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Abstract 

 

Malware detections continue to be a challenging task as attackers may be aware of the rules 

used in malware detection mechanisms and constantly generate new breeds of malware to 

evade the current malware detection mechanisms. Consequently, novel and innovated 

malware detection techniques need to be investigated to deal with this circumstance. In this 

paper, we propose a new secure malware detection system in which API call fragments are 

used to recognize potential malware instances, and these API call fragments together with the 

homomorphic encryption technique are used to construct a privacy-preserving Naive Bayes 

classifier (PP-NBC).  Experimental results demonstrate that the proposed PP-NBC can 

successfully classify instances of malware with a hit-rate as high as 94.93%.  
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1. INTRODUCTION 

Malicious software, generally called malware, can be characterized as being able to 

compromise computer systems by replicating, propagating, self-executing itself [1]. Despite 

the effectiveness of machine learning as one of the major malware detection techniques, we 

unfortunately face a growing challenge: certain malware may be aware of some of the 

techniques used in malware detection systems, and thus may attempt to evade being detected 

by employing some new techniques. A typical such example can be found in [2] where 

specifically crafted training data is injected into the system to purposely increase the error rate 

of the learning of the support vector machine.  

In order to prevent the malware from having such detection-evading capabilities, malware 

detection mechanisms need to be protected. Therefore, designing and implementing a new 

malware detection system, which can detect the malware effectively and protect the detection 

mechanism itself at the same time, is of practical significance. Although there are extensive 

studies on the malware detection in the literature (e.g., see [3], [4], [5], [6], [7], [8], [9]), most 

of these studies overlook the issue of protecting the malware detection mechanism.   

In this paper, we propose a secure malware detection system (SMD-DE) in which the 

malware detection mechanism is encrypted. This system uses Application Programming 

Interface (API) call fragment sequences to characterize the behavior of malware instances, and 

provides a privacy-preserving Naive Bayes classifier [10] (PP-NBC) by using the 

homomorphic encryption technique [11], [12]. The contributions of our work are summarized 

as follows. 

1) Aiming to enhance the detection of malware and contribute to the study on the 

protection of detection mechanisms, we propose a secure malware detection system 

in which the detection mechanism is encrypted and thus protected. 

2) A privacy-preserving Naive Bayes classifier which combines the behavior-based 

inspection technique (for detecting malware) with the homomorphic encryption 

technique (for protecting the detection mechanism) is constructed.   

3) The proposed secure malware detection system is based on a Naive Bayes classifier 

which has a considerably high successful malware detection rate (94.93%). 

The remainder of this paper is organized as follows. Section 2 discusses related work. 

Section 3 provides an introduction to information gain, Paillier homomorphic encryption, 

Naive Bayes classifier and secure malware detection protocol. The proposed SMD-DE system 
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is described in Section 4, which is followed by the evaluation of SMD-DE in Section 5. 

Section 6 concludes the paper with some suggestions for possible future research directions. 

 

2. RELATED WORK 

 

The subject of malware detection is vitally important in the field in network security.  Since 

programs send their requests to the operating system by using API calls, the characteristic or 

pattern of API class has long been recognized as an important indicator for revealing programs’ 

behaviors and is thus excellent candidate for mining malicious programs’ behaviors.  For 

example, Eskandari et al. [13] used n-gram algorithm to preserve the ordering of the API calls 

and constructed a behavior-based malware detection system so that different orders of API 

calls can indicate different behaviors of programs. 

The approach of extracting the API calls from programs can be either static or dynamic. The 

former is known as a reverse engineering method that extracts API calls from the source code 

of the program without actually running the file [13], as exemplified by the work of Ye et al. 

[14]. Unfortunately, static approach has many limitations since it cannot handle packed 

malware and can be conquered by obfuscation techniques [15] that generate a new 

“hard-to-read” copy of a program preserving the behavior of the original program, or use some 

embedded encryption engine to make a new copy of a program by a random key [16]. The 

dynamic approach overcomes the limitations of the static approach by running programs in a 

virtual environment and subsequently mining the program behaviors. An example of the 

dynamic approach can be found in [17] where graphs are used to organize and analyze API 

calls. In this paper, we use the dynamic approach to extract the API calls.  

As introduced in [11], homomorphic encryption (HE) is one of the encryption methods 

which provides a means for securely transmitting and storing confidential information. HE has 

been successfully used in medical record processing [18], [19], genomics [20], voting [21], 

and multiparty computations [22] and securing outsourced Big Data computation [23]. As a 

constantly growing component of the cryptography, HE involves some basic operations such 

as addition, subtraction, multiplication and division, and can be generally used to protect the 

privacy of information. 

