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Abstract 

The number of publications related to airside operations research is increasing and gaining in popularity. This paper aims to provide 

researchers with a comprehensive and extensive overview of meta-heuristics application for aviation research, with a particular 

focus on the airside operations. The scope of airside operations research covers airspace and air traffic flow management, aircraft 

operation in the terminal manoeuvring area and surface traffic operation. Based on the recent publications related to airside 

operations, the meta-heuristics approach is a promising approach to enhance the computational efficiency and achieve higher 

applicable in various decisions in airside operations. However, the literature on airside operations research is quite disjointed and 

disparate. Therefore, a general taxonomy framework for the airside information system is proposed in order to classify the research 

systematically and expedites related research and development of engineering applications in the aviation industry. To the best of 

our knowledge, this is the first review of the field using the meta-heuristics approach. The prominent findings of recent publication 

and the directions of future research are addressed throughout the review and analysis of the relevant studies. 
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1. Introduction 

Due to the rapid growth of worldwide air transport demand, various airports have experienced airport congestion and disruption of 

planned schedules. Congestion pricing has been proposed by economists in order to optimise the scarce airport resources [1, 2]. For 

example, airport authorities charge airlines higher parking fees for landing, using gate slots or aircraft stands at airports during peak 

hours. However, such pricing mechanism has only small or no effect on reducing the wastage associated with airport traffic 

congestion or enhancing facility utilisation socially [3]. Airlines will transfer the associated congestion costs to the customer by 

raising the price of air tickets due to the low cross-elasticity of demand between peak and off-peak periods for air travellers [4]. 

Current literature realises that congestion pricing may not be able to resolve the airport congestion when air traffic is dominated by 

a few airlines with greater market power [5-7]. To increase the throughput of air transport and be capable of handling disruptions in 

airports, capacity expansion at busy airports is inevitable. However, it may not be feasible to construct new runways, flight slots, 

and remote terminals because of political, environmental, geological, and economic constraints [8]. Alternatively, the short-term 

solution is to reduce airport congestion and enhance airport facilities usage by utilising the available resources at airports. It is worth 

noting that the advancement of computer science and mathematical optimisation has contributed to the development of the aviation 

industry. Various engineering applications have been proposed for optimising airport capability to handle air transport; ensuring 

safety during flight and navigation; controlling the load balance of runway and airport infrastructure. 

 

In the late 20th century, exact methods in Operations Research, such as Linear Programming and Branch-and-Bound, have played a 

key role in improving decision-making and efficiency, which attempt to arrive at an optimal level of real-world mathematical models, 

particularly in industrial engineering and operations management. It is remarkable that more than a thousand of operations research 

scholars and engineering applications in the aviation industry strive to sustain a high level of service; improve the robustness of 

scheduling and minimise the total tardiness of all flights and related activities with tight constraints, except the lengthy CPU time 

in reaching an optimal solution. In computational complexity theory, a large instance for Non-deterministic Polynomial-time hard 

(NP-hard) problems seems to be implausible to achieve the optimal solution in polynomial time, assuming that P ≠ NP. Moreover, 

a significant computational effort is required to resolve complex, high-dimensional and NP-hard problems under uncertainty [9]. 

 

In this regard, the research focus has shifted to heuristic and meta-heuristic approaches after the 20th century. Due to the slow 

convergence rate to optimise a large size NP-hard problem with exact algorithms in practice, a considerable number of airside 

operations research projects using heuristics and meta-heuristics can be traced in the current literature from small instances to higher-

order, complex and stochastic combinatorial problem, or even real-life CO applications [10]. Heuristics is regarded as basic 

approximate algorithms for providing near optimal results [9, 11]. However, the design of heuristics is problem-specific and 

problem-dependent methods. Meta-heuristics approach is a high-level problem-independent framework, which provides a trajectory 

of searching for close-to-optimal solutions from practical problems within satisfactory computation time [9, 12]. The design of a 

meta-heuristic algorithm includes two major concepts, which is exploitation and exploration. Exploitation refers to the ability of 

foraging around a promising candidate solution to reach the optimal solution, while exploration indicates the ability of terminating 

searching under the condition of local optimal trapping [13]. The selection of proper meta-heuristics was related to the complexities 

of exploitation and exploration on the CO problem. 

 

In general, meta-heuristics can be categorised as the single solution-based methods and population-based methods [14]. The single 

agent-based methods also called trajectory methods, by constructing a searching process regarding an individual solution. The 

trajectory methods include, but are not limited to Tabu Search [12], Greedy Search [15] and Iterative Local Search [16] algorithms. 

The existing population-based algorithms fall into three major categories: Evolutionary Algorithm (EA), physics-based algorithms 

and Swarm Intelligence. The typical examples of EAs involve the Genetic Algorithm (GA) [17], Memetic Algorithm [18] and 



Differential Evolution algorithm [19]. EAs deal with information exchange procedures among several candidates by continuously 

improving the solution quality by iterations, which are known as a blind search method that seldom exploits the domain knowledge 

and uses evolutionary operators iteratively from known solutions [20]. The simple mechanism of evolutionary operators can be 

effective in exploitation phase, but the balance of exploration and exploitation is often ignored in the design of the algorithms. By 

contrast, many naturally inspired meta-heuristic algorithms, including physics-based and SI-based algorithms, have gained 

increasing popularity because of their high efficiency, which involves specific controlling parameters to maintain the balance 

between exploitation and exploration. The physics-based meta-heuristics approach is a kind of discipline that aims to simulate the 

laws of natural science and knowledge of nature in algorithm design. The search agents perform searching according to the natural 

interaction between matter and energy. Despite the fact that the control parameters usually contain complex functions that lead to 

long computation time, certain physics-based algorithms are promising in achieving optimal or near-optimal solutions [21]. 

Representative examples are Big-Bang and Big-Crunch algorithm [22], Gravitational Search Algorithm [23], Ray Optimisation 

algorithm [24]. Swarm intelligence (SI) is a new type of bio-inspired meta-heuristics that emphasises distributing individual agents 

for solving hard CO problems. The philosophy of SI, which incorporates the collective behaviour of natural species, is a fascinating 

meta-heuristics research area in the contemporary evolutionary computation. Although SI for optimisation is still in the proof-of-

concept stage in industrial engineering, current publications recommend that SI is qualified to obtain good-quality solutions than 

single-based and evolutionary methods given a reasonable CPU time. Compared with physics-based algorithms, SI-based algorithms 

highlight the simple collective behaviour of individual agents rather than complex controlling mechanisms. During the era of SI, 

different SI-based algorithms have been introduced to CO applications such as the Artificial Bee Colony (ABC) algorithm [25], Ant 

Colony Optimisation (ACO) algorithm [26], Bat algorithm [27] and Particle Swarm Optimisation (PSO) [28]. 

 

1.1. Contribution of the research 

A large amount of meta-heuristics with different features and intrinsic characteristics have been proposed throughout the last four 

decades and found to be a promising technique for real-life application. The availability of periodic review and assessment becomes 

more important to guide the readers in understanding the meta-heuristics research progress and highlight the research potential in 

the domain of the airside operations system with a meta-heuristics approach. The comparison of the meta-heuristics techniques in 

airside operations research is crucial so as to explore the future research direction. Hence, this paper attempts to identify the 

concealed research field of meta-heuristics research in airport operation. 

 

1.2. Organisation of the paper 

The organisation of this paper is summarised as follows. After the background of the airside operations research and meta-heuristics 

in Section 1, section 2 presents the review framework and the selection criteria of the relevant articles. Section 3 summaries the 

classification and description of the meta-heuristics (See Section 3.1) and the research findings of operations research in airside 

activities (See Section 3.2). The statistical analysis of the studies are reported in Section 4. The trend analysis and the research 

potential of the field are illustrated in Section 5. Finally, the concluding remarks are raised in Section 6. 

 

2. Research methodology 

The primary objective of this paper is to present a taxonomic framework for outlining and consolidating the current research field 

of extant airside operations in the literature with reference to functionality, which indicates potential topics for future research and 

development in the aviation industry. The literature review approach necessarily contributes to the research progress to discover 

potential research and study in airport OR, which is a valid tool to synthesise and consolidate scattered knowledge systematically 

[29]. In Fig. 1, the review process of this review article follows the four major steps proposed by Mayring for conducting content 

analysis [30].  



 

 

Fig. 1. Research process of a structuring content analysis [30] 

 

An initial search from the Google Scholar recommended an enormous number of publications related to “aviation”, since there are 

insufficient works on reviewing the combined research on airside operations research and meta-heuristics. After a pre-screening 

process, certain keywords were found from the abstract and introduction. Those keywords were referred to the delimitation of the 

selected publications in order to extract the most relevant and renowned publications. The publication search for specific journal 

articles was conducted using a keyword search of the electronic library database. The literature review was mainly conducted from 

the electronic library, such as IEEE Xplore Digital Library, ScienceDirect-Elsevier, Springer Online Journal Collection, INFORMS 

PubsOnline and Emerald Insight. Supplementary journal publications were also explored from the Google Scholar database. The 

targeted publications should mainly constitute functional-level CO models, including aircraft scheduling, gate assignment problem 

(GAP), air route network (ARN), airport taxiway optimisation. The search terms were also derived from the review articles of 

operation search in aviation or Air Transport Management (ATM), and the taxonomic review of meta-heuristics. The criteria for 

selecting relevant publications are specified as follows. The review process was restricted to the interdisciplinary research of the 

meta-heuristics and airside OR. Only peer-reviewed relevant journals written in English were selected. We delimited the primary 

studies following the inclusion and exclusion criteria as shown as follows. 

 

Inclusion criteria are: 

(i) Operations research using meta-heuristics for airside activities 

(ii) Deterministic, dynamic, stochastic and robust modelling for airside activities 

(iii) Journal articles with impact factors in recent years 

(iv) At least proposed one meta-heuristic(s) in the research methodology 

 

 

Exclusion criteria are: 

(i) Non-operations research using meta-heuristics for the airside activities 

(ii) Review articles, conference papers and book chapters 

(iii) Research methodology with non-meta-heuristics but using meta-heuristics as benchmark for comparison 

 

According to the above inclusion and exclusion criteria, 103 studies were extracted for the formulation of the taxonomy framework 

in airside activities using meta-heuristic approaches and the analysis of the trends in the research domain.  

 

3. Problem classification 

3.1. Classification scheme of meta-heuristics 

The solution methods for airside operations research can be categorised into two major groups, which are exact approach and 

approximate approach. Although the exact approaches are the frequent approaches to optimise CO models, it lacks the capability to 

handle practical cases within a reasonable time frame. The approximate approach, especially meta-heuristics, has become more 

favoured for searching for a good solution with a reasonable computation time. The approximate approach can be further divided 

into heuristics and meta-heuristics methods. The concept of the meta-heuristics was introduced by [12], aiming to encounter the 

problem of local optimum through the controlling mechanism during the recursive search method. The fundamental controlling 

mechanism in the meta-heuristics consists of trajectory method, control and memories, hybrid strategies, parallelism, and 



decompositions [31]. Many researchers are working on improving the solution quality as well as the computational effort of the 

meta-heuristics, according to the above control aspects. Therefore, various meta-heuristics algorithms have been proposed for 

different engineering theories or applications. Another remarkable feature in meta-heuristics is to maintain a reasonable adjustment 

between exploitation and exploration during the search, which leads to better solution quality among the population at each iteration. 

