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Abstract
Application performance of mechanical positioning systems might not coincide with the theory, mainly due to nonlinearities or imperfections of system

models. Although it is sometimes possible to ignore these mismatches, systems generally suffer from performance degradation or even instability even-

tually. Especially, friction force and time delay are two major factors of these undesired effects. Hence, in this paper, Smith predictor-based controllers

and an adaptive Coulomb friction observer are designed to enhance position tracking performance of a mechanical system including time delay. In fact,

implemented hierarchical control scheme provides two-degree of freedom to control both velocity and position separately. The proposed observer

structure is mainly motivated by the Friedland-Park observer but could be considered as an extension of it which characterizes a general class of non-

linear functions for friction estimation. To assure its functionality with delayed measurements, different velocity predictor schemes are designed and

their performances are compared. As a guideline for observer design, some conditions for exponential stability and robustness analysis are presented.

Simulation results demonstrate that the proposed control system enhances the tracking performance even when the actual friction is a compound of

various static and dynamic terms.
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Introduction

Friction is a natural phenomenon that can directly effect sys-

tem performance and stability. Therefore, in controller design

process, it may be necessary to employ convenient cancella-

tion techniques for a good position tracking. To this end,

there are lots of different approaches in friction compensa-

tion; see, for example, Armstrong-Hélouvry et al. (1994) and

the references therein. Although friction modeling and identi-

fication are vast areas, simple Coulomb model describes the

most basic and dominant component of friction at the steady

state. Besides, it is possible to make this static model be more

realistic by adding Stribeck effect and viscous coefficient

(Olsson et al., 1998). However, these static models are limited

to describe friction since it is highly nonlinear. On the other

hand, dynamic models can exhibit stick–slip motion, break-

away force, presliding behavior, and so forth, in a better

extend. For instance, Dahl (1968) developed a simulation

model for rolling and sliding behavior assuming that the ori-

gin of friction is in quasi static contact bonds that are con-

tinuously formed and subsequently broken. In this model, the

friction force is only a function of the displacement and the

sign of velocity. This important property associated with the

model, so called rate independence, provides an advantage to

model hysteresis and pre-sliding displacement. Nevertheless,

it does not involve viscous friction, stiction and Stribeck

effect. Afterwards, Bliman and Sorine (1993) utilized linear

space invariant differential operators in order to obtain a

dynamical friction model. By this, their motivation was to

extend Dahl model to capture stiction and Stribeck effect. To

this end, their model managed to connect a fast and slow

Dahl model in parallel. Unfortunately, although this model

compromises stick friction, it only provides an insufficient

transient Stribeck effect after a change of the direction of

motion that is not present in the steady state. Another gener-

alization of Dahl model is the widely used LuGre friction

model. Canudas de Wit et al. (1995) defined an internal state

variable zd to determine the average deflection of the asperi-

ties and includes rate dependent friction phenomena such as

varying break-away force and frictional lag. Compared with

Dahl and Bliman-Sorine models, LuGre model achieves the

inclusion of viscous friction and Stribeck effect at the same

time.
After an appropriate model describing the friction well

enough is obtained, an equivalent opposing force having same

parameters can be superposed to control input to cancel out
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the friction nonlinearities (Lischinsky et al., 1999). However,
precise dynamical parameter identification can be challenging.
Besides, these parameters can vary according to the material
properties, environment, temperature, position, velocity and
time that is why observer based adaptive techniques for fric-

tion compensation is very popular in the literature. For
instance, Lee and Tomizuka (1996) used a friction compensa-
tor firstly for static coefficients in either feedback or feedfor-
ward loop. Then, the difference between actual output and
output of the nominal model was regarded as an equivalent
disturbance applying to the system model, which is why a
Q-filter based disturbance observer was attached to improve
friction cancellation performance. Xie (2007) developed a
sliding-mode observer to estimate the internal friction state of
LuGre model. Based on estimation, an adaptive controller
drives the position and velocity of motor to track the reference
signals. Ray et al. (2001) utilized extended Kalman-Bucy filter
to estimate friction. Actually, this technique can work well in
the absence of any friction model, therefore it can be treated
as a non-model-based cancellation approach. For online esti-
mation of parameters of not only friction but also other non-
linear uncertainties, Chen et al. (2020) and Chen et al. (2013)
used projection typed adaptation laws with least square based
algorithms. Lastly, an adaptive observer, namely Friedland-
Park observer, was utilized to estimate Coulomb parameter
(Friedland and Park, 1992; Tafazoli et al., 1998). It seems that
this observer improves the performance even when the actual
friction does not conform to Coulomb model only.

We note that although our proposed observer structure is
motivated by the work of Friedland-Park, there are consider-
able differences as well. First, the nonlinear observer structure
proposed here is quite general and contains the one proposed
in Friedland and Park (1992) and Friedland and
Mentzelopoulou (1992) as a special case. Indeed, we charac-
terize a general class of nonlinearities that achieve friction
estimation under certain conditions (see Remark 1). We also
provide several stability results related to the proposed obser-
ver structure, which shows the exponential stability of the

friction estimator under certain conditions (see Lemma 1 and
Lemma 2). Also, note that the time delay is not considered in
Friedland and Park (1992) and Friedland and
Mentzelopoulou (1992), whereas here we consider the effect
of measurement delays and their effect on friction cancella-
tion. Furthermore, we provide a result that shows that our
proposed scheme is sufficiently robust against the measure-
ment errors caused by the delay (see Lemma 3 and Remark
4). Similar remarks could also be stated between our first
work (Odabasx, 2014) and the present one. First of all,
Odabasx (2014) utilizes mainly the observer proposed by
Friedland and Park (1992). Moreover, Odabasx (2014) does
not contain a detailed stability analysis as compared with the
work here. Finally, although a time delayed system has been
considered previously, the actual velocity measurements
required for friction cancellation are assumed to be available.
This is not always realistic and to overcome this issue, here,
we propose a procedure to estimate the actual velocities based
on delayed measurements. Correspondingly, the possible
effects of velocity measurement errors are considered and a
result related to the robustness of proposed scheme is pro-
vided. Hence, in this sense, the differences between Friedland

and Park (1992) and our present work mentioned above also
apply to our past work (Odabasx, 2014) as well.

