gou et al. 2020).

For the model training stage, we used 200 natural or near-natural gauged catchments over 
10 river basins across China to optimize the simulated natural runoff (Fig. 2). The gauged 
monthly streamflow was obtained from the hydrological yearbook of China and local water 
resources departments. The gauges were categorized into three groups: 1) naturalized gauges 
where the influences of human activities are removed, 2) near-natural gauges without dams 
or reservoirs upstream, and 3) a few gauges with a low level of dam influence (Fig. 2). Natural-
ized gauges without water management effects (e.g., irrigation and reservoir regulation) were 
developed by the Bureau of Hydrology of the Chinese Ministry of Water Resources based on 
the water balance principle (see details in appendix A). Gauges without dams or reservoirs 
upstream before 1980 may be seen as near-natural catchments, and could therefore be used 
directly with naturalized gauges for model training. We were particularly cautious with the 
third catchment group, i.e., those that were gauged and had influenced by dams. Although 
the flow regimes are well balanced, with no discernible abrupt changes or shifts in the third 
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catchment group (Fig. ES4), parameters from this type of gauged catchment were not applied 
to the ungauged catchments. For the data production stage, we evaluated the performance of 
CNRD v1.0 and, for the sake of comparison, an ensemble of 18 simulations from the second 
phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a; https://esg.pik-
potsdam.de/search/isimip/), and a recently published dataset of gridded runoff data (GRUN; 
Ghiggi et al. 2019). The evaluation was performed at a monthly temporal scale for the over-
lapping time periods between 1971 and 2010 from these datasets. To be consistent with the 
resolution of two global products, we aggregated CNRD v1.0 to 0.5° × 0.5° grid to calculate the 
cell-to-cell accordance. Further details on ISIMIP2a and GRUN can be found in appendix B.

Overview of parameter uncertainty analysis framework. In this study, the parameter un-
certainty analysis framework is used to train the VIC land surface model using the 200 in situ 
streamflow observation sites shown in Fig. 2. The framework for this model training is shown 
in Fig. 3 and includes parameter sensitivity analysis, parameter optimization, and parameter 
regionalization. First, we screened the important parameters for runoff simulation from a set 
of runoff-related parameters (Fig. 3a). The parameter sensitivity analysis is needed to reduce 
parameter dimensionality because having a large number of tunable parameters creates a 
heavy burden for parameter optimization (Bennett et al. 2018; Cuntz et al. 2015). Parameter 
optimization followed the parameter sensitivity analysis. For each of the 200 naturalized 
or near-natural catchments, an adaptive surrogate modeling-based optimization (ASMO) 

Fig. 2. Gauge records classified according to whether they are 1) naturalized (dark blue), 2) observed 
but without dam influence (light blue), or 3) influenced by dams (yellow to red). For those influ-
enced by dams, the color gradation indicates the number of upstream dams. The number of dams 
before 1979 was extracted from a dam point dataset (GRanD v1.3, http: //globaldamwatch.org 
/data / ). The gray boundaries indicate the 10 major river basin areas over China: I—Songhua River; 
II—Liao River; III—Hai River; IV—Yellow River; V—Huai River; VI—Yangtze River; VII—Southeast 
River drainage system; VIII—Pearl River; IX—Southwest River drainage system; and X—Northwest 
River drainage system.
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algorithm was adopted for finding the optimal parameter solution (Fig. 3b; see details in the 
“Parameter sensitivity analysis and optimization for gauged catchments” section). A certain 
amount of parameter tuning is necessary to produce model predictions that can match corre-
sponding observations (Gupta et al. 1999). However, even though all hydrologic models can to 
some degree benefit from parameter calibration to improve their runoff simulations in gauged 
catchments, the large area of unavailable streamflow observations make regionalization ap-
proaches extremely important in transferring information from gauged (donor) to ungauged 
(receptor) catchments (Beck et al. 2016; Parajka et al. 2013). Therefore, we designed a series 
of experiments to investigate parameter uncertainties involved with predicting runoff for the 
ungauged catchments (Fig. 3c; see details in the “Parameter regionalization evaluation for 
ungauged catchments” section). To assess the parameter performance of the regionalization 
methods for runoff estimation in ungauged catchments, each of the 200 catchments was 
used in turn as if it were ungauged, following a jackknife cross-validation procedure (i.e., 
pseudo/test ungauged).

