
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, Apr. 2018 1799

Copyright ⓒ 2018 KSII

http://doi.org/10.3837/tiis.2018.04.022 ISSN : 1976-7277

A Secure Encryption-Based Malware

Detection System

Zhaowen Lin
1,2,3

, Fei Xiao
1,2,3

, Yi Sun
2,3,4

, Yan Ma
1
, Cong-Cong Xing

*5
 and Jun Huang

6

1 Network and Information Center, Institute of Network Technology, Beijing University of Posts and

Telecommunications, Beijing, 100876 – China

2 Science and Technology on Information Transmission and Dissemination

in Communication Networks Laboratory, Shijiazhuang, 050081 – China

3 National Engineering Laboratory for Mobile Network Security, Beijing University of Posts and

Telecommunications, Beijing, 100876 – China

4 Network and Information Center, Institute of Network Technology/ Institute of Sensing Technology and

Business, Beijing University of Posts and Communications, Beijing, 100000 – China

5 Deptatrment of Mathematics/Computer Science, Nicholls State University, Thibodaux, LA 70310 – USA

6 School of CIE, Chongqing University of Posts and Telecommunications, Chongqing, 400065– China

fige-mail: linzw@bupt.edu.cn; xiaofei@bupt.edu.cn; sybupt@bupt.edu.cn; mayan@bupt.edu.cn;

cong-cong.xing@nicholls.edu; jhuang@cqupt.edu.cn]

*Corresponding author: Cong-Cong Xing

Received June 28, 2017; revised October 8, 2017; accepted October 30, 2017;

published April 30, 2018

Abstract

Malware detections continue to be a challenging task as attackers may be aware of the rules

used in malware detection mechanisms and constantly generate new breeds of malware to

evade the current malware detection mechanisms. Consequently, novel and innovated

malware detection techniques need to be investigated to deal with this circumstance. In this

paper, we propose a new secure malware detection system in which API call fragments are

used to recognize potential malware instances, and these API call fragments together with the

homomorphic encryption technique are used to construct a privacy-preserving Naive Bayes

classifier (PP-NBC). Experimental results demonstrate that the proposed PP-NBC can

successfully classify instances of malware with a hit-rate as high as 94.93%.

1800 Lin et al.: A Secure Encryption-Based Malware Detection System

Keywords: Malware detection, detection mechanism, API call fragments, homomorphic

encryption, privacy-preserving Naive Bayes classifier

1. INTRODUCTION

Malicious software, generally called malware, can be characterized as being able to

compromise computer systems by replicating, propagating, self-executing itself [1]. Despite

the effectiveness of machine learning as one of the major malware detection techniques, we

unfortunately face a growing challenge: certain malware may be aware of some of the

techniques used in malware detection systems, and thus may attempt to evade being detected

by employing some new techniques. A typical such example can be found in [2] where

specifically crafted training data is injected into the system to purposely increase the error rate

of the learning of the support vector machine.

In order to prevent the malware from having such detection-evading capabilities, malware

detection mechanisms need to be protected. Therefore, designing and implementing a new

malware detection system, which can detect the malware effectively and protect the detection

mechanism itself at the same time, is of practical significance. Although there are extensive

studies on the malware detection in the literature (e.g., see [3], [4], [5], [6], [7], [8], [9]), most

of these studies overlook the issue of protecting the malware detection mechanism.

In this paper, we propose a secure malware detection system (SMD-DE) in which the

malware detection mechanism is encrypted. This system uses Application Programming

Interface (API) call fragment sequences to characterize the behavior of malware instances, and

provides a privacy-preserving Naive Bayes classifier [10] (PP-NBC) by using the

homomorphic encryption technique [11], [12]. The contributions of our work are summarized

as follows.

1) Aiming to enhance the detection of malware and contribute to the study on the

protection of detection mechanisms, we propose a secure malware detection system

in which the detection mechanism is encrypted and thus protected.

2) A privacy-preserving Naive Bayes classifier which combines the behavior-based

inspection technique (for detecting malware) with the homomorphic encryption

technique (for protecting the detection mechanism) is constructed.

3) The proposed secure malware detection system is based on a Naive Bayes classifier

which has a considerably high successful malware detection rate (94.93%).

The remainder of this paper is organized as follows. Section 2 discusses related work.

Section 3 provides an introduction to information gain, Paillier homomorphic encryption,

Naive Bayes classifier and secure malware detection protocol. The proposed SMD-DE system

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, April 2018 1801

is described in Section 4, which is followed by the evaluation of SMD-DE in Section 5.

Section 6 concludes the paper with some suggestions for possible future research directions.

2. RELATED WORK

The subject of malware detection is vitally important in the field in network security. Since

programs send their requests to the operating system by using API calls, the characteristic or

pattern of API class has long been recognized as an important indicator for revealing programs’

behaviors and is thus excellent candidate for mining malicious programs’ behaviors. For

example, Eskandari et al. [13] used n-gram algorithm to preserve the ordering of the API calls

and constructed a behavior-based malware detection system so that different orders of API

calls can indicate different behaviors of programs.

The approach of extracting the API calls from programs can be either static or dynamic. The

former is known as a reverse engineering method that extracts API calls from the source code

of the program without actually running the file [13], as exemplified by the work of Ye et al.