There exist many malware detection studies in the literature. For example, a simplified 

malware detection system is implemented by Elhadi et al. [3].  Saxe et al. [4] proposed a 

deep-learning based malware detection method with notably high malware detection rate. Fan 

et al. [5] successfully utilized the hooking technique to trace and monitor the behaviors of 

malware, and Maiorca [6] employed proactive approaches to develop a defense system for 

predicting possible evasion attacks. However, none of them has considered the 

privacy-preserving [24], [25] issue in protecting the malware detection mechanism. Although 

privacy-preserving computation has been studied extensively in the area of medical record 
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processing (e.g., see [26], [27], [28]), it has been rarely applied to the field of malware 

detections.  Our work in this paper proposes a secure and privacy-preserving classifier that 

utilizes the HE technology and the secure protocol described in [29].  

 

3. PRELIMINARIES 

 

3.1 Information Gain  

Information gain (IG) is usually denoted as mutual information in information theory which 

is used to denote information exchange and to effectively select certain properties.  

Suppose we have the following API fragments set                   . Let    denote 

the class of malicious programs, and    denote the class benign programs. Also, let 

                                    denote the probability of      being in the 

class of    if     , and the probability of      not being in the class of    if     .  

Furthermore, let       and       denote the probabilities of      and of the    class in 

the entire sample set, respectively. As such, the information gain associated with     ,      , 

is defined as  

 

                    
        

          
                                

 

   

 

        

 

 

3.2 Paillier Homomorphic Encryption 

In order to construct a PP-NBC, we use the well-known Paillier homomorphic encryption 

[30], which is a probabilistic public key encryption algorithm. In Paillier cryptosystem the 

product of ciphertexts encrypts the sum of plaintexts. The Paillier homomorphic 

encryption scheme consists of the following three steps: key generation, encryption, and 

decryption. 

Key Generation: Randomly choose two large prime numbers   and   of equivalent 

length.  Let      and               . Choose a random integer      
  

(the set of nonzero integers modulo   ) and calculate                 
  

     , 

where      is defined as      
   

 
.  Then, the public (encryption) key would be       

and the private (decryption) key would be      . 

Encryption: Let      (the set of integers modulo  ) be a plain message to be 

encrypted, choose a random      
  and then   can be encrypted as follows (where 
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Decryption:  If   is the encrypted message          , then   can be restored by  

                                                 

Let      represent the operation of decryption. We notice that in Paillier homomorphic 

cryptographic systems, any two encrypted messages 

 

                                  
                        and          

              
                         

 

satisfy the following property  

 

                              

                                                      
        

                 ) 

                                      
        ) 

                                                            

 where   denotes the product of two ciphered texts (see [30] for derivation details).  This 

shows that the encryption operation in Paillier cryptographic systems is homomorphic.  

 

3.3 Naive Bayes Classifier 

As one of the most practical and effective models in malware detection, Naive Bayes 

classifier is a supervised learning method with an assumption that the attributes of instances 

are independent of each other. The basic idea of the Naive Bayes classifier is to compute the 

probability of the input data belonging to each designated class according to the probability 

distribution of the training data. 

We use API fragment sequences to construct the Naive Bayes classifier. In any API 

fragment sequence               , each API fragment    is different and independent 

of another API fragment   .  There are two designated classes    and    associated with 

the proposed PP-NBC with    representing the class of malware and    representing the 

class of benign programs, and       (       is the probability of the class    with 

respect to the total pool of samples.  Let                be the sequence of code 

fragments to be inspected (which is, typically, the user input), we use              to 

represent the probability of the case that    matches    and   is of class   . As is typically 

done for numerical stability reasons, we use the logarithm of the probability distributions. As 

such, the class that the input sequence   belongs to can be computed or classified as follows 
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3.4 The SMD-DE Protocol 

There are three parties (server, agency and client) that will be involved in the SMD-DE 

protocol. The server receives the encrypted detection mechanism and the public key from the 

agency which is responsible for training and updating the malware detection rules. The server 

utilizes the received detection mechanism to inspect the programs sent to the server from the 

client and produces some encrypted results which will be sent back to the agency. The agency 

decrypts the encrypted results by using the private key and then sends the decrypted results to 

the server which will subsequently forward them to the client.  The overall steps of the 

SMD-DE protocol are described as follows (which are also illustratively labeled in Fig. 1). 