Parameter sensitivity analysis and optimization for gauged catchments. The parameter 
sensitivity analysis is based on three qualitative global sensitivity analysis (GSA) methods—
the sum-of-trees model, the multivariate adaptive regression splines technique, and the delta 
test—and one quantitative GSA method, the metamodel-based Sobol ̓ method. For each large 
river basin, 6,000 training simulations were run for the period from 1960 to 1979 based on 
samples of parameter combinations obtained from the Sobol ̓ sequence for selected catch-
ments. Then the sensitivity scores for all streamflow-related parameters were computed by 
combining both qualitative and quantitative GSA methods based on the training simulations. 
Once we ascertained the important parameters, then we used an automatic optimization 
algorithm to estimate the optimal parameter sequences for 200 natural or near-natural gauged 
catchments. The ASMO algorithm developed by our team members, Wang et al. (2014), was 
used in this study to optimize the catchment-specific sensitive parameters of the VIC model. 
The initial sampling was conducted using the Sobol ̓ sequence—one of the quasi-Monte Carlo 
sampling methods—and the sample size was set equal to 20 times the number of sensitive 
parameters. Gaussian processes were used to construct an error response surface (i.e., the 
surrogate model) by using the initial sample points. Then parameter optimization of the sur-
rogate model and adaptive sampling of the existing response surface were repeated until the 
convergence criteria for parameter optimization of the real physical model were met. A global 
optimization algorithm—shuffled complex evolution (Duan et al. 1992)—and the minimum 
interpolating surface method were used as the core optimization algorithm and adaptive 
sampling strategy, respectively. We define the performance of streamflow simulation (the 
output variable of interest), by calculating the Nash–Sutcliffe model efficiency coefficient 
(NSE) of monthly streamflow for the parameter sensitivity analysis and optimization. We tuned 

Fig. 3. Parameter uncertainty analysis framework, including (a) sensitivity analysis, (b) optimization, and (c) regionalization.
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the catchment-specific sensitive parameters in the VIC model during the calibration period 
(1961–69); then the tuned parameters were validated for the validation period (1970–79). 
More information about the parameter sensitivity analysis and optimization methods can be 
seen in the online supplemental material.

Parameter regionalization evaluation for ungauged catchments. Parameter estima-
tion for ungauged catchments for which no streamflow data are available and hence no direct 
parameter calibration is possible remains one of the biggest challenges (Mizukami et al. 2017;  
Oudin et al. 2008; Samaniego et al. 2010). Therefore, hydrologists have developed a series of  
parameter transfer strategies, such as regression (Magette et al. 1976), catchment group-
ing (similarity based; Burn and Boorman 1993), and simultaneous regionalization 
(Hundecha and Bárdossy 2004), which can be used to estimate model parameter values on any 
ungauged catchment in a definable region of consistent hydrological response. Three parameter 
transfer approaches were considered in this study: regionalization based on spatial distance 
similarity, regionalization based on physical similarity, and multiscale parameter regionalization 
(MPR). For spatial distance regionalization (DSR) similarity and physical similarity regionaliza-
tion (PSR), five donors (gauged catchments) were used, because Bao et al. (2012) examined the 
optimal number of donors and achieved good results using five donors in China. Seven catchment 
descriptors—annual precipitation, temperature, dryness index (the ratio of the potential evapo-
transpiration to precipitation), normalized difference vegetation index, elevation, slope, and soil 
depth—were considered in the PSR method to calculate the rank of the of the donor catchment. 
For more information about the similarity regionalization, see appendix C.