[14]. Unfortunately, static approach has many limitations since it cannot handle packed

malware and can be conquered by obfuscation techniques [15] that generate a new

“hard-to-read” copy of a program preserving the behavior of the original program, or use some

embedded encryption engine to make a new copy of a program by a random key [16]. The

dynamic approach overcomes the limitations of the static approach by running programs in a

virtual environment and subsequently mining the program behaviors. An example of the

dynamic approach can be found in [17] where graphs are used to organize and analyze API

calls. In this paper, we use the dynamic approach to extract the API calls.

As introduced in [11], homomorphic encryption (HE) is one of the encryption methods

which provides a means for securely transmitting and storing confidential information. HE has

been successfully used in medical record processing [18], [19], genomics [20], voting [21],

and multiparty computations [22] and securing outsourced Big Data computation [23]. As a

constantly growing component of the cryptography, HE involves some basic operations such

as addition, subtraction, multiplication and division, and can be generally used to protect the

privacy of information.

There exist many malware detection studies in the literature. For example, a simplified

malware detection system is implemented by Elhadi et al. [3]. Saxe et al. [4] proposed a

deep-learning based malware detection method with notably high malware detection rate. Fan

et al. [5] successfully utilized the hooking technique to trace and monitor the behaviors of

malware, and Maiorca [6] employed proactive approaches to develop a defense system for

predicting possible evasion attacks. However, none of them has considered the

privacy-preserving [24], [25] issue in protecting the malware detection mechanism. Although

privacy-preserving computation has been studied extensively in the area of medical record

1802 Lin et al.: A Secure Encryption-Based Malware Detection System

processing (e.g., see [26], [27], [28]), it has been rarely applied to the field of malware

detections. Our work in this paper proposes a secure and privacy-preserving classifier that

utilizes the HE technology and the secure protocol described in [29].

3. PRELIMINARIES

3.1 Information Gain

Information gain (IG) is usually denoted as mutual information in information theory which

is used to denote information exchange and to effectively select certain properties.

Suppose we have the following API fragments set . Let denote

the class of malicious programs, and denote the class benign programs. Also, let

 denote the probability of being in the

class of if , and the probability of not being in the class of if .

Furthermore, let and denote the probabilities of and of the class in

the entire sample set, respectively. As such, the information gain associated with , ,

is defined as

3.2 Paillier Homomorphic Encryption

In order to construct a PP-NBC, we use the well-known Paillier homomorphic encryption

[30], which is a probabilistic public key encryption algorithm. In Paillier cryptosystem the

product of ciphertexts encrypts the sum of plaintexts. The Paillier homomorphic

encryption scheme consists of the following three steps: key generation, encryption, and

decryption.

Key Generation: Randomly choose two large prime numbers and of equivalent

length. Let and . Choose a random integer

(the set of nonzero integers modulo) and calculate

 ,

where is defined as

. Then, the public (encryption) key would be

and the private (decryption) key would be .

Encryption: Let (the set of integers modulo) be a plain message to be

encrypted, choose a random
 and then can be encrypted as follows (where

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, April 2018 1803

Decryption: If is the encrypted message , then can be restored by

Let represent the operation of decryption. We notice that in Paillier homomorphic

cryptographic systems, any two encrypted messages

 and

satisfy the following property

)

)

 where denotes the product of two ciphered texts (see [30] for derivation details). This

shows that the encryption operation in Paillier cryptographic systems is homomorphic.

3.3 Naive Bayes Classifier

As one of the most practical and effective models in malware detection, Naive Bayes

classifier is a supervised learning method with an assumption that the attributes of instances

are independent of each other. The basic idea of the Naive Bayes classifier is to compute the

probability of the input data belonging to each designated class according to the probability

distribution of the training data.

We use API fragment sequences to construct the Naive Bayes classifier. In any API

fragment sequence , each API fragment is different and independent

of another API fragment . There are two designated classes and associated with

the proposed PP-NBC with representing the class of malware and representing the

class of benign programs, and (is the probability of the class with

respect to the total pool of samples. Let be the sequence of code

fragments to be inspected (which is, typically, the user input), we use to

represent the probability of the case that matches and is of class . As is typically

done for numerical stability reasons, we use the logarithm of the probability distributions. As

such, the class that the input sequence belongs to can be computed or classified as follows

1804 Lin et al.: A Secure Encryption-Based Malware Detection System

3.4 The SMD-DE Protocol

There are three parties (server, agency and client) that will be involved in the SMD-DE

protocol. The server receives the encrypted detection mechanism and the public key from the

agency which is responsible for training and updating the malware detection rules. The server

utilizes the received detection mechanism to inspect the programs sent to the server from the

client and produces some encrypted results which will be sent back to the agency. The agency

decrypts the encrypted results by using the private key and then sends the decrypted results to

the server which will subsequently forward them to the client. The overall steps of the

SMD-DE protocol are described as follows (which are also illustratively labeled in Fig. 1).

Step 1: The server receives the public key (of Paillier homomorphic encryption) and

the encrypted malware detection mechanism from the agency.

Step 2: The server receives programs from the client, analyzes and extracts some behavior

information of these programs.

Step 3: The server utilizes Paillier’s additive homomorphism to detect the programs sent

from the client and generates some encrypted results, which will be transmitted to the agency.

Step 4: The agency decrypts the encrypted result using the private key and passes the

decrypted results back to the server.

Step 5: The server returns the decrypted results to the client. (The client may then take

some subsequent appropriate actions to the programs based on the recommendation from the

server.)