Step 1: The server receives the public key    (of Paillier homomorphic encryption) and 

the encrypted malware detection mechanism from the agency. 

Step 2: The server receives programs from the client, analyzes and extracts some behavior 

information of these programs. 

Step 3: The server utilizes Paillier’s additive homomorphism to detect the programs sent 

from the client and generates some encrypted results, which will be transmitted to the agency. 

Step 4: The agency decrypts the encrypted result using the private key and passes the 

decrypted results back to the server.  

Step 5: The server returns the decrypted results to the client.  (The client may then take 

some subsequent appropriate actions to the programs based on the recommendation from the 

server.) 

 

4. THE SMD-DE SYSTEM 

 

We in this section elaborate the proposed SMD-DE system.  

 

4.1 System Overview  

The proposed SMD-DE system is secure in the sense that it constructs a PP-NBC which can 

perform the detection of malware with the detection rules being encrypted.  In other words, it 

will be extremely difficult for any malware to learn any information about the contents of the 

detection rules. Generally speaking, the proposed SMD-DE system consists of three 

components: the agency responsible for creating detection rules (AC), a cloud platform (CP), 

and the programs to be detected (PD), as depicted in Fig. 1.  
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PD: Programs to be DetectedCP: Cloud PlatformAC: The Agency Responsible 

for Creating Detection Rules

② Programs

⑤ Detection Results

① Encrypted 

Detection Mechanism

③ Encrypted Results

④ Decrypted results

Fig. 1. The model of the SMD-DE system 

Specifically, the purpose and functionality of each component are described as follows. 

1) AC refers to an industrial or academic entity that constructs and updates the welfare 

detection mechanism on the basis of a large scale of training data.  AC provides 

services to the CP by sending encrypted malware detection rules to the CP. 

2) CP offers unlimited storage space, and stores and manages the data in the proposed 

SMD-DE system. CP receives programs sent from the PD, analyzes the behavior of 

these programs, and performs malware detection upon the programs by using the 

encrypted malware detection mechanism sent to it from the AC.   

3) PD simply refers to some (suspicious) programs that need to be inspected for the 

possibility of being malware.  These programs will be sent to the CP for malware 

detection. 

4) Note that the terms AC, CP, and PD described here correspond respectively to 

agency, server, and client mentioned at the beginning of Section 3.4.  

 

4.2 The Proposed SMD-DE Mechanism 

The SMD-DE mechanism consists of the following two modules: the PP-NBC construction 

and the secure malware detection. While appropriately chosen executable files (malware and 

benign programs) are used to train and construct the PP-NBC in the PP-NBC construction 

module, the action of detecting malware is performed in the malware detection module in a 

secure manner by utilizing the constructed PP-NBC.   

4.2.1 The PP-NBC Construction Module 

Malware

Benign 

Programs

Monitoring Files
Behavior Mining

API 

Call

sequences

N-gram

Information Gain

 4-gram 

Fragment 

Sequences

Secure

Naïve

Bayes

Classifier

C P

       

APIS IM/NM IB/NB

… … …

  

  

   
   

   
   

   
   

   
   

 

Fig. 2. Construction of the PP-NBC 
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The process of constructing the proposed PP-NBC is shown in Fig. 2 and the PP-NBC is 

implemented in AC component of the SMD-DE system. Each input file (a malicious program 

or a benign program) is executed in a sandbox and the execution behaviors are logged into 

some monitoring files. By reading through these monitoring files, an API call sequence can be 

extracted from which a subsequent 4-gram-fragment sequence can be formed. The technique 

used to extract the 4-gram-fragment substrings and the call frequencies is the  -gram-based 

method [31] (    in our work), which is an effective means for classifying API calls and 

can anticipate the next API call in consecutive API calls based on statistical facts. An example 

of the 4-gram-based method is shown in Fig. 3. 