The MPR technique was proposed by Samaniego et al. (2010), and this regionalization ap-
proach focuses on using transfer functions to relate geophysical features at the finest scale 
with model parameters at the finest scale, and then upscale them to the selected modeling 
spatial scale (normally much coarser) (Mizukami et al. 2017). Although a simultaneous re-
gionalization method, MPR differs from the traditional standard regionalization methods that 
define catchment predictors at the modeling unit scale, because it accounts for the subgrid 
variability of catchment predictors (Samaniego et al. 2010). In this study, we coupled the 
ASMO algorithm to the MPR technique to conduct a simultaneous parameter estimation for 
both gauged and pseudo-ungauged catchments. As shown in Livneh et al. (2015), the use of 
finer soil texture properties in MPR among other physiographical predictors plays a significant 
role not only on the potential for ease the transferability of a hydrological model across scales 
and locations but also for reducing the predictive uncertainty of the estimated fluxes. On the 
contrary to those regionalization methods that use coarse or lumped predictor counterparts 
(e.g., DSR, or PSR), MPR delivers seamless parameters fields as shown in Mizukami et al. (2017) 
and Samaniego et al. (2010). As the workflow diagram for MPR–ASMO shows in Fig. ES5, 
this method involves three steps: 1) parameter transfer, 2) parameter upscaling, and 3) 
simultaneous parameter optimization. The first and second steps identified a form of the 
transfer function and the appropriate scaling operator for each model parameter, respectively. 
The model parameters and their transfer functions and upscaling operators are shown in 
Table 1. Eight model global parameters, including an infiltration parameter (B), three baseflow  
parameters (Ds, Dm, and Ws), the second soil layer drainage parameter (E2) and soil depth 
parameters (D1, D2, and D3), are involved in simultaneous parameter optimization with dif-
ferent combinations of sensitive parameters. Detailed parameter descriptions are given in the 
online supplement. The soil depth parameters were chosen in the model calibration process 
for their high sensitivity as indices for streamflow in most river basins across China (Table ES1; 
Gou et al. 2020). Previous empirical transfer functions with geophysical features for each 
model tunable parameter were used in this study (Table 1). Detailed information on all vari-
ables in Table 1 can been seen in Table 2.
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The third (key) step comprised parameter estimation by adjusting transfer function pa-
rameters (β) rather than adjusting the model global parameter (λ) themselves; each model 
iteration in an automated calibration algorithm goes through all the MPR processes. The 
objective function (O) of the MPR–ASMO method is defined for the aggregation of all catch-
ments but is weighted toward the catchment in which the model performance is the worst 
(Hundecha and Bárdossy 2004):

…∑ 2 2

=1, ,
=1

= + min

M

i i
i M

i

O ε M ε ,  (1)

where M is the number of calibration catchments, and the εi refers to the Nash–Sutcliffe model 
efficiency coefficient (NSE) of monthly streamflow in each calibration catchment.

To evaluate the performance of the different regionalization approaches, we designed five 
experiments (Table 3). In the MPR, PSR, and DSR experiments, the parameters in pseudo-
ungauged catchments were obtained from the corresponding regionalization methods. Two 
reference experiments were also considered: one for which the optimal solution obtained in 
parameter optimization was used (Ref1) and another for which a single median parameter 
set was used across the corresponding major basins (Ref2). These two reference experiments 
can be interpreted as providing the upper (practically unreachable) limit and the lower limit 
of the regionalization schemes, respectively. The results obtained with the three regionaliza-
tion schemes tested were expected to lie between the two extremes.

Results and discussion
Parameter optimization for the gauged catchments. Based on the sensitivity analysis results 
of our previous work by Gou et al. (2020), a list of VIC tunable parameters for each large river 
basin (Table ES1) was identified that are important for streamflow simulation. Subsequently, the 
ASMO algorithm was used to optimize those parameters for each of the 200 gauged catchments; 

Table 1. Regionalization transfer functions and upscaling operators used in VIC model.

Parameters (λ) Transfer functions β
Lower 
bound

Upper 
bound

Default 
values

Upscaling 
operators

B
+

ele 1

ele 2

ln
ln 10

σ β

σ β

–
a

β1 –2 1 0 Arithmetic 
meanβ2 0.8 1.2 1

Ds ( )
            

∫
0

1 2 +31/
3 0× + 1 1

μB

A
A A dAβ – – b β3 0.3 1.3 1

Harmonic 
mean

Dm
4

1

10
sKβ

b β4 1.75 2.5 2
Harmonic 
mean

Ws
     5 ×

f

m

W
W

β b β5 0.3 1.3 1
Harmonic 
mean

E2 β6 × (3 + 2/λ)c β6 0.3 1.3 1
Harmonic 
mean

D1 β7 × h1 β7 0.3 1.3 1
Harmonic 
mean

D2 β8 × h2 β8 0.3 1.3 1
Harmonic 
mean

D3 β9 × h3 β9 0.3 1.3 1
Harmonic 
mean

a Source: Mizukami et al. (2017).
b Source: Bao et al. (2012). 
c Source: https://vic.readthedocs.io/en/master/.
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the skill scores (NSE) of simulated monthly streamflow for those catchments are shown in Fig. 4. 
The NSE between the naturalized and simulated streamflow varied between 0.39 and 0.98 
under the calibration period, and between 0.28 and 0.98 under the validation periods. The NSE 
showed high values for all catchments, with an average of 0.83 and 0.80 for calibration and vali-
dation modes, respec-
tively. Moreover, most 
catchments show good 
performance for peak 
flow (July–September) 
except the northwestern 
catchments (catchments 
181–200, Fig. ES6). The 
poor performance of 
peak f low in north-
west drainage system 
perhaps owing to the 
model structure un-
certainties over snow-
dominated and arid 

Table 2. Variables list.