4. THE SMD-DE SYSTEM

We in this section elaborate the proposed SMD-DE system.

4.1 System Overview

The proposed SMD-DE system is secure in the sense that it constructs a PP-NBC which can

perform the detection of malware with the detection rules being encrypted. In other words, it

will be extremely difficult for any malware to learn any information about the contents of the

detection rules. Generally speaking, the proposed SMD-DE system consists of three

components: the agency responsible for creating detection rules (AC), a cloud platform (CP),

and the programs to be detected (PD), as depicted in Fig. 1.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, April 2018 1805

PD: Programs to be DetectedCP: Cloud PlatformAC: The Agency Responsible

for Creating Detection Rules

② Programs

⑤ Detection Results

① Encrypted

Detection Mechanism

③ Encrypted Results

④ Decrypted results

Fig. 1. The model of the SMD-DE system

Specifically, the purpose and functionality of each component are described as follows.

1) AC refers to an industrial or academic entity that constructs and updates the welfare

detection mechanism on the basis of a large scale of training data. AC provides

services to the CP by sending encrypted malware detection rules to the CP.

2) CP offers unlimited storage space, and stores and manages the data in the proposed

SMD-DE system. CP receives programs sent from the PD, analyzes the behavior of

these programs, and performs malware detection upon the programs by using the

encrypted malware detection mechanism sent to it from the AC.

3) PD simply refers to some (suspicious) programs that need to be inspected for the

possibility of being malware. These programs will be sent to the CP for malware

detection.

4) Note that the terms AC, CP, and PD described here correspond respectively to

agency, server, and client mentioned at the beginning of Section 3.4.

4.2 The Proposed SMD-DE Mechanism

The SMD-DE mechanism consists of the following two modules: the PP-NBC construction

and the secure malware detection. While appropriately chosen executable files (malware and

benign programs) are used to train and construct the PP-NBC in the PP-NBC construction

module, the action of detecting malware is performed in the malware detection module in a

secure manner by utilizing the constructed PP-NBC.

4.2.1 The PP-NBC Construction Module

Malware

Benign

Programs

Monitoring Files
Behavior Mining

API

Call

sequences

N-gram

Information Gain

 4-gram

Fragment

Sequences

Secure

Naïve

Bayes

Classifier

C P

APIS IM/NM IB/NB

… … …

Fig. 2. Construction of the PP-NBC

1806 Lin et al.: A Secure Encryption-Based Malware Detection System

The process of constructing the proposed PP-NBC is shown in Fig. 2 and the PP-NBC is

implemented in AC component of the SMD-DE system. Each input file (a malicious program

or a benign program) is executed in a sandbox and the execution behaviors are logged into

some monitoring files. By reading through these monitoring files, an API call sequence can be

extracted from which a subsequent 4-gram-fragment sequence can be formed. The technique

used to extract the 4-gram-fragment substrings and the call frequencies is the -gram-based

method [31] (in our work), which is an effective means for classifying API calls and

can anticipate the next API call in consecutive API calls based on statistical facts. An example

of the 4-gram-based method is shown in Fig. 3.

RegOpenKey

RegCreateKey

RegCloseKey

NtCreateFile

NtCreateFile

NtCreateFile

NtCreateFile

NtCreateFile

RegOpenKey

RegCreateKey

RegCloseKey

NtCreateFile

RegCreateKey

RegCloseKey

NtCreateFile

NtCreateFile

RegCloseKey

NtCreateFile

NtCreateFile

NtCreateFile

NtCreateFile

NtCreateFile

NtCreateFile

NtCreateFile

NtCreateFile

NtCreateFile

NtCreateFile

NtCreateFile

{ S1:1, S2:1, S3:1, S4:2 }

S S1 S2 S3 S4 S4

v

Fig. 3. An example of the 4-gram-based method

In Fig. 3, S is an original API call sequence. S1 is a 4-gram API call fragment formed by the

top 4 API calls in S. The sliding window of the size of 4 slides from top to bottom along S, one

API call at a time, resulting in four more 4-gram API call fragments: S2, S3, S4, and another

S4. By counting the occurrence of each individual 4-gram in the resulted collection {S1, S2,

S3, S4, S4}, we see clearly that S1, S2, and S3 all have frequency 1 but S4 has frequency 2.

The pseudocode algorithm for constructing the PP-NBC is given in Algorithm 1. Line 1

initializes two datasets and where is used to store an initial sequence of 4-gram API

call fragments and the sequence of unique 4-gram API calls and their frequencies. Lines 2

and 3 describe the task of AC’s executing the input files (malicious programs and benign

programs), recording the behaviors of these programs into report files, and subsequently

extract an API call sequence by analyzing these report files. Note that in

practical situations, the size of is typically hundreds of thousands, so the condition of

can be easily satisfied. Lines 5-8 extract all 4-grams API call fragments from and put them

into the dataset , and Lines 10-12 initialize the frequency of each 4-gram API-call fragment

in to be (the default value) 1. Lines 14-23 subsequently extract, from , one (unique)

copy of each 4-gram API-call fragment and its occurrence frequency in and write them into

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, April 2018 1807

the dataset . As stated in Line 25, AC builds two tables and (where is

preliminary) by using the information contained in . These two tables are conceptually

illustrated by Table 1 and Table 2 below, respectively.

Algorithm 1: Construction of the PP-NBC
==

Input: Executable program files .

Output: Encrypted tables and .