 

RegOpenKey

RegCreateKey

RegCloseKey

NtCreateFile

NtCreateFile

NtCreateFile

NtCreateFile

NtCreateFile                    

RegOpenKey

RegCreateKey

RegCloseKey

NtCreateFile

RegCreateKey

RegCloseKey

NtCreateFile

NtCreateFile

RegCloseKey

NtCreateFile

NtCreateFile

NtCreateFile

NtCreateFile

NtCreateFile

NtCreateFile

NtCreateFile

NtCreateFile

NtCreateFile

NtCreateFile

NtCreateFile

{  S1:1,   S2:1,  S3:1,  S4:2  }

S S1 S2 S3 S4 S4

v 

Fig. 3. An example of the 4-gram-based method 

 

In Fig. 3, S is an original API call sequence.  S1 is a 4-gram API call fragment formed by the 

top 4 API calls in S. The sliding window of the size of 4 slides from top to bottom along S, one 

API call at a time, resulting in four more 4-gram API call fragments: S2, S3, S4, and another 

S4.  By counting the occurrence of each individual 4-gram in the resulted collection {S1, S2, 

S3, S4, S4}, we see clearly that S1, S2, and S3 all have frequency 1 but S4 has frequency 2.  

The pseudocode algorithm for constructing the PP-NBC is given in Algorithm 1.  Line 1 

initializes two datasets   and   where   is used to store an initial sequence of 4-gram API 

call fragments and   the sequence of unique 4-gram API calls and their frequencies. Lines 2 

and 3 describe the task of AC’s executing the input files (malicious programs and benign 

programs), recording the behaviors of these programs into report files, and subsequently 

extract an API call sequence                by analyzing these report files. Note that in 

practical situations, the size of   is typically hundreds of thousands, so the condition of     

can be easily satisfied. Lines 5-8 extract all 4-grams API call fragments from   and put them 

into the dataset  , and Lines 10-12 initialize the frequency of each 4-gram API-call fragment 

in   to be (the default value) 1.  Lines 14-23 subsequently extract, from  , one (unique) 

copy of each 4-gram API-call fragment and its occurrence frequency in   and write them into 
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the dataset  .  As stated in Line 25, AC builds two tables    and    (where    is 

preliminary) by using the information contained in  . These two tables are conceptually 

illustrated by Table 1 and Table 2 below, respectively. 

 

Algorithm 1: Construction of the PP-NBC 
============================================================== 

Input: Executable program files           . 

Output: Encrypted tables         and        . 

1.    ;    ;    // database initializations 

2. AC runs all executable program files and records the behaviors of the executions into 

analysis report files           ; 

3. AC extracts API calls from these analysis report files and obtains an API call 

sequence               , where each    denotes an API call;  //          

4.  

5. for (             ++) 

6.        = take the subsequence             of     // a 4-gram API-call fragment 

7.      add ih  to H ;  // construct   

8. end for 

9.  

10. for (                  ++) 

11.                    // default frequency for each    in   

12. end for 

13.  
14. for (                  ++) 

15.    for (                  ++) 

16.       if (    &&       &&    is not in  ) 

17.                              
18.         end if 

19.    end for 

20.    if    is not in   

21.       add    and        to  ;  // each 4-gram API fragment in   is unique 

22.     end if 

23. end for 

24.  
25. AC builds Table    and a preliminary version of Table    by using the unique 

4-gram API fragments and their frequencies in     
26.  
27. AC computes the IG for each unique 4-gram API fragment by accessing the contents 

in    and   .  Assume the 4-gram API-call fragment portion of   is the list 

            . 

28. for each    in              

29.                         
        

          
     

   
 
            // info gain for each    
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30. end for 

31.  

32. Sort the list              into descending order by the       of each   . 

33. AC finalizes Table    by taking the first 500   ’s from the sorted list (coupled with 

their corresponding frequencies). 

34.  

35. for (           ++) 

36.               
 
         // encryption of    

37.    for (           ++) 

38.                        
 
             // encryption of    

39.    end for 

40. end for 

============================================================= 

Table 1.    

C P 

   P(  ) 

 

Table 2.    

APIS IM NM IB NB 

                   

                   

… … … … … 

                   

 

In Table 1,    is either    or    where    represents the malware class and    the 

benign program class.  In Table 2, the APIS column contains all 4-gram API-call fragments 

(           ; the IM, NM, IB, and NB columns contain the probabilities of each    being in 

the malware class, not in the malware class, in the benign program class, and not in the benign 

program class, respectively. Lines 27-33 compute the information gain       for each    by 

using the information in tables    and   , reorder the list (          ) from large to small 

by the information gain of each   , and finalize the table    by replacing its contents with the 

first 500   ’s from the sorted list (together with their associated IM, NM, IB, and NB data).  