Time delay is another issue affecting performance and sta-
bility in mechanical systems. Time delay, also known as dead
time, may emerge due to signal transmission, communication,

processing, analysis or measurement. In this case, it is hard to
design a controller since time delay introduces infinitely many
poles into closed loop linear systems. Therefore, Smith (1957)
proposed a special predictor to ease controller design process.
In this case, it is possible to design a controller as if the plant
is delay free. However, Watanabe and Ito (1981) proved that
constant disturbance rejection cannot be achieved by using
original Smith predictor structure. Afterwards, many other
modifications have been made to improve the performance of
Smith predictor in various application fields. For instance,
Astrom et al. (1994) introduced a new form for the Smith pre-
dictor aiming to decouple disturbance and set-point response
from each other. In Majhi and Atherton (2000), an auto tun-
ing algorithm is developed to estimate Smith predictor para-
meters; however, it requires no modeling error in the assumed
plant transfer function. In reality, the perfect representation
of the plant might not be always available; therefore,
Matausek and Micic (1996) have made an addition of extra
feedback path from the difference of plant output and the
model output to the control input aiming at higher order pro-
cess control. Later, in Matausek and Micic (1999), it is sug-
gested to replace proportional controller in predictor
structure with a lead/lag controller in order to have fast dis-
turbance rejection. Furthermore, Cicco et al. (2011) studied a
congestion control problem such that there is a bounded
uncertainty in dead time. For this problem, they utilized a
geometric approach to design a Smith predictor plus propor-
tional controller for the network system. For the control of a
robot arm, Tasxdelen and Özbay (2013) employ internal model
principle for Smith predictor-based velocity and position con-
troller design. Internal model control (IMC) principle implies
that to reject impacts of disturbances and to track a reference
signal, the controller structure should include the copies of

disturbance and reference signal generators (Francis and
Wonham 1976). Hence, Tasxdelen and Özbay (2013) proposed
a hierarchical position control system to achieve desired set
point tracking and robustness criterion based on IMC
principle.

As stated in Olsson and Astrom (1996), an effective fric-
tion compensation scheme generally requires velocity mea-
surements with a good resolution and small time delay.
Mostly, measurement delay is introduced by sampling, data
collection system/sensor design (i.e. encoder resolution, com-
plex communication protocols etc.) and velocity estimation if
direct measurement of it is not possible. Apart from other
studies, in this paper friction and measurement delay in a
feedback control system are considered simultaneously. In the
subsequent sections of this paper, we first revisit friction
observer design for delay free systems. We show that it is nec-
essary to make a velocity prediction to estimate the friction
accurately since measurement delay deteriorates the perfor-
mance of the observer and limits its bandwidth significantly.
To this end, we propose different prediction approaches.
Then, Smith predictor-based controllers are designed using
controller parametrization and pole placement methods in
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order to control position and velocity loops separately accord-

ing to performance and robustness requirements. Therefore,

proposed hierarchical closed loop position control strategy

provides two degree of freedom as in Figure 1. Finally, a ref-

erence filter is designed to smooth the transition response and

increase the position tracking performance at the steady state.

Simulation results demonstrate that attached observer is capa-

ble of compensation of not only Coulomb but also other fric-

tion terms as well in the presence of time delay.
To summarize, the main contributions of our work are as

follows. First, we generalize the observer structure of

Friedland-Park and characterize a general class of nonlinear

functions that could be utilized in this structure. Then, vari-

ous stability results which show that the proposed structure is

exponentially stable under certain cases are provided.

Furthermore, the effect of measurement delay on friction

compensation is considered and various schemes are pro-

posed to estimate the actual velocity based on delayed velo-

city measurements. Lastly, the effect of velocity measurement

errors on friction compensation is analysed. We show that

our proposed scheme has certain robustness against such

errors.

Adaptive friction observer design

Observer design for delay free systems

In a simple mechanical system, applied force is control input

whereas position and/or velocity is the output. Assuming that

the system is delay free, equations of motion under presence

of friction can be written as follows

_x= v, ð1Þ

M _v=� F(v, ac)+ F̂(v, âc)+ u: ð2Þ

where, M , u, x and v stand for total mass, control input, posi-

tion and velocity respectively. There are lots of different

approaches to model the friction force in the literature; how-

ever, Coulomb coefficient, ac, is a common and fundamental

term in each of them. Thus, observer depicted in Figure 2

mainly tries to estimate and cancel Coulomb friction.

Consequently, existing and estimated friction can be formu-

lated as F(v, ac)=Macsgn(v) and F̂(v, âc)=Mâcsgn(v),

respectively.

To design the observer, let g(v) : R 7!R be an appropriate
differentiable function yet to be determined. Inspired by

Friedland and Park (1992), we propose the following

_z= g0(v)
u

M
, ð3Þ

âc = z� g(v): ð4Þ

Here, z is the internal state of the observer and âc is the esti-
mation of Coulomb friction coefficient. To analyze the per-

formance of the observer given by (3), (4), let us define the
estimation error as:

e= ac � âc: ð5Þ

Then, assuming that ac is constant, error dynamics can be
derived as follows

_e=� _̂ac

=� _z+ g0(v) _v

=� g0(v)u

M
+

g0(v)½F̂(v, âc)� F(v, ac)+ u�
M

=� g0(v)

M
½F(v, ac)� F̂(v, âc)�

=� g0(v)sgn(v)e:

ð6Þ

Remark 1: If g
0
(v)sgn(v)ø 0 8v 6¼ 0, then under some condi-

tions one can show the asymptotic stability of the error

dynamics given by (6). Quite a large class of functions g(�)
satisfy these conditions. To characterize these, let us define

νν

ν

νν

Figure 1. Hierarchical closed loop position control system.

ν

ν
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Figure 2. Structure of a generalized Coulomb observer.
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the following class of functions. Consider a function h : R 7!R

that satisfies the following condition

av2 ł vh(v)ł bv2 8v ð7Þ

where b ø a: Such functions have a graph in Cartesian axes

whose boundaries are given by the lines y=av and y=bv

and we say in such a case that h(�) belongs to a sector ½a,b�,
or simply h 2 ½a,b�; see Khalil (2002) for more details. Note

that if a= 0, b=‘, then the functions h 2 ½0,‘� have a

graph that lies entirely in first and third quadrant of

Cartesian axes. Since sgn(�) 2 ½0,‘�, it is clear that for any

function g such that g0(�) 2 ½0,‘�, we will have g0(v)sgn(v)ø 0

8v. Clearly, a large class of functions g(�) satisfy this condi-

tion. For example, if we choose g(v)= 1
2

kv2, then g0(v)= kv,

which belongs to sector ½0,‘� when k . 0. Indeed, in this case

we have g0(v)sgn(v)= kjvjø 0. Another such a function is

g(v)= kln(cosh(av)) where k . 0 and a . 0 are arbitrary con-

stants. In this case, g
0
(v)= katanh(av) 2 ½0,‘�. For the choice

of g(v)= kjvj, k . 0, we have g0(v)sgn(v)= k and in this case

the error equation given by (6) has the solution

e(t)= e�kte(0), provided that v 6¼ 0. In Friedland and Park
(1992), the function g(v)= kjvjm is utilized, which yields

g0(v)= kmjvjm�1
sgn(v) 2 ½0,‘� for any positive constants k

and m.
Note that although for particular choice of g(v)= kjvjm,

the well-known observer given in Friedland and Park (1992)

will be attained; as a novel contribution, we also show that it

is possible to use other alternatives of g(v) as far as they sat-

isfy Lemma 1.
Under certain mild assumptions, one can show the stabi-

lity of the error dynamics given by (6) by using the standard

Lyapunov stability analysis.