1. ; ; // database initializations

2. AC runs all executable program files and records the behaviors of the executions into

analysis report files ;

3. AC extracts API calls from these analysis report files and obtains an API call

sequence , where each denotes an API call; //

4.

5. for (++)

6. = take the subsequence of // a 4-gram API-call fragment

7. add ih to H ; // construct

8. end for

9.

10. for (++)

11. // default frequency for each in

12. end for

13.
14. for (++)

15. for (++)

16. if (&& && is not in)

17.
18. end if

19. end for

20. if is not in

21. add and to ; // each 4-gram API fragment in is unique

22. end if

23. end for

24.
25. AC builds Table and a preliminary version of Table by using the unique

4-gram API fragments and their frequencies in
26.
27. AC computes the IG for each unique 4-gram API fragment by accessing the contents

in and . Assume the 4-gram API-call fragment portion of is the list

 .

28. for each in

29.

 // info gain for each

1808 Lin et al.: A Secure Encryption-Based Malware Detection System

30. end for

31.

32. Sort the list into descending order by the of each .

33. AC finalizes Table by taking the first 500 ’s from the sorted list (coupled with

their corresponding frequencies).

34.

35. for (++)

36.

 // encryption of

37. for (++)

38.

 // encryption of

39. end for

40. end for

===

Table 1.

C P

 P()

Table 2.

APIS IM NM IB NB

… … … … …

In Table 1, is either or where represents the malware class and the

benign program class. In Table 2, the APIS column contains all 4-gram API-call fragments

(; the IM, NM, IB, and NB columns contain the probabilities of each being in

the malware class, not in the malware class, in the benign program class, and not in the benign

program class, respectively. Lines 27-33 compute the information gain for each by

using the information in tables and , reorder the list () from large to small

by the information gain of each , and finalize the table by replacing its contents with the

first 500 ’s from the sorted list (together with their associated IM, NM, IB, and NB data).

Finally, Lines 35-38 encrypt the two tables and . In particular, Line 36 encrypts the

contents of table where the result of a constant (typically) multiplying the logarithm

of the probability of is converted to an integer first (using the method described in [32])

and then encrypted by the Paillier encryption method (denotes a Paillier-encrypted integer

 here). In a similar manner, Line 38 encrypts table where means the

probability of with respect to class .

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, April 2018 1809

4.2.2 The Malware Detection Module

As mentioned earlier in this section, AC sends the encrypted detection mechanism and the

public key to CP which stores and manages the received encrypted detection mechanisms.

Also, CP executes the programs that it receives from the PD in a virtual environment and

generates the behavior files of the programs to be detected. The procedure of the malware

detection is given in Algorithm 2 below where the inputs to the algorithm are user input file

behavior sequence , PP-NBC constructed by the AC, and the public

encryption key , and the output is the class (malware or benign) of which the user input file

will be classified.

Algorithm 2: Secure malware detection
==

Inputs: , PP-NBC, Public key

Output: // the result of classifying the user input file
1. CP receives the encrypted mechanism PP-NBC sent from AC;

2. for (++)

3.

 ;

4. end for

5. CP transmits the encrypted data to AC for decryption;

6. AC sends the decrypted data back to CP;

7. if (
8.
9. else

10.
11. end if

 ==

Line 1 simply instructs the CP to receive the PP-NBC from the AC. Lines 2-4 compute the

encrypted comprehensive malware indicator for each . While Line 5 sends each

encrypted to the AC for decryption, Line 6 sends the decrypted result back to the CP.

Lines 7-11 compare the decrypted and and choose the class associated with the larger

 as the output.

5. EVALUATION

In this section, we analyze the proposed security mechanism and present the experimental

results on testing the proposed secure malware detection system.

5.1 Security Analysis

In the proposed SMD-DE system, AC holds the encrypted detection mechanism and PD
holds the programs to be detected. Roughly speaking, since the malware detection

mechanism PP-NBC, which is sent to the CP by the AC, is encrypted, it is highly unlikely that

the construction details of the PP-NBC will be known to a third party even if it is intercepted
during the transmission. Also, note that CP computes the detection results by using an

1810 Lin et al.: A Secure Encryption-Based Malware Detection System

encrypted PP-NBC and the output of the computation is also encrypted. Therefore, the

information about the computation performed by the CP should be secure.
A detailed explanation regarding the security of the information flow in the SMD-DE

system can be given as follows. The complete data that the AC sends to the PC is

 in which the public key , the 4-gram API-call fragment

sequence , and the classes are not encrypted, but the attributes of the two tables and

 are encrypted, namely,

 and

 . As

such, even if or was somehow seized by a malicious attacker during the

transmission, the attacker will not be able to read the information in or
because it does not have the private key to decode them. Thus, the transmission of the

PP-NBC from the AC to the CP is secure. After receiving from the

AC and analyzing the programs to be detected from the user/client, CP starts the detection of

the programs by computing using the encrypted and as stipulated

in Algorithm 2. Since the computation result is encrypted, CP needs to send to the

AC for decryption. Once receiving the decrypted from the AC, CP will use them to decide

the detection result and send the result to the user/client. Hence, CP can complete the process

of malware detection for any programs without knowing the actual internal mechanism of the
malware detection. In other words, the computation of the malware detection performed at the

CP is secure.