Variable symbol Brief description Unit Sources

λ Global parameter — Calculated by transfer functions and upscaling 
operators

β1–β9
Transfer function parameters — Found by optimization algorithm

σele
Standard deviation of elevation m Global Multi-resolution Terrain Elevation Data 

2010 dataset (www.usgs.gov/land-resources/eros/
coastal-changes-and-impacts/gmted2010)

Wf Subgrid field capacity mm China Dataset of Soil Hydraulic Parameters 
(Dai et al. 2013)

Wm Saturated soil moisture mm China Dataset of Soil Hydraulic Parameters 
(Dai et al. 2013)

A0 Saturated fraction of the subgrid 
area, in which the average soil 
moisture is Wf

— Calculated from the variable soil moisture capacity 
curve (Bao et al. 2012)

μ Brooks–Corey equation parameter — Empirical parameter from Cosby et al. (1984)

Ks Saturated hydraulic conductivity mm day−1 China Dataset of Soil Hydraulic Parameters by 
Dai et al. (2013)

γ Soil pore size distribution 
parameter

—
Calculated by the sand and clay soil particle-size 
fraction

h1–h3

Three soil layer thickness 
parameters

m
China Dataset of Soil Hydraulic Parameters by 
Dai et al. (2013)

Table 3. Model parameter regionalization experimental design in this study.

Experiments Sources for parameters for pseudo-ungauged catchments

Ref1 Using the optimal solution obtained in parameter optimization

Ref2 Using a single median parameter set across the corresponding major basin

MPR Estimated with the multiscale parameter regionalization technique

PSR Estimated with the physical similarity regionalization technique

DSR Estimated with the spatial distance similarity regionalization technique

Fig. 4. Parameter optimization results (expressed as NSE) of VIC‐simulated monthly 
streamflows for 200 gauged catchments during the calibration (blue circles) and 
validation periods (orange circles). The size of each circle indicates the drainage 
area of corresponding catchment (103 km2).
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regions (X. He et al. 2020). The physical parameterization scheme related to snowmelt are not 
well understood (Pan et al. 2003), and other key hydrological processes (e.g., glacier dynam-
ics) are missing in the model. Therefore, peak flow information compiled in the CNRD v1.0 
should be interpreted with caution over northwestern regions and specific model optimiza-
tion may need to be considered before using the data. Figure 5 shows the spatial distribution 

Fig. 5. Spatial distribution of the model performance of the calibrated catchments. (a),(b) The 
spatial distribution of optimization results (expressed as NSE) of VIC‐simulated monthly 
streamflow for all 200 gauged stations during the calibration period (1961–69) and the vali-
dation period (1970–79). (c)–(g) Time series of monthly streamflow for the selected gauged 
catchments. The black and red lines indicate naturalized and the simulated streamflows.
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of the model performance of the calibrated catchments (expressed as the NSE), and the 
comparison between the naturalized streamflow and modeled monthly streamflow for five 
selected catchments. In both time periods, the NSE values across China are generally high in 
most of the southern basins and low in the northern basins, particularly in the northwestern 
basins (Figs. 5a,b). This uneven spatial pattern of model performance can be attributed the 
inadequate precipitation gauge densities (Fig. ES2) and the arid and semiarid hydroclimatic 
regimes in the northern region. The precipitation data provide an important upper boundary 
condition of runoff simulation, and the accuracy of these data to a large extent determines the 
representation of surface hydrological processes, while also affecting parameter values and 
model performance (Xu et al. 2013). In addition, the mechanism of rainfall–runoff generation 
is more complex in semiarid and semihumid regions than that in humid regions because the 
infiltration excess runoff and saturation excess runoff always interact to varying degrees in 
those regions (Atkinson et al. 2002; Hu et al. 2005). Therefore, all models, simple or complex, 
produce more accurate results with more confidence in humid regions. And caution is needed 
when applying the model simulations in northwestern river drainages, for the number of 
gauge stations used in the model training process is not sufficient there. In the five selected 
catchments, the temporal evolution of river flow is in general well captured; both the timing 
and amount of simulated streamflow peaks and valleys closely match the naturalized stream-
flow (Figs. 5c–g). High flows were slightly underestimated for arid or semiarid basins in the 
Songhua, Northwest, and Liao River basins (Figs. 5e–g). Even if the model does not perform 
well in some arid and semiarid areas, the results overall show well-calibrated parameters for 
most gauged catchments.