Finally, Lines 35-38 encrypt the two tables    and   .  In particular, Line 36 encrypts the 

contents of table    where the result of a constant   (typically   ) multiplying the logarithm 

of the probability of    is converted to an integer first (using the method described in [32]) 

and then encrypted by the Paillier encryption method (    denotes a Paillier-encrypted integer 

  here).  In a similar manner, Line 38 encrypts table    where           means the 

probability of    with respect to class   .   
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4.2.2 The Malware Detection Module 

As mentioned earlier in this section, AC sends the encrypted detection mechanism and the 

public key to CP which stores and manages the received encrypted detection mechanisms. 

Also, CP executes the programs that it receives from the PD in a virtual environment and 

generates the behavior files of the programs to be detected. The procedure of the malware 

detection is given in Algorithm 2 below where the inputs to the algorithm are user input file 

behavior sequence                , PP-NBC constructed by the AC, and the public 

encryption key   , and the output is the class (malware or benign) of which the user input file 

will be classified.  

 

Algorithm 2: Secure malware detection 
============================================================== 

Inputs:               , PP-NBC, Public key     

Output:       // the result of classifying the user input file 
1. CP receives the encrypted mechanism PP-NBC sent from AC; 

2. for (           ++) 

3.                            
 
   ;  

4. end for 

5. CP transmits the encrypted data      to AC for decryption; 

6. AC sends the decrypted data    back to CP; 

7. if (       
8.              
9. else 

10.              
11. end if 

  ============================================================ 

Line 1 simply instructs the CP to receive the PP-NBC from the AC.  Lines 2-4 compute the 

encrypted comprehensive malware indicator      for each  . While Line 5 sends each 

encrypted      to the AC for decryption, Line 6 sends the decrypted result back to the CP.  

Lines 7-11 compare the decrypted    and    and choose the class associated with the larger 

   as the output.  

5. EVALUATION 

 
In this section, we analyze the proposed security mechanism and present the experimental 

results on testing the proposed secure malware detection system.  

 

5.1 Security Analysis 

In the proposed SMD-DE system, AC holds the encrypted detection mechanism and PD 
holds the programs to be detected.  Roughly speaking, since the malware detection 

mechanism PP-NBC, which is sent to the CP by the AC, is encrypted, it is highly unlikely that 

the construction details of the PP-NBC will be known to a third party even if it is intercepted 
during the transmission. Also, note that CP computes the detection results by using an 
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encrypted PP-NBC and the output of the computation is also encrypted. Therefore, the 

information about the computation performed by the CP should be secure.  
A detailed explanation regarding the security of the information flow in the SMD-DE 

system can be given as follows. The complete data that the AC sends to the PC is 

                          in which the public key   , the 4-gram API-call fragment 

sequence  , and the classes    are not encrypted, but the attributes of the two tables    and 

   are encrypted, namely,           
 
       and                  

 
          .   As 

such, even if      or           was somehow seized by a malicious attacker during the 

transmission, the attacker will not be able to read the information in      or            
because it does not have the private key to decode them.  Thus, the transmission of the 

PP-NBC from the AC to the CP is secure. After receiving                           from the 

AC and analyzing the programs to be detected from the user/client, CP starts the detection of 

the programs by computing      using the encrypted      and               as stipulated 

in Algorithm 2. Since the computation result      is encrypted, CP needs to send      to the 

AC for decryption. Once receiving the decrypted    from the AC, CP will use them to decide 

the detection result and send the result to the user/client. Hence, CP can complete the process 

of malware detection for any programs without knowing the actual internal mechanism of the 
malware detection. In other words, the computation of the malware detection performed at the 

CP is secure.  

Regarding the actions and the malware detection rates of an homomorphically encrypted 

Naïve Bayes classier (NBC) and a regular (unencrypted) Naïve Bayes classifier, note the 

following property that the homomorphic encryption is a form of encryption that allows 

computations to be carried out on ciphertext thereby generating an encrypted result which, 

when decrypted, matches the result of operations performed on the plaintext [33].  In our 

proposed PP-NBC, while the frequency attributes of each    in the 4-gram API call 

fragment sequence                are homorphically encrypted, the sequence itself is 

unencrypted.  When the API-call fragment sequence generated from the user input files is 

available, it will be matched against   and the corresponding computations will be 

performed using the encrypted frequency attributes yielding encrypted     ’s which will be 

subsequently decrypted (see Algorithm 2) and used to produce the final result.  According 

to the property of homomorphic encryptions just mentioned, we see that if       (or 

       is the result of the computation using a plaintext NBC, then       (or 

       is also the result of the computation using encrypted NBC, and vice versa. 

Therefore, in terms of malware detection rate or accuracy, the proposed PP-NBC has the 

same performance as its unencrypted version.  