Regarding the actions and the malware detection rates of an homomorphically encrypted

Naïve Bayes classier (NBC) and a regular (unencrypted) Naïve Bayes classifier, note the

following property that the homomorphic encryption is a form of encryption that allows

computations to be carried out on ciphertext thereby generating an encrypted result which,

when decrypted, matches the result of operations performed on the plaintext [33]. In our

proposed PP-NBC, while the frequency attributes of each in the 4-gram API call

fragment sequence are homorphically encrypted, the sequence itself is

unencrypted. When the API-call fragment sequence generated from the user input files is

available, it will be matched against and the corresponding computations will be

performed using the encrypted frequency attributes yielding encrypted ’s which will be

subsequently decrypted (see Algorithm 2) and used to produce the final result. According

to the property of homomorphic encryptions just mentioned, we see that if (or

 is the result of the computation using a plaintext NBC, then (or

 is also the result of the computation using encrypted NBC, and vice versa.

Therefore, in terms of malware detection rate or accuracy, the proposed PP-NBC has the

same performance as its unencrypted version.

5.2 Experiment Setup

As stated before, we in this paper characterize the API calls as a sequence of 4-gram

fragments. Part of the data regarding the sample files that are used to train the PP-NBC is

displayed in Table 3, where the first column shows three 4-gram API-call fragments, the

MalFre column shows their occurrence frequency in malware samples, the BenFre column

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, April 2018 1811

shows their occurrence frequency in benign samples, and the last column shows their

information gains. Through repeatedly testing the performance of the Naïve Bayes classifier

by selecting the first 10, 20, 50, 100,150, …, 800 4-gram fragments in the ordered list, we find

that the set of the first 500 4-gram fragments yields the optimal performance.

Table 3. Some sample 4-gram fragments and their attributes

4-gram Fragment MalFre BenFre IG

 (LdrGetProcedureAddress,

RegOpenKeyExW,

RegQueryInfoKeyW,
128 95 2.1351379

LdrGetProcedureAddress)

(NtSetInformationFile,

NtCreateFile,

NtSetInformationFile,
221 20 1.9617122

NtQueryInformationFile)

(RegQueryValueExA,

RegCloseKey,

RegEnumKeyExA,
206 21 1.9173703

RegCloseKey)

736 programs including 565 malware instances and 172 benign programs have been

collected as sample files to train the Naïve Bayes classifier. While the malicious programs

(e.g., Netsky, Mydoom, Bagel, etc.) are collected from the Vxheaven website, the benign

programs comprise some Windows Portable Executables and other popular applications (e.g.,

Putty, Foxmail, CCleaner, FoxitReader_setup, etc.). Also, Ubuntu 12.04 is chosen as the

operating system for the host machine to run the Cuckoo Sandbox, and Windows XP is used as

the operating system for client machines.

5.3 Experimental Results

We evaluate the proposed malware detection mechanism by using the following commonly

used metrics. Given the notions of true positive (the number of incidents where a malicious
program is correctly identified as malicious), true negative (the number of incidents where a

benign program is correctly identified as benign), false positive (the number of incidents

where a benign program is incorrectly identified as malicious), and false negative (the number

of incidents where a malicious program is incorrectly identified as benign), the concept of
accuracy is defined as

where TP stands for the true positive, TN the true negative, P the sum of the true positive

and the false negative, N the sum of the false positive and the true negative.

1812 Lin et al.: A Secure Encryption-Based Malware Detection System

The -fold cross validation [34] is a model validation technique that is widely used for

assessing the effectiveness of malware detections. In -fold cross validation, the original data

set is randomly partitioned into equal-sized subsets out of which subsets are

randomly chosen as the training data and the remaining single subset is used as the testing data.

In our work, we set based on empirical experiences. The resulting Receiver

Operating Characteristic (ROC) curve, which shows the correlation between true positive rate

() and false positive rate (), is depicted in Fig. 4. By using Fig. 4, it can be

calculated that the accuracy of our malware detection model is as high as 94.93%.

Fig. 4. The ROC curve of the malware detection mechanism

Table 4 compares our work with some of the peer investigations in the literature

regarding the malware detections. Specifically, Saxe and Berlin [4] studied the malware

detection using a static approach. Although this approach is effective, it cannot deal with

some of the techniques (such as packing and obfuscation) that are commonly employed in

malware programs. Elhadi, Maarof, and Barry [3] and Fan et al. [5] successfully utilized an

API-call-based dynamic approach to overcome the problems of the static approach, but

failed to consider the scenario of metamorphic or polymorphic malicious programs. While

the issue of malware is addressed in [6] by devising some aggressive malware detection rules,

it, unfortunately, falls short to be able to protect the malware detection mechanism itself.

Aiming to tackle all these issues, we proposed a dynamic, and privacy-preserving malware

detection mechanism. It can be seen from Table 4 that our work, in addition to having these

new features, has a compatible malware detection accuracy with peer studies.

Elhadi, Maarof, and Barry [3] and Fan et al. [5] successfully utilized an API-call-based

dynamic approach to overcome the problems of the static approach. Morever, Maiorca [6]

devise some aggressive malware detection rules, it, unfortunately, falls short to be able to

protect the malware detection mechanism itself. Aiming to tackle all these issues, we

proposed a dynamic, and privacy-preserving malware detection mechanism. It can be seen

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, April 2018 1813

from Table 4 that our work, in addition to having these new features, has a compatible

malware detection accuracy with peer studies.

Table 4. Comparison of our study to other peer malware detection models

Peer work

Approach

Malware-identifying

technique

Malware

antagonism

considered?