Lemma 1: Consider the system given by (1)–(6). Assume that

g0(v) 2 ½0,‘� is a nonlinear function with g(v) 6¼ 0 and

g
0
(v) 6¼ 0 for v 6¼ 0. Under these constraints, if vj jø a 8t, then

the error dynamics given by (6) is exponentially stable, that

is, e(t)! 0 with an exponential decay

Proof: Note that g0(v)sgn(v)ø 0 and with the given assump-

tions it easily follows that if vj jø a . 0 then, g
0
(v)sgn(v)ø b

for some b . 0. Let us define the following Lyapunov

function

V (e)=
1

2
e2 ð8Þ

By differentiating (8) and using (6) we obtain

_V = e _e ł� be2 =� 2bV ð9Þ

Hence, V (t)ł e�2btV (0) and therefore we have

e(t)j jł e�bt e(0)j j: ð10Þ

Remark 2: Although the applicability of Lemma 1 seems to

be limited since it requires that vj jła . 0; nevertheless, it

could be utilized in various meaningful applications such as

unit step tracking in velocity loop, ramp tracking in position

loop. Note that in these cases, it is expected that condition

vj jø a hold sufficiently long period of time. Indeed, if we
choose g(v)= kv2, then we have g

0
(v)sgn(v)= 2kjvj, hence for

jvj. a, g
0
(v)sgn(v)ø b is satisfied with b= 2ka.

A somewhat less restrictive assumption on v(t), which
could be related to persistency of excitation (Sastry and
Bodson, 2011), could be given as below.

Lemma 2: Let v(t) be the solution of (1)–(6) and let us define

G(t)= g
0

v(t)ð Þsgn v(t)ð Þ: ð11Þ

Assume that there exist some a . 0 and T . 0 such that the
following holds

ðt+ T

t

G(s)ds ø a,8t ø 0 ð12Þ

Then, for the error dynamics given by (6), e(t)! 0 as t! ‘;
moreover, the decay is exponential.

Proof: Note that the solution of (6) is given as

e(t)= e
�
Ð t

0
G(s)ds

e(0): ð13Þ

Since the exponential term is always positive, (13) can be
rewritten as

e(t)j j= e
�
Ð t

0
G(s)ds

e(0)j j: ð14Þ

Let t = nT + t for some integer n 2 Z+ and 0\t\T . Then

ðt

0

G(s)ds=

ðnT

0

G(s)ds+

ðnT + t

nT

G(s)ds ø na: ð15Þ

where the fact that G(s)ø 0 is used. Inserting (15) into (14)
leads to

e(t)j jł e�na e(0)j j: ð16Þ

As t! ‘, n! ‘ as well; hence, e(t)j j ! 0. As it can be seen
from (16), the decay is exponential. In fact, since n= t�t

T
and

t\T

e(t)j jł eae�
at
T e(0)j j: ð17Þ

Remark 3: Note that when v(t)j jø a . 0, the condition given
by (11) also holds. On the other hand, when the signals are in
the sinusoidal form, the condition v(t)j jø a may not hold
whereas (11) may hold. Hence, Lemma 2 could be utilized in
the sinusoidal signal tracking and/or rejection. Indeed, if we
choose g(v)= kv2, then G(t) given by (11) satisfies
G(t)= 2kjvj. If v(t)= sin (vt), then (12) is satisfied with
T =p=v and a= 2k=v.

Observer design for systems with time delay

Previously, Odabasx and Morgül (2014) modified Friedland-
Park observer assuming that time delay exists in plant itself
not in measurement process and friction parameters are
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constant or slowly time varying. Therefore, observer includes

a copy of the time delay attached to control input port, u to

make a fair computation using theoretical velocity derived

from u and actual velocity v. By this, observer can estimate

friction by (3)–(4) since both estimated and existing friction

forces are functions of actual velocity. Under these assump-

tions, friction cancellation is achieved for relatively small dead
time. However, observer performance is limited since mea-

surement delay and dynamical friction parameters are not

considered sufficiently.
Specifically, in this paper, we focus on measurement/out-

put delay instead of actuator/plant delay and provide some

stability proofs for this case. In other words, compared with

Odabasx and Morgül (2014), in this paper, delay in the closed

loop feedback system is modeled in a different way; therefore,
the observer in this case does not contain a copy of time

delay.
When the velocity measurements are delayed, to compute

the friction force accurately the actual velocity should be esti-

mated. Indeed, as it can be seen in Figure 1, while the actual

velocity v(t) is used to generate the actual friction force, the

friction estimator only utilizes the delayed velocity measure-

ment vo(t). Utilizing this delayed measurement without a
velocity prediction may result in performance degradation,

and even in instability. Referring to Figure 1, the relation

between the measured velocity vo(t) and the actual velocity

v(t) becomes

vo(t)= v(t � Td): ð18Þ

Replacing t with t+Td , we see that obviously we need to have

vo(t +Td) to estimate the friction force accurately. Hence, the

actual velocity v(t) to calculate the friction force and observed
velocity vo(t) are related as follows

v(t)= vo(t+Td): ð19Þ

Since we observe vo(t), but v(t) is required to calculate the fric-

tion force, we need to estimate v(t). Let us call v̂(t) as an esti-

mation of v(t), and define the velocity estimation error ev as

ev = v(t)� v̂(t): ð20Þ

Note that it is not necessary to make such a velocity predic-

tion for Odabasx and Morgül (2014) since actuator/input delay
appears in closed loop feedback system rather than measure-

ment/output delay. In other words, while in Odabasx and

Morgül (2014) v(t) is assumed to be available, here we assume

that only v0(t) is available from measurements.
As a first alternative to predict vo(t+Td), one can simply

utilize the definition of derivative as given below

_vo(t)= lim
Td!0

vo(t +Td)� vo(t)

Td

: ð21Þ

Note that _vo(t) can be easily found since past velocity mea-

surements have already been available. Then, v̂(t) can be esti-

mated by using current value of vo(t) and its derivative _vo(t).

By using this approach, which is well known as Euler approx-

imation, we can approximate v̂(t) as follows

v(t)= vo(t +Td)’vo(t)+Td _vo(t): ð22Þ

By considering v̂(t) is the estimation of v(t)= vo(t+Td), we

may utilize the following

v̂(t)= vo(t)+Td _vo(t): ð23Þ

Now from (21) it follows that the predicted velocity error ev

will be small if the time delay Td is sufficiently small.
Note that Euler method is a first order approximation and

there are some higher order methods such as Runge-Kutta,

midpoint and so forth (Butcher and Goodwin, 2008). For

instance, Heun Method, a particular choice of Runge-Kutta

Method, is a second order technique that uses Euler approxi-

mation at the initial step, that is

vi
o(t +Td)= vo(t)+Td _vo(t) ð24Þ

vo(t +Td)= vo(t)+
Td

2
_vo(t)+ _vi

o(t+ Td)
� �

: ð25Þ

However, numerical derivative operation adds both positive

and negative errors at the end of each step; therefore, it tends

to be unstable. Although higher order approximations may

provide better accuracy in calculation of derivative numeri-

cally, they become more sensitive to input uncertainties. In

contrast to numerical integration, differentiation is an ill-

conditioned process. Conditioning or condition number is a

definition to measure amplification of the input perturbation

at the output. Since high order numerical derivatives tends to

provide larger condition numbers, they become vulnerable to

input uncertainties as well (Chapra et al., 2010). Hence, in

practice, filters are utilized to prevent large oscillations at the

input of derivative action (Visioli, 2006). An appropriate fil-

tering process and filter design are other wide research topics;

however, a simple low pass filtered differentiator, L(s) is

designed for the scope of this paper as in Tafazoli et al.