The classification of meta-heuristics depends upon the feature and working mechanism of the meta-heuristics, including single-

solution meta-heuristics, biological evolution, physics-based algorithms and swarm intelligence, as shown in Fig. 2. 

 

 

Fig. 2. Classification of optimisation techniques 

 

3.1.1. Single-solution meta-heuristics 

The mechanism of determining a near-optimal solution and defeating local optimal traps relies on the use of stochastic operators for 

strengthening the search performance of the meta-heuristics and exploiting better solutions from the prior knowledge [32]. The 

search method in the single-solution meta-heuristics performs a trajectory search with a single solution iteratively from a known 

solution. The current solution will be replaced when an improved solution with a superior objective value is found during the 

exploitation process. It is straightforward to see that the single-solution meta-heuristics provide an efficient exploitation at each 

iteration in approaching the local optima, but the solution may not be a global optimum [33]. In order to overcome the convergence 

problem, the methods of searching between neighbourhood structure and memory-based searching are the conventional approaches 

to maintain diversification in a trajectory search [31]. The examples of single-solution meta-heuristics are shown in Appendix B 

(See. Table 14). 

 

3.1.2. Biological evolution 

Biological evolution is another group of meta-heuristics that utilises the performance of the population solution. The centre of the 

searching in biological evolution focuses on the hereditary through genetic information or ancestral memories from a group of 

candidate solutions [17]. The mechanism in biological evolution relies on natural selection and genetic variation. The process of the 

natural selection allows evolutionary changes of maintaining certain traits in a population to adapt to the environment, while genetic 

variation is the process by which an individual becomes better suited to the living environment than other individuals. The examples 

of biological evolution are illustrated in Appendix B (See. Table 15). The review on biological evolution was presented in Kumar 

et al. [34] and Weile and Michielssen [35]. 

 

3.1.3. Physics-based algorithms 

Physics-based algorithms represent an optimisation technique using the natural practice of physical and chemical discipline, 

including quantum theory, electrostatics, Newton’s gravitational law, and the laws of motion. Various physics-based algorithms have 

been proposed in recent years [36]. A typical example of the physics-based algorithms is Simulated Annealing, which imitates heat 

treatment in metallurgy and material science. The examples of the physics-based algorithms are presented in Appendix B (See. 

Table 16). The architectures of physics-based algorithms were described in Biswas et al. [37] and Can and Alatas [36]. 

 

3.1.4. Swarm intelligence 

SI-based algorithms perform effectively and efficiently to explore and exploit the searching progress that becomes more and more 

favourable to resolve sophisticated CO models [38]. Even though there are numerous SI-based algorithms, the design of algorithms 

still follows three main features: (1) Decentralisation implies that no central control mechanism is involved. This arrangement 

enhances the robustness of searching for the optimal solution when the algorithm is dealing with a large-size CO problem. The 



behaviour of individuals is determined by itself without order and command from the centre to reduce the controller-and-back 

communication [39]. (2) The essence of self-organising in SI is able to balance the exploitation and exploration processes through 

trial-and-error interactions. In addition, self-organisation works as an “invisible hand” by individuals’ efforts to pursue a socially 

desirable outcome or goal through self-organising behaviour, which allows any separated individuals back on track ultimately, such 

as positive feedback, negative feedback, fluctuations and multiple interactions [40]. Self-organisation allows interactions between 

individuals to exchange information with simple operations that contain arbitrary rules, that reinforces the exploration during 

searching and sometimes allows the certain failures of individuals’ performance [39]. (3) Collective behaviour refers to the 

coordinated efforts of all individuals to accomplish the global goal desired from the model. The composition of the three main 

features in SI contributes to the success of robust searching. The examples and search methods of SI algorithms are shown in 

Appendix B (See. Table 17). We suggested a review article on the evaluation of algorithmic architectures of swarm intelligence 

[41]. 

 

3.1.5. Hybrid meta-heuristics 

Modification approaches are still the dominant methods to improve the solution quality. In general, high-level meta-heuristics 

approaches are more favourable in solving complex multiple-objective CO problems. Improving the solution quality and 

computation time are the primary goals in the development of the meta-heuristics. According to the complexity of identifying the 

search regions and the possibility of being trapped in local optima, algorithm customisation is the general approach to maintain a 

balance and allow interaction between diversification and intensification. The balance between diversification and intensification 

can be viewed as the exploitation of a promising region or local optimal solution and exploration of an optimal global solution 

among the searching space. Depending on the complexity feature of CO problems, modification of the original meta-heuristics is 

necessary to match the model’s specific properties. The hybridisation can be completed through a two-stage approach or one meta-

heuristic guiding another meta-heuristic. The phenomenon of premature convergence normally existed in conventional population-

based algorithms. The design of previous population-based algorithms lacked the capacity to maintain diversity between a set of 

solutions, namely diversity loss. A possible improvement could be integrated with another neighbourhood centre search algorithm 

or intensity-based algorithm to enhance the exploitation ability of the population-based algorithm, some of which are: GA with ACO 

[42] and MA with ACO [43] for ASSP. Much effort has been recently made regarding hybridisation using two neighbourhood search 

algorithms for AGSS, ASSP and AGAP models, such as Variable Neighbourhood Descent (VND) with LNS [44], VND with SA 

[45], and SA with TS [46, 47].  

 

3.2. Classification scheme of airside operations research 

The design of air transport planning and management is a multiple-level, collaborative operation to make daily or periodic decisions 

in the aviation sector. Airlines, airport authorities, air transport practitioners, and agents are involved in air transport planning and 

management. Most of the airside operations research in the literature can be formulated as CO models, which can be summarised 

as follows: (1) Job Shop Scheduling Problem (JSSP), (2) Travelling Salesman Problem (TSP), (3) Vehicle Routing Problem (VRP) 

and (4) Quadratic Assignment Problem (QAP). JSSP, TSP, VRP and QAP have been proven to be Non-deterministic Polynomial-

time Hard (NP-hard) Problem [48-51]. Airside OR, in general, concerns collaborative and cooperative approaches associated with 

various entities to perform integrated optimisation CO modelling with multiple objectives to improve the operation efficiency under 

budget constraints.  

 

Most air traffic operations research is directly initiated from actual requirements and regulation by the civil aviation administration. 

The separation time between aircraft en-route or surface traffic operation is the typical constraint for safety reasons in airside OR. 

For example, the safety en-route distance between adjacent flights is strictly supervised by an en-route control centre via the visual 



aid of a two- or three-dimensional radar screen. Besides, operational efficiency and customer satisfaction are linked to the 

measurement of the performance of airside OR. Stand allocation under congested airport gate occupation is an interesting research 

direction, which synthesises the operation of aircraft landing schedules and gate assignment to reduce the time for holding 

procedures and resolve traffic in the terminal airspace area. The objectives of the airside operations research model can be summed 

up in four major aspects: safety, economic, customer satisfaction and operational efficiency. In addition, certain research papers 

have introduced environmental control measurement of air pollutants and greenhouse gases. Fig. 3 described the sub-criteria of each 

research objectives in the field. 

 

 

Fig. 3. The research perspective in the airside operations research 

 

The implementation of airside operations research comprises various activities and operations. Fig. 4 presented the essential 

elements and their correlation in airside operations. With regard to our proposed taxonomic framework after our comprehensive 

literature review, the articles were differentiated into three major categories, namely Airspace and Air Traffic Flow Management 

(ATFM), Aircraft Operations in Terminal Manoeuvring Area (AO in TMA) and Surface Traffic Operation (STO). The sub-

dimensions of airside operations research are presented in Fig. 5. 

 

 

Fig. 4. Schematic diagram of the airside operations research 

 

 

Fig. 5. Taxonomy of airside information system 

 

3.2.1. Airspace and air traffic flow management 

Future airspace capacity is expected to increase and require high development of en-route traffic control in order to maintain high 

volumes of air traffic and conflict-free program and create flexible flight paths for varying demand patterns, as shown in Fig. 6. The 

worldwide airspace has become complicated and more challenging to manage. Particular emphasis in Air Traffic Flow Management 

(ATFM) is placed on efficiency and flight conflict resolution in flight path problems due to uncertain weather in airspaces, restricted 

regional airspace regulations, and overwhelming traffic demand recently. Advancement in navigation technology and computation 

intelligence is becoming a radical approach to enhance airspace capacity and flow program efficiency. 

 

Fig. 6. Schematic diagram of the airspace and air traffic flow management 

 

3.2.1.1. Aircraft avoidance 

Table 1 summarises the research on meta-heuristic approaches for aircraft collision avoidance. Aircraft collision avoidance is an 

important aspect of airspace safety navigating systems. With the deployment of Global Navigation Satellite Systems, various 

prediction and prevention collision avoidance systems have already been developed to offer pilots traffic alerts and avoidance 

suggestions. The Traffic Collision Avoidance System is an airborne system design, which can be classified on the basis of 

functionalities, such as visualisation for airspace navigation, conflict detection in the nearby vicinity and possible confliction 

advisory [52]. Considering the 2D trajectory planning, Guan et al. [53] presented an improved MA in order to enhance the solution 

quality based on the work conducted by Alam et al. [54]. Alonso-Ayuso et al. [55] suggested a decision support system together 

with the VNS algorithm for the TCAS by means of changing aircraft directions. To achieve a higher level of applicability, 3D 



trajectory planning was proposed. Dougui et al. [56] introduced a new nature-inspired algorithm, entitled Light Propagation 

algorithm, to resolve conflict-free fourth-dimensional trajectory problems. In order to manage a large-scale TCAS, the dynamic 

grouping strategy was suggested to reduce the computational burden via a variance-priority-based group [53]. Chaimatanan et al. 

[57] conducted a trajectory-based collision avoidance with an AFP approach to minimise the number of interactions between aircraft 

by the GA. 

 

3.2.1.2. Flight path optimisation 

Table 2 presents the application of Flight Path Optimisation (FPO) using meta-heuristics, which can be shown that Biological 

Evolution is the majority of the research methodology in the field. FPO can be considered as an aircraft routing network in multiple-

dimensional flight trajectory composed of points and edges. The current approach is to define the flight path ahead of time. 

Worldwide air transport has reached the ceiling of airspace capacity, and various airports have experienced flight delays and low 

operational efficiency due to airspace congestion. Ground Delay Program (GDP) is a common approach to manage flight re-

scheduling under inclement en-route or terminal weather, en-route traffic and flight incidents. The implementation of GDP maintains 

free flow of air traffic volume in a period, which allows the airports to absorb airborne delay time and moderate the probability of 

reaching the maximum quantum of airspace traffic [58]. Abdelghany et al. [59] argued that GDP may lead to operational inefficiency 

and airport congestion, which can be resolved by an online ARN approach, including Crossing Waypoints Location (CWL) 

optimisation and AFP. The major objective of CWL optimisation is to reroute current flights along different airborne paths. [60]. Hu 

et al. [61] introduced a real-time CWL optimisation based on improved GA for the current structured airspace. Zhang et al. [62] 

conducted large-scale multiple objectives CWL optimisation in the French airspace. Guan et al. [63] compared their proposed 

algorithm with several meta-heuristics for detecting congested airspace. 

 

Airspace capacity in the CWL optimisation model is limited, as it is bounded by the restricted number of routes and nodes. The 

relaxation of certain routes is demanding, but the expansion of ARN is regulated by civil aviation. Airspace Flow Program (AFP) is 

the new paradigm to control the traffic flow based on the available airspace capacity to make conflict-free airspace discrete for FPO. 