Accuracy

Self-protection

of

detection

mechanism?

Saxe &

Berlin [4]

Static Contextual byte ;

PE ; PE metadata;

String 2d histogram

No >94% No

Elhadi et

al. [3]

Dynamic API call graph No >94% No

Fan et al.

[5]

Dynamic API records in ARFF

format

No >94% No

Maiorca

[6]

Static and

Dynamic

API references

String

Yes >94% No

Our

method

Dynamic 4-gramAPI fragment

sequences

Yes >94% Yes

6. CONCLUSION AND FUTURE WORK

One of the prominent challenges in the area of malware detections is that most existing

malware detection mechanisms are unable to effectively deal with the situations where a

malware program attempts to antagonistically confuse the malware detection mechanism by

first prying into the malware detection mechanism and then changing or obfuscating its code

to generate new variations of the malware according to the information obtained. Toward

resolving this issue and realizing that an efficient way to do so is to protect the malware

detection mechanism, we proposed in this paper a secure malware detection system SMD-DE

which consists primarily of a PP-NBC whose internal malware detection mechanism is

encrypted by the Paillier homomorphic encryption system. Experimental results demonstrate

that the proposed SMD-DE can correctly detect instances of malware with an accuracy of

94.93%.

As our future studies, we plan to investigate the detection of evasive malware and its

related detection mechanism protection issues.

1814 Lin et al.: A Secure Encryption-Based Malware Detection System

Acknowledgment

This work is supported by the National High Technology Research and Development

Program of China (863 Program) (Grant No. 2013AA014702), the Fundamental Research

Funds for the Central Universities (BUPT2016RC48, Grant 2014ZD03-03), National Natural

Science Foundation of China (Grant No. 61601041).

References

[1] Grimes, R. Malicious mobile code: Virus protection for Windows. " O'Reilly Media, Inc.", 2001.

Article (CrossRef Link)

[2] Biggio, B., Nelson, B., Laskov, P., “Poisoning attacks against support vector machines,” in Proc.

of Langford, J., Pineau, J., editors, 29th International Conference on Machine Learning (ICML),

pp. 1467-1474, June 26-July 01, 2012. Article (CrossRef Link)

[3] Elhadi, E., Maarof, M. A., Barry, B., “Improving the detection of malware behaviour using

simplified data dependent api call graph,” International Journal of Security and Its Applications,

Vol. 7, No. 5, pp. 29-42, October, 2013. Article (CrossRef Link)

[4] Saxe, J., Berlin, K., “Deep neural network based malware detection using two dimensional

binary program features,” in Proc. of 2015 10th International Conference on Malicious and

Unwanted Software (MALWARE), pp. 11-20, October, 2015. Article (CrossRef Link)

[5] Fan, C. I., Hsiao, H. W., Chou, C. H., Tseng, Y. F., “Malware detection systems based on API

log data mining,” in Proc. of 2015 IEEE 39th Annual Computer Software and Applications

Conference (COMPSAC), Vol. 3, pp. 255-260, July, 2015. Article (CrossRef Link)

[6] Maiorca, D., “Design and implementation of robust systems for secure malware

detection (Doctoral dissertation, Universita'degli Studi di Cagliari),” 2016.

Article (CrossRef Link)

[7] Ye, Y., Wu, L., Hong, Z., and Huang, K., “A Risk Classification Based Approach for Android

Malware Detection,” KSII Transactions on Internet and Information Systems, vol. 11, no. 2, pp.

959-981, February, 2017. Article (CrossRef Link)

[8] Abdulla, S. and Altaher, A., “Intelligent Approach for Android Malware Detection,” KSII

Transactions on Internet and Information Systems, vol. 9, no. 8, pp. 2964-2983, August, 2015.

Article (CrossRef Link)

[9] Xiao, X., Wang, Z., Li, Q., Li, Q., and Jiang, Y., “ANNs on Co-occurrence Matrices for Mobile

Malware Detection,” KSII Transactions on Internet and Information Systems, vol. 9, no. 7, pp.

2736-2754, July, 2015. Article (CrossRef Link)

[10] Schultz, M. G., Eskin, E., Zadok, F., Stolfo, S. J., “Data mining methods for detection of new

malicious executables,” in Proc. of Proceedings of the 2001 IEEE Symposium on Security and

Privacy, pp. 38-49, May, 2001. Article (CrossRef Link)

https://allisreview.cf/old/google-books-store-malicious-mobile-code-virus-protection-for-windows-djvu-by-roger-a-grimes-156592682x.html
https://dl.acm.org/citation.cfm?id=3042761
http://dx.doi.org/doi:10.14257/ijsia.2013.7.5.03
https://arxiv.org/abs/1508.03096
http://ieeexplore.ieee.org/document/7273364/
https://pralab.diee.unica.it/it/node/1277
http://dx.doi.org/doi:10.3837/tiis.2017.02.018
http://dx.doi.org/doi:10.3837/tiis.2015.08.012
http://dx.doi.org/doi:10.3837/tiis.2015.07.023
http://dx.doi.org/doi:10.1109/SECPRI.2001.924286

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, April 2018 1815

[11] Frederick, R., “Core concept: homomorphic encryption,” in Proc. of Proceedings of the National

Academy of Sciences, Vol.112, no. 28, pp. 8515-8516, July, 2015.

Article (CrossRef Link)

[12] Sun, Y., Wen, Q., Zhang, Y., Zhang, H., Jin, Z., “Efficient secure multiparty computation

protocol for sequencing problem over insecure channel,” Mathematical Problems in Engineering

2013, Article ID 172718, September, 2013. Article (CrossRef Link)

[13] Eskandari, M., Khorshidpur, Z., Hashemi, S., “To incorporate sequential dynamic features in

malware detection engines,” in Proc. of Intelligence and Security Informatics Conference

(EISIC), pp. 46-52, August, 2012. Article (CrossRef Link)

[14] Ye, Y., Wang, D., Li, T., Ye, D., “IMDS: Intelligent malware detection system,” in Proc. of

Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and

data mining, pp. 1043-1047, August, 2007. Article (CrossRef Link)

[15] Canfora, G., Di Sorbo, A., Mercaldo, F., Visaggio, C. A., “Obfuscation techniques against

signature-based detection: a case study,” in Proc. of Proceedings of 1st Workshop on Mobile

System Technologies (MST), pp. 21-26, May, 2015. Article (CrossRef Link)

[16] Kim, M., Lauter, K., “Private genome analysis through homomorphic encryption,” BMC medical

informatics and decision making, Vol. 15, no. 5, S3, 2015. Article (CrossRef Link)

[17] Elhadi, A. A. E., Maarof, M. A., Barry, B. I., Hamza, H., “Enhancing the detection of

metamorphic malware using call graphs,” Computers & Security, Vol. 46, pp. 62-78, October,

2014. Article (CrossRef Link)

[18] Kocabas, O., Soyata, T., “Utilizing homomorphic encryption to implement secure and private

medical cloud computing,” in Proc. of Cloud Computing (CLOUD), 2015 IEEE 8th International

Conference, pp. 540-547, June, 2015. Article (CrossRef Link)

[19] Sun, Y., Wen, Q., Zhang, Y., Li, W., “Privacy-preserving self-helped medical diagnosis scheme

based on secure two-party computation in wireless sensor networks,” Computational and

mathematical methods in medicine, vol. 2014, pp. 9, July, 2014. Article (CrossRef Link)

[20] Kim, M., Lauter, K., “Private genome analysis through homomorphic encryption,” BMC Med

Inform Decis Making, 15(Suppl 5):3, December, 2015. Article (CrossRef Link)

[21] Yi, X., Okamoto, E., “Practical internet voting system,” Journal of Network and Computer

Applications, Vol. 36, no. 1, pp. 378-387, January, 2013. Article (CrossRef Link)

[22] Bunn, P., Ostrovsky, R., “Secure two-party k-means clustering,” in Proc. of Proceedings of the

14th ACM conference on Computer and communications security, pp. 486-497, October, 2007.

Article (CrossRef Link)

[23] Fun, T. S. and Samsudin, A., “A Survey of Homomorphic Encryption for Outsourced Big Data

Computation,” KSII Transactions on Internet and Information Systems, vol. 10, no. 8, pp.

3826-3851, August, 2016. Article (CrossRef Link)

http://dx.doi.org/doi:10.1073/pnas.1507452112
http://dx.doi.org/doi:10.1155/2013/172718
http://ieeexplore.ieee.org/document/6298812/
https://dl.acm.org/citation.cfm?id=1281308
http://ieeexplore.ieee.org/document/7469568/
http://dx.doi.org/doi:10.1186/1472-6947-15-S5-S3
http://dx.doi.org/doi:10.1016/j.cose.2014.07.004
http://ieeexplore.ieee.org/document/7214088/
http://dx.doi.org/doi:10.1155/2014/214841
http://dx.doi.org/doi:10.1186/1472-6947-15-S5-S3
http://dx.doi.org/doi:10.1016/j.jnca.2012.05.005
https://dl.acm.org/citation.cfm?id=1315306
http://dx.doi.org/doi:10.3837/tiis.2016.08.022

1816 Lin et al.: A Secure Encryption-Based Malware Detection System

[24] Kissner, L., Song, D., “Privacy-preserving set operations,” in Proc. of Annual International

Cryptology Conference, Springer Berlin Heidelberg, pp. 241-257, August, 2005.

Article (CrossRef Link)

[25] Xuezhen, H., Jiqiang, L., Zhen, H., Jun, Y., “A new anonymity model for privacy-preserving

data publishing,” China Communications, Vol. 11, no. 9, pp. 47-59, November, 2014.

Article (CrossRef Link)

[26] Barni, M., Failla, P., Kolesnikov, V., Lazzeretti, R., Sadeghi, A. R., Schneider, T., “Secure

evaluation of private linear branching programs with medical applications,” in Proc. of European

Symposium on Research in Computer Security, pp. 424-439, September, 2009.

Article (CrossRef Link)

[27] Barni, M., Failla, P., Lazzeretti, R., Paus, A., Sadeghi, A. R., Schneider, T., Kolesnikov, V.,

“Efficient privacy-preserving classification of ECG signals,” in Proc. of First IEEE International

Workshop on #Information Forensics and Security, pp. 91-95, December, 2009.

Article (CrossRef Link)

[28] Bos, J. W., Lauter, K., Naehrig, M., “Private predictive analysis on encrypted medical data,”

Journal of biomedical informatics, Vol. 50, pp. 234-243, August, 2014.

Article (CrossRef Link)

[29] Bost, R., Popa, R. A., Tu, S., Goldwasser, S., “Machine Learning Classification over Encrypted

Data,” in Proc. of The 22nd Internet Society Annual Network and Distributed System Security

Symposium，pp. 8-11, February, 2015. Article (CrossRef Link)

[30] Paillier, P., “Public-key cryptosystems based on composite degree residuosity classes,” in Proc.

of International Conference on the Theory and Applications of Cryptographic Techniques, pp.

223-238, May, 1999. Article (CrossRef Link)

[31] Lee, T., Choi, B., Shin, Y., Kwak, J., “Automatic malware mutant detection and group

classification based on the n-gram and clustering coefficient,” The Journal of Supercomputing,

pp. 1-15, December, 2015. Article (CrossRef Link)

[32] Tschiatschek, S., Pernkopf, F., “On Bayesian network classifiers with reduced precision

parameters,” IEEE transactions on pattern analysis and machine intelligence, Vol. 37, no. 4, pp.

774-785, August, 2015. Article (CrossRef Link)

[33] X. Yi, R. Paulet, E., “Bertino. homomorphic Encryption and Applications,” Springer

International Publishing, 2014. Article (CrossRef Link)

[34] Zhang, Y., Wang, S., Phillips, P., Ji, G., “Binary PSO with mutation operator for feature

selection using decision tree applied to spam detection,” Knowledge-Based Systems, Vol. 64, pp.

22-31, July, 2014. Article (CrossRef Link)

https://dl.acm.org/citation.cfm?id=2153434
http://dx.doi.org/doi:10.1109/CC.2014.6969710
http://dx.doi.org/doi:10.1007/978-3-642-04444-1_26
https://doi.org/10.1109/WIFS.2009.5386475
http://dx.doi.org/doi:10.1016/j.jbi.2014.04.003
https://www.ndss-symposium.org/ndss2015/ndss-2015-programme/machine-learning-classification-over-encrypted-data/
https://link.springer.com/chapter/10.1007/3-540-48910-X_16
http://dx.doi.org/doi:10.1007/s11227-015-1594-6
http://dx.doi.org/doi:10.1109/TPAMI.2014.2353620
http://dx.doi.org/doi:10.1007/978-3-319-12229-8
http://dx.doi.org/doi:10.1016/j.knosys.2014.03.015

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, April 2018 1817

Zhaowen Lin was born in Jieyang, Guangdong, China in 1979. He received his doctor

degree from Beijing University of Posts and Telecommunications(BUPT). He is currently

an associate professor, doctoral supervisor in BUPT. His research fields concern network

architecture, network management and security.

Fei Xiao was born in Linyi, Shandong, China in 1989. She is a Ph.D. candidate in Beijing

University of Posts and Telecommunications(BUPT) of Computer Sciences and

Technology. Her research interests include network security and privacy-preserving data

mining.

Yi Sun was born in Enshi, Hubei, China in 1987. She received her doctor degree from

State Key Laboratory of Networking and Switching Technology, Beijing University of

Posts and Telecommunications in June, 2015. Now she is a lecturer of Institute of Sensing

Technology and Business, Beijing University of Posts and Communications, China. Her

research interests include information security, privacy-preserving data mining, secure

multiparty computation, healthcare big data.

Yan Ma was born in Beijing, China in 1955. He received his bachelor degree from Beijing

University of Posts and Telecommunications(BUPT). He is currently a professor in BUPT.

His research fields concern network architecture, network management and security.

Cong-Cong Xing is Professor of Computer Science/Mathematics at Nicholls State

University, Thibodaux, Louisiana, USA. He received his Ph.D. in Computer Science and

Engineering from Tulane University, New Orleans, USA, joining the Nicholls State

University faculty in 2001. His research interests include theoretical foundations of

programming languages, category theory, mobile/wireless computing and analysis, and

malware detections. He is active in research in these areas.

1818 Lin et al.: A Secure Encryption-Based Malware Detection System

Jun Huang (M’12-SM’16) received the Ph.D. degree from the Institute of Network

Technology, Beijing University of Posts and Telecommunications, China, in 2012. He is a

professor of communication and information system with the Chongqing University of

Posts and Telecommunications. He was a visiting scholar in the Global Information and

Telecommunication Institute, Waseda University, a research fellow in the Electrical and

Computer Engineering Department, South Dakota School of Mines and Technology, a

visiting scholar in the Computer Science Department, the University of Texas at Dallas, and

a guest researcher at the National Institute of Standards and Technology. He received a

runner-up of best paper award from ACM SAC 2014 and a best paper award from AsiaFI

2011. He has authored more than 90 publications including papers in prestigious

journal/conferences such as the IEEE Network, the IEEE Communications Magazine, the

IEEE Wireless Communications Magazine, the IEEE Transactions on Broadcasting, the

IEEE Transactions on Vehicular Technology, the IEEE Transactions on Emerging Topics in

Computing, the IEEE Transactions on Sustainable Computing, the IEEE Internet of Things

Journal, the IEEE Transactions on Cloud Computing, IWQoS, SCC, ICCCN,

GLOBECOM, ICC, ACM SAC, and RACS. He is an associate editor of IEEE Access and

the KSII Transactions on Internet and Information Systems. He chaired and co-chaired

multiple conferences in the communications and networking areas and organized multiple

workshops at major IEEE and ACM events. His current research interests include network

optimization and control, machine-to-machine communications, and Internet of Things. He

is a senior member of the IEEE.

