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A B S T R A C T   

Forest managers and nature conservationists rely on precise mapping of single trees from remote sensing data for 
efficient estimation of forest attributes. In recent years, additional quantification of dead wood in particular has 
garnered interest. However, tree-level approaches utilizing segmented single trees are still limited in accuracy 
and their application is therefore mostly restricted to research studies. Furthermore, the combined classification 
of presegmented single trees with respect to tree species and health status is important for practical use but has 
been insufficiently investigated so far. Therefore, we introduce Silvi-Net, an approach based on convolutional 
neural networks (CNNs) fusing airborne lidar data and multispectral (MS) images for 3D object classification. 
First, we segment single 3D trees from the lidar point cloud, render multiple silhouette-like side-view images, and 
enrich them with calibrated laser echo characteristics. Second, projected outlines of the segmented trees are used 
to crop and mask the MS orthomosaic and to generate MS image patches for each tree. Third, we independently 
train two ResNet-18 networks to learn meaningful features from both datasets. This optimization process is based 
on pretrained CNN weights and recursive retraining of model parameters. Finally, the extracted features are 
fused for a final classification step based on a standard multi-layer perceptron and majority voting. We analyzed 
the network’s performance on data captured in two study areas, the Chernobyl Exclusion Zone (ChEZ) and the 
Bavarian Forest National Park (BFNP). For both study areas, the lidar point density was approximately 55 points/ 
m2 and the ground sampling distance values of the true orthophotos were 10 cm (ChEZ) and 20 cm (BFNP). In 
general, the trained models showed high generalization capacity on independent test data, achieving an overall 
accuracy (OA) of 96.1% for the classification of pines, birches, alders, and dead trees (ChEZ) - and 91.5% for 
coniferous, deciduous, snags, and dead trees (BFNP). Interestingly, lidar-based imagery increased the OA by 
2.5% (ChEZ) and 5.9% (BFNP) compared to experiments only utilizing MS imagery. Moreover, Silvi-Net also 
demonstrated superior OA compared to the baseline method PointNet++ by 11.3% (ChEZ) and 2.2% (BFNP). 
Overall, the effectiveness of our approach was proven using 2D and 3D datasets from two natural forest areas 
(400–530 trees/ha), acquired with different sensor models, and varying geometric and spectral resolution. Using 
the technique of transfer learning, Silvi-Net facilitates fast model convergence, even for datasets with a reduced 
number of samples. Consequently, operators can generate reliable maps that are of major importance in appli
cations such as automated inventory and monitoring projects.   

1. Introduction 

In forestry, precise and reliable mapping of tree species is a funda
mental concern. The classification of dead wood in particular is of 
increasing importance because forests are suffering from changing cli
matic conditions. Furthermore, tree-level approaches are increasingly of 
interest in area-wide forest inventory. For instance, forest attributes 
such as above-ground biomass and growing stock can be estimated 

based on tree-specific allometric models (Chave et al., 2014). Moreover, 
forest managers and nature conservationists require quantitative map
ping results to investigate the robustness and sustainability of various 
forest compositions (Overbeck and Schmidt, 2012). Besides these con
ventional applications of vegetation mapping, tree species information 
can also be advantageous in more unusual cases. For example, Briechle 
et al. (2020b) showed that observed vegetation anomalies are helpful for 
the detection of unknown radioactive waste sites in the Chernobyl 
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Exclusion Zone (ChEZ). 

1.1. Conventional approaches 

Traditionally, forest inventory has been based on manual field 
measurements. Forest managers have typically relied on sample-based 
procedures followed by area-wide extrapolation (McRoberts and 
Tomppo, 2007). Nevertheless, in situ inventory is labor intensive and, 
therefore, both time-consuming and expensive. For a temperate forest 
area of around 300 km2, Latifi et al. (2015) demonstrated that lidar- 
based data collection is 90% less expensive compared to a conven
tional forest inventory. Fassnacht et al. (2016) reviewed the work of 
various researchers who have investigated forest parameter estimation 
at the single tree level using remote sensing data. Airplanes, helicopters, 
and innovative platforms such as unmanned aerial vehicles (UAVs) 
equipped with lidar sensors and multispectral (MS) or hyperspectral 
cameras enable acquisition of high-resolution data from a bird’s eye 
view. In particular, the fusion of lidar point clouds and optical multi- 
channel imagery is the most prominent option for the inventory of for
est structural variables (Latifi and Heurich, 2019). In a preprocessing 
step, single trees are typically delineated from airborne laser scanning 
(ALS) data. This tree segmentation is mostly based on a canopy height 
model (CHM) (Pyysalo and Hyyppä, 2002; Solberg et al., 2006) or on the 
original 3D point cloud (Reitberger et al., 2009; Wu et al., 2016). After 
the segmentation process, extracted single tree objects can be classified 
according to tree species. Therefore, the majority of previous studies 
typically relied on a two-step approach. First, handcrafted feature sets 
describing the geometry and radiometry of single trees were generated 
from the remote sensing data. Second, appropriate machine learning 
(ML) classifiers, such as support vector machines (SVMs) or random 
forests (RFs), were applied for classification. For example, Heinzel and 
Koch (2012) investigated different feature sets derived from full- 
waveform lidar data, hyperspectral data, and color infrared (CIR) im
ages in a temperate forest. Their SVM-based method could classify pine 
(Pinus sylvestris), spruce (Picea abies), oak (Quercus petraea), and beech 
(Fagus sylvatica) with an overall accuracy (OA) of 89.7%, 88.7%, 83.1%, 
and 90.7%, respectively. Dalponte et al. (2012) used airborne hyper
spectral imagery and lidar data from a mountain area in the Southern 
Alps. They investigated the performance of both RF and SVM classifiers 
on different feature subsets generated from data with varying spatial 
resolution. Overall, seven species and a “non-forest” class were classified 
with an OA of 83.0%. In a mixed temperate forest, Shi et al. (2018) 
categorized five species by fusing ALS data with hyperspectral imagery 
(OA = 83.7%). The authors successfully combined plant functional traits 
(e.g. equivalent water thickness, leaf mass per area and leaf chloro
phyll), spectral features, and lidar metrics. 

Recently, the classification of dead trees has become increasingly 
important. Most previous studies regarded this task as a binary problem 
and classified tree objects into dead or living. For instance, Yao et al. 
(2012) utilized an SVM classifier and handcrafted features generated 
from full waveform lidar data (25 points/m2) captured in a mixed 
mountain forest in the Bavarian Forest National Park (BFNP). Based on 
features derived from the 3D point cloud, laser intensity, and laser pulse 
width, their method classified dead and living trees with an OA of 73% 
for leaf-on trees and 71% for leaf-off trees. Polewski et al. (2015) pre
sented an active learning-based approach to detect standing dead trees 
(snags) in the BFNP. Using features from ALS point clouds and CIR im
agery, manually labeled single trees could be classified into dead and 
living with an OA of 89%. Casas et al. (2016) proposed a classification 
model based on single-tree ALS metrics and separated snags from living 
trees with an OA of 92%. In a comprehensive study, Kaminska et al. 
(2018) trained an RF classifier using intensity and structural variables 
from multi-temporal ALS data (6 points/m2) and spectral information 
generated from 20 cm leaf-on CIR images. Their method classified three 
tree species (spruce, pine, and deciduous), and further categorized them 
as “dead” or “alive” (OA = 94.3%). More recently, Krzystek et al. (2020) 

conducted a large-scale experiment in an area of 924 km2 to classify 
single trees in the BFNP. Based on ALS data and CIR imagery, their bi
nary classifier separated dead from living trees with an OA of 93%. In 
summary, the overall performance of approaches for individual tree 
species classification in dense (and thus complex) temperate forests is 
still insufficient for practical use, requiring an OA of at least 90% for 
multi-class tasks. 

1.2. Deep learning-based approaches 

In recent years, utilizing high-performing deep learning (DL) 
methods as classification tools has garnered a large amount of interest, 
outperforming standard ML approaches in various tasks (Voulodimos 
et al., 2018). Presumably, the biggest advantage of these deep neural 
networks (DNNs) is their so-called representation learning, which 
characterizes the automatic extraction of features as part of the training 
process (LeCun et al., 2004). For scene understanding from irregular and 
unordered 3D point clouds, Griffiths and Boehm (2019) outlined four 
general types of DL approaches. On the one hand, the authors reviewed 
methods that either render multi-view images (Qi et al., 2016) or 
transform input data into RGB-depth images (Zhao et al., 2018). Thus, 
proven and efficient 2D convolutional neural networks (CNNs) such as 
AlexNet (Krizhevsky et al., 2012), VGG (Simonyan and Zisserman, 
2015), and ResNet (He et al., 2015) can be applied. On the other hand, 
the authors discussed volumetric approaches that discretize raw 3D data 
as regular 3D voxel grids and subsequently use 3D convolutions to 
extract meaningful information (Zhou and Tuzel, 2018). Recently, 
powerful network architectures such as PointNet++ (Qi et al., 2017) 
and PointCNN (Li et al., 2018) have been developed. These 3D DNNs 
enable direct input of raw and unstructured point clouds without the 
need for prior rasterization or voxelization. Therefore, they allow end- 
to-end classification of 3D point clouds. 