The proposed AFP is to minimise the anticipated negative impacts, such as aircraft collision, carbon emissions and operational costs, 

while allowing certain control by pilots to perform conflict-free re-routing using the Air Navigation System without consulting the 

Area Control Centres [61]. The flight path from the two connected nodes is defined as a time-slice flight path, which gives more 

alternatives to solving flight collision and optimising flight trajectory [61]. Abdelghany, Abdelghany and Niznik [59] additionally 

conducted a two-phase heuristic to optimise the AFP using the basic GA. In their experiment, the first-phase heuristic is able to 

screen out infeasible solutions, and pass the feasible intermediated solution to further optimise with less computational effort. Blasi 

et al. [64] presented a sampling density threshold PSO to avoid the particles crowding problem for a 2-dimensional flight trajectory 

optimisation which can denote non-circular and concave obstacles taking into account the flight dynamic.  

 

 



Table 1 

Research on meta-heuristics for airspace and air traffic flow management - aircraft collision avoidance 

Model config. 
Algorithm 

classification 

Search 

method/agents 
Year Proposed solution(s) Benchmarking algorithm(s) Objective function(s) Ref. 

2D trajectory 

plan 

Single solution-

based meta-

heuristics 

Neighbourhood 

structure 

2015 VNS Exact method#; Sequential 

Integer Linear Optimisation 

(SILO) 

Min. interaction between trajectories [55] 

Physics-based 

algorithms 

Gene 2014 MA with local search 

operators (type-G; type-A; 

type-M) 

GA; Cooperative co-evolution 

with a random grouping (CCRG) 

heuristic 

Min. the flight delays; 

min. the number of conflicts 

[53] 

3D trajectory 

plan 

Biological 

evolution 

Gene 2009 GA N/A Min. the number of missed detects and 

false alarms 

[54] 

2011 Efficient Genetic Webs N/A Min. fuel consumption of all flights [65] 

Physical-based 

algorithms 

Electromagnetic 

radiation 

2013 LPA GA; Triangle mesh algorithm 

[66] 

Min. the interaction between trajectories [56] 

Energy 2014 SA with hill-climbing local 

search strategies 

Exact method Min. the interaction between trajectories [57] 

#: solved by IBM ILOG CPLEX Optimisation Studio 

Table 2 

Research on meta-heuristics for airspace and air traffic flow management - flight path optimisation 

Model config. 
Algorithm 

classification 

Search 

method/agents 
Year Proposed solution(s) Benchmarking algorithm(s) Objective function(s) Ref. 

Airspace flow program Swarm 

intelligence 

Particle 2013 PSO N/A Min. the flight path length [64] 

Airspace flow program 

/ crossing waypoints 

location problem 

Biological 

evolution 

Gene 2004 GA with heuristic 

rules 

Variants of the proposed algorithm Min. the flight path length [61] 

Crossing waypoints 

location problem 

Biological 

evolution 

Gene 2007 GA Exact method; Two-stage heuristic Min. the cost of flights cancellation and 

late arrival 

[59] 

2012 MA with pull-push 

operator 

NSGA-II; MOEA based on 

decomposition; Comprehensive PSO 

Min. the number of conflicts; 

min. the total airline cost 

[67] 

Species 2015 Multi-island PEA MOGA; MOEA based on 

decomposition 

Min. the airspace congestion; min. the 

extra delay costs 

[63] 

2015 Multi-island PEA 

with constant/random 

migration interval 

NSGA-II; MOGA; MOEA based on 

decomposition; CC-based heuristic 

[62] 

Min. the total delays; min. the total 

workload 

[62] 

Multi-airport capacity 

management 

Biological 

evolution 

Gene 2007 GA with receding 

horizon 

GA; Exact method with receding 

horizon 

Min. the delays by redirect flights 

between airport 

[68] 

#: solved by IBM ILOG CPLEX Optimisation Studio 



3.2.2. Aircraft operation in terminal manoeuvring area 

The objective of Traffic Management in a Terminal Manoeuvring Area / Terminal Manoeuvring Centre (TMA/TMC) is to maintain 

a vital balance between smooth air traffic flow and the capacity of surface traffic operation in an airport. A TMA deals with airport 

capacity management, safe operation of all the flights and efficient allocation of airport resources. Two major operations are 

considered in this category: airline schedule recovery and disruption-tolerant sequencing during aircraft landing and take-off, 

described in Fig. 7. Due to the multi-objective and stochastic nature of airport operations, the applications of meta-heuristics work 

as an expert system and support the Air Traffic Control (ATC) controllers in their decision-making to provide high-quality solutions.  

 

 

Fig. 7. Schematic diagram of aircraft operation in terminal manoeuvring areas 

 

3.2.2.1. Aircraft scheduling and sequencing problem 

ASSPs are one of the important aspects of ATM, which considers the traffic of air transport and the landing and take-off sequences. 

Matching between aircraft sequencing and selection of runways can also be considered as a ASSP model. It consists of two major 

operations: Aircraft Landing Problem (ALP) and Aircraft Take-off Problem (ATP) with single or multiple runways. Table 3 

summarised the classification and solution approaches using meta-heuristics in ASSP model. The conventional ASSP/ALP/ATP 

models apply the First-Come-First-Served (FCFS) approach to arrange aircraft landing or take-off sequences based on the order 

appearing on the radar system. Maximum Position Shifting refers to the maximum allowance for aircraft shifting forward or 

downward from the position in the FCFS sequence, while relative position shifting defines the maximum threshold for aircraft 

shifting from the previously re-arranged sequence. Beasley et al. [69] argued that maximum Position Shifting for the FCFS approach 

causes inefficiency in ALP, although the FCFS sequence is the most popular scheduling approach across the world. Separation times 

between two consecutive flights are dynamic during the operation. Relative position shifting is a novel approach, which allows 

flexibility in rearranging ASSPs. Moreover, aircraft generate wake vortices as a natural consequence of lifting, which can put the 

following adjacent aircraft at risk [70]. Therefore, a set of hard constraints of safety distance and time separation during landing and 

take-off sequencing must be confirmed except in cases of emergency. The minimum safe distance metric provided the basic idea of 

safe landing requirement of successive landings [69]. Pinol and Beasley [71] first presented SS and the Bionomic algorithm for the 

ALP model with a time window to resolve a large instance with 500 aircraft and five runways within a minute. Bencheikh, 

Boukachour, Alaoui and Khoukhi [42] formulated the ALP as a JSSP model to handle large size instances, ranging from 100 to 500 

aircraft. Salehipour, Modarres and Moslemi Naeni [45] integrated SA with VND and VNS for ALP problems. Ng and Lee [72] 

further modified the VNS algorithm in Salehipour, Modarres and Moslemi Naeni [45]’s work. The results obtained are generally 

the same as the result from CPLEX but with a short computation time. 

 

GA is still a dominant approach to handle the complex models, such as the multi-objective or dynamic ASSP model. Dastgerdi et 

al. [73] introduced a new EA approach for solving the congested single runway airports. Mokhtarimousavi et al. [74] adopted a Non-

dominated Sorting Genetic Algorithm-II (NSGA-II) to resolve the multi-objective ALP model. Bencheikh, Boukachour and Alaoui 

[43] also raised a dynamic ALP model solved by an integrated MA and ACO algorithm. Alternatively, solution quality in the ALP 

model can be enhanced by incorporating with a Receding Horizon Control strategy. Hu and Chen [75] first attempted to introduce 

the RHC strategy to solve the dynamic ALP problem and reduce the computational effort for the GA. Besides, swarm intelligence 

for ALP model has been studied [76, 77]. Ng et al. [78] enhanced the convergence of ABC algorithm and developed a robust 

optimisation for ASSP using mixed-mode runway operation in hedging arrival and departure uncertainties. 

 



3.2.2.2. Airline fleet schedule planning 

An overview of FSP articles using meta-heuristics is given in Table 4. We suggested a review articles on the airline scheduling 

problem [79]. Airline scheduling is generally established one season ahead of the actual operation in accordance with the forecast 

of air transport demand and the consideration of the seasonal and growth rate factors taken into account. Other resources can 

afterwards be settled, such as fleet assignment, maintenance routing, crew scheduling and recovery planning for disruption. The 

design of initial airline schedules must be planned ahead to avoid disruption and compile in light of practical usage, legislation by 

the airport authorities, and time allowance for buffering. Andersson [80] introduced a TS with path rethinking for the Flight 

Perturbation Problem model to restore the original schedules when the unexpected events occurred. The extended version of the 

multi-objective Flight Perturbation Problem model for short-haul flights focuses on improving the turnaround rate of short-haul 

flights [8, 81, 82].  

 

Achieving sub-optimal solutions in decomposed decision-making does not guarantee reliable and flexible airline recovery since the 

set of sub-problems is interconnected and not independent. Thus, an aggregate approach has been proposed in airline recovery 

management. The main goal of airline scheduling is to ensure that operations can be performed on time with no or slight effect on 

an airline’s tardiness or interruption to airport ground operations. Performing upstream integration is fairly reliable to build a robust 

airline schedule and mitigate the possibility of the reassignment. Zegordi and Jafari [83] included the consequence of disrupted 

operation as part of the objective function by minimising the impact on the propagation of disruptions using ACO. Apart from the 

single recovery model, integrated aircraft and passenger recovery approaches are regularly adopted to minimise the cost incurred in 

passenger reservations and operating cost during a flight disruption, flight cancellation, and airport congestion [84]. 

 

 



Table 3 

Research on meta-heuristics for aircraft operation in terminal manoeuvring area – aircraft sequencing and scheduling problem 

Model config. 
Algorithm 

classification 

Search 

method/agents 
Year Proposed solution(s) Benchmarking algorithm(s) Objective function(s) Ref. 