 

5.2 Experiment Setup 

As stated before, we in this paper characterize the API calls as a sequence of 4-gram 

fragments. Part of the data regarding the sample files that are used to train the PP-NBC is 

displayed in Table 3, where the first column shows three 4-gram API-call fragments, the 

MalFre column shows their occurrence frequency in malware samples, the BenFre column 
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shows their occurrence frequency in benign samples, and the last column shows their 

information gains. Through repeatedly testing the performance of the Naïve Bayes classifier 

by selecting the first 10, 20, 50, 100,150, …, 800 4-gram fragments in the ordered list, we find 

that the set of the first 500 4-gram fragments yields the optimal performance. 

Table 3. Some sample 4-gram fragments and their attributes 

4-gram Fragment     MalFre BenFre IG 

 (LdrGetProcedureAddress, 

RegOpenKeyExW, 

RegQueryInfoKeyW, 
128 95 2.1351379 

LdrGetProcedureAddress) 

(NtSetInformationFile, 

NtCreateFile, 

NtSetInformationFile, 
221 20 1.9617122 

NtQueryInformationFile) 

(RegQueryValueExA, 

RegCloseKey, 

RegEnumKeyExA, 
206 21 1.9173703 

RegCloseKey) 

 

736 programs including 565 malware instances and 172 benign programs have been 

collected as sample files to train the Naïve Bayes classifier.  While the malicious programs 

(e.g., Netsky, Mydoom, Bagel, etc.) are collected from the Vxheaven website, the benign 

programs comprise some Windows Portable Executables and other popular applications (e.g., 

Putty, Foxmail, CCleaner, FoxitReader_setup, etc.).  Also, Ubuntu 12.04 is chosen as the 

operating system for the host machine to run the Cuckoo Sandbox, and Windows XP is used as 

the operating system for client machines.  

 

5.3 Experimental Results 

We evaluate the proposed malware detection mechanism by using the following commonly 

used metrics. Given the notions of true positive (the number of incidents where a malicious 
program is correctly identified as malicious), true negative (the number of incidents where a 

benign program is correctly identified as benign), false positive (the number of incidents 

where a benign program is incorrectly identified as malicious), and false negative (the number 

of incidents where a malicious program is incorrectly identified as benign), the concept of 
accuracy is defined as 

 

         
     

   
                                                               

where TP  stands for the true positive, TN the true negative, P the sum of the true positive 

and the false negative, N the sum of the false positive and the true negative.  



1812                             Lin et al.: A Secure Encryption-Based Malware Detection System  
 

The  -fold cross validation [34] is a model validation technique that is widely used for 

assessing the effectiveness of malware detections. In  -fold cross validation, the original data 

set is randomly partitioned into   equal-sized subsets out of which     subsets are 

randomly chosen as the training data and the remaining single subset is used as the testing data.  

In our work, we set      based on empirical experiences.  The resulting Receiver 

Operating Characteristic (ROC) curve, which shows the correlation between true positive rate 

(    ) and false positive rate (    ), is depicted in Fig. 4. By using Fig. 4, it can be 

calculated that the accuracy of our malware detection model is as high as 94.93%. 

 

Fig. 4. The ROC curve of the malware detection mechanism 

 

Table 4 compares our work with some of the peer investigations in the literature 

regarding the malware detections. Specifically, Saxe and Berlin [4] studied the malware 

detection using a static approach. Although this approach is effective, it cannot deal with 

some of the techniques (such as packing and obfuscation) that are commonly employed in 

malware programs. Elhadi, Maarof, and Barry [3] and Fan et al. [5] successfully utilized an 

API-call-based dynamic approach to overcome the problems of the static approach, but 

failed to consider the scenario of metamorphic or polymorphic malicious programs. While 

the issue of malware is addressed in [6] by devising some aggressive malware detection rules, 

it, unfortunately, falls short to be able to protect the malware detection mechanism itself. 

Aiming to tackle all these issues, we proposed a dynamic, and privacy-preserving malware 

detection mechanism. It can be seen from Table 4 that our work, in addition to having these 

new features, has a compatible malware detection accuracy with peer studies.  

Elhadi, Maarof, and Barry [3] and Fan et al. [5] successfully utilized an API-call-based 

dynamic approach to overcome the problems of the static approach. Morever, Maiorca [6] 

devise some aggressive malware detection rules, it, unfortunately, falls short to be able to 

protect the malware detection mechanism itself. Aiming to tackle all these issues, we 

proposed a