(1998). While they employed this filter as a velocity prediction

from position measurements, here in this study, we employed

it to predict velocity based on delayed velocity measurements.

Certainly, it is also possible to use such a filter for a velocity

prediction from delayed position measurements in the absence

of direct velocity output. Thus, we may use the following

high-pass filter as a differentiator

L(s)=
sN

s+N
: ð26Þ

where N is high-pass filter coefficient. As N increases, filter

behavior converges to ideal derivative operation.

Nevertheless, in this case, filter gain becomes larger for high

frequency signals and generates larger variations. Hence,

choice of N should be done carefully realizing this trade-off.

Note that MATLAB also utilizes the same filtering to gener-

ate PID controllers.

Odabasx and Morgül 5



Alternatively, irrational e�Td s can be approximated by a
rational function using Pade approximation such that

e�Td s’R(s)=

Pn
k = 0

(� 1)kckTk
d sk

Pn
k = 0

ckTk
d sk

ð27Þ

where n is the order of approximation and coefficients are

ck =
(2n� k)!n!

2n!k!(n� k)!
, k = 0, 1, :::, n: ð28Þ

Typically, as dead time increases, n should be increased as
well to keep approximation error low. On the other hand, for
very large values of n, the relative magnitude c0=cn of the

coefficients in (27) become very large; therefore, some numer-
ical analysis/simulation difficulties can arise (Ozbay, 1999).
Furthermore, a high order approximation becomes to pro-
duce clustered poles in the transfer function that tends the
system to be sensitive to perturbations again. Aiming at delay
cancellation, inverse of Pade approximation should be cas-
caded to velocity output for prediction; however, note that
(27) is a nonminimum phase system hence its inverse is
unstable. Therefore, another rational function approximation
with zero numerator dynamics is used by taking first n-terms
of Maclaurin series (Vajta, 2000). Although this approach
provides a coarse approximation compared to standard Pade
approximation, it is implementable. In this case, (27) and (28)

become

e�Td s’R(s)=
1Pn

k = 0

cksk

ð29Þ

ck =
Tk

d

k!
, k = 0, 1, :::, n: ð30Þ

Then, for an nth order velocity prediction, it is sufficient to
multiply velocity measurement with

R(s)�1’1+Tds+
T2

d

2
s2 + ::+

Tn
d

n!
sn, ð31Þ

Consequently, it is observed that either inverse of first order
Pade approximation or Euler method can perform adequately
for velocity prediction when dead time is not large compared

with the bandwidth of the system. The general representation
of an nth order predictor is illustrated in Figure 3. Note that
both first order predictors have the same structure.
Particularly, Euler method and inverse Pade approximant
have the same structure as in Figure 3 with different c1

coefficients.
Since the measured velocity vo(t) is the delayed velocity of

the actual velocity v(t), we can only use the estimated velocity
v̂(t) in the observer equations given by (3)–(4). In this case, the
observer should be given as follows

_z= g0(v̂)
u

M
ð32Þ

âc = z� g(v̂) ð33Þ

Then, the parameter estimation error e(t)= ac � âc dynamics
is given as

_e=� g0(v̂)
u

M
+ g0(v̂) _̂v: ð34Þ

Defining the velocity estimation error ev as given by (20), by

using (32)–(33) we obtain

_e= g0(v̂)(âcsgn(v̂)� acsgn(v))� g0(v̂) _ev

=� g0(v̂)sgn(v̂)e+ g0(v̂)ac(sgn(v̂)� sgn(v))

� g0(v̂) _ev:

ð35Þ

If sgn(v̂)= sgn(v), which is satisfied when jvj. jevj, then the
parameter error dynamics becomes

_e=� g0(v̂)sgn(v̂)e� g0(v̂) _ev: ð36Þ

Note that with velocity estimation error ev satisfying ev = 0,
we have v= v̂, and (36) becomes the same as (6). When
ev 6¼ 0, the perturbation term g

0
(v̂) _ev could be considered as a

disturbance acting on an exponentially stable system. Since
exponentially stable systems are robust to perturbations, we
could expect stable (may not be necessarily asymptotically
stable) error dynamics in (36). Consequently, in the presence

of time delay, when the conditions stated in Lemma (2) are
satisfied and velocity error and time delay are small enough,
it is expected to have stable error dynamics as in delay free
design. The following lemma clarifies this point.

Lemma 3: Consider the system given by (1)–(2). Assume that
v̂ is the estimation of v(t) (see Figure 1) and that the observer
is given as (32)–(33), where g(v) : R 7!R satisfies the condi-

tions stated in Lemma 1 (or Lemma 2). Furthermore, assume
that sign(v̂)= sign(v). Under these conditions, if jg0(v̂) _evj\m

for some m . 0, then the parameter estimation error e given
by (6) is bounded as well. Furthermore, if m! 0, then

jej ! 0 as well.

Proof: Note that when ev = 0, that is, v̂(t)= v(t), then the
parameter error satisfies (6), which is shown to be exponen-

tially stable in Lemma 1 or Lemma 2. Then, by classical con-
verse theorems of Lyapunov stability theory, there exists a

νν

Figure 3. General structure of an n-th order predictor.
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Lyapunov function V : R+ 3 R 7!R+ that satisfies the
following

n1 kek2
ł V (t, e)ł n2 kek2 ð37Þ

∂V

∂t
+

∂V

∂e
½�g0(v̂)sgn(v̂)e� ł� n3kek2 ð38Þ

∂V

∂e

����
���� ł n4kek ð39Þ

for some positive constants n1, n2, , n3, n4, see Khalil (2002).
By using this function from (36), we obtain

_V (t, e)=
∂V

∂t
+

∂V

∂e
½�g0(v̂)sgn(v̂)e� � ∂V

∂e
(g0(v̂) _ev) ð40Þ

ł� n3 kek2 + n4 kekm ð41Þ

ł� n3 kek k ek � n4

n3

m

� �
ð42Þ

clearly, if kekø n4

n3
m, then _V\0 and by (37), kek is bounded.

By using standard Lyapunov Theory arguments it follows
that the error is bounded (Khalil, 2002). In fact,

lim
t!‘
ke(t)k\ n4

n3
m. Clearly, as m! 0, we have e! 0 as well.

Remark 4: Lemma 1 and 2 show that when the measurements
are not delayed (i.e. Td = 0 in Figure 1), the observer struc-
ture given by (3)–(4) achieves exact friction cancellation since
the parameter error dynamics is exponentially stable. When
there is a measurement delay (i.e. Td . 0 in Figure 1), obvi-

ously we need to estimate v(t) for exact friction cancellation.
In such a case, we need a method to estimate v(t) based on
the delayed measurements vo(t). If the methodology chosen
for such an estimation yields small errors, then Lemma 3
guarantees that the friction parameter estimation error also
remains small. If for such an estimation we choose Euler
approximation as given by (21)–(22), we can obtain the velo-
city estimation error bounds. Note that Taylor series expan-

sion of a function f : R 7!R can be given as follows

f (t+Td)= f (t)+Td
_f (t)+

1

2
T2

d
€f (j) ð43Þ

where t\j\t+Td , see Atkinson (1989). Now, if we choose
f (t)= vo(t) in (43), we obtain

vo(t +Td)= vo(t)+Td _vo(t)+
1

2
T2

d €vo(j) ð44Þ

where t\j\t +Td . We note that the last term in (44) is called
as the discretization or truncation error of Euler Method
(Atkinson, 1989). By using (19) and (23) in (44), we obtain

v(t)= v̂(t)+
1

2
T2

d €vo(j) ð45Þ

By using (20), we easily obtain

jevj= jv(t)� v̂(t)jł 1

2
T2

d m̂1 ð46Þ

where m̂1 = max
t
j€vo(t)j. Similarly, if we use f (t)= _vo(t) in

(43) we obtain

j _evj\
1

2
T2

d m̂2 ð47Þ

where m̂2 = max
t
jv... o(t)j Clearly, if Td is sufficiently small,

then the conditions of Lemma 3 are satisfied and subsequently

the performance of the proposed friction compensation

scheme will be satisfactory. Obviously, better velocity estima-

tion schemes will yield better friction compensation perfor-

mance. In the present paper, we will consider only some basic

velocity estimation schemes such as the classical Euler method

mentioned above. However, better estimation schemes that

yield better velocity estimation error bounds require and

deserve further research.

Smith predictor-based velocity controller
design

As stated by Tasxdelen and Özbay (2013), it is possible to

design a Smith predictor-based controller using controller

parametrization method given in Youla et al. (1976) for the

required robustness and performance objectives. Hence,

although it is possible to extend the idea in Tasxdelen (2013)

for different transfer functions, we can simply define transfer

function of the plant with dead time as

P(s)=
1

Ms
e�Td s ð48Þ

In fact, if a gain block M is appended to velocity controller,

Cv(s) illustrated in Figure 4, the transfer function becomes

simpler such that P0(s)=
1
s
e�Td s. Afterwards, it is sufficient

to design an internal controller C0v(s) to stabilize the velocity

loop. Finally, complete controller Cv(s), illustrated in Figure

4, can be obtained as

Cv(s)=
C0v(s)

1+C0v(s)
1�e�Td s

s

� � : ð49Þ

Therefore, T0v(s) which is closed loop transfer function of

velocity loop formed by Cv(s),P(s)ð Þ can be written as

Tv(s)=
C0v(s)

s+C0v(s)
e�Td s: ð50Þ

ν

ν
ν

ν

Figure 4. Smith predictor-based velocity controller.
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Note that it is also possible to decompose (50) into

Tv(s)=T0v(s)e
�Td s ð51Þ

where T0v(s) = Cov(s)=(s+C0v(s)) is delay free closed loop

velocity transfer function.
To design an internal controller, controller parametriza-

tion method, which is explained step by step as below, should

be utilized:

� Transfer function of the delay free plant should be

written in terms of coprime, rational and stable func-

tions Np(s) and Dp(s) such that

P0(s)=
Np(s)

Dp(s)
: ð52Þ

� Let chosen Dp(s) have zeros at s= z1, z2, :::, zn: Then,

another stable function X (s) which satisfies

X (z1)= 1
	
Np

(z1),X (z2)= 1
	
Np

(z2), :::,X (zn)= 1
	
Np

(zn)

should be chosen.
� Lastly, a stable Y (s) can be found by solving the

Bezout equation given below

X (s)Np(s)+ Y (s)Dp(s)= 1: ð53Þ

� Using these functions, the set of all stabilizing control-

lers can be written as

C(s)=
X (s)+Dp(s)Q(s)

Y (s)� Np(s)Q(s)
: ð54Þ

where Q(s) is proper and stable function satisfying

Q(s) 6¼ Y (s)Np(s)
�1. Also, it should be selected based on

desired performance and robustness criterion; therefore, the
minimum degree of Q(s) is one less than the number of inter-

polation conditions. For instance, in order to obtain mini-

mum degree controller stabilizing P0(s) when step input is

applied, a particular choice might be Q(s)= 0 since plant has

already a pole at s= 0. Then, for Np(s)= 1=(s+Kv),

Dp(s)= s=(s+Kv), X (s)=Kv and Y (s)= 1, a possible inter-

nal velocity controller, C0v(s), can be designed such that

C0v(s)=Kv: ð55Þ

where Kv is a free design parameter which will be determined by

pole placement method. Then, as in Odabasx (2014), Cv(s), the

complete form of Smith predictor-based controller and Tv(s),

closed loop transfer function for velocity, can be written as

Cv(s)=
Kv

1+Kv
1�e�Td s

s

� � , ð56Þ

Tv(s)=
Kv

s+Kv

e�Td s: ð57Þ

However, if ramp input tracking is desired, Q(0)=Y (0)=N (0)

condition should be satisfied as well. In this case, we can sim-

ply choose Q(s)=Kv. Then, transfer function of ramp

tracking Smith predictor-based controller and closed loop

system becomes

C0v(s)=
2Kv +K2

v s

s
, ð58Þ

Cv(s)=
2s2Kv + sK2

v

s2 +(2Kvs+K2
v )(1� e�Td s)

, ð59Þ

Tv(s)=
2Kvs+K2

v

(s+Kv)
2

e�Td s: ð60Þ

To sum up, it is possible to change controller design to satisfy

desired robustness and performance requirements by simply

changing Q(s) and pole locations of the controller. Note that

for this paper, the same controller design procedure given in

Odabasx and Morgül (2014) is utilized. In other words,

although modeling of dead time as actuator or measurement

delay alters observer design, it does not change Smith

predictor-based controller design for closed loop system.

Smith predictor-based position controller
design

Smith predictor-based position controller has a very similar

structure to velocity controller given in the previous section.

Distinctively, position controller, Cp, includes delay free trans-

fer function of the velocity closed loop, T0v, as in Figure 5.

Thus, once the velocity controller is designed, the same design

procedure can be implemented for a position loop extension as

well (Odabasx, 2014). For step input tracking case, closed loop

pole Kp can be located by again using pole placement method.

Thus, transfer function of the controller can be given as

C0p(s)=Kp: ð61Þ

Cp(s)=
Kp

1+Kp
1�T0v(s)e

�Td s

s

� � : ð62Þ

Then, closed loop transfer function of hierarchical position

system can be obtained as follows

Tp(s)=
Kp

s+Kp

Tv(s)

=
Kp

(s+Kp)

Kv

(s+Kv)
e�Td s:

ð63Þ

ν

Figure 5. Smith predictor-based position controller.

8 Transactions of the Institute of Measurement and Control 00(0)



Similarly, after ramp input tracking extension of velocity loop

given by (58) and (60), we obtain the following transfer func-

tions for the position loop

C0p(s)=
2Kps+K2

p

s
, ð64Þ

Cp(s)=
2Kps2 +K2

p s

s2 +(2Kps+Kp2)(1� T0v(s)e�Td s)
, ð65Þ

Tp(s)=
2Kps+K2

p

s2 + 2Kps+K2
p

 !
Tv(s): ð66Þ

Mathematically, Kv and Kp can be set freely according to

desired closed loop transfer function of the system. However,
intuitively, it is generally expected that inner loop poles will

be larger compared with outer loop poles in the literature.

Therefore, although it is not a strict requirement, poles of
(63) or (66) may be allocated such that Kv . Kp.

In such a position control system, time delay can be

revealed by considering system properties or inferred after
some system identification techniques. Although it is out of

main context in this paper, interested readers can find lots of
interesting papers in the literature regarding this point

(Uyanik et al., 2015; Wang and Zhang, 2001) Likewise,

robustness to time delay perturbations is analyzed by calcu-
lating vector margin in Tasxdelen (2013). Assuming that fric-

tion cancellation strategy presented in this paper is achieved
well enough, it can be concluded that small mismatches

between actual and inferred time delays can affect the robust-
ness of the controllers only slightly.

Reference filter design

The reference filter in Figure 1 is employed to enhance the

tracking performance of the system by suppressing higher
order dynamics. Basically, a stable and strictly proper first

order reference filter H(s), with a unit gain such that H(0)= 1

can be incorporated so that existence of the reference filter

has no effect on the transfer function from disturbance to out-
put. One particular choice is

Hp(s)=
1

1+ s
	
wpc

: ð67Þ

where cut-off frequency, wpc, is a free design parameter.
Smaller cut-off frequency provides smaller overshoots.

However, diminution of the cut-off frequency affects the ris-
ing time negatively. In other words, the system response starts

to slow down, that is why wpc should be chosen according to

the design requirements on overshoot and rise time of the sys-
tem. Typically, it is chosen to cancel the fastest negative real

axis zero of closed loop system. To this end, generally, first
order designs are employed in the literature, since higher

order filters incorporate extra lags on the input signal and can
cause undesired distortions on input waveform. Certainly,

more complex filter designs might be implemented as well to
improve set-point responses considering this trade-off. As an

example, Feliu-Batlle and Rivas-Perez (2019) insert inverse of

plant model inside the transfer function of filter.

Simulation results

We performed various simulations for the system given in

Figure 1 with the parameters specified in Table 1. For the

simulations, we used Matlab Simulink with ode4 solver, which

utilizes 4th order Runge-Kutta formula, and for the friction

we used Coulomb and viscous friction block of Simulink, by

setting the viscous friction coefficient to zero. Note that

Coulomb friction is modeled by discontinuous sign function,

which may cause some undesired effects under certain condi-

tions (see Remark 5 at the end of this section).
In the first set of simulations, whose results are given in

Figures 6–9, we assumed that only Coulomb friction is present

with friction constant, as indicated in Table 1. To see the

effect of our proposed friction and velocity estimator, we first

considered unit step tracking response in the position loop by

using first order Pade approximant for the velocity estimator.

As can be seen in Figure 6, when the actual velocity is known,

the friction parameter estimation error e converges to zero

when the observer gain is selected as k = 5 or k = 10. We note

that this behavior is in agreement with the conclusions given

in Lemma 1 and Remark 2. For the same observer gains,

when the actual velocity is predicted with the proposed first

order Pade approximant, a similar convergence behavior is

observed. As it can be seen in Figure 6, while in both cases the

steady-state behavior of e(t) is similar, the transient response

(e.g. for t\1:5 sec:) when velocity predictor is utilized may

exhibit some relatively large overshoots especially when the

observer gain is increased.
The effect of observer gain k on the velocity prediction

error ev is given in Figure 7. Similar to the observation given

above, while ev converges to zero, the transient response (e.g.

Table 1. Parameters used in simulations.

Parameter Notation value

Stribeck velocity vs 0.001 m/s

Stiffness coefficient s0 105 N/m

Damping coefficient s1

ffiffiffiffiffiffiffi
105
p

Ns/m

Coulomb friction Fc 4 N

Stick friction Fs 4.7 N

Viscous friction Fv 0.4 Ns/m

Total mass M 5 kg

Position controller design parameter Kp

Triangular wave tracking 4

Square wave tracking 5

Velocity controller design parameter Kv

Triangular wave tracking 20

Square wave tracking 15

Dead time Td 0.1 s

Reference filter cutoff freq. wpc 3 rad/s

Derivative filter coefficient N 100

Observer estimation function g(v̂) k:ln cosh(v̂)ð Þ
g
0
(v̂) k:tanh(v̂)
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for t\1:5 sec:) may show some relatively large overshoots,

especially for large observer gains.
We note that as the observer gain k increases, the conver-

gence rate of friction estimation error also increases when the

actual velocity is available, see Figure 6. This observation is

also in agreement with Remarks 2 and 3. On the other hand,

when the observer gain is too low, the friction estimation

error may not converge to zero within a reasonable duration.

When the actual velocity is not known and should be esti-

mated, we observe that initial fluctuations on the velocity pre-

diction errors may cause some undesired transient effects on

the friction estimation error for large observer gains (see

Figure 6). Furthermore, the last observation may also apply

to the case of large time delays, since naturally one expects a

decrease in the velocity prediction performance. Hence,

selection of optimal observer gain appears to be an important

problem that requires further investigation. In this respect,

we also observed that decreasing N , cut-off frequency of the

low-pass filtered derivative in velocity prediction block, may

also improve the transient response even for relatively large

observer gains, and hence may enhance both friction and

velocity estimation performances. This approach may also be

beneficial under the presence of dynamic friction (see e.g. the

results given in Tables 2 and 3). Hence, the relation between k

and N also requires further study.
Additionally, square and triangular wave input tracking

performances of the system are investigated again with first

order Pade approximant based velocity prediction. In the

simulations whose results are given in Figures 8 and 9, we still

use only Coulomb friction with Fc = 4. Exclusively, for ramp

ν
ν

Figure 6. Friction estimation error, e, for unit step position tracking response with 1st order inverse Pade approximant velocity prediction under

Coulomb friction.

Figure 7. Velocity prediction error, evl , for unit step position tracking response with 1st order inverse Pade approximant velocity prediction under

Coulomb friction.
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input tracking case, reference filter can be removed to enhance

the performance since velocity dynamics change slow enough

already. Position responses show that observer based cancella-

tion improves the performance when observer gain is k = 5

and time delay is Td = 0:1. Thus, it can be concluded that

deployed adaptive observer and velocity predictor can elimi-

nate the friction adequately and ensure a comparable perfor-

mance to no friction case. Otherwise, Smith predictor-based

controllers can partially extinguish the position error there-

fore; a steady state error occurs as in Figures 8 and 9. Besides,

Coulomb friction cancellation performances of different velo-

city prediction schemes are presented in Table 2 for unit step

tracking. From the table, it can be observed that closed loop

performances increase with the proposed observer and velo-

city predictions, as it is expected.
Finally, in Friedland and Mentzelopoulou (1992), it is

claimed that original observer design is able to estimate fric-

tion terms which are not hindered to Coulomb coefficient

that is why we performed several simulations in addition to

the ones given above. During these additional simulations,

LuGre model, a well known and frequently used dynamic

model in the literature, is employed to mimic real friction

force illustrated as friction block in Figure 1 such that

_zd = v� s0

jvj
h(v)

zd , ð68Þ

F(v)=s0zd +s1(v)_zd +Fvv ð69Þ

where zd represents the internal state of the LuGre friction

model, h(�) is an appropriately defined function to capture

Stribeck effect, Coulomb and stick friction and can be written

as

h(v)=Fc +(Fs � Fc)e
�(v=vs)

2

: ð70Þ

(a)

(b)

Figure 8. System response for unit square wave input with 1st order inverse Pade approximant-based velocity prediction when k= 5 and Td = 0:1.

Without Coulomb friction compensation, steady state values for positive and negative position response are x+ss = 0:968 and x�ss = � 0:968

respectively. (a) Position tracking performance (b) Position tracking error.
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For the meaning of various coefficients given in (68)–(69), see

Table 1. Note that the steady-state relation between velocity

and friction force for LuGre model is obtained for _zd = 0. In

this case, (69) becomes

F(v)= h(v)sgn(v)+Fv(v)

= Fc +(Fs � Fc)e
�(v=vs)

2
h i

sgn(v)+Fvv:
ð71Þ

In Table 3, rise time, settling time and steady state values are

compared for different time delay and prediction method

combinations for step input tracking with LuGre Friction

model. Clearly, for a fixed k, it is required to apply filtering

with lower cut off frequencies to obtain similar position

tracking errors when either observer gain or dead time

increases. Certainly, in all cases, proposed adaptive observer

plus velocity predictor structure improves system perfor-

mance. Among these experiments, the best performance is

achieved when actual velocity can be instantaneously

measured; however, in the scope of this paper, this is not pos-

sible due to time delay considered in measurement process.

This case is investigated just to verify that if we can predict

velocity values so close to actual velocity values, we can

obtain friction cancellation similar to delay free measurement.

Furthermore, it is obvious that when there is no friction com-

pensation, the system suffers from performance degradation

gradually as time delay increases. It seems that all prediction

methods can enhance set point responses to some extend.

Second order methods, both Pade and Heun, provide similar

results and outperform the first order approximations for

same observer gains. However, when there exists large time

delay, they become more sensitive to velocity changes than

Euler and inverse first order Pade approximant that is why it

is necessary to design a derivative filter with a lower cut-off

to obtain appropriate responses. As a last observation, it can

be said that although they have similar structure (see Figure

3), Euler approximation provides a faster friction but more

gain sensitive estimation compared to inverse first order Pade

(a)

(b)

Figure 9. System response for unit triangular wave input with 1st order inverse Pade approximant-based velocity prediction when k= 5 and

Td = 0:1. Without Coulomb friction compensation, steady state errors for positive and negative position response are e+ss = 0:8% and e�ss = � 0:8%

respectively. (a) Position tracking performance (b) Position tracking error.
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approximant for same observer gain. This is simply because

of derivative term dependent prediction coefficient c1. Since

Euler approximation updates velocity prediction with a

higher c1 (see Figure 3), it estimates friction better in low

gains and is less sensitive to velocity changes, which may

occur for high observer gains. It seems that developed adap-

tive observer and designed Smith predictor based controllers

for both step and ramp input tracking exhibit desired perfor-

mances when both time delay and dynamic friction simulta-

neously exist.

Remark 5: We note that the Coulomb friction is modeled by

discontinuous sign function, which is frequently utilized in

sliding mode control. Although this approach theoretically

helps one to design control systems with many advantages,

its practical implementations may exhibit an undesired beha-

vior called chattering. This behavior is basically an undesired

oscillation with finite frequency and amplitude, which is

mainly caused by unmodeled dynamics or implementation of

control laws in discrete time, see, for example, Lee and Utkin

(2007). In Coulomb friction case, this may occur if velocity

exhibits oscillations around zero. However, in our simula-

tions with the parameters given in Table 1 we did not encoun-

ter chattering. Most possibly this may be due to the fact that

in our theoretical framework we did not assume any unmo-

deled dynamics. Nevertheless, since the numerical simulation

is basically a discretization, it may still be possible to encoun-

ter chattering due to numerical errors. On the other hand, in

any physical implementation, elimination of a possible chat-

tering should be considered carefully. Literature is quite rich

Table 2. Comparison of different velocity prediction approaches for Td = 0:1=0:2=0:3 sec. under Coulomb friction modeling.(N= 100 in general

except � : N= 1).

Rise Time (sec.) Settling Time (sec.) Steady State Value

No friction exists 0.57 0.57 0.60 1.18 1.18 1.23 1.00 1.00 1.00

No friction cancellation 0.61 0.62 0.66 0.67 2.19 1.47 0.97 0.94 0.89

Observer gain k= 1

Cancellation with exactly known v(t) 0.60 0.62 0.70 1.68 1.74 1.44 0.99 0.97 0.95

Cancellation without prediction 0.68 0.83 1.10 1.83 2.00 2.18 0.98 0.93 0.85

Euler approximation 0.65 0.74 1.10 12.04 3.05 3.72 0.98 0.95 0.92

1st order Pade inverse 0.69 0.76 0.72
�

1.84 2.28 3.31
�

0.98 0.94 0.89
�

Heun’s method 0.60 0.71 1.36
�

1.70 4.33 3.34
�

0.99 0.96 0.94
�

2nd order Pade inverse 0.60 0.71 1.36
�

1.71 4.33 3.34
�

0.99 0.95 0.94
�

Observer gain k= 5

Cancellation with exactly known v(t) 0.60 0.58 0.59 1.57 1.19 1.31 1.00 1.00 1.00

Cancellation without prediction 0.74 1.06 1.34 1.82 1.66 2.10 1.00 0.97 0.95

Euler approximation 0.60 1.06 0.94 1.67 2.02 4.56
�

1.00 1.00 1.00
�

1st order Pade inverse 0.66 0.85 1.45
�

1.50 1.68 2.24
�

1.00 0.99 0.98
�

Heun’s method 0.57 1.22
�

1.48
�

2.35 1.95
�

2.25
�

1.00 1.00
�

0.98
�

2nd order Pade inverse 0.57 1.22
�

1.47
�

2.35 1.95
�

2.24
�

1.00 1.00
�

0.98
�

Table 3. Comparison of different velocity prediction approaches for Td = 0:1=0:2=0:3 sec. under LuGre Friction modeling.(N= 100 in general

except H : N= 10, � : N= 1 and y : N= 0:3).