So far, the application of DL methods for the classification of pre
segmented single trees based on lidar data has been rarely investigated. 
Presumably, one reason for this research gap is the lack of large training 
datasets. In a natural forest (330 stems/ha), Hamraz et al. (2019) uti
lized a CNN to classify overstory coniferous and deciduous trees. By 
generating images from leaf-off and leaf-on ALS point clouds (50 points/ 
m2), a cross-validated classification accuracy of 92% for coniferous trees 
and 87% for deciduous trees could be reached. Overall, the CNN was up 
to 14% more effective than traditional learning methods using hand
crafted features. In an urban study area, Hartling et al. (2019) fused data 
from satellite imagery and lidar data. Using DenseNet (Huang et al., 
2017), an overall accuracy (OA) of 83% in classifying eight individual 
tree species was achieved. Moreover, their approach was clearly supe
rior to both RF (OA = 52%) and SVM (OA = 52%) classifiers, even with 
restricted training sample quantities. In a tropical wetland located in 
South China, Sun et al. (2019b) developed a patch-based classification 
algorithm for seven classes, including six individual tree classes (1388 
training samples, 362 test samples). Initially, single trees were 
segmented by calculating a CHM from the lidar point cloud (5–8 points/ 
m2). Then, the segment information was utilized to generate 64x64 
image patches by cropping 10 cm aerial RGB images. Their most effec
tive model was a modified version of ResNet-50, which classified image 
patches with an OA of 90%. In the same research area, Sun et al. (2019a) 
mapped 18 tree species using ALS data and high-resolution RGB images, 
achieving an OA of 73% at the single-tree level. Their approach involved 
the application of three well-known CNNs (AlexNet, VGG-16, and 
ResNet-50). Recently, Briechle et al. (2020a) classified three tree species 
(pine, birch, and alder) and standing dead pines with crowns using 
PointNet++ along with UAV-based lidar data and MS imagery. Aside 
from 3D geometry, laser echo pulse width (EW) values and MS features 
were also integrated into the classification process. Overall, their DL- 
based method (OA = 90%) successfully used raw 3D data and was su
perior to a baseline method using an RF classifier and handcrafted fea
tures (OA = 85%). 

S. Briechle et al.                                                                                                                                                                                                                                 



International Journal of Applied Earth Observations and Geoinformation 98 (2021) 102292

3

1.3. Key idea and main issues 

In the present paper, the objective was to classify presegmented 3D 
single tree objects with respect to tree species and dead trees in a 
combined approach. Therefore, because of its proven outstanding per
formance, a CNN-based procedure was chosen. Additionally, we applied 
the technique of transfer learning to tree species classification. Instead of 
training all model parameters from scratch, this approach is based on 
pretrained parameters that are fine-tuned on the basis of a task-specific 
dataset. Especially for relatively small datasets, this procedure allows 
effective model adaptation, even if there is a considerable domain shift 
between an existing image collection and a new dataset (Prabha et al., 
2020). Essentially, our approach was supported by the idea that a person 
would likely classify a single tree by looking at its silhouette from 
different angles. Our approach was further supported by a review of DL 
methods for 3D data, which found that systems using discrete 2D rep
resentations of 3D data typically outperform approaches based on 3D 
voxel representations (Ioannidou et al., 2017). We therefore wanted to 
investigate whether multi-view 2D images could also exceed point net
works. Thus, the key idea of this study was to train a CNN fusing MS 
image patches and multiple side-view images generated from UAV- 
based and helicopter-based lidar data. In addition to the geometric in
formation, we also incorporated calibrated laser echo characteristics 
(EC) into the classification pipeline. The experiments conducted exam
ined the following research questions: 

• Can this new method successfully be applied to data from two re
gions captured with different lidar sensors and MS cameras?  

• Compared to the baseline approach using PointNet++, is there an 
improvement in classification accuracy when utilizing a CNN 
approach and multiple 2D representations of single trees? 

Furthermore, we investigated some relevant practical issues:  

• Is the masking of MS image patches necessary?  
• Can the incorporation of laser EC improve performance?  
• Which classes can be classified more accurately than others? Why are 

some classes particularly difficult to distinguish? 

The most innovative contribution of our pipeline for single-tree 
classification is the fusion of MS image patches and multi-view images 
generated from 3D point clouds in a dual-CNN approach. Furthermore, 
we initialize the CNN models using pretrained weights and optimize the 
network parameters by recursive retraining. To visualize the networks’ 
decisions, we use class activation mapping (CAM). In the following 
sections, we address the study areas, sensors, data preprocessing, and 
reference data. Subsequently, we present our methodology for tree 
species classification and the baseline method. Then, we outline the 
conducted experiments and the main outcomes, including a comparison 
of both methods. Finally, we discuss the results in relation to previous 
research and draw conclusions. 

2. Materials 

2.1. Study areas 

In this paper, we present experiments building on datasets from two 
study areas. The first study area, Chernobyl Exclusion Zone (ChEZ), is 
densely vegetated with a tree density of approximately 400 trees/ha. 
The main tree species are Scots pine (Pinus sylvestris), silver birch (Betula 
pendula), and black alder (Alnus glutinosa), with tree heights up to 30 m 
(Bonzom et al., 2016). Overall, the forest stand is dominated by Scots 
pine planted after the nuclear disaster of 1986 (Yoschenko et al., 2011), 
comprising approximately 50% of all trees. Based on visual interpreta
tion of aerial imagery, we roughly estimated the distribution of pines, 
birches, and alders to be 50%, 20%, and 30%, respectively. The second 

study area, Bavarian Forest National Park (BFNP), was established in 
1970 and is part of the Natura 2000 network, which was founded to 
protect the most endangered habitats and species in Europe. The BFNP 
contains protected flora and fauna of exceptional natural value (Zen
áhlíková et al., 2015). The forest area is dominated by Norway spruce 
(Picea abies), European beech (Fagus sylvatica), silver fir (Abies alba), and 
larch (Larix). Furthermore, other tree species appear less frequently, 
such as silver birch (Betula pendula), sycamore maple (Acer pseudopla
tanus), and common rowan (Sorbus aucuparia) (Cailleret et al., 2014). 
Due to bark beetle infestation, extensive areas are covered with dead 
wood – fallen dead trees, standing dead trees, and standing dead trees 
without crowns (also known as snags). 

2.2. Data acquisition and preprocessing 

In the ChEZ, we utilized an octocopter developed by a team from the 
Department of Nuclear Physics Technologies of the Institute of Envi
ronment Geochemistry of the National Academy of Sciences of Ukraine. 
All flights were carried out in fully automatic mode using Global Navi
gation Satellite System (GNSS) waypoints. Data collection was per
formed during sunny and partly cloudy weather conditions at a mostly 
constant wind speed (2–3 m/s). In April 2018, lidar data were collected 
by a YellowScan Mapper I laser scanner, resulting in a nominal point 
density of approximately 53 points/m2. Before the data collection, a 
calibration flight over a building was conducted to check the boresight 
angles (BayesMap Solutions LLC, 2018) preset by the manufacturer. 
Differential GNSS postprocessing (NovAtel Inc., 2017) incorporating 
GNSS measurements collected by a Trimble R4 base station ensured 
flight trajectories with centimeter-level precision. Overall, the mean 
discrepancy between adjacent lidar strips was approximately 5 cm, 
which is in the range of the measurement accuracy of the instrument. 
Absolute 3D georeferencing with an accuracy of a few centimeters was 
achieved by fitting the ALS point cloud to the enclosing polygons of a 
nearby building. Moreover, the recorded lidar data were radiometrically 
corrected based on the data-driven method presented in Briechle et al. 
(2020b). Additionally, we captured MS images using two MicaSense 
RedEdge cameras that were mounted in a twisted configuration with an 
angle of approximately 23◦. Compared to a field of view (FOV) of 47◦ for 
a single camera setup, this setup guaranteed a 50% side overlap of the 
two camera footprints, thereby increasing the total FOV to approxi
mately 70◦. To compensate for changing lighting conditions during and 
between the flights, we utilized MicaSense’s calibrated reflectance panel 
and downwelling light sensor. These accessories provided useful infor
mation for the subsequent reflectance calibration in Agisoft PhotoScan 
Professional 1.4.1 (Agisoft LLC, 2018). Next, all images were aligned in a 
bundle adjustment, resulting in a mean reprojection error of 1.3 pixels. 
Finally, 10 cm MS true orthophotos were generated using the lidar-based 
surface model as a reference. 