Aircraft landing 

problem 

Single-solution 

meta-heuristic 

Neighbourhood 

structure 

2014 Adaptive LNS SS [71]; SA + VNS [45] Min. the average penalties (earliness and 

lateness) 

[85] 

2015 ILS with multiple 

perturbation operators 

Variants of ILS Min. the total penalties (earliness and 

lateness) 

[86] 

Biological 

evolution 

Gene 2001 GA with local search GA Min. the squared deviation of the 

scheduled and actual landing time 

[69] 

2004 GA FCFS; Cheapest insertion heuristic 

[49] 

Min. the weighted total delay cost [87] 

2004 GA N/A Min. the total airborne delays [88] 

2005 Permutation-representation 

GA with receding horizon 

GA [49]; Conventional TSP Min. the total airborne delays [75] 

2006 SS; Bionomic Algorithm FCFS Min. the squared deviation of the 

scheduled and actual landing time; min. 

the total penalties (earliness and lateness) 

[71] 

2007 GA with uniform crossover GA; GA with crossover Min. the total airborne delay [89] 

2008 Binary Representation GA DTSPM [49]; Permutation-

representation GA [75] 

Min. the total airborne delay in each 

rolling horizon 

[90] 

2011 GLS GA [91]; SS [88]; Bionomic 

Algorithm [71] 

Min. the squared deviation of the 

scheduled and actual landing time; min. 

the total penalties (earliness and lateness) 

[8] 

2016 GA with weighted fitness 

value 

GA Min. the squared deviation of the 

scheduled and actual landing time; min. 

the total penalties (earliness and lateness) 

[92] 

Physics-based 

algorithm 

Mass 2016 GSA GA [88]; GA with uniform 

crossover  [93]; SS [71]; GLS [8] 

Min. the deviation of scheduled and 

actual landing time 

[94] 

Swarm 

intelligence 

Ant 2010 Efficient ACO with rolling 

horizon 

FCFS; Binary-representation 

GA[90] ACO 

Min. the total airborne delay in each 

rolling horizon 

[95] 

2017 Efficient ACO Exact method#; Approximation 

algorithm [96]; ACO; FCFS 

Min. the makespan [97] 

Bat 2013 BA with local search Bionomic algorithm [71]; SS [71]; 

Improved ACO [98]; heuristic 

[99]; FCFS [71] 

Min. the deviation of scheduled and 

actual landing time 

[100] 

Particle 2016 PSO with rolling horizon Exact method#; SA + VND [45]; 

SA + VNS[45] 

Min. the total penalties (earliness and 

lateness) 

[101] 

Hybrid meta-

heuristic 

Integrated 2013 SA + VND; SA + VNS Exact method#; SS [71] Min. the total penalties (earliness and 

lateness) 

[45] 

Aircraft Single solution Neighbourhood 2013 Meta-RaPS SA with different greedy Min. the weighted tardiness [102] 



sequencing and 

scheduling 

problem 

meta-heuristics structure strategies; Meta-RaPS with 

different greedy strategies 

Biological 

evolution 

Gene 2014 GA FCFS Max. throughput of the runways [103] 

Physics-based 

algorithm 
Energy 2017 SA Exact method#; Bionomic 

algorithm [71]; SA + VND [45]; 

SA + VNS [45]; SS [45] 

Min. the weighted total delay cost [104] 

Swarm 

intelligence 

Ant 2014 ACO N/A Min. the average flight delay cost of each 

airline; min. the total delay cost 

[105] 

Bee 2017 Efficient ABC algorithm Exact method#; GLS; ABC; 

Modified ABC; Hybrid ABC with 

GA 

Min. the maximum regret value with 

regards to the makespan deviation for all 

worst-case scenarios 

[78] 

Aircraft take-off 

problem 

Single solution 

meta-heuristics 

Memory 

structure 

2017 TS FSFC; manual method; seven-

aircraft exhaustive heuristic 

Min the calculated time of take-off; min. 

the additional penalty cost; min. the 

reordering cost; min. the weighted total 

delays 

[93] 

Terminal traffic 

flow modelling 

Single solution 

meta-heuristic 

Memory 

structure 

2014 MIP-based TS FCFS; exact method# Min. the delay propagation [106] 

Neighbourhood 

structure 

2017 VNS with delayed job 

neighborhood operator 

TS [106]; centralised meta-

heuristic [106]; rolling horizon 

meta-heuristic [106] 

Min. the makespan of the whole traffic 

flow network 

[107] 

#: solved by IBM ILOG CPLEX Optimisation Studio 

 

  



Table 4 

Research on meta-heuristics for aircraft operation in terminal manoeuvring area – fleet schedule planning 

Model config. 
Algorithm 

classification 

Search 

method/agents 
Year Proposed solution(s) Benchmarking algorithm(s) Objective function(s) Ref. 

Airline schedule 

recovery 

Single solution 

meta-heuristic 

Memory 

structure 

2006 TS with path relinking Exact method# Min. the negative consequences of 

disturbance 

[80] 

Neighbourhood 

structure 

1997 GRASP algorithm N/A Min. the flight cancellation and delay 

cost 

[108] 

2015 LNS SimLoop method Min. the total passenger delays [109] 

2017 LNS with CNS heuristic Binary search minimum cost flow 

algorithm (BSCF) 

Min. the flight delay cost; min. the 

maximal flight delay time; min. the 

number of flight reassignment 

[110] 

Biological 

evolution 

Gene 2008 MOGA N/A Min. the number of flight swap; min. the 

time for flight connection and ground-

turn-a-round time; min. the total flight 

delay time 

[81] 

2010 MOGA with hybrid 

adaptive evaluation vector 

MOGA [81] Min the number of flight swap; min. the 

number of long-delayed flight over 30 

mins.; min. the total flight delay time 

[111] 

2010 MOMA Comparison between biased and 

randomised selection of the local 

search operators 

Ensure feasibility of the schedule; 

maintain flexibility of a schedule; min. 

the stochastic influences in its operating 

environment 

[112] 

Swarm 

intelligence 

Cat 2012 Enhanced PCSO PCSO  [113]; PSO-LDIW [114]; 

PSO-CREV [114]; GCPSO [114]; 

MPSO-TVAC [114]; CPSO-H6 

[114]; PSO-DVM [114] 

Min. the number of flight swap; min. the 

total flight delay time; min. the variance 

of delayed time 

[82] 

Airline 

scheduling 

Swarm 

intelligence 

Particle 2016 PSO N/A Min. penalties induced by flights 

connections, idle time, buffer time 

[115] 

Airline 

scheduling and 

crew-pairing 

problem 

Biological 

evolution 

Gene 2013 Self-adaptive GA GA Max. the total income of the airlines [116] 

Crew recovery Biological 

evolution 

Gene  2005 GA with mixed crossover GA; GA with row-based crossover; 

GA with column-based crossover 

Min. the total operational cost [117] 

Crew-pairing 

problem 

Single solution 

meta-heuristic 

Memory 

structure 
1999 Run-ejection algorithm; 

tabu-crew algorithm 
Run-cutting algorithm Min. the number of crew duties [118] 

Neighbourhood 

structure 

2015 LNS with polishing 

method 

LNS Min. the total crew assignment cost [119] 

Biological 

evolution 

Gene 1996 GA with local search Exact method% Min. the total crew assignment problem [120] 

2001 Steady-state GA GA based on Chvatal’s heuristic 

[15]; Back’s heuristic [121]; GA 

Max. the balance of workloads between 

crews; max. the crew time utilisation; 

[123] 



[122]; greedy algorithm min. the number of crews 

2013 GA with knowledge-based 

random algorithm 

Column generation; column 

generation with knowledge-based 

random algorithm 

Min. the total crew assignment cost [124] 

2013 NSGA-II Manual method Min. the delay variance; min. the number 

of delayed flights; min. the number of 

duty swap; min. the number of long-delay 

flights 

[125] 

Physics-based 

algorithm 

Energy 1999 SA with local search Comparison of different strategies 

of SAs (Singleton, linear Chainer, 

Steepest Desent) 

Min. the total crew assignment cost [126] 

2007 SA Manual method; TS; GA Min. the average deviation of actual and 

planned crew-pairing roster 

[127] 

Swarm 

intelligence 

Ant 2011 ACO with heuristic GA Min. the total crew assignment cost [128] 

Particle 2013 PSO with local search PSO; GA; ACO Min. the total crew assignment cost [129] 

Fleet schedule 

recovery 

(integrated 

airline and crew-

pairing recovery) 

Single solution 

meta-heuristics 

Neighbourhood 

structure 

2014 Improved LNS Compared the score from the 

competition 

Min. the penalties induced by flights 

connections (e.g. idle time and buffer 

time) 

[84] 

 Biological 

evolution 

Gene 2017 MOGA Inequality-based MOGA [130] Max. the number of free crews; min. the 

extra cost; min. the flight duty period; 

min. the standard deviation of the flight 

time assigned to the crews 

[131] 

Fleet schedule 

recovery 

(integrated 

airline and 

passenger 

recovery) 

Single solution 

meta-heuristics 

Neighbourhood 

structure 

2011 LNS Score from the competition Min. the penalties induced by flight 

connections (e.g. idle time and buffer 

time) 

[132] 

2016 Two stage model with 

GRASP algorithm and 

local search heuristic 

Manual method; Separate 

Recovery Method (SRM) 

Min. the reassignment cost; min. the 

refund cost of passengers; min. the total 

delay cost 

[133] 

Biological 

evolution 

Gene 2009 GA with legality repair 

heuristic 

GA with random feasibility repair 

heuristic; GA with improved 

feasibility repair heuristic 

Max. the balance of workloads between 

crews; max. the crew time utilisation;  

min. the total assignment cost 

[134] 

#: solved by IBM ILOG CPLEX Optimisation Studio; %:solved by lp_solver optimisation tool 

  



3.2.3. Surface traffic operation 

Inefficiencies in surface traffic operations cause significant financial loss and impact to other airport operations and customer 

satisfaction. Such delay and airport congestion is sensitively dependent on previous postponed and disrupted schedules. Any 

disrupted airport users have large effects and further contributed to operation inefficiency, running costs of the airline, and 

environmental problems in a busy airport specifically, which can result in large variations compared with planned schedules [135]. 

Scheduled flights may require push back and being put on hold in the corresponding slot, which creates unnecessary carbon 

emissions, fuel usage, and pollution due to suspension. Managing all ground operations by a single ground-controlling agent is 

impracticable. To address the shortcoming of performing the global optimum in surface traffic operations, scholars have focused on 

optimising the subsidiary operations in surface movement, such as aircraft maintenance and planning, ground handling service 

movement, taxiway optimisation, and flight gate assignment. The simplified surface traffic operations are shown in Fig. 8. 

 

Fig. 8. Schematic diagram of surface traffic operation 

 

3.2.3.1. Aircraft gate assignment problem 

The publication in aircraft gate assignment problem using meta-heuristics are summarised in Table 5. Apart from the operational 

and strategic aspect of surface traffic management, the AGAP is another important part regarding customer satisfaction. Minimising 

passengers’ inconvenience, the distance between departure gates and baggage claim area, and passengers’ travelling distance 

between two connecting flights are the most common objectives in the AGAP model. Inefficient AGAP has a rare influence on 

airport disruption apart from insufficient flight gates provided by an airport. However, it does affect passengers’ perceived service 

quality and perceived value. Bolat [136] proposed a static AGAP model in order to utilise the flight gate usage without the 

consideration of customer aspects. The AGAP can also be developed as a Clique Partitioning Problem model that can be solved 

effectively using the EC algorithm by simplification [137]. Cheng, Ho and Kwan [46] proposed a customer-oriented AGAP model, 

which considered the walking distance for arriving, departing and transferring passengers. The numerical experiment indicated that 

a hybrid SA with TS outperforms the GA, SA and TS with regard to objective function by sacrificing CPU time. 

 

The Aircraft Gate Reassignment Problem model is the most direct method to recover GAP disruption [138]. On the other hand, the 

gate reassignment model has several shortcomings. For instance, it merely rearranges the assigned flights. The reassignment further 

creates a disturbance to planned schedules. In certain cases, the model cannot find any alternatives because of reaching a maximum 

capacity of airport facilities other than recovery from the abnormal GAP model. Moreover, the input attributes in scheduled arrival 

and landing are stochastic in nature. Therefore, reassignment may not significantly influence airport recovery. To resolve the above 

problems, a stochastic GAP model with uncertain parameters by a finite set of scenarios in realistic arrival and departure times of 

all the flights allows more adaptive and dependent flight gate assignment in real-life application. The proposed stochastic GAP 

allows certain infeasibility to encounter the problem of conflicting constraints. A robust GAP model with anti-disturbance ability 

dealing with the uncertainties is another research direction to allocate enough buffer and idle time by sacrificing certain resources 

[139]. The robustness of the stochastic GAP model does not present a perfect assignment to all scenarios or situations. The possibility 

of flight perturbation still exists and significantly contributes to airport congestion for any single case. The over-constrained AGAP 

model with a shortage of available gates presented by Ding, Lim, Rodrigues and Zhu [47] indicated the effect on the above situations. 