Rise Time (sec.) Settling Time (sec.) Steady State Value

No friction exists 0.57 0.57 0.60 1.18 1.18 1.23 1.00 1.00 1.00

No friction cancellation 0.59 0.62 0.66 1.55 1.32 1.28 0.96 0.93 0.87

Observer gain k= 1

Cancellation with exactly known v(t) 0.63 0.69 0.84 1.90 7.79 16.38 1.00 1.00 1.00

Cancellation without prediction 0.67 1.08 1.45 1.70 23.48 26.99 0.98 0.96 0.90

Euler approximation 0.66 0.81 1.71 2.30 16.69 31.48 1.00 0.98 0.96

1st order Pade inverse 0.69 0.78 1.80H 4.37 2.22 27.48H 1.00 0.95 0.96H

Heun’s method 0.63 0.78 1.51� 1.98 16.96 29.91� 1.00 0.98 0.96�

2nd order Pade inverse 0.63 0.78 1.51� 1.98 16.96 29.91� 1.00 0.98 0.96�

Observer gain k= 3

Cancellation with exactly known v(t) 0.60 0.63 0.71 1.59 1.29 1.41 1.00 1.00 1.00

Cancellation without prediction 0.76 1.06 1.81 1.79 14.07 32.05 1.00 0.98 0.95

Euler approximation 0.62 0.95H 2.00y 1.52 14.81H 7.07y 1.00 0.99H 1.00y

1st order Pade inverse 0.69 0.87 2.03y 1.71 16.96 24.18y 1.00 0.98 0.99y

Heun’s method 0.59 1.09H 2.04y 1.59 4.97H 22.59y 1.00 1.00H 1.00y

2nd order Pade inverse 0.59 1.09H 2.00y 1.59 4.97H 5.55y 1.00 1.00H 1.00y
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on this area, and in such a case a suitable chattering suppres-

sion technique should be utilized along with the methodology

presented here (see e.g. Lee and Utkin (2007) and Bartolini

and Punta (2000)). Since our main focus is not on physical

implementation, we did not elaborate on this point, which

requires and deserves further research.

Conclusion

In this paper, we considered some control problems related to

mechanical systems that contain both friction and measure-

ment delays. We assume that the friction is given by Coulomb

model with an unknown but constant coefficient. We pro-

posed an adaptive observer structure to estimate the friction

coefficient. We showed that under some reasonable assump-

tions, which are typical in adaptive control theory, the pro-

posed adaptive structure successfully estimates the friction

coefficient with an exponentially decaying error. Hence, by

utilizing this estimate, the friction may be canceled by using a

simple controller provided that the actual velocity is known.

If the velocity measurements are delayed, then a velocity esti-

mator should be employed. To achieve this, we proposed vari-

ous schemes and considered their effect on the performance of

the proposed control structure. Once the effect of friction is

eliminated, the resulting system could be considered as a lin-

ear time invariant system with a known delay and can be con-

trolled by utilizing classical control techniques. To control the

position or velocity separately, we utilized a Smith predictor-

based hierarchical control structure. We presented various

simulation results which show the performance of the pro-

posed feedback control structure.
The proposed adaptive observer utilizes a general non-

linear function g(�) (see (3)–(4), (32)–(33)). We characterize

the class of functions that could be utilized in the observer

and for such cases we give some stability results for the pro-

posed adaptive observer structure based on standard

Lyapunov stability theory. When the velocity measurements

are delayed, a velocity estimation is required. We showed that

if the velocity prediction error is small, then the friction para-

meter estimation is also small as well. This also shows that

the proposed structure is robust to such uncertainties.
For velocity estimation, we considered various schemes.

As a preliminary research, we have employed first and second

order velocity predictors. Consequently, it is inferred that the

proposed position tracking system can be fairly utilized as

long as the velocity is predicted in a small neighborhood of

actual velocities. Especially, when observer gain or dead time

is relatively large, friction estimation is hindered as a result of

poor velocity prediction. To overcome abrupt changes in

states and improve the prediction and estimation perfor-

mances, reference and derivative filters are utilized. Currently

employed first or second order single step predictor designs

include derivative blocks that may be very sensitive to velo-

city changes; therefore, undoubtedly, filtering and predictor

designs deserve to further study. As future research, it may be

worth investigating different predictor designs such as linear

multi step algorithms or higher order filters, which may

include inverse dynamics in order to enhance prediction.

Also, the selection of an appropriate observer gain to obtain

satisfactory estimation performance requires and deserves

further study.
When the measurement delay is not known, or is time

varying, both velocity prediction and the design of controllers

that achieve closed-loop stability become more challenging.

This point requires and deserves further research as well.

When the friction coefficient is also time varying, it may still

be possible to achieve stabilization with the proposed struc-

ture under some assumptions due to the robustness of the

proposed scheme (see Lemma 3). In fact, simulations reveal

that when the actual friction is not confined to Coulomb fric-

tion only, the resulting feedback structure may still perform

satisfactorily.
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his valuable ideas and support.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) received no financial support for the research,
authorship, and/or publication of this article.

ORCID iD

Caner Odabasx https://orcid.org/0000-0002-6890-1003

References

Armstrong-Hélouvry B, Dupont P and de Wit CC (1994) A survey of

models, analysis tools and compensation methods for the control

of machines with friction. Automatica 30(7): 1083–1138.

Astrom KJ, Hang CC and Lim B (1994) A new smith predictor for

controlling a process with an integrator and long dead-time. IEEE

transactions on Automatic Control 39(2): 343–345.

Atkinson KE (1989) An Introduction to Numerical Analysis. 2nd edn.

New York: John Wiley.

Bartolini G and Punta E (2000) Chattering elimination with second-

order sliding modes robust to coulomb friction. Journal of

Dynamic Systems, Measurement, and Control 122(4): 679–686.

Bliman PA and Sorine M (1993) A system-theoretic approach of sys-

tems with hysteresis. Application to friction modelling and com-

pensation. In: Proceedings of the 2nd European Control

Conference, Groningen, The Netherlands, 28 June–1 July 1993,

pp. 1844–1849. European Union Control Association (EUCA).

Butcher JC and Goodwin N (2008) Numerical Methods for Ordinary

Differential Equations, volume 2. Wiley Online Library.
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ings of the 3rd TEMPUS-INTCOM Symposium Veszprém, Hun-

gary, 9–14 September 2000, vol. 242.

Visioli A (2006) Practical PID Control. London: Springer Science &

Business Media.

Wang QG and Zhang Y (2001) Robust identification of continuous

systems with dead-time from step responses. Automatica 37(3):

377–390.

Watanabe K and Ito M (1981) A process-model control for linear sys-

tems with delay. IEEE Transactions on Automatic Control 26(6):

1261–1269.

Xie W (2007) Sliding-mode-observer-based adaptive control for servo

actuator with friction. IEEE Transactions on Industrial Electronics

54(3): 1517–1527.

Youla D, Jabr H and Bongiorno J (1976) Modern wiener-hopf design

of optimal controllers–part ii: The multivariable case. IEEE

Transactions on Automatic Control AC-21(3): 319–338.

Odabasx and Morgül 15