In the BFNP, airborne full waveform data were acquired in June 
2017 (leaf-on condition) using a Riegl LMS-Q680i instrument carried by 
a helicopter. The resulting average point density was 55 points/m2. 
Additionally, a calibration flight was conducted on a nearby airfield and 
enabled the correction of the raw amplitude values with regard to 
traveling distance of the laser beam (Amiri et al., 2019). Next, geore
ferencing quality was checked based on in-field measurements of ver
tical and planimetric objects, such as flat areas and enclosed building 
polygons, respectively. On average, the mean 3D displacements of the 
lidar data were less than 10 cm. MS aerial imagery in the BFNP was also 
acquired in June 2017, using a Leica DMC III camera. GNSS data and 
Inertial Navigation System data provided initial values for the exterior 
camera orientation. Using the software package Agisoft PhotoScan 
Professional 1.4.1, the aerotriangulation was performed based on aerial 
images, a camera calibration model, and ground control points, leading 
to a sigma naught of 30% of the ground sampling distance (GSD). Next, 
we generated true orthophotos on the basis of the lidar-based digital 
surface model. Finally, single trees were delineated from the lidar point 
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cloud in both study areas utilizing the normalized cut algorithm pre
sented by Reitberger et al. (2009). Following the authors’ recommen
dations, we set the static stopping criterion of the normalized cut 
segmentation to 0.16. The segmentation quality was not tested quanti
tatively, however visual inspection helped to verify that no major 
oversegmentation or undersegmentation occurred. Aside from individ
ual point clouds, the segmentation also provided projected 2D polygons 
for each tree. Table 1 shows an overview of study areas, sensor plat
forms, sensor equipment, and data acquisition parameters. 

2.3. Reference data 

Based on visual interpretation, single tree segments were manually 
labeled using an interactive tool. Note that incorrect segments were 
generally not considered in the labeling process to make our classifica
tion results independent of the segmentation quality. In the user inter
face, randomly chosen tree segments are displayed in 3D. The point 
cloud can be rotated, thereby supporting the annotator in verifying the 
class label. Furthermore, the corresponding 2D polygon for each 
segment is superimposed on the aerial image. In detail, the trees in the 
ChEZ were manually subdivided into the classes “pine”, “birch”, “alder”, 
and “dead tree”. In the BFNP, we labeled the trees with the categories 
“coniferous” (mostly spruce), “deciduous” (mostly beech and larch), 
“snag”, and “dead tree” (Fig. 1). Here, “snag” refers to a partly or 
completely dead tree missing a crown or most of the smaller branches 
(Yao et al., 2012). In contrast, trees labeled “dead tree” are dead trees 
with crowns. The distinction between “snag” and “dead tree” was based 
on the subjective perception of three different research assistants. Sub
sequently, the labeled samples were randomly sorted into training, 
validation, and test datasets (see Tables 2 and 3). Note that we also 
included class balancing for both training and validation data. 

Fig. 1. 3D point clouds for selected samples from BFNP dataset, coloured by 
normalized intensity from black (0) to white (1). From left to right: coniferous, 
deciduous, snag, dead tree. 

Table 1 
Study areas and sensor equipment.   

ChEZ BFNP 

Location 51◦23’N, 30◦04’E 49◦04’N, 13◦18’E 
Size of study area 37 ha 8.3 km2 

Tree density 400 trees/ha 530 trees/ha 
Tree height 15–30 m 15–50 m 
Platform UAV (octocopter) Helicopter D-HFCE/AS350 

Lidar sensor YellowScan Mapper I Riegl LMS-Q680i 
Laser wavelength 905 nm 1550 nm 
Echo characteristics Pulse width Intensity 
Flight altitude 50 m 550 m 
Flight speed 6 m/s 30 m/s 
Point density 53 points/m2 (leaf-off) 55 points/m2 (leaf on) 

MS camera MicaSense RedEdge Leica DMC III 
Focal length 5.5 mm 92 mm 
MS bands blue (B), green (G), red (R), B, G, R, NIR  

red edge (RE), near infrared (NIR)  
Flight altitude 130 m 2880 m 
Flight speed 9 m/s 30 m/s 
End/side lap [%] 79/50 80/60 
GSD of orthomosaics 10 cm 20 cm  

Table 2 
Number of samples for study area ChEZ; train/val/test split: 56%/14%/30%.  

Tree class Training samples Validation samples Test samples 

pine 93 23 51 
birch 93 23 51 
alder 93 23 51 
dead tree 93 23 51 
Σ  372 92 204  

Table 3 
Number of samples for study area BFNP; train/val/test split: 51%/22%/27%.  

Tree class Training samples Validation samples Test samples 

coniferous 345 149 259 
deciduous 345 149 202 
snag 345 149 139 
dead tree 345 149 145 
Σ  1380 596 745  
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Fig. 2. Outline of the proposed method, Silvi-Netsingle.  

Fig. 5. GEOM images generated from UAV-based lidar data in the ChEZ study 
area. First row (a-d): single images, image size corresponds to 26 m × 26 m. 
Second row: collated multi-view images. Image size corresponds to 52 m ×
52 m. 

Fig. 3. MS_unmasked images (first row) and MS images (second row) generated 
from MS orthomosaics in the ChEZ study area; false-color images (RGB, RE, 
NIR). Image size corresponds to 10 m × 10 m. 

Fig. 4. MS_unmasked images (first row) and MS images (second row) generated 
from MS orthomosaics in the BFNP study area; CIR images (G, R, NIR). Image 
size corresponds to 12 m × 12 m. 

Fig. 6. GEOM images generated from ALS data in study area BFNP; First row 
(a-d): single images, image size is corresponding to 50 m × 50 m; Second row: 
collated multi-view images, image size is corresponding to 100 m × 100 m. 
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3. Methodology 

3.1. Outline of the proposed method 

In general, our network architecture is inspired by DualNet (Hou 
et al., 2017), a DNN which includes two parallel CNNs and a subsequent 
aggregation of complementary features in a final classifier. For a better 
understanding of the overall processing pipeline, important steps of 
Silvi-Net are illustrated in Fig. 2. Initially, 2D representations of the 
single trees were created in an image generation process. For each tree, 
an MS image patch was cropped to place the tree crown in the image 
center. In this step, we utilized the polygon outlines generated by the 
lidar-based tree segmentation. To maintain the relative dimensions of 
the crowns, image patches with the same quadratic size were produced. 
Thus, we ensured that even the largest tree crowns were included in the 
images in their entirety. Outlines of the projected 2D tree polygons were 
used to mask pixels not corresponding to the actual tree. In addition to 
the MS images, we rendered multiple side-view images from the 
segmented 3D lidar point clouds of single trees, representing the trees’ 
silhouettes. Optionally, these images were enriched with laser EC 
values. Basically, we created two types of image sets – one with 12 in
dividual images per tree, and one with an image collage comprised of all 
12 side-view images per tree. In the following sections, the approaches 
utilizing these datasets are referred to as Silvi-Netsingle, and 
Silvi-Netcollages respectively. After the image generation process, features 
were automatically extracted using two independently trained ResNet- 
18 models, optimized for both the MS and side-view images. Here, we 
applied the idea of transfer learning and pretrained weights. To visualize 
the model’s decisions, we produced CAM images and superimposed 
them on the input images. Overall, we generated 512 features per side- 
view image or image collage, and additional 512 features from each MS 
image. Next, the feature vectors were fused and fed into a standard 
multi-layer perceptron (MLP) that was trained to estimate class proba
bilities for each sample. For Silvi-Netsingle, the classification led to 12 
predicted labels per tree. Therefore, we introduced Silvi-NetmajVot , an 
additional evaluation strategy applying majority voting to these 12 
predictions. The idea was to outvote individual, falsely classified side- 
view images and to obtain one label per tree. In the following sec
tions, all of the steps of our approach are described in greater detail. 

3.2. Generation of image patches 

First, we present the methodology for image generation from MS 
orthomosaics. Because CNN-based image classification supported by 
transfer learning typically utilizes three-channel imagery, we reduced 
the five-channel images in the ChEZ area. More specifically, we trans
formed the B, G, and R channels into a single gray scale channel by 
calculating the mean value of these three channels for each pixel. Next, 
we added the RE and NIR channels, resulting in a three-channel image. 
Because of the difference in sensors, an alternative procedure was con
ducted for the BFNP data. In this study area, we removed the blue 
channel from the raw imagery and utilized the resulting CIR images. For 
both study areas, we normalized the three image channels 

independently to values between 0 and 1. For each tree segment, the 
corresponding polygon was projected onto the orthomosaic. Then, a 
cropped image patch was produced covering a predefined quadratic 
region around the polygon center. The image size resulted from the 
maximum crown dimension (ChEZ: 10 m × 10 m, BFNP: 12 m × 12 m) 
and the pixel size of the orthomosaics (ChEZ: 10 cm, BFNP: 20 cm). 
Thus, all tree crowns fit within the image dimensions. Ultimately, this 
process led to images sized 100 × 100 pixels for ChEZ and 60 × 60 pixels 
for BFNP. Optionally, pixels outside the tree polygon were masked out 
and set equal to 0. Thus, MS_unmasked and MS datasets were prepared 
on the basis of the ChEZ dataset (Fig. 3) and the BFNP dataset (Fig. 4). In 
total, 668 MS patches were generated in the ChEZ area, and 2,721 in the 
BFNP area – each with a masked and an unmasked version. 