No solutions are feasible under such preference system which resulted from contradictory constraints, which contribute to the 

aviation academia and provide insight to allow temporary parking and perform remote gate assignments at a busy airport. Guépet 

et al. [140] further conducted the AGAP work as Stand Allocation Problem. 

 



3.2.3.2. Aircraft maintenance routing problem 

Table 6 reviews the maintenance routing problem using meta-heuristic approaches. Periodic aircraft maintenance must be carried 

out to ensure a high safety level and operational status during flight [141]. Corrective maintenance is undesirable in aviation 

industries, as any defects or failures found during operations cause adverse effects on safety and reputation, and emergency recovery 

by assigning a new flight for the disrupted customers. It would seriously lead to causes of death when the aircraft is in operation. 

Therefore, preventive or predictive maintenance approaches are designed to forecast when the maintenance should be accomplished. 

The preventive maintenance is to measure the remaining life cycle and minimise the downtime cost. As for aircraft maintenance, 

the time interval of safety review is not fixed on account of the high wage rate of maintenance workers and tightened time schedules 

in order to return the aircraft to service. Angus et al. [142] aimed to minimise the total flow time in an Aircraft Maintenance Routing 

Problem (AMRP) using the GA. Quan et al. [143] proposed an aircraft preventive maintenance schedule with preference-based EA. 

In this model, Pareto optimal solutions considered the balance of minimising the numbers of workers, makespan and consideration 

of airline preferences. Başdere and Bilge [144] introduced a weekly-based operational AMRP rather than the few-day-based to 

minimise the available legal flying time between two consecutive maintenance operations to yield the largest aircraft-in-service 

usage. Since the solution space is limited to a weekly-based horizon, single solution-based meta-heuristics is more appropriate and 

preferable regarding CPU time. Conditional-based maintenance is a trend-oriented policy that aims to identify the remaining life of 

an engineering component. Cost for preventive maintenance could be significantly reduced once the reliability measurement of 

component health can be accessed via a sensor network. Gerdes [145] suggested that machine learning can assess the health 

condition of the aerospace components by retrieving historical records and sensory data. Nieto et al. [146] designed an online hybrid 

PSO model that closely monitors aircraft components and predicts the remaining useful life without any historical inputs. 

 

3.2.3.3. Airport ground service scheduling problem 

Table 7 presents the characteristics of airport ground service scheduling (AGSS) using meta-heuristics in the literature. Ground 

handling services are particularly susceptible to airport disruption. Ground processes are often disrupted due to weather conditions, 

delay of flight schedules or disturbance of related aircraft turnaround processes. Rescheduling of multiple ground operations is more 

complex to achieve the global optimal solution due to the stochasticity of travelling time and large number of ground service entities. 

AGSS can be classified as (1) allocating individual resources to all flights, (2) arranging all the service activities of an individual 

flight and (3) optimising all the service activities to all flights [147]. Kuster et al. [148] formulated a Resource Constrained Project 

Scheduling Problem for the third type of AGSS in a practical context. Indeed, computational effort is required when the AGSS 

system incorporates with a large number of agents. In this regard, Ip et al. [149] divided AGSS into several sub-problems as Vehicle 

Routing Problem with Time Window to accelerate the convergence speed in an iterative algorithm that satisfies the real-time needs 

in scheduling using the GA. Padrón, Guimarans, Ramos and Fitouri-Trabelsi [44] also tried to optimise the aircraft turnaround 

process using ACO for a decomposition schema of AGSS and minimise the waiting time before operations and the overall AGSS 

completion time.  

 

3.2.3.4. Taxiway optimisation 

Meta-heuristics for taxiway optimisation are outlined in Table 8. Taxiway optimisation functions as control of aircraft surface 

movement named Surface Movement, Guidance and Control Systems. Achieving an efficient use of airport operations has gained 

significant interest recently. The growing air transportation demand creates tension in a TMA in most international airports, which 

limits the capability to handle aircraft take-off and landing. Specified flow capacity, flight conflicting and flow conservation 

constraints in four-dimensional trajectory are introduced for Surface Movement, Guidance and Control Systems with regard to the 

objectives of minimising delay time, the total tardiness of all flights and relaxing the adverse effect on ground units. García et al. 

[150] introduced the dynamic surface flow management to optimise surface traffic movement with space and time window 



constraints. Jiang et al. [151] improved the mutation process in the GA and applied a single-point crossover operator for small-scale 

taxiway optimisation. The algorithm has been tested on less than 20 aircraft. The concern over carbon emissions from idling aircraft 

has been the research motivation for “green” airports in the future. Ravizza et al. [152] presented a novel model to optimise 

conflicting objectives: taxiing time and fuel consumption. The proposed environmental taxiway optimisation was structured with 

an energy-efficient approach for ground controllers to monitor the emission level in an airport. Weiszer et al. [153] proposed a model 

with environmental and economic analysis to achieve sustainability in taxiway, runway, and airport shuttle bus schedules as a total 

solution using NSGA-II. Tianci et al. [154] studied a two-stage PSO algorithm for the speed and fuel optimisation in taxiway 

movement problems. 

 

3.2.4. Integrated model 

The integrated model provided a better control on the interrelated airport resources or sequential relationship between airside 

activities. The related articles were summarised in Table 9. Lee et al. [155] presented a multiple objectives flight schedule model 

by manipulating the departure times of several flights to enhance the insensitivity to operational irregularities and other disruptions 

in practical terms. In their model, airline schedule and maintenance routing problem was merged to optimise as the available flights 

affect the number of airline service provided. Another possible integrated model from the literature is runway scheduling and taxiway 

optimisation. Runway schedule, taxiway optimisation and gate allocation are the sequential operations when flights arrive at the 

terminal [156, 157]. This model focused on maintaining a smooth operation between air traffic and airport traffic. 

  



Table 5 

Research on meta-heuristics for surface traffic operation – gate assignment problem 

Model config. 
Algorithm 

classification 

Search 

method/agents 
Year Proposed solution(s) Benchmarking algorithm(s) Objective function(s) Ref. 

Gate assignment 

problem 

Single solution 

meta-heuristics 

Memory 

structure 

2004 Interval Exchange TS TS [158]; Burte force Min. the number of flights assigned to the 

apron; min. the total walking distance 

[159] 

2012 TS Exact method# Min. the total conflicting cost under all 

worst-case scenario 

[160] 

2017 EC algorithm Layered branch-and-bound 

algorithm [161] 

Max. the buffer time of two successive 

flight activities; max. the total preference 

value of the assignment; min. the total cost 

of arrival, parking and departure 

[137] 

Neighbourhood 

structure 

2016 VRNS Exact method#  Min. the distance for transfer passengers; 

min. the gate conflict cost; min. the towing 

movement 

[162] 

2017 Adaptive LNS TS [160] Min. the conflict cost; min. the tow cost; 

min. the transfer cost 

[163] 

2017 BLS TS; ILS with descent-base local 

search; ILS with critical element-

guided perturbation; greedy 

constructive procedure; variants of 

BLS 

Max. the airline preferences for a 

particular gate; max. the idle time between 

gate activities; max. the usage of gate 

space; min. the number of passengers 

arriving or departing from remote gates; 

min. the number of tows to terminal gates 

[164] 

Biological 

evolution 

Gene 2001 GA Exact method^ Min. the squared deviation of the idle 

times of the two successive flight activities 

[136] 

2005 MA with local search TS; variants of Mas; variants of 

GAs 

Min. the total walking distance [165] 

2016 GA N/A Min. the gate idle time [166] 

Species 2017 BBO N/A Min. the expected flight conflict with 

probabilistic distribution; min. the number 

of flights assigned to aprons 

[167] 

Physics-based 

algorithm 

Energy 2008 Pareto SA N/A Max. the airline preferences to particular 

gates; min. the number of ungated flights;  

min. the total passenger walking distance 

[168] 

2012 Single-leap BB-BC 

algorithm 

Manual method; ground time 

duration maximisation algorithm 

(GTMA); BB-BC algorithm 

Max. the total time of the gate allocated 

for all flights 

[169] 

Swarm 

intelligence 

Ant 2014 ACO Exact method#; greedy algorithm Min. the weighted sum of departure 

delays, buffer time and matching degree to 

aircraft with gate 

[139] 

Bee 2017 Fuzzy Bee Colony 

Optimisation (FBCO) 

Manual method Min. the number of flights assigned to 

remote gates; min. the total walking 

[170] 



distance for connecting flights 

Particle 2017 Improved adaptive PSO 

algorithm 

GA [166]; SA [46]; TS [46]; MA 

[165]; hybrid SA + TS [46]; Hill-

climbing GA [171]; BB-BC 

algorithm [169]; improved ACO 

Min. the idle time variance of each gate; 

min. the number of flights at parking 

apron; min. the walking distance of 

passengers 

[172] 

Hybrid meta-

heuristics 

Integrated 2005 Integrated SA and TS Brute force method; interval 

exchange TS [173]; SA [173] 

Min. the number of flights assigned to the 

apron 

[47] 

2012 Integrated SA and TS GA; SA; TS Min. the walking distance of arrival, 

departure and transfer passengers 

[46] 

Gate re-

assignment 

problem 

Single solution 

meta-heuristics 

Memory 

structure 

2017 Stochastic EC algorithm Layered Branch-and-Bound 

algorithm without robustness 

[161]; Layered Branch-and-Bound 

algorithm with robustness [161]; 

EC algorithm without robustness 

[137]; Hybrid meta-heuristic [174]; 

Two-stage heuristic [175] 

Min. the expected number of violations 

against the tow time restrictions 

[176] 

Biological 

evolution 

Gene 1999 GA N/A Min. the extra delay time by revising the 

disrupted gate assignment 

[138] 

Physics-based 

algorithm 

Energy 2010 Pareto SA N/A Max. the total preferences score of the gate 

assignment; min. the deviation from a 

planned gate assignment; min. the number 

of towing operations 

[177] 

Swarm 

intelligence 

Ant 2013 ACO Manual method Min. the deviation from a planned gate 

assignment 

[178] 

Stand allocation 

problem 

Single solution 

meta-heuristics 

Memory 

structure 

2015 EC algorithm Exact method#; stand 

decomposition heuristic; time 

decomposition heuristic; greedy 

algorithm 

Max. the number of aircraft at terminal 

gates; min. the towing movement 

[140] 

#: solved by IBM ILOG CPLEX Optimisation Studio; ^:solved by Lindo optimisation tool 

 

  



Table 6 

Research on meta-heuristics for surface traffic operation – aircraft maintenance routing problem 

Model config. 
Algorithm 

classification 

Search 

method/agents 
Year Proposed solution(s) Benchmarking algorithm(s) Objective function(s) Ref. 

Aircraft 

maintenance 

routing problem 

Single solution 

meta-heuristics 

Memory 

structure 

2017 TS Exact method# Min. cost for technicians to complete all 

tasks; min. the variance of the technicians’ 

workload 

[179] 

Neighbourhood 

structure 

2016 Very LNS Exact method# Min. the total remaining flying time of all 

flights 

[180] 

Biological 

evolution 

Gene 2005 GA N/A Min. the total flow time of all maintenance 

activities 

[142] 

2007 Dominance-based GA Variant of searching scheme of the 

proposed algorithm 

Min. number of workers (electrician and 

mechanic workers); min. the completion 

time of the preventive maintenance task 

[143] 

Physics-based 

algorithms 

Energy 2014 CA Exact method# Min. the total unused legal flying time of 

the critical aircrafts 

[144] 

#: solved by IBM ILOG CPLEX Optimisation Studio 

Table 7  

Research on meta-heuristics for surface traffic operation – aircraft ground service scheduling 

Model config. 
Algorithm 

classification 

Search 

method/agents 
Year Proposed solution(s) Benchmarking algorithm(s) Objective function(s) Ref. 