Parameter regionalization performance for the pseudo-ungauged catchments. Five 
regionalization experiments (Table 3) were designed to evaluate the performance of the 
different regionalization schemes in transferring calibrated parameter sets from the gauged 
(donor) catchments to pseudo-ungauged catchments. Figure 6 summarizes the results by 
showing the distributions of model efficiencies given by the five regionalization scheme 
experiments over China as a whole. Unsurprisingly, the Ref1 and Ref2 experiments pro-
duced the best and worst (in terms of median NSE) regionalization results, respectively, 
with values of the median NSE equal to 0.85 (Ref1) and 0.68 (Ref2) in the calibration period 
and 0.82 (Ref1) and 0.67 (Ref2) in the validation period (Fig. 6a); the cumulative frequency 
distributions lines for the NSE values obtained from the Ref1 and Ref2 experiments are 
located on the far right and left of the clustered lines (Figs. 6b,c). The differences found 
between the three regionalization methods were discernible but not very large. MPR offered 
the best regionalization solution (median NSE = 0.76 for the calibration period and 0.72 for 
the validation period; Fig. 6a). PSR was the worst of three regionalization schemes (median 
NSE = 0.71 for the calibration period and 0.68 for the validation period), with results close to 
the Ref2 median parameter solution (Fig. 6). The DSR experiment produced similar median 
NSE values to the MPR experiment (0.75 and 0.71 for the calibration and validation periods, 
respectively; Fig. 6a); the cumulative frequency distributions of the DSR and MPR experi-
ments are very close, although MPR performed better in the calibration period (Figs. 6b,c). 
At basin scale, MPR exhibited the leading performance of the three regionalization methods 
in humid areas, including the Yangtze River basin, Southeast River drainage system, and 
Pearl River basin (Fig. 7), which indicates that MPR produced more satisfactory results 
in humid regions than in arid regions. Overall, MPR generated more accurate parameter 
results than those obtained with the PSR and DSR methods for estimating the parameters 
of pseudo-ungauged catchments. The parameters generated by MPR are spatially continu-
ous (i.e., seamless; see Samaniego et al. 2010) in relation to geophysical attributes of each 
river basin (Fig. ES7). Therefore, the model parameters for real-ungauged catchments were 
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obtained based on the MPR technique by means of simultaneously calibrating the gauged 
catchments within a river basin.

CNRD v1.0 product evaluation. Using the well trained VIC land surface model from the 
results of the parameter uncertainty analysis framework, we created the CNRD v1.0 da-
taset. CNRD v1.0 is a 0.25° daily mean and monthly mean natural runoff reconstruction 
product that spans the period 1 January 1961 to 31 December 2018, over mainland China. 
To investigate whether the CNRD v1.0 gridded runoff product was properly reconstructed, 
two global gridded runoff datasets, ISIMIP2a and GRUN (appendix B) were used as ref-
erences for product evaluation. Figures 8a–c compare the spatial distributions of the 
long-term-mean (1971–2010) annual total runoff for ISIMIP, CNRD v1.0, and GRUN. The 
overall pattern of the reconstructed runoff record in CNRD v1.0 is similar to the runoff 
record independently derived from the multimodel ensemble mean of ISIMIP from GRUN 
(Figs. 8a–c). Runoff maps from CNRD v1.0 show more continuous transitions in runoff dis-
tribution compared to ISIMIP and GRUN. Possible reasons for the roughness of ISIMIP and 
GRUN runoff data relate to the coarse resolution of those two datasets (0.5°, compared to the 
0.25° resolution of CNRD v1.0) and the multimodel-mean technique used to them. CNRD 
v1.0 performs better than the two global runoff datasets in representing the geographic 
distribution of China’s water resources across complex terrain and climate regions. For 
example, CNRD v1.0 is better at representing the high-value runoff center produced by the 
monsoon climate over southeast China and the snowmelt runoff produced by the special 

Fig. 6. Comparison of the performance of different parameter regionalization experiments across 
all pseudo-ungauged catchments. (a) Boxplot illustrating the skill-score distributions (expressed as 
NSE) for all five regionalization experiments for the calibration periods (blue boxes) and validation 
periods (orange boxes). (b),(c) Cumulative frequency distributions of the skill scores for all five 
regionalization experiments for the calibration period and the validation period, respectively, 
and the colors of the curves distinguish the different regionalization experiments.
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geographic environment of northwest China (where two basins are sandwiched between 
three mountains); those features are not well captured by either the ISIMIP or the GRUN 
maps (Figs. 8a–c). This is mainly because runoff recorded by ISIMIP and GRUN is not well 
calibrated in China, since the streamflow gauge stations used in the China region during 
the data production process were sparse. Cell-to-cell comparisons between the CNRD v1.0 
runoff map and the ISIMIP and GRUN runoff maps are shown in Figs. 8d and 8e, respec-
tively. These comparisons show that CNRD v1.0 gives results in accordance with ISIMIP 
and GRUN, the respective levels of agreement (expressed by the coefficient of determina-
tion R2) being 0.92 and 0.72.

CNRD v1.0 was also compared with ISIMIP and GRUN for annual and monthly temporal 
scales over China; mean annual and multiyear monthly mean runoff time series for the three 
datasets were calculated and are shown in Fig. 9. The results show an overall agreement be-
tween the reconstructed CNRD v1.0 and ISIMIP and GRUN runoff for both interannual and 
annual scales. The timings of dry and wet years in CNRD v1.0 closely match the two global 
runoff datasets, although CNRD v1.0 always generates a larger magnitude runoff value 
(Fig. 9a). The annual cycles of monthly runoff show similar performance to the interannual 
cycles, and the timing of high-flow and low-flow months is well captured by CNRD v1.0. 
Whereas the CNRD v1.0 values invariably have largest magnitudes throughout the spring 
and winter seasons; the summer and autumn season runoff in CNRD v1.0 agrees with the 

Fig. 7. Comparison of the performance (expressed as NSE) of different parameter regionalization experi-
ments for monthly streamflow in pseudo-ungauged catchments across 10 river basins: (a) Songhua River 
basin, (b) Liao River basin, (c) Hai River basin, (d) Yellow River basin, (e) Huai River basin, (f) Yangtze River 
basin, (g) Southeast River drainage system, (h) Pearl River basin, (i) Southwest River drainage system, and 
(j) Northwest River drainage system.
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higher range of the ISIMIP2a simulations. Overall, the temporal dynamics of runoff are well 
reproduced by CNRD v1.0 in comparison to the global runoff data.

Potential applications of CNRD v1.0. This section briefly discusses three potential ap-
plications of the CNRD v1.0 dataset in hydrological and climate studies, including water 
resources management, climate change assessment for terrestrial water availability, and cross- 
validation of satellite-observed runoff data. China has serious water scarcity problems due 
to the tremendous impact of topography gradients and a monsoon climate (Piao et al. 2010). 
The uneven distribution of water resources and growing water demand will cause water 
competition across China between irrigators, domestic water users, and the energy sector 
(Zhu et al. 2017). The CNRD v1.0 dataset has been developed to provide spatiotemporally 
continuous natural runoff estimates at the national scale, which has the potential to sup-
port water resources management and allocation. Moreover, there is also a need for tools 
to identify possible physical mechanisms and processes of the terrestrial water cycle and 
how it is responding to a warming climate (Huntington 2006; Sun et al. 2018, 2019). As a 
reliable spatiotemporally continuous runoff dataset, CNRD v1.0 could potentially be used 
for detecting large-scale climate features such as El Niño–Southern Oscillation impacts 
on hydrologic processes. Thus, it could provide additional decision-making support for 
water managers who are developing plans for their local communities to adapt to climate 
change. In addition, recent advances in satellite-based optical remote sensors (RS) offer 
promising alternatives for monitoring global river discharge from space (Huang et al. 2018; 
Lin et al. 2019). However, using RS observations for surface runoff estimation is subject to 
large uncertainties, such as weather and vegetation cover impacts on optical sensors. Fur-
ther corrections to these RS observations might be essential to make them accurate enough 
for hydrometeorology applications. The CNRD v1.0 dataset we have introduced, with its 

Fig. 8. CNRD v1.0 product evaluation. (top) Spatial distribution of the long-term mean annual (1961–2010) total runoff 
for (a) the ISIMIP multimodel ensemble mean, (b) the CNRD v1.0 dataset, and (c) the GRUN dataset. (bottom) Spatial 
correlation (d) between CNRD v1.0 and ISIMIP and (e) between CNRD v1.0 and GRUN.
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multiple levels of quality con-
trol in the data production 
process, could potentially be 
used to cross validate remotely 
sensed data or in other scien-
tific applications requiring 
spatiotemporally continuous 
discharge estimates.

Conclusions and outlook
We present here CNRD v1.0, a 
gridded runoff dataset recon-
structed to span 1961–2018 at 
daily and monthly temporal 
resolution and 0.25° spatial 
resolution. As a long-term spa-
tiotemporally continuous natu-
ral runoff record, CNRD v1.0 
is the first free public dataset 
constructed using a compre-
hensive model parameter un-
certainty analysis framework 
across China. CNRD v1.0 is 
generated using a land surface 
model, which was used to en-
rich the relatively shorter and discontinuous spatiotemporal distribution of gauged streamflow 
data, thus filling in gaps or constructing time series of comparable length. Sensitivity analysis 
methods were used to identify the important parameters for streamflow simulation and an 
ASMO algorithm was used to tune those important parameters in the VIC model based on 
data from 200 gauged catchments. Another important quality control used in producing this 
dataset is the use of the MPR technique to estimate parameters in the ungauged catchments 
based on physical characteristics of corresponding catchments.

In the model training stage, the results overall show well-calibrated parameters for most 
gauged catchments except in arid and semiarid areas; NSE values were high for all catch-
ments, averaging 0.83 under calibration mode and 0.80 under validation mode. For the 
pseudo-ungauged catchment, MPR offered the best regionalization solution to estimate the 
model parameters, with values of the median NSE equaling 0.76 and 0.72 for the calibration 
and validation periods, respectively. In the data production stage, we evaluated CNRD v1.0 
against two other runoff datasets, ISIMIP and GRUN, as references at a monthly time scale 
during the period 1971–2010. CNRD v1.0 performs better than the two global runoff datasets 
in representing China’s water resources distribution under complex terrain and climate con-
ditions because of the sparseness of streamflow gauge stations across China that were used 
in producing these global datasets. Cell-to-cell comparisons between the CNRD v1.0 runoff 
map and the ISIMIP and GRUN runoff maps show overall agreement (R2 = 0.92 and 0.72, re-
spectively). In addition, the temporal dynamics of runoff are well reproduced by CNRD v1.0, 
because the timing of dry versus wet years and high-flow versus low-flow months of CNRD 
v1.0 closely match the two global runoff datasets.

We have demonstrated the potential of CNRD v1.0 as a new dataset for hydroclimate stud-
ies. CNRD v1.0 is publicly available at https://doi.org/10.6084/m9.figshare.13185410. In practice, 
several considerations must be taken into account before using this dataset. The CNRD v1.0 

Fig. 9. Smoothed CNRD v1.0 data over China compared with the ISIMIP 
multimodel ensemble mean and the GRUN dataset for (a) annual runoff 
and (b) annual cycles of monthly mean runoff. Shading denotes the 95% 
confidence interval of the ISIMIP global hydrological models. The colored 
lines indicate the different runoff statistics for different datasets during 
the period 1961–2018. Note that the statistical period used in (b) is limited 
to 1961–2010 to ensure consistency of the datasets for comparison. We 
applied Gaussian smoothing to each data record (sigma = 1).
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runoff estimates are constructed from two climate forcing datasets that partially overlap in 
time, which may introduce uncertainty between the pre- and post-2014 parts of the runoff data, 
although these two forcing datasets have passed a consistency check in most regions of China 
(Fig. ES3). CNRD v1.0 is also limited by insufficient training stations in the Northwest River 
drainage system, which is inevitable due to the inadequate gauge network density in this area. 
Therefore, the CNRD v1.0 should be applied with caution for the northwestern regions if water 
amount instead of relative changes is to be assessed at those regions. The current version of 
the CNRD product only provides a gridded runoff record; but work is in progress to complete 
additional flow products for the catchment (gauges) scale and the river (reaches) scale. Next 
steps within the development of this runoff dataset should focus on multimodel ensemble that 
reduce the uncertainty of runoff simulation and improve the simulation of arid/semiarid regions 
runoff across China. A previous study observed the overestimation of active evapotranspira-
tion (AET) values within the VIC model, resulting in underestimation of the runoff simulation 
(Rakovec et al. 2019). It is intended that multi-objective optimization involving other water fluxes 
(e.g., AET and soil moisture) and multiple models with different parameterization schemes will 
be considered for our future work. For runoff estimation in ungauged catchments, it is crucially 
important to improve the understanding of parameter transfer functions by considering more 
geophysical features, such as soil porosity, wilting point, and land cover.
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Appendix A: Naturalized-gauge streamflow reconstruction method
Naturalized-gauge streamflow reconstruction refers to removing the anthropogenic influ-
ences affecting observed streamflow data to approximate the natural condition. Naturalized 
streamflow is a widely used data product for understanding natural hydrological processes 
(Tu et al. 2015) and the impact of human activities (Yuan et al. 2017) and for calibrating 
hydrological models (Gou et al. 2020; Nijssen et al. 1997). The naturalized streamflow was 
calculated as the sum of the observed streamflow and the direct water abstraction based on 
abundant data from different sectors (Gou et al. 2020; Yuan et al. 2017):

ir iw dw
= + + + ± ± ±W W W W Wn m d f rW W W , (A1)

where Wn is the naturalized streamflow; Wm is the measured streamflow at gauge stations; 
Wir is the volume of water diverted from the river for irrigation, i.e., irrigated surface water 
transpired by crops, evaporated from bare ground and open water surfaces, absorbed into soil 
(through infiltration, percolation, and recharge to shallow groundwater), or leaked from river 
or channel beds to groundwater during transportation; Wiw is the volume of water extracted 
for industrial consumption; Wdw is the volume of water removed for domestic consumption; 
Wd is the volume of water diverted from the river to basins; Wf is the volume diverted for flood 
protection; and Wr is the consumption of water stored in reservoirs.

Appendix B: ISIMIP2a and GRUN
Two global gridded runoff datasets, the runoff simulations from the second phase of the 
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Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a, 0.5° × 0.5°), and an observation-
based global gridded Global Runoff Reconstruction dataset (GRUN, 0.5° × 0.5°) by Ghiggi et al. (2019), 
were used in this study as references to evaluate the accuracy of CNRD v1.0. ISIMIP2a is a 
community-driven climate-impact modeling initiative that provides a global hydrological model 
simulation protocol and defines a set of common simulation scenarios (https://esg.pik-potsdam 
.de/search/isimip/). In this study, we use an ensemble of 18 runoff simulations participating in 
ISIMIP2a from six global hydrological models (GHM) under three global meteorological forcing 
products to represent the general condition of global terrestrial water resources. The six GHMs 
are the Distributed Biosphere–Hydrological (DBH) model, H08, the Lund–Potsdam–Jena man-
aged Land (LPJmL) model, the Minimal Advanced Treatments of Surface Interaction and Runoff 
(MATSIRO) model, the PCRaster Global Water Balance (PCR-GLOBWB) model, and the Water-
Global Analysis and Prognosis (WaterGAP2) model. Each GHM was forced by three selected 
global meteorological forcing products, namely, the PGMFD v.2, GSWP3, and WFDEI datasets 
under the “nosoc” socio-economic simulation scenario (without anthropogenic influences) 
for the period from 1971 to 2010. GRUN is an observation-based global gridded runoff dataset 
covering the period from 1902 to 2014 (https://doi.org/10.6084/m9.figshare.9228176). The gridded 
monthly runoff time series in GRUN is produced by a trained machine-learning algorithm (forced 
by GSWP3) from in situ streamflow observations. The ensemble means of 50 reconstructions 
obtained from different subsets of training data were used in this study.

Appendix C: Similarity regionalization method
In similarity-based regionalization, the parameters in ungauged catchments are directly 
transferred from geographic neighbors (spatial and/or physical), the rationale for this being 
that the climatic, geological, or topographic characteristics are likely to be relatively homo-
geneous within a region, so neighbor flow regimes should behave similarly (Bao et al. 2012; 
Oudin et al. 2008). For the spatial similarity regionalization, the Euclidean distances between 
pairs of catchments were used to define the rank of the of the donor catchment:

 , (A2)

where (Xt, Yt) and (Xd, Yd) are the geographical coordinates of the centroids of the receptor and 
donor catchments, respectively.

For the physical similarity regionalization, we selected seven catchment descrip-
tors—annual precipitation, temperature, dryness index, normalized difference vegeta-
tion index (NDVI), elevation, slope, and soil depth—to represent the physical condition 
of the donor catchment. The annual precipitation and the multiyear mean temperature 
were computed using the 0.25° gridded daily precipitation and mean temperature from 
the China Meteorological Administration, constructed from ~2,400 stations during the 
period from 1961 to 1979. The dryness index is the ratio of the potential evapotranspi-
ration to precipitation; the potential evapotranspiration was calculated by the method 
of Hargreaves and Samani (1985). NDVI values were extracted from the Advanced Very 
High Resolution Radiometer (AVHRR)-based Global Inventory Modeling and Mapping 
Studies (GIMMS) NDVI dataset during the period from 1961 to 1979. Elevation and slope 
information were extracted based on the 1-km digital elevation model dataset from the 
Cold and Arid Regions Sciences Data Center at Lanzhou (http://westdc.westgis.ac.cn). Soil 
depths were obtained from the 30-arc-s soil database of China, which was produced by 
Dai et al. (2013). In this study, each descriptor had the same weight in the proximity com-
putation, and the mean ranks were computed using the ranks of the donor catchment for 
each descriptor. The mean rank was then used to rank the donor catchments by decreasing 
proximity in the physical similarity regionalization.

( ) ( )2 2

= – + –
td t d d

S X X Y Y
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