Additionally, we prepared two different types of images from the 3D 
lidar point clouds – one with 12 individual images per tree and one with 
an image collage comprised of all 12 side-view images per tree. In a first 
step, the point clouds were rotated in constant steps around the z axis to 
simulate multi-view positions. After visual interpretation, we decided to 
set the rotation angle to multiples of 30◦, leading to multi-view image 
stacks of 12 images per tree. This was deemed an acceptable balance 
between information loss and redundancy. Next, we rendered binary 
silhouette-like images for both study areas (see Fig. 5 a-d and Fig. 6 a-d) 
by projecting the 3D data onto a virtual vertical raster. The image res
olution was set to 10 cm per pixel. Because the images should 
completely cover even the largest trees, the image size – 260 × 260 px in 
the ChEZ and 500 × 500 px in the BFNP – was determined by the 
maximum tree height in the corresponding study area. Note that the 
image size in the BFNP was much larger than the required input size of 
ResNet-18. The average tree height was 16.5 m (std = 1.2 m) in the ChEZ 
and 28.1 m (std = 6.1 m) in the BFNP, respectively. As a consequence, 
90% of all trees covered at least half of the image height in the ChEZ. 
With 70%, this ratio was clearly lower in the BFNP. In case of working 
with data from forests with an even larger range of tree sizes, we assume 
that the image size should be calculated in a different way. Otherwise, 
decreasing results are likely to appear because of significant loss of detail 
for the average and smaller trees. Furthermore, we wanted to analyze 
the impact of EC on our classification method. Therefore, we included 
EW values in the ChEZ dataset and intensity (INT) values in the BFNP 
dataset. Incorporating the normalized EW and INT values, we also 
generated 8–bit grayscale images. These two image datasets are referred 
to as GEOM (binary images) and GEOM_EC (grayscale images), respec
tively. Overall, the preprocessing of samples for Silvi-Netsingle led to 
8,016 GEOM and GEOM_EC images each in the ChEZ area (training: 
4,464; validation: 1,104; test: 2,448) and 32,652 GEOM and GEOM_EC 
images each in the BFNP (training: 16,560, validation: 7,152, test: 
8,940). Subsequently, we rendered image collages utilized in the 
approach Silvi-Netcollages, including all 12 views per tree in one image. 
Therefore, assuming that only the middle third of the quadratic side- 
view images contains useful information, we cut out these essential 
image parts. Next, we randomly arranged them as matrices comprising 
two rows with six images each (see Fig. 5 e-h and Fig. 6 e-h). Thus, 
unlike the previously created single-view images, the number of samples 
was equivalent to the number of tree objects (see Tables 2 and 3). 

Fig. 7. Simplified ResNet-18 architecture, created with a neural network drawing tool (LeNail, 2019).  
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3.3. CNN-based feature extraction 

In our approach, automatic extraction of features was performed 
using a standard CNN. Our decision was motivated by the fact that CNNs 
are well-established neural networks for image-based deep supervised 
learning that are capable of achieving excellent results in the fields of 
pattern recognition and machine learning (Schmidhuber, 2015). More
over, CNNs are especially designed to process sensor data represented as 
multiple 2D arrays. By considering local and global stationary proper
ties, CNNs have achieved state-of-the-art results in popular image clas
sification tasks, such as the ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) (Russakovsky et al., 2015). In general, CNNs are 
deep neural networks consisting of numerous stacked layers. The first 
part, also known as the feature extractor, is mainly comprised of con
volutional blocks – sequences of convolutional layers, activation layers, 
and pooling layers. Thereby, convolutional layers utilize filter kernels to 
extract low-level image features. Moreover, the kernel depth is equal to 
the number of image channels. The output of a convolutional layer is a 
feature map with one channel per filter kernel. Activation layers, such as 
the rectified linear unit (ReLU), account for non-linear effects. Practi
cally speaking, ReLU sets negative values to the value 0 and reduces the 
problem of vanishing gradients – an effect that occurs with deep neural 
networks. Additionally, ReLU layers are computationally inexpensive 
and enable faster model convergence. Pooling layers essentially sub
sample the feature maps, using common methods such as average 
pooling and maximum pooling. The second part of a CNN is the actual 
classifier. Here, the final output feature maps are flattened into a one- 
dimensional vector, followed by fully connected classification layers 
(LeCun et al., 2015). Overall, CNNs include a huge set of model pa
rameters – weights and biases – that need to be estimated. To reduce 
model overfitting, regularization techniques such as dropout and batch 
normalization are often included in typical CNN architectures. By add
ing dropout layers, co-adaptation of neurons can be prevented. More
over, this technique approximates the idea of ensemble models and 
allows a higher learning rate (LR). However, it also usually leads to 
slower model training. Additionally, batch normalization layers can 
help improve model stability and quality (Ioffe and Szegedy, 2015). 
Practically speaking, these layers apply channel-wise normalization of 
the feature maps and result in faster model convergence. 

3.3.1. CNN architecture 
In our classification pipeline, we utilized two standard ResNet-18 

models (He et al., 2015) implemented with the PyTorch framework, 
version 1.1.0 (Paszke et al., 2019), which is an optimized tensor library 
for DL using GPUs and CPUs. With their proposed idea of residual blocks, 
the developers of ResNet successfully minimized the problem of van
ishing gradients. At this time, the problem was that the training accuracy 
of multi-layer CNNs dropped as the number of layers increased. There
fore, the authors proposed to use a reference to the previous layer to 
compute the output at a given layer. As a result of these so-called skip 
connections (also termed shortcuts), the training of much deeper CNNs 
was facilitated. Moreover, these deep residual networks can achieve 
improved accuracy due to considerably increased depth. In 2015, He 
et al. (2015) won the ILSVRC using ResNet ensembles with a depth of up 
to 152 layers. Our decision to use ResNet-18 was motivated by pre
liminary studies testing different CNN architectures included in the 
“models” subpackage of the “torchvision 0.3.0” module in PyTorch. 
Here, both VGG-16 (Simonyan and Zisserman, 2015) and Densenet-121 
(Huang et al., 2017) performed significantly worse than ResNet-18 when 
initialized using weights pretrained on the ImageNet dataset (Deng 
et al., 2009). Adopting the deeper version, ResNet-50, did not improve 
the results. Presumably, our dataset was too small to retrain all 23.6 
million ResNet-50 parameters in an effective way. In contrast, we were 
able to robustly retrain all 11.2 million ResNet-18 parameters and 
optimize the network for our task. In this way, we achieved a suitable 
trade-off between network depth and dataset size. Fig. 7 shows the 

architecture of ResNet-18 in a simplified way, including dimensions of 
tensors and filters and final feature vector. The feature extractor of 
ResNet-18 consists of four residual blocks. Each block is comprised of a 
stack of two basic blocks of 2–3 convolutional layers, followed by batch 
normalization and ReLU layers. Finally, an average pooling layer ex
tracts 512 features per 224 × 224 × 3 input image. 

3.3.2. CNN training 
We utilized two separate ResNet-18 models optimized for the clas

sification of GEOM/GEOM_EC images and MS images, respectively. At 
the beginning, all images were loaded and resampled to the required 
image size of 224 × 224 pixels. Next, the images in the range [0, 255] 
were converted to floating tensors in the range [0.0, 1.0]. Then, the 
three channels of these image tensors were standardized separately 
using the mean (0.485, 0.456, 0.406) and standard deviation (0.229, 
0.224, 0.225) values of ImageNet. For each channel, the mean of the 
data was 0 and the standard deviation was 1. Next, data augmentation 
was performed on the training data. This method to artificially increase 
the number of training samples is helpful to avoid overfitting and usu
ally results in better generalization properties of the trained model 
(Goodfellow et al., 2016). In our approach, we applied a combination of 
random affine transformation and random horizontal flip to both 
training and validation data. Moreover, we randomly flipped the MS 
images vertically. Note that this transformation was not performed for 
the lidar-based side-view images to maintain the vertical orientation of 
trees. The affine transformation of image coordinates x and y into new 
image coordinates x′ and y′ can be described as a sequence of rotation, 
shearing, scaling, and translation (Eq. 1): 
[

x′

y′

]

=

[
tx
ty

]

+

[
sx 0
0 sy

][
1 s
0 1

][
cos(α) sin(α)
− sin(α) cos(α)

][
x
y

]

(1)  

where α is the rotation angle, s is the shearing parameter, sx and sy are the 
scale parameters for both coordinate axes, and tx and ty are the compo
nents of the 2D translation vector. In or approach, we allowed a relative 
maximum image translation of ±10% in horizontal and vertical di
rections and scaling parameters sx and sy in the interval of [0.80, 1.25]. 
The shearing parameter s was set to 0. For the rotation angle α, the range 
defining the maximum random value was set depending on the image 
type: ±20◦ for GEOM and GEOM_EC images and ±180◦ for MS images. 