Ground service 

handling 

recovery 

Biological 

evolution 

 

Gene 2009 GA N/A Min. the deviation of the updated schedule 

from the original under disruption 

[148] 

Ground service 

handling 

schedule 

Single solution 

meta-heuristics 

Neighbourhood 

structure 

2016 VND with LNS SA [181]; improved SA [182]; GA 

[183]; LNS [184] 

Min. the deviation between the assigned 

time of operation and the earliest possible 

time; min. the total completion time of the 

turn-a-round processes 

[44] 

Biological 

evolution 

 

Gene 2013 GA with hybrid encoding 

scheme 

HA with greedy heuristic Min. the total tardiness of all flights [149] 

Physics-based 

algorithms 

Energy 2010 Variant D using SA Variants of TS; variants of SA Max. the number of catering activities [185] 

 

 

  



Table 8 

Research on meta-heuristics for surface traffic operation – taxiway optimisation 

Model config. 
Algorithm 

classification 

Search 

method/agents 
Year Proposed solution(s) Benchmarking algorithm(s) Objective function(s) Ref. 

Taxiway 

optimisation 

Single solution 

meta-heuristics 

Neighbourhood 

structure 

2016 ILS with receding horizon FCFS [90]; BRGA [90]; RHC-

ACO [95] 

Min. the total delay of all flights [186] 

Biological 

evolution 

Gene 2005 Improved GA GA; GA with different types of 

heuristic 

Min. the average delay [150] 

2013 GA N/A Min. the total time cost of all aircrafts [187] 

2015 GA Comparison between different 

weighted of the objective function 

Min. the weighted cost of single-depot-

vehicle scheduling problem; min. the 

weighted runway delay; min. the weighted 

taxi time 

[153] 

2015 Improved GA ACO Min. the total taxiing time of all flights [151] 

 

Table 9 

Research on meta-heuristics for integrated airside operations research model 

Model config. 
Algorithm 

classification 

Search 

method/agents 
Year Proposed solution(s) Benchmarking algorithm(s) Objective function(s) Ref. 

Integrated airline 

schedule and 

maintenance 

routing problem 

Biological 

evolution 

Gene 2007 MOGA N/A Min. the delays over 15 minutes; min. the 

number of cancellation flights 

[155] 

Integrated 

runway 

scheduling and 

taxiway 

optimisation 

Single solution 

meta-heuristics 

Memory 

structure 

2008 TS FCFS; manual method Min. the weighted delay cost in take-off [156] 

Biological 

evolution 

Gene 2016 GA with local search N/A Min. the taxiing time on the airport 

surface; min. the transport time 

[157] 

 

 



 

4. Statistical analysis of the latest studies 

This section presents the statistical analysis of the delimited articles in accordance with the proposed taxonomy framework and 

algorithm classification. The selection of the meta-heuristics is usually justified by the required accuracy of the solution, problem 

complexity and computation time. Indeed, several meta-heuristics has not been studies in airside operations. Although we see meta-

heuristics remain a high research potential in various operations research domain, the particular types of meta-heuristics may 

perform vary in different nature of the problem or modelling methods. Therefore, the summary of this review benefits readers in 

defining the possible future direction and the trends of the research. The following statistical analysis summarised the 103 articles 

in the airside operations research using meta-heuristics from Jan 1996 to Sep 2017.  

 

4.1. Distribution of articles by airside activities 

After reviewing the relevant journals from the above electronic library, 103 journal articles were successfully extracted and aligned 

with our selection criteria. Approximate 25% and 24% of the selected articles are grouped in AO in TMA, including FSP and ASSP. 

It concludes that fleet resources constraints planning and runway scheduling stated important positions of the airside activities. The 

rank number three of the distribution of airside activities using meta-heuristics is GAP, which is about 21% of the selected articles. 

Except for the integrated model, the remaining research domain occupied approximate 4-7% distribution. Given the complexity of 

the formulation in an integrated model, we found that integrated model is the potential research in the field.  

 

 

Fig. 9. Approximate distribution meta-heuristics application by airside activities 

 

4.2. Distribution of articles by airside activities and publication year 

The distribution of publications across years (from Jan 1996 to Sep 2017) is shown in Fig. 10. The first journal article related to 

airside activities using meta-heuristics was published in 1996. There was only sporadic publication of scientific papers in this area 

between 1997 and 2003. Meta-heuristics research gained popularity after 2004. Large numbers of publications in this research field 

were found for the period between 2012 and 2017. The timeline of the publication exhibits an increasing trend. We observed that 

most of the articles in this review fell into the categories of STO and AO in TMA after 2012. The trend also aligned with the Fig. 9.  

 

 

Fig. 10. Publication distribution timeline 

 

4.3. Distribution of articles by meta-heuristics and publication year 

The research methodology by year was presented in Fig. 11. Single solution meta-heuristics and biological evolution algorithms 

have been the most popular algorithms throughout the years as most of the algorithms were well developed. Most of the physics-

based algorithms and swarm intelligence were developed after 2000 (See Table 16 and Table 17 in Appendix B). Regarding the 

development of the meta-heuristics. There has been an increasing trend of using physics-based algorithms and swarm intelligence 

in airside activities.  

 

 

Fig. 11. Algorithm distribution timeline 

 



4.4. Distribution of articles by journal 

The first four rank journals from the delimited publications includes Computers & Operations Research, European Journal of 

Operational Research, Expert Systems with Applications and Mathematical Problems in Engineering, contribute to 30% of the 

whole of the selected journals. Table 10 shows the list of articles regarding the academic journals from 1997 to 2017. The latest 

literature access was in Sep 2017. There has been an increasing trend in the number of articles issued in the research area of airside 

activities using meta-heuristics.  

 

Table 10 

Distribution of articles by journal 

Journal title Count Percentage Ref. 

Elsevier - Computers & Operations Research 9 8.7% [44, 45, 47, 88, 89, 104, 112, 120, 164] 

Elsevier - European Journal of Operational Research 8 7.8% [71, 84, 134, 140, 143, 144, 155, 185] 

Elsevier - Expert Systems with Applications 7 6.8% [46, 82, 110, 111, 128, 163, 169] 

Hindawi - Mathematical Problems in Engineering 7 6.8% [103, 105, 116, 139, 178, 187] 

Elsevier - Transportation Research Part C: Emerging 

Technologies 

6 5.8% [54, 106, 107, 170, 180, 186] 

Springer - Journal of the Operational Research Society 5 4.9% [69, 118, 119, 136, 159] 

Elsevier - Applied Soft Computing 4 3.9% [67, 101, 129, 172] 

Elsevier - Computers & Industrial Engineering 4 3.9% [115, 124, 157, 162] 

Elsevier - Journal of Air Transport Management 4 3.9% [59, 85, 87, 102] 

Elsevier - Transportation Research Part E: Logistics and 

Transportation Review 

3 2.9% [78, 133, 160] 

IEEE Transactions on Intelligence Transportation Systems 3 2.9% [68, 90, 95] 

Elsevier - Chinese Journal of Aeronautics 2 1.9% [53, 62] 

Elsevier - Engineering Applications of Artificial Intelligence 2 1.9% [61, 75] 

IEEE Transactions on Systems, Man, and Cybernetics: Systems 2 1.9% [125, 131] 

Informs - Transportation Science 2 1.9% [93, 137] 

Springer - Journal of Global Optimization 2 1.9% [55, 56] 

Springer - Journal of Heuristics 2 1.9% [80, 126] 

Others  31 30.1%  

Total 103   

 

4.5. Distribution of articles by algorithm contribution and year 

The motivation of this section is to describe the trends of the contribution regarding the novel algorithmic components. Table 11 

summarises the distribution of the selected journal articles by the research methods. We defined the research methods into three 

major categories. Original meta-heuristics is defined as the research methodology of the articles is direct adoption or adopted without 

revising the algorithmic components, while improved meta-heuristics denoted that the articles contribute either the convergence rate 

or computational load of the meta-heuristic algorithm by modifying the algorithmic components. Given a similar nature under the 

same sub-categories of the meta-heuristics, we interpreted that hybrid meta-heuristics only includes the combination of different 

categories of metaheuristics. The scholar focused on the evaluation of the use of meta-heuristics throughout the year. Importantly, 

the recent publication also concentrated on the improvement of the algorithm performance and solution quality.  

 

 

 

 

 

 

 



Table 11 

Distribution of the number of journal articles by the research methods 

Number of articles 

Years Original 

meta-

heuristics 

Improved 

meta-

heuristics 

Hybrid 

meta-

heuristics 

Total 

1996 - 1 - 1 

1997 1 - - 1 

1999 1 2 - 3 

2001 1 2 - 3 

2004 2 2 - 4 

2005 1 4 1 6 

2006 1 1 - 2 

2007 3 3 - 6 

2008 3 1 - 4 

2009 2 1 - 3 

2010 2 3 - 5 

2011 2 2 - 4 

2012 1 3 1 5 

2013 6 5 1 12 

2014 5 4 - 9 

2015 5 4 - 9 

2016 3 7 1 11 

2017 7 8 - 15 

Total 46 53 4 103 

 

4.6. Distribution of articles by airside activities and meta-heuristics 

In order to provide an in-depth synopsis of the research field, Table 12 presents a matrix with the row of airside activities in 

operations research and the column of meta-heuristics classification. The number in Table 12 indicates the number of publication 

in each category.  

 

 

 



Table 12  

Distribution of articles by airside activities and meta-heuristics 

  
Single solution meta-

heuristics 

Population meta-heuristics 
Integrated meta-

heuristics 

 

 Search 

method/agents 

Biological 

evolution 
Physics-based algorithms Swarm intelligence 

 

Airside 

activities 

Neighbourhood 

structure 

Memory 

structure 
Gene Species 

Electromagnetic 

radiation 
Energy Mass Ant Bee Particles Bat Cat SA+TS SA+VNS 

Total 

ATFM 
ACA 1  3  1 1         6 

FPO   6       1     7 

AO in 

TMA 

ASSP 4 2 10   1 1 3 1 1 1   1 25 

FSP 7 2 11   2  1  2  1   26 

STO 

AMRP 1 1 2   1         5 

AGSS 1  2   1         4 

TO 1  4            5 

AGAP 3 5 4 1  3  2 1 1   2  22 

Integrated  1 2            3 

 Total 18 11 44 1 1 9 1 6 2 5 1 1 2 1 103 



 

5. Discussion 

This unifying review synthesises the abundant publications related to the field of airside activities and meta-heuristics. Practical 

implications and potential research can be derived from the statistical results. After the analysis of the taxonomy framework of 

airside operations and the denotation of important literature publications using the meta-heuristics approach from 1997 to 2017, the 

subsection of airside operations shares similar features in mathematical modelling. The majority of the meta-heuristics can be 

executed in a wide range of airside operations. ASSP and GAP can be formulated as JSSP modelling, while AGSS is expressed as a 

constraint-specified VRP model. Although there is no universal rule to define the selection criteria for meta-heuristics, the systematic 

review of this paper provides a summary of the current state of understanding of meta-heuristics in airside research. The analysis 

presented herein indicates the important research implications, which are shown as follows: 

 

5.1. Trend analysis of the research domain 

Research that involves the use of meta-heuristics for airside research has increased significantly after 2011. It is projected to grow 

in the future, especially in AO in TMA. The journal publication in this area accounted for 49% of the overall publications on airside 

research. Application in ASSP and FSP using the Biological Evolution algorithm is the dominant approach and keeps increasing 

from 2001 to 2017. 

 

5.2. Additional research directions in airside operations research 

More effort should be spent on the formulation of modelling and design of reasonable assumption. Due to the limited exploitation 

ability of classical optimisation techniques, model simplification is often considered to obtain solutions smoothly. However, the 

solution set with certain restrictive assumptions may vary from the actual solution in practice. For example, flight size should be 

considered to reduce the severity of a collision between nearby gates. A preference-based gate assignment is also a typical approach 

to the actual operation. Aircraft from the same airline should be assigned to nearby gates for ease of arranging the ground services 

and staff rostering. Various algorithms are developed to resolve complex models nowadays. Hence, loosening assumption and model 

adjustment help to identify suitable and realistic sets of solutions for practitioners. In relation to the literature, a static approach is 

commonly considered. We observed that there is a several publications adopting stochastic and robust treatments in mathematical 

modelling that may be a potential for further investigation. 

 

One special challenge in airside research is that the global optimum for all entities is too complex to achieve. Despite the fact that 

the decision-making follows the top-down approach for airports, airlines, ground handling entities and agents, airside operations 

between entities are interrelated and interdependent, which can be considered a closed-loop service supply chain modelling. Current 

research focuses on solving each sub-problem individually as a decomposition approach, and yet, an optimal global solution of 

airside operations is the ideal situation. Optimisation of a sub-problem does not necessarily imply optimal solution of another sub-

problem. Wastage of resources will take place in the non-optimal situations. Corporate strategy for multiple vital operations arises 

from the literature and tends to reduce wastage of the resources. Possible extension of the ASSP can be incorporated with the AGAP 

to measure the effect of GDP. By the current literature, optimisation seldom includes the consideration of air traffic control and 

airspace congestion at a strategic level. For the review of the airport congestion problem, integration of the FFO and the ASSP 

allows sacrificing travel time to sustain free-flow traffic in airports.   

 

5.3. Trend analysis of the meta-heuristics design 

Exploitation and exploration are the two principal performance metric in evaluating the convergence of the meta-heuristics [38, 41]. 

In general, exploitation ability is described as the ability in searching better solution from a known solution, while exploration ability 



is interpreted as the ability in escaping the local optimal [41]. Single solution meta-heuristics work well for the problem required 

higher exploitation ability, while biological evolution performs better for the problem required higher exploration ability.   

 

Biological evolution is the most adopted approach, as the information sharing using crossover operators between populations 

improve the convergence rate in path searching. As for the categories of AO in TMA, Gene agents under biological evolution 

category and neighbourhood structure under single solution meta-heuristics category are the representatives of the field. One 

possible reason is that neighbourhood structure algorithm performs better for the FCFS-like schedule or the problem required higher 

exploitation ability in searching optimal, as it provides extensive local operators. Therefore, we can also observe similar publication 

patterns in GAP model under STO category. Memory structure algorithms have less exploitation but exploration ability. The 

algorithm usually restarted from a memorised solution when the current solution fell into a local optimal.  

 

5.4. Research potential of meta-heuristics 

We noticed that there is a few of publication using physics-based algorithms and swarm intelligence in airside operations research 

comparing with the others. However, the potential of the meta-heuristics shall not be underestimated. The algorithmic structure of 

physics-based algorithms performs both exploitation and exploration ability at a different portion along with the iterative process. 

If a solution is expected to be trapped in local optima, the algorithm may direct to revise the solution structure to escape from local 

optima. The mechanism of swarm intelligence concentrates the balance of exploitation and exploration on enhancing the time for 

convergence [41]. Few studies have employed hybrid meta-heuristics, physics-based algorithms or swarm intelligence in these fields. 

As a consequence, there are opportunities to obtain a better solution quality by other meta-heuristics.  

 

Algorithm customisation is a problem-specific method to modify the known algorithms to achieve a better solution quality. The 

modification work can be done based on the nature of the model, such as mono-versus multi-objective, linear versus non-linear 

constraints, trajectory-based versus population-based favour, and static versus stochastic modelling. These factors may affect the 

selection of the appropriate algorithm. It is, however, not feasible to test all the meta-heuristics algorithms for evaluation due to 

comprehensive parameter turning. Researchers may refer to the literature or review articles to identify a proper group of algorithms 

for future works. This study helps readers to the researchers to identify the potential research area and highlight the research 

opportunities for this category of problems.  

 

5.5. Limitations in existing airside operations research 

This systematic review considers the operations research in airside activities using meta-heuristic approach to evaluate and access 

the trend and distribution of the publication of the literature. Only 103 journal articles are extracted in this review. Physics-based 

algorithm and swarm intelligence are the recent meta-heuristics. Therefore, the publication in the field remains potential research 

but not statistically significant from the literature. Swarm intelligence is still in a development stage, as we discover that new 

algorithms were developed recently. There still may be a possibility to have some outstanding swarm intelligence algorithms in the 

future.   

 

6. Concluding remarks 

This paper presents a literature survey of the use of meta-heuristics algorithms in airside research. The significance of airside studies 

not only provides a high-quality solution within a reasonable amount of time, but pursues the requirement of integration between 

different sub-problems. More realistic constraints and loosening assumptions are essential in future research, which requires a faster 

convergence to a near or global optimal solution. The research methodology using meta-heuristics is of importance to the 

development of sophisticated modelling in airside operations. The analysis presented in this paper highlights the important research 



area, and the selection of meta-heuristics algorithms from the literature to help readers to identify potential research areas. The 

proposed taxonomy framework has shown the classification of airside studies. The following remarks can be made regarding this 

review: 

 

1. A taxonomy framework for the airside operations using meta-heuristics approach is lacking. A comprehensive analysis of each 

category must be investigated. 

2. Mathematical modelling in the airside operations remains a static approach. Current publications on the airside operations 

research are far removed from the actual practice, and dynamic or stochastic approach in airside operations is the newly 

emerging research direction considering the robustness of the modelling. 

3. General deficiencies of the previous research are highlighted in the discussion. The summary of future research direction 

guides readers to determine the potential research areas. 

4. Current research has stated that meta-heuristics is a promising optimisation technique regarding time and solution quality. 

Due to the demand for complex or integrated modelling, the use of meta-heuristics may not be able to satisfy the computational 

needs of resource-constrained problems. Efforts should be made to develop new or modified meta-heuristics algorithms to 

solve complicated real-world models. 

 

In this review, the airside research involved a large number of practitioners and activities with tightening resources. In view of the 

limited resources for expanding the capacity of coping with future air traffic demand, optimisation using meta-heuristics remains a 

high research potential. This unifying survey synthesises the current research progress in airside operations and highlights the 

benefits of sophisticated modelling and an integrated approach. It can be concluded that research on airside operations using meta-

heuristics is a promising area. Physics-based and Swarm intelligence algorithms in airside operations are a relatively new research 

field that can be addressed in the future. 
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Appendix A. Abbreviations 

 

Table 13 

List of abbreviations 

General aviation terms 

AFP Airspace Flow Program 

AO in TMA Aircraft Operations in Terminal Manoeuvring Area 

ARN Air Route Network 

ATC Air Traffic Control 

ATFM Airspace and Air Traffic Flow Management 

ATM Air Transport Management 

CWL Crossing Waypoints Location 

FCFS First-Come-First-Served 

GDP Ground Delay Program 

TMA / TMC Terminal Manoeuvring Area / Terminal Manoeuvring Centre 

Modelling techniques 

AGSS Airport Ground Service Scheduling 

ALP Aircraft Landing Problem 

AMRP Aircraft Maintenance Routing Problem 

ASSP Aircraft Sequencing and Scheduling Problem 

ATP Aircraft Take-off Problem 

CO Combinatorial Optimisation 

FFO Flight path optimisation 

GAP Gate Assignment Problem 

JSSP Job Shop Scheduling Problem 

STO Surface Traffic Operation 

TSP Travelling Salesman Problem 

VRP Vehicle Routing Problem 

Meta-heuristics 

ABC Artificial Bee Colony 

ACO Ant Colony Optimisation 

EA Evolutionary Algorithm 

GA Genetic Algorithm 

MA Memetic Algorithm 

SA Simulated Annealing 

TS Tabu Search 

VND Variable Neighbourhood Descent 

VNS Variable Neighbourhood Search 

  



Appendix B. Meta-heuristics classification 

Table 14 

Examples of single-solution meta-heuristics 

Search Method Algorithms 

Neighbourhood 

structure 

Greedy Randomised Adaptive Search Procedure (GRASP) [33]; Meta-heuristic for Randomised 

Priority Search (Meta-RaPS) [188]; Iterated Local Search (ILS) [16]; ;Variable Neighbourhood 

Search (VNS) [189]; Variable Reduce Neighbourhood Search (VRNS) [190]; Large 

Neighbourhood Search (LNS) [191]; Guided Local Search (Guided-LS) [192]; Breakout Local 

Search (Breakout LS) [193]  

Memory structure Tabu Search (TS) [12]; Ejection Chain (EC) method [194] 

 

Table 15 

Examples of biological evolution 

Agent Search Method Algorithms 

Gene Eugenics Evolutionary Algorithm (EA) [195]; Evolutionary Strategies (ES) [196]; 

Evolutionary Programming (EP) [197]; Genetic Algorithm (GA) [17]; Memetic 

Algorithm (MA) [18]; Genetic Programming (GP) [18]; Differential Evolution (DE) 

[19]; Scatter Search (SS) [198] 

Species Immigration; 

Suitability 

Biogeography-based optimisation (BBO) [199]; Parallel Evolution Algorithm (PEA) 

[200] 

 

Table 16 

Examples of physics-based algorithms 

Agent Search Method Algorithms 

Electromagnetic 

radiation 

Light propagation Light Propagation Algorithm (LPA) [56] 

Refracted ray Ray Optimisation (RO) [24] 

Electron Electric charge Charged System Search (CSS) [201] 

Energy Explosion; Contraction Big-Bang Big-Crunch (BB-BC) Algorithm [22] 

Temperature change Simulated Annealing (SA) [202]; Compressed Annealing (CA) [203] 

Mass Gravitational force Central Force Optimisation (CFO) [204]; Gravitational Search 

Algorithm (GSA) [23] 

Electromagnetic force Black Hole (BH) Algorithm [205] 

Mechanical wave Sound Harmony Search (HS) [206]; Melody search Algorithm (MSA) 

[207]; Symphony Orchestra Search Algorithm (SOSA) [208]  

Molecule Water drop Intelligent Water Drops (IWD) Algorithm [209] 

Liquid surfaces Ripple Spreading Algorithm (RSA) [210] 

Consecutive reaction Artificial Chemical Reaction Optimisation Algorithm (ACROA) 

[211] 

Space Theory of space-time 

curvature 

Curved Space Optimisation (CSO) [212] 

  