For model training, we utilized the concept of transfer learning. 
Numerous researchers have shown that DL-based models are able to learn 
features that – to a certain extent – transfer well across datasets (Hu et al., 
2015; Shin et al., 2016). Instead of starting with random parameter values, 
models can be initialized with weights optimized for extensive and stan
dardized databases like ImageNet. Although the ImageNet dataset in
cludes 1000 object classes and is clearly different from our tree data, we 
assumed that it would be adaptable for the task of tree species classifica
tion. Besides relatively quick convergence, effective fine-tuning of DNNs 
typically requires much less samples compared to training from scratch 
(Ng et al., 2015). Therefore, we initialized the ResNet-18 models by uti
lizing pretrained ImageNet weights. Moreover, we set the maximum 
number of epochs to 100 and implemented an early stopping criterion 
defined as 10 epochs with no improvement in validation loss. More pre
cisely, the criterion for model evaluation was based on a cross-entropy loss 
function. For each image batch (batch_size = 32), we calculated the loss 
with shared class weights (Eq. 2) and averaged all losses per epoch. 

loss(x, class) = − log
exp(x[class])
Σjexp(x[j])

(2)  

The model hyperparameters were optimized using an Adam optimizer 
(Kingma and Ba, 2015). Here, we relied on the default values of PyTorch 
implementation. Every seven epochs, an exponential learning rate (LR) 
scheduler decayed the initial LR of 0.001 by a factor of γ = 0.1 (Eq. 3): 

LRi+1 = LRi*(1 − γ). (3) 
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Overall, ResNet-18 is comprised of approximately 11.2 million trainable 
parameters. In our classification pipeline, the crucial factor for the 
generalization of well-performing models was a systematic recalculation 
of the model parameters for each dataset. The procedure was as follows: 
First, we set all parameters of the feature extractor to be invariable and 
only retrained the 16,548 parameters of the fully connected layers. 
Second, we iteratively “unfreezed” the trainable parameters of the four 
residual blocks. Starting with the deepest block (8.4 million parame
ters), the number of trainable parameters increased to 10.5 million, 11.0 
million, and finally 11.2 million. Third, for each dataset, the model 
showing the lowest cross-entropy loss on the validation dataset was 
stored. Finally, this best performing model was set to evaluation mode 
and was subsequently used to extract 512 features per image. Thus, the 
optimized ResNet-18 models were practically utilized as automatic 
feature extractors for the training, validation, and test datasets. In our 
implementation, we registered a so-called “forward hook” to enable 
feature extraction from the average pooling layer. In PyTorch, this step 
was performed utilizing the “register_forward_hook” function in the 
“nn” (neural network) package. 

3.4. MLP-based tree classification 

In our classification pipeline, optimized ResNet-18 models were used 
as automatic feature extractors. To perform tree species classification 
utilizing 2D representations rendered from both airborne lidar and MS 
data, we combined the feature sets generated from the side-view images 
(GEOM and GEOM_EC) and MS images. Next, we inputted the fused 
feature vectors comprising 1,024 features and the corresponding class 
labels to a standard MLP classifier. An MLP is a non-parametric neural 
network classifier with shallow structures containing only a few feature 
representation levels. Typically, an MLP is composed of interconnected 
nodes in multiple layers (namely input, hidden, and output layers), with 
each layer fully connected to both the preceding and succeeding layers 
(Del Frate et al., 2007). Moreover, the outputs of each node are weighted 
units followed by a nonlinear activation function (Pacifici et al., 2009). 
In summary, in a feed-forward manner, an MLP maps a set of input 
features onto a set of labels (Atkinson and Tatnall, 1997). In our method, 
we utilized the “MLPClassifier” class from the “sklearn” module “neu
ral_network” (Pedregosa et al., 2011). More specifically, we imple
mented an MLP with three hidden layers composed of seven neurons 
each, and set the hyperparameters to the default values. The particular 
types of feature vectors generated from the MS images and side-view 
images, were weighted 50% each. The MLP classifier was trained 
using the combined feature set calculated from the training and vali
dation datasets. Finally, we evaluated the MLP on the independent test 
datasets and derived confusion matrices and standard metrics from the 
true positive (TP), true negative (TN), false positive (FP), and false 
negative (FN) values. We calculated the OA (Eq. 4), precision (Eq. 5), 
recall (Eq. 6), and F1 score (Eq. 7). 

OA =
TP + TN

TP + TN + FP + FN
(4)  

precision =
TP

TP + FP
(5)  

recall =
TP

TP + FN
(6)  

F1 = 2⋅
precision⋅recall

precision + recall
(7)  

3.5. Baseline method (PointNet++) 

For the classification of 3D objects such as trees, it is unknown whether 
working with rendered multiple 2D images or raw 3D point clouds is 
favorable. Thus, we compared our new CNN-based method to the approach 

presented in Briechle et al. (2020a), using a PyTorch implementation of 
PointNet++ (Wijmans, 2018) for object classification. In the following 
sections, the most important steps of this baseline method will be 
explained, including data preparation, network training, and validation. 

3.5.1. Preparation of dataset 
Before training the network, the 3D dataset had to be prepared 

appropriately. Typically, PointNet++ can only manage a constant number 
of 3D points per sample. Therefore, we applied a combined sampling 
approach to achieve balance between upsampling and downsampling of 
data, resulting in 1,024 points per tree. Moreover, as generally proposed 
when working with DNNs, data was standardized. Next, we calculated the 
surface normals for all 3D points using the “estimate_normals” function 
from the open source library Open3D (Zhou et al., 2018). Then, hand
crafted MS features were generated and integrated into the dataset. Here, 
we relied on a selection of statistical MS features computed with different 
vegetation indexes (VI). Depending on the available spectral channels, the 
number of VIs differed between the study areas. In the BFNP, we derived 
the normalized difference vegetation index (NDVI; Rouse et al. (1973)) 
from the CIR images. In the ChEZ area, the five-channel orthomosaics also 
enabled the calculation of the red edge normalized difference vegetation 
index (RENDVI; Gitelson and Merzlyak (1994)), the red edge difference 
vegetation index (REDVI; Briechle et al. (2020a)), the modified red edge 
simple ratio (MRESR; Datt (1999)), and the modified chlorophyll ab
sorption ratio index (MCARI; Daughtry et al. (2000)). Projections of the 
tree polygons were utilized to filter VI pixels belonging to a single tree. 
Subsequently, we computed 12 object-based statistical features from these 
pixels for each VI – the maximum value (max), minimum value (min), 
range (max - min), mean value, standard deviation, mode1, skewness2, 
kurtosis3, as well as the 25th (“1st quartile”), 50th (“median”), 75th (“3rd 
quartile”), and 90th percentile (perc). 

To make the classifier more robust and to avoid overfitting, the 
feature space was reduced to the five most important MS features. Here, 
we relied on an RF-based feature selection technique which has been 
recommended in the literature (Ma et al., 2017; Gregorutti et al., 2017), 
to generate a ranking of all input features according to their relative 
importance on the prediction. Then, for each study area, the five most 
decisive features were selected: NDVI_skewness, MRESR_perc90, NDVI_
perc90, RENDVI_mode, and MRESR_mode in the ChEZ, and NDVI_perc25, 
NDVI_skewness, NDVI_range, NDVI_mean, and NDVI_min in the BFNP. 
Afterwards, the values of these top five MS features were standardized 
and assigned to each 3D point of each object, resulting in additional 
point attributes. Overall, the final dataset comprised 12 attributes per 
3D point: the 3D coordinates and surface normals, one EC value, and five 
handcrafted MS features. 

Table 4 
Hyperparameter settings for PointNet++.  

Hyperparameter Value Declaration 

NUM_CLASSES 4 Number of object categories 
NUM_POINT 1024 Number of points per sample 
BATCH_SIZE 8 Number of samples per batch 
MAX_EPOCH 100 Maximum number of training epochs 
MAX_DROPOUT 0.5 Maximum dropout rate 
OPTIMIZER Adam Optimization algorithm 
BASE_LR 1e-3 Initial learning rate 
LR_DECAY 0.7 Initial learning decay 
BN_MOMENTUM 0.5 Initial momentum for batch normalization 
BNM_DECAY 0.5 Decay of batch normalization momentum 
WEIGHT_DECAY 1e-4 L2 regularization coefficient  

1 Most frequent value.  
2 Measure of the asymmetry of the probability distribution.  
3 Measure of the tailedness of the probability distribution. 
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3.5.2. Training and validation 
To successfully adapt PointNet++ for the task of tree species clas

sification, we optimized the most decisive hyperparameters of the neural 
network (Table 4). Therefore, we used a combination of manual search 
and automated grid search. During model training, we also performed 
data augmentation to avoid model overfitting and to build generalizable 
models. Because the trained final model should be robust against object 
variation, we implemented random transformations of the 3D objects, 
including scaling in the range [0.80, 1.25], rotation around the vertical 
axis with an angle of the range [0, 2π], jittering with Gaussian noise 
(±0.05 m), and 3D translation of the entire point cloud by ±0.1 m. 
Moreover, setting the random input dropout parameter MAX_DROPOUT 
to 50% increased the robustness against varying point density and 
occluded object parts. Finally, we evaluated the model showing the 
lowest validation loss on the test dataset and generated classification 
metrics (OA, precision, recall, F1 score). 

4. Experiments 

For both study areas, we conducted experiments based on different 
input datasets. Initially, we utilized sets of binary side-view images only 

(GEOM). To analyze the impact of laser EC on classification results, we 
trained Silvi-Net with GEOM_EC images. Subsequently, we classified 
single tree objects using only masked (MS) and unmasked (MS_unmasked) 
MS images. Finally, we fused automatically extracted features from both 
lidar-based image sets (GEOM, respectively GEOM_EC) and MS images for 
classification (GEOM + MS, respectively GEOM_EC + MS). In all experi
ments, we explored three different evaluation strategies – Silvi-Netsingle, 
Silvi-Netcollages, and Silvi-NetmajVot . Furthermore, we integrated CAM 
technique into our pipeline to better understand the model’s decisions on 
new independent data. Demystifying CNNs’ status as “black box” sys
tems, CAM can help to highlight class-specific, distinctive image regions 
(Zhou et al., 2016). To generate CAM images, the predicted class score in 
the range [0, 1] was mapped back to the final convolutional layer. In 
detail, CAM can be described as the dot product of the extracted weights 
from the final layer and the feature map. In our ResNet-based approach, 
the resulting CAM images sized 7 × 7 px were bilinearily upsampled and 
superimposed on the input images sized 224 × 224 px. In the following 
sections, classification results are presented for Silvi-Net and compared to 
those of the baseline, PointNet++. 

4.1. Masking MS data 

Initially, we investigated whether masking MS image patches (see 
Section 3.2) would improve classification results. Therefore, classifica
tion was performed with both MS_unmasked images and MS images. In 
general, we observed a positive impact when masking MS image patches 
utilizing single tree polygons for both study areas. The gain in OA was 
1.4% in the ChEZ and 2.6% in the BFNP (Table 5). These relative values 
represent 3 of 204 test samples (ChEZ), respectively 19 of 745 test 
samples (BFNP). Furthermore, MS images yielded F1 scores between 
0.90 and 0.99 in the ChEZ. Here, masking improved the results for pine 
and birch. In particular, pine trees were classified almost perfectly (F1 
score = 0.99). In our second dataset (BFNP), masking pixels located in 
the surrounding area boosted the classification of snags and dead trees. 
Nevertheless, the F1 scores for snags (0.78) and dead trees (0.76) were 
still relatively low. Remarkably, classification based on CIR imagery led 
to reasonable accuracy for the coniferous (F1 score = 0.90) and decid
uous (F1 score = 0.92) classes in this study area. By superimposing 
MS_unmasked images with CAM images, it can be observed that in most 
cases the neural network automatically identified the crucial tree 
crowns in the image center (Fig. 8). However, in some cases, neigh
boring tree pixels in unmasked images affected the results. As a conse
quence, classification errors were produced because the CNN 
occasionally focused on nearby trees from different classes (Fig. 9). 
Thus, we relied on masked MS images in the following experiments. 

4.2. Results for ChEZ 

The task of classifying pine, birch, alder, and dead trees in the ChEZ 
was generally performed best by Silvi-NetmajVot (Table 6). Moreover, this 
approach outperformed baseline method PointNet++ (OA = 84.8%) by 
11.3%, reaching an OA of 96.1%. Compared to the results based on only 
MS images (OA = 93.6%; Table 5), incorporating geometry information 
and EC improved the results by 2.5% in this study area. Note that the 
discrepancy between results for validation data and test data was less 
than 3% in all experiments. This demonstrates the high generalization 
capacity of Silvi-Net. Now, we want to focus on more detailed results 
regarding single data subsets. When using only side-view images of the 
point clouds (GEOM images), the classification results (OA = 77.5%) 
were 2.0% better than PointNet++ when classifying raw 3D point 
clouds of the single trees (OA = 75.5%). Although geometric informa
tion was partially reduced during image generation, the F1 scores were 
higher for all classes except alders. Classification based on GEOM_EC 
images (OA = 80.4%) was superior to GEOM images. By incorporating 
EC, the gain in OA was 2.9%. Specifically, pine as the only coniferous 

Fig. 9. Examples for incorrect classification of MS_unmasked images in the 
BFNP; CAM overlay. 

Fig. 8. Examples for correct classification of MS_unmasked images in the ChEZ 
(a-d) and BFNP (e-h); CAM overlay. 

Table 5 
Silvi-Net results using only MS image patches (test dataset).   

ChEZ BFNP  

OA F1 scores per class OA F1 scores per class 

MS_unmasked 0.922 0.95/0.89/0.91/0.93 0.830 0.90/0.95/0.65/0.71 
MS 0.936 0.99/0.92/0.90/0.93 0.856 0.90/0.92/0.78/0.76  
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tree in the dataset benefited most. For both experiments based on side- 
view imagery generated from 3D point clouds, confusion was biggest 
between birch and alder (Fig. 10a and 10b). When combining auto
matically extracted features from GEOM images and MS images, the 
classification results clearly increased (OA = 95.1%). By integrating MS 
information, the F1 score raised by more than 0.20 for the two deciduous 
species alder and birch. Consequentially, confusion between these two 
classes was almost completely resolved (Fig. 10c). Moreover, 
Silvi-NetmajVot performed 13.0% better than PointNet++ based on raw 
3D point clouds enriched with the top five hand-crafted MS features (OA 

= 82.1%). Furthermore, it is noteworthy that for the GEOM + MS 
experiment, Silvi-Netcollages was equal to Silvi-NetmajVot . Fusing GEOM_EC 
images and MS images yielded the best results. Here, the OA for 
Silvi-NetmajVot reached 96.1%, with F1 scores ranging between 0.93 
(birch) and 0.99 (pine), and a minor remaining confusion between birch 
and alder (Fig. 10d). 

4.3. Results for BFNP 

When studying BFNP, general results for the classification of single 

Fig. 10. Confusion matrices for Silvi-NetmajVot (ChEZ test data). Subfigures show results for different feature sets.  

Fig. 11. Confusion matrices for Silvi-NetmajVot (BFNP test data). Subfigures show results for different feature sets.  

Table 7 
Results for Silvi-Net and PointNet++ on BFNP test dataset. For each feature subset, the highest OA is displayed in bold letters, and the highest F1 scores per class are 
underlined.   

Silvi-Netsingle   Silvi-Netcollages   Silvi-NetmajVot   PointNetþþ

OA F1 scores per class  OA F1 scores per class  OA F1 scores per class  OA F1 scores per class 

GEOM 0.811 0.80/0.95/0.86/0.60  0.744 0.68/0.96/0.84/0.51  0.847 0.86/0.96/0.85/0.67  0.857 0.85/0.97/0.88/0.72 
GEOM_EC 0.808 0.80/0.96/0.84/0.59  0.800 0.81/0.96/0.81/0.59  0.835 0.85/0.97/0.84/0.60  0.867 0.88/0.95/0.87/0.76 

GEOM + MS 0.911 0.94/0.99/0.86/0.80  0.909 0.95/0.99/0.84/0.79  0.911 0.94/0.99/0.85/0.80  0.882 0.90/0.97/0.89/0.77 
GEOM_EC + MS 0.899 0.93/0.98/0.86/0.76  0.905 0.95/0.99/0.82/0.79  0.915 0.96/0.99/0.86/0.79  0.893 0.92/0.97/0.88/0.80  

Table 6 
Results for Silvi-Net and PointNet++ on ChEZ test dataset. For each feature subset, the highest OA is displayed in bold letters, and the highest F1 scores per class are 
underlined.   

Silvi-Netsingle   Silvi-Netcollages   Silvi-NetmajVot   PointNetþþ

OA F1 scores per class  OA F1 scores per class  OA F1 scores per class  OA F1 scores per class 

GEOM 0.732 0.81/0.64/0.71/0.77  0.721 0.82/0.60/0.71/0.74  0.775 0.87/0.71/0.72/0.80  0.755 0.83/0.67/0.73/0.79 
GEOM_EC 0.765 0.89/0.69/0.67/0.78  0.716 0.82/0.62/0.71/0.72  0.804 0.93/0.74/0.71/0.82  0.779 0.92/0.69/0.74/0.78 

GEOM + MS 0.912 0.94/0.89/0.90/0.92  0.951 0.96/0.91/0.97/0.96  0.951 0.97/0.92/0.95/0.96  0.821 0.81/0.78/0.81/0.88 
GEOM_EC + MS 0.937 0.98/0.92/0.92/0.93  0.917 0.98/0.87/0.90/0.92  0.961 0.99/0.93/0.95/0.97  0.848 0.89/0.80/0.83/0.87  
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trees into coniferous, deciduous, snag, and dead tree were partly different 
from those obtained in the ChEZ. Particularly, in two of four experiments, 
Silvi-NetmajVot was slightly inferior to the baseline PointNet++. However, 
when fusing side-view images and MS imagery, Silvi-NetmajVot was the 
method of choice (OA = 91.5%; Table 7), exceeding the baseline method 
(OA = 89.3%) by 2.2%. Furthermore, our experiments show that 
embedding GEOM_EC images helped improve results by 5.9%, in contrast 
to an OA of 85.6% based on only MS images (Table 5). Moreover, the 
difference between validation data and test data was again in the range of a 
few percentage points, showing that Silvi-Net generalised well. For a more 
detailed analysis, we want to draw attention to the experiments examining 
the impact of single data subsets. Using only geometry data, PointNet++

(OA = 85.7%) performed slightly better than our ResNet-based approach 
and majority voting (OA = 84.7%). Here, the results generated by 
Silvi-NetmajVot showed a considerable confusion between coniferous and 
dead trees (Fig. 11a). In detail, the low F1 score for dead trees (0.67) was 
mainly due to the fact that 16.6% (24/145) of dead trees were classified as 
coniferous, and 13.5% (35/259) vice versa. Nevertheless, deciduous trees 
were classified almost perfectly (F1 score = 0.96). Moreover, 
Silvi-NetmajVot was clearly superior to the approaches based on single or 
collated imagery. When utilizing GEOM_EC images, we observed that the 
incorporation of EC was not advantageous for tree classification in this 
study area, especially since the F1 score of dead trees dropped by 0.07 
(Fig. 11b). All other F1 scores remained almost unchanged (±0.01). Sur
prisingly, the baseline method using PointNet++ (OA = 86.7%) benefited 
from EC by 1.0%. When combining geometry data and masked MS data 
(GEOM + MS), Silvi-NetmajVot (OA = 91.1%) performed 2.9% better than 
the baseline method (OA =88.2%). Here, incorporating MS images clearly 
enhanced the results by 6.4% and especially improved the confusion be
tween coniferous trees and dead trees (Fig. 11c). Note that the classifica
tion of snags was not improved by MS data. Using EC (GEOM_EC + MS) 
slightly improved Silvi-NetmajVot (0.4%), reaching the best result in this 
study area (OA = 91.5%). However, we observed an unsolved moderate 
confusion between dead trees and snags (Fig. 11d), with 13.1% (19/145) 
of dead trees being classified as snags and 12.9% (18/139) vice versa. 

5. Discussion 

5.1. Main results 

Overall, the newly introduced methodology for the classification of 
single tree species and standing dead trees was successfully applied in 
two study areas. In general, we achieved an OA of 96.1% using the ChEZ 

dataset (Fig. 12a) and 91.5% using the BFNP dataset (Fig. 12b). Note 
that the datasets vary in terms of forest types and sensor models, as well 
as geometric and spectral resolution. Therefore, the superior results in 
the ChEZ are mostly due to the fact that both the ground resolution and 
the number of spectral channels in MS images are much higher. As a 
result, MS images in this study area contain more extractable informa
tion for tree classification. Compared to PointNet++, our approach 
yielded OA values that were 11.3% (ChEZ) and 2.2% (BFNP) better. 
Here, the clear lead in the ChEZ was presumably an effect of the rela
tively small dataset. In this study area, the network parameters of 
PointNet++ could not be perfectly trained from scratch. In contrast, 
Silvi-Net was able to deal with a reduced number of samples. Using 
transfer learning, model parameters were successfully retrained. In 
summary, the crucial factor for successful performance in our approach 
was the fusion of lidar data and MS images. 

5.2. Detailed results 

In total, we pursued three different classification strategies, differing 
in the way of dealing with the 2D representations of the 3D point clouds. 
Overall, the conducted experiments revealed that Silvi-NetmajVot gener
ally performed better than Silvi-Netsingle, respectively Silvi-Netcollages. Both 
Silvi-Netsingle and Silvi-NetmajVot preserved most 3D information contained 
in the point cloud and information loss was limited to the subsampling 
process in the dataloader. In contrast, generating collages produced 
overall poorer image resolution (Silvi-Netcollages). The final size of a single 
tree in a collated image was 50% smaller than the tree size in a single 
view. Nevertheless, CAM overlays of collated GEOM_EC images in the 
ChEZ (Fig. A.1) and in the BFNP (Fig. A.2) demonstrate that 
Silvi-Netcollages still identified most decisive image regions. The advantage 
of collated images definitely was to process all 12 views of a single tree in 
one sample and to enable end-to-end classification. Finally, Silvi-NetmajVot 

handled the trade-off between view number and image resolution, and 
single misclassified samples could be outvoted (see Fig. A.3 and Fig. A.4). 

Let us now focus on the different classes. In the ChEZ, classification 
of pine, birch, alder, and dead tree was already high when using only MS 
images (OA = 93.6%; see Table 5). Here, automatically extracted fea
tures from the 10 cm five-channel MS imagery seemed sufficient to 
classify single trees. Note that the MS-based classification results are still 
considerably dependent on previously conducted lidar-based tree seg
mentation. When incorporating geometry information and EC, the gain 
in OA was 2.5%, resulting in a remarkable OA of 96.1% (Table 6). When 
only binary side-view images of point clouds were available (GEOM 

Fig. 12. F1 scores per class for Silvi-NetmajVot in the ChEZ (a) and in the BFNP (b), using different feature sets.  
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images), the OA reached a respectable 77.5%. Moreover, incorporating 
laser EC improved the results (OA = 80.4%) by 2.9%. Apparently, when 
using only lidar-based information, pine as the only conifer in the 
dataset could be classified almost perfectly (F1 score = 0.93; see 
Fig. 12a). Note that confusion was biggest between birch and alder 
without MS imagery (Fig. 10b). However, by integrating MS informa
tion, the confusion between these two classes was almost completely 
resolved (Fig. 10d). Due to their relatively similar shape, these two de
ciduous species were difficult to differentiate when classification was 
only based on geometric properties and EC. Finally, it is notable that 
features automatically extracted from the MS images clearly improved 
the classification of dead trees, increasing the F1 score from 0.82 to 0.97. 
Here, the spectral properties included in the infrared channels (NIR, RE) 
enhanced the separation of dead and living trees. 

In the BFNP, the general results for the classification of single trees 
into coniferous, deciduous, snag, and dead were partly different from 
those obtained in the ChEZ. Here, when using only lidar-based data 
(GEOM_EC), PointNet++ (OA = 86.7%) performed 3.2% better than 
Silvi-Net (OA = 83.5%; see Table 7). In this study area, information loss 
through generating multiple 2D representations of raw 3D point clouds 
exceeded the advantages of applying pretrained CNNs. The side-view 
images were still sufficient to classify deciduous trees almost perfectly 
(F1 score = 0.97; see Fig. 12b). However, confusion between dead trees 
and coniferous trees was considerable (Fig. 11b) because most dead trees 
with crowns are dead coniferous trees. Thus, these two classes do not 
differ much in their geometric shape and, therefore, could not be sepa
rated well. Surprisingly, the incorporation of EC in side-view images 
negatively affected the Silvi-Net results, whereas the baseline method 
profited from this information by 1.0%. Specifically, numerous dead trees 
were classified as snags and, hence, the F1 score for dead trees dropped by 

0.07. When MS information was included in the classification process 
(GEOM_EC + MS), Silvi-Net reached an OA of 91.5%, exceeding 
PointNet++ (OA = 89.3%) by 2.2%. Interestingly, compared to the re
sults based on only MS images (OA = 85.6%; see Table 5), the incorpo
ration of lidar-based side-view images improved the OA by 5.9%. 
Unsurprisingly, MS information reduced the confusion between conif
erous and dead trees (Fig. 11d). Presumably, the NIR channel was deci
sive when differentiating these two classes. However, the impact on the F1 
score for snags was negligible. A plausible reason for that is that snags 
were insufficiently represented from a bird’s eye view. We noticed an 
unsolved moderate confusion between dead trees and snags induced by 
the manual labeling process. Since the transition between these two 
classes representing different stages of a dying tree is fluent, some dead 
trees were erroneously assigned during visual inspection. Without the 
subdivision into snag and dead trees with crowns, we assume that our 
approach would have generated better results for a combined class of 
dead trees in general. Overall, we want to emphasize that Silvi-Net ach
ieved remarkable results for the classification of coniferous (F1 score =
0.96) and deciduous trees (F1 score = 0.99), and is ready for practical use. 

5.3. Practical issues 

Our experiments clearly demonstrated that masking MS image 
patches with single tree polygons has a positive impact on network 
performance. The gain in OA for independent test data was 1.4% in the 
ChEZ and 2.6% in the BFNP. In particular, the classification of snags and 
dead trees could be clearly improved in the BFNP. Moreover, CAM im
ages of falsely classified MS_unmasked samples revealed that, in some 
cases, ResNet-18 ignored the crucial tree crowns in the image center, 
focusing instead on nearby trees from different classes. Note that these 
misclassifications only occurred in some demanding scenarios with high 
stand density and, thus, complex tree canopies or even crown overlap 
(see Fig. 9). Consequently, masking of aerial image patches is even more 
important in these challenging situations. In summary, we would defi
nitely recommend using masked MS images for classification. Never
theless, from a practical point of view, we want to point out that an 
adequate quality of both tree segmentation and data registration is 
essential for successful lidar-based masking. 

We conducted experiments using 2D representations of 3D point 
clouds and found that embedding EC slightly improved the OA of Silvi-Net 
(1.0%) in the ChEZ and in the BFNP (0.4%). However, regarding the single 
tree classes, we did not notice a significant change in results. To visualize 
the network’s decisions, we plotted CAM overlays of exemplary side-view 
GEOM_EC images for both correct classification and misclassification. 
Generally, ResNet-18 identified tree crowns as the most decisive regions in 
the ChEZ dataset (Fig. 13), but in some cases (e.g., Fig. 13c), stem infor
mation was crucial. Fig. 13g clearly shows that a protruding branch falsely 
led to the prediction “dead tree”. In the BFNP, Silvi-Net correctly classified 
83.5% of the trees, with the CAM images demonstrating that the neural 
network was attentive to either the crown or stem parts. However, for 123 
out of 745 samples (16.5%), the predictions were wrong, such as the 
coniferous sample in Fig. 14e being classified as a dead tree due to its 
obvious similarity to one (Fig. 14d). When we look at Fig. 14g and 14h, we 
can understand the confusion between snags and dead trees, but some 
incorrect predictions were implausible, such as confusion between conif
erous and deciduous samples (e.g., Fig. 14f). 

5.4. Evaluation of Silvi-Net 

Overall, we can name numerous advantages for our CNN-based 
approach to tree species classification, but we want to point out that 
Silvi-Net enables a comfortable fusion of 2D and 3D data captured by 
different sensor types. We successfully combined information 
comprising object geometry, laser EC for each 3D point, and reflectance 
in the visible and NIR spectra. Undeniably, the automatic extraction of 
meaningful features from previously generated 2D representations is the 

Fig. 13. Examples of correct (a-d) and incorrect (e-h) classification of GEO
M_EC images in the ChEZ; CAM overlay. 

Fig. 14. Examples of correct (a-d) and incorrect (e-h) classification of GEO
M_EC images in the BFNP; CAM overlay. 
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key factor. The technique of transfer learning using pretrained weights 
also facilitates fast model convergence, even for relatively small data
sets. Despite these clear advantages, we would also like to address the 
limitations of our approach. When generating multiple side-view images 
by projecting 3D point clouds, some information is lost, and all images 
undergo resolution reduction when placed in the dataloader. Compared 
to PointNet++’s performance with raw 3D point clouds, information 
loss is considerable but unavoidable. Furthermore, we want to make 
clear that a well-performing upstream segmentation of single trees is 
mandatory for Silvi-Net to work well. In our study, we used almost 
perfectly delineated single trees generated by the normalized cut seg
mentation algorithm by manually labeling optimal segments, thereby 
minimizing the effect of undersegmentation or oversegmentation. 
However, from a practical point of view, many tree segmentation 
techniques will cause issues in forests with an even higher stand density 
and more complexity of the canopy. 

5.5. Comparison to related work 

Investigating related work indicates that Silvi-Net achieves prom
ising and competitive results. Yet, it is challenging to provide a 
comprehensive and fair comparison to other studies that have addressed 
object-based classification of individual standing dead trees and snags. 
On the one hand, utilized datasets strongly differ in spatial, spectral, and 
temporal resolution. On the other hand, the type of study area (urban, 
natural, managed) and number of samples and classes fluctuate. Using 
binary classifiers, Krzystek et al. (2020) classified standing dead trees, 
snags, and living trees in the BFNP. Overall, their approach separated 
standing dead trees (F1 score = 0.92; 310 test samples) from living trees 
(F1 score = 0.89; 761 test samples) with an OA of 93%. Snags (76 test 
samples) could be differentiated from living trees (1513 test samples) 
with an OA of 96%. Interestingly, living trees were classified with an F1 
score of 0.97, whereas the F1 score for snags was relatively low (0.61). A 
comparison of multiple classifiers optimized for specific binary tasks to 
our holistic approach is unfeasible. 

To the best of our knowledge, only a few studies have analyzed the 
combined classification of single tree species and dead wood. On an 
imbalanced test dataset, Kaminska et al. (2018) reached an OA of 94.3% 
for the classification of three tree species (spruce, pine, deciduous), each 
of them further categorized as “dead” or “alive”. Instead of F1 scores, the 
authors listed producer’s accuracy (PA) for the single classes, which is 
equal to recall. In detail, spruce (146 test samples, PA = 92.4%), pine 
(148 test samples, PA = 94.1%), deciduous (209 test samples, PA =
99.5%), dead spruce (118 test samples, PA = 90.2%), and dead decid
uous (18 test samples, PA = 94%) were classified with high accuracy. 
However, the PA for dead pine (13 test samples) only reached 69.2%. 
Recently, Amiri et al. (2019) reported a combined classification of tree 
species in the BFNP, namely spruce (F1 score = 0.94), beech (F1 score =
0.85), fir (F1 score = 0.59), and dead spruce (F1 score = 0.74). Based on 
a huge feature set generated from multi-wavelength ALS data (200 
points/m2), the classifier obtained an OA of 82.1%. In summary, Silvi- 
Net is clearly better than the RF-based approach presented in Amiri 
et al. (2019). However, a reasonable comparison to Kaminska et al. 
(2018) is not possible, because data resolution and classification task 
differ too much. This denotes an urgent need for objective benchmark 
forest area datasets comprised of annotated high-resolution lidar data 
and MS or hyperspectral imagery. 

6. Conclusions 

In this work, we have presented Silvi-Net, a dual-CNN-based 
approach for the combined classification of presegmented 3D tree ob
jects with respect to tree species and dead wood in particular. We ach
ieved results superior to those of the baseline method, PointNet++, 
especially for datasets with a reduced number of samples. Our approach 
proved to work with data from two natural forests with similar stand 

density (400–530 trees/ha). Furthermore, lidar data and MS imagery 
were acquired with different sensor models and, thus, varying geometric 
and spectral resolution. The trained models showed high generalization 
capacity on independent test data. The innovative contribution of our 
study is the fusion of MS image patches and multiple side-view images, 
rendered from 3D lidar data, in a CNN-based approach. Compared to 
experiments conducted using only MS images, the fusion of lidar-based 
side-view images increased the OA by 2.5% in the ChEZ and 5.9% in the 
BFNP. 

We automatically extracted features using two independently 
trained ResNet-18 networks, and utilized a standard MLP and majority 
voting for final object classification. Our optimization process is based 
on the pretrained weights and recursive retraining of CNN model pa
rameters. For practice, we suggest a combination of high-density lidar 
data and multi-channel high-resolution MS images. Our results proved 
that lidar data are of special importance for both the tree segmentation 
and classification. Because snags are insufficiently represented in bird’s 
eye images, their classification benefited most from the lidar data. By 
contrast, the NIR channels of MS images allow for the enhancement of 
dead and living tree definitions as well as tree species classification. 
Because of its positive impact on the network performance, we also 
recommend masking MS image patches and embedding calibrated laser 
EC into the classification process. 

In future work, the challenge will be to reliably classify ten or more 
individual tree species and structurally complex forests. This objective can 
be supported by improved optical sensors providing high-quality lidar 
point clouds and high-resolution multi-channel images. In addition, off- 
the-shelf CNNs and transfer learning can be applied to the specific task 
of tree species classification, even for relatively small datasets. An inter
esting task for future work would be the application of panoptic segmen
tation to forest datasets. This fully DL-based method enables combined 
delineation and classification of single objects, utilizing prominent image- 
based neural networks, such as Mask R-CNN (He et al., 2017). Conse
quently, precise and reliable mapping results could contribute to auto
matic forest inventory, and support monitoring projects investigating the 
robustness and sustainability of different forest compositions. 
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Appendix A 

See Figs. A.1, A.2, A.3 and A.4. 

Fig. A.1. CAM overlays on collated GEOM_EC images in the ChEZ; examples for correct classification (a-d) and misclassification (e-f).  

Fig. A.2. CAM overlays on collated GEOM_EC images in the BFNP; examples for correct classification (a-d) and misclassification (e-f).  

Fig. A.3. Majority voting of 11 true (a-k) and 1 false (l) predictions leads to correct final prediction; CAM overlays on GEOM_EC images for exemplary pine tree in 
the ChEZ. 

Fig. A.4. Majority voting of 10 true (a-c, e-i, k-l) and 2 false (d and j) predictions leads to correct final prediction; CAM overlays on GEOM_EC images for exemplary 
coniferous tree in the BFNP. 
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