Table 17 

Examples of swarm intelligence algorithms 

Agent Search Method Algorithms 

Ant Pheromone communication Ant Colony Optimisation (ACO) [26]; Ant System (AS) [213]; Ant 

Colony System (ACS) [214]; MAX-MIN Ant System [215]; 

Termite Algorithm (TA) [2] 

Bee Division of labour Artificial Bee Colony (ABC) Algorithm [25]; Optimisation with 

Marriage in Honey-bees (MBO) [216]; Bee System (BS) Algorithm 

[217]; Bees Algorithm (BA) [218]; Wasp Swarm Optimisation 

(WSO) [219]; Bee Collecting Pollen Algorithm (BCPA) [220] 

Cat Division of labour; Social leadership Cat Swarm Optimisation (CSO) [221] 

Wolf Division of labour; Social Leadership Grey Wolf Optimiser (GWO) [222] 

Fish Position; Velocity Artificial Fish Schooling (AFS) Algorithm [223] 

Particle Position; Velocity Particle Swarm Optimisation (PSO) [28] 

Bat Echolocation; Position; Velocity Bat Algorithm (BA) [27] 

Frog Aggregating; Position; Velocity Frogs Leaping Optimisation (FLO) [224] 

Roach Aggregating; Position; Velocity Roach Infestation Optimisation (RIO) [225] 

Dolphin Aggregating; Position; Social 

Leadership; Velocity 

Dolphin Partner Optimisation (DPO) [226] 

Krill Aggregating; Position; Velocity Krill Herd (KH) Algorithm [227] 

Glowworm Position; Sensing capability; Velocity Fruit Fly Optimisation Algorithm (FOA) [228] 

Epigamic selection Glowworm Swarm Optimisation (GSO) [229]; Firefly Algorithm 

(FA) [230] 

Bird Eugenics Bird Mating Optimiser (BMO) [231] 

Monkey Communication; Trajectory Monkey Search (MS) [232] 

Flower Self-pollination; Allogamy Flower Pollination Algorithm (FPA) [233] 

 



Appendix C. Common and differentiate variables in each framework of the airside operations research 

Table 18 

Common and differentiate variables from the literature for airspace and air traffic flow management – aircraft collision avoidance 

Model config. 
Variables 

Ref. Remarks 
Common Differentiate 

2D trajectory plan Number of flights; set of flight legs; waypoints; 

length of the en-route segment; 2D flight path 

model 

 [53, 55] Generic model 

3D trajectory plan Number of flights; set of flight legs; waypoints; 

length of the en-route segment; altitude profile; 

3D flight path model 

 [56] Generic model 

Allowance of ground delay program [54] Reduce the number of missed detects and false 

alarms for large scale traffic 

Real time GPS coordinates 

 

[65] Propose a grid-design to reduce the problem 

complexity 

Speed regulations; allowance of 

ground delay program 

[57] Consider the continent-scale; yield zero interacting 

solution by considering ground delay programme 

 

Table 19 

Common and differentiate variables from the literature for airspace and air traffic flow management – flight path optimisation 

Model config. 
Variables 

Ref. Remarks 
Common Differentiate 

Airspace flow program Number of flights; set of flight legs; waypoints; 

length of the en-route segment 

Safety margin from obstacles [61, 64] Evaluate the performance of the algorithm under 

five different scenarios 

Crossing waypoints 

location problem 

  [59, 61, 

62, 67] 

Generic model 

Multi-airport capacity 

management 

Set of nearby airport; estimated time of 

arrivals/departures; maximum number of flights 

for arrivals and departures 

 [68] Generic model 

 

  



Table 20 

Common and differentiate variables from the literature for aircraft operation in terminal manoeuvring area – aircraft sequencing and scheduling problem 

Model config. 
Variables 

Ref. Remarks 
Common Differentiate 

Aircraft landing 

problem 

Number of flights; Number of runway; 

Separation time; estimated time of arrival 

 [8, 45, 69, 71, 

85, 86, 89, 92, 

94, 100, 101] 

Generic model 

Flights size [87, 88, 90] Consider receding horizon to reduce the 

problem complexity 

Time window of each rolling horizon [95]  

Density matrix of wake-vortex [97] Estimate the wake-vortex effect and 

determine the runway schedules 

Aircraft sequencing 

and scheduling 

problem 

Number of flights; Number of runway; 

Separation time; estimated time of arrival 

and departure 

 [102, 103, 105]  

Constrained position shifting; requirement of 

mixed-mode operation 

[104] Adopt constrained position shifting for 

mixed-mode runway operation 

Uncertain time of arrival and departure; 

requirement of mixed-mode operation 

[78] Introduce the min-max regret approach in 

hedging uncertainties of runway operation  

Aircraft take-off 

problem 

Number of flights; Number of runway; 

Separation time; estimated time of 

departure 

Re-ordering cost [93] Predict the take-off time by calculating the 

possible turn-a-round processes to formulate 

a take-off schedule 

Terminal traffic 

flow modelling 

Number of flights; Number of runway; 

Separation time; estimated time of 

departure; TMA resources 

 [106, 107] Adopt the alternative graph for ATC-TMA; 

consider the re-routing strategies in TMA 

 

  



Table 21 

Common and differentiate variables from the literature for aircraft operation in terminal manoeuvring area – fleet schedule planning 

Model config. 
Variables 

Ref. Remarks 
Common Differentiate 

Airline schedule 

recovery 

Number of flights; set of flight arcs; arrival 

and departure time; initial schedule; 

disruption time 

 [80, 82, 108, 

109, 111] 

Generic model 

Allowance of long delay time [110]  

Stochastic distribution of arrival 

and departure time 

[81] Focus on short-haul flights disruption planning 

Stochastic distribution of arrival 

and departure time; robust criteria 

[112] Develop a robust schedule to tackle stochastic 

event 

Airline scheduling Number of flights; set of flight arcs; arrival 

and departure time; set of connecting flights 

pair 

 [115] Evaluate the proposed algorithm using a two stage 

model with the Monte Carlo simulation 

Airline scheduling and 

crew-pairing problem 

Number of flight; set of flight arcs; set of 

legal pairings; arrival and departure time; 

cost of pairings; number of crews 

 [116] Combine airline scheduling and crew-pairing for 

short-haul flights business 

Crew recovery Set of flight arcs; arrival and departure time; 

disruption time; number of disrupted crews 

 [117] Generic model 

Crew-pairing problem Set of flight arcs; set of legal pairings; arrival 

and departure time; cost of pairings; number 

of crews 

 [118-120, 123, 

124, 126-129] 

Generic model 

Duty regulation [125] Reduce the computation time significantly for 

practical usage as short-haul flights usually have 

tight schedules 

Fleet schedule recovery 

(integrated airline and 

crew-pairing recovery 

Set of flight arcs; set of legal pairings; arrival 

and departure time; cost of pairings; number 

of crews; disruption time 

 [84, 131] Consider disruption for short-haul flights recovery 

model 

Fleet schedule recovery 

(integrated airline and 

passenger recovery 

Set of flight arcs; set of legal pairings; arrival 

and departure time; disrupted passengers 

 [132-134] Consider disruption on passengers and reallocate 

the disrupted passengers to airline 

 

 

  



Table 22 

Common and differentiate variables from the literature for surface traffic operation – gate assignment problem 

Model config. 
Variables 

Ref. Remarks 
Common Differentiate 

Gate 

assignment 

problem 

Set of terminal gates; arrival and 

departure time; walking distance 

between gates 

 [136, 139, 165, 

169] 

Generic model 

airline preferences [168] Take airline preferences into account of gate 

assignment 

Set of aprons [47, 159, 166, 

172] 

Consider the parking slot before entering gates 

Set of aprons; airline preferences [137] Formulate the robust GAP using Clique Partitioning 

Problem; evaluate the robustness a schedule by 

achieving the minimum buffer time 

Set of remote gates [46, 170]  

Set of remote gates; airline preferences [164] Develop a joint-objectives from the literature; 

successfully adopt efficient meta-heuristic algorithm 

in practical usage 

Flight connections for the transfer passengers [162, 163] Measure the robustness by considering the expected 

gate conflicting cost and tow frequency; transform the 

quadratic formulation which can be solved by exact 

method 

Set of aprons; probabilistic distribution of arrival 

and departure flights 

[167] Generic model 

probabilistic distribution of arrival and departure 

flights; stochastic turn-a-round processing time 

[160] Formulate the stochastic arrival time of flights with a 

left-skewed triangular distribution in the gate 

assignment problem 

Gate re-

assignment 

problem 

Set of terminal gates; arrival and 

departure time; walking distance 

between gates; disruption time 

 [138] Generic model 

set of tow vehicles; stochastic arrival and departure 

time 

[176] Reassign the gates and consider the towing cost for 

surface traffic flow 

Gate sizes [177, 178]  

Stand allocation 

problem 

Set of terminal gates; arrival and 

departure time; walking distance 

between gates; set of apron 

 [140] Generic model 

 

  



Table 23  

Common and differentiate variables from the literature for surface traffic operation – aircraft maintenance routing problem 

Model config. 
Variables 

Ref. Remarks 
Common Differentiate 

Aircraft 

maintenance 

routing problem 

Set of maintenance checks; 

number of workforce; remaining 

legal flying times; maintenance 

regulation 

 [142, 143, 180] Generic model 

Duration of a work shift; skills profile 

of technicians 

[179] Consider the trade-off between the fairness of the technicians’ 

workload and total labour cost 

Maintenance priority [144]  

 

Table 24 

Common and differentiate variables from the literature for surface traffic operation – aircraft ground service scheduling 

Model config. 
Variables 

Ref. Remarks 
Common Differentiate 

Ground service 

handling 

recovery 

Set of ground service handling 

activities; disruption time; initial 

schedule 

 [148] Generic model 

Ground service 

handling 

schedule 

Set of ground service handling 

activities; set of ground service 

handling vehicles; set of visiting 

node; vehicle capacity 

 [44, 149] Formulate the problem as vehicle routing problem with time 

window 

Skills profile of technicians; set of 

catering services 

[185]  

 

Table 25 

Common and differentiate variables from the literature for surface traffic operation – taxiway optimisation 

Model config. 
Variables 

Ref. Remarks 
Common Differentiate 

Taxiway 

optimisation 

Set of taxiway arc; arrival and 

departure time; maximum taxiing 

speed of flights 

 [150, 151, 186, 

187] 

Proposed a taxiway routing following the predefined runway 

schedule 

 Fuel consumption induced by flight 

movement on ground 

[153] Propose a model resolving no terminal gates airport; evaluate the 

algorithm by different weighted objective functions; include fuel 

saving in taxiing 

 

  



Table 26 

Common and differentiate variables from the literature for integrated airside operations research 

Model config. 
Variables 

Ref. Remarks 
Common Differentiate 

Integrated 

airline schedule 

and 

maintenance 

routing problem 

set of maintenance checks; maintenance regulation 

(last maintenance check); number of work force; 

initial airline schedule 

 [155] Proposed an integrated model to develop an airline schedules and 

their maintenance routing schedules induced by preventive 

maintenance 

Integrated 

runway 

scheduling and 

taxiway 

optimisation 

Set of taxiway arc; arrival and departure time; 

maximum taxiing speed of flights; Set of terminal 

gates 

 [157] Focus on the conflict free taxiway routing after landing 

Number of flights; separation time; estimated time 

of departure; set of taxiway arc 

 [156] Integrated the take-off schedule with uncertain taxiing time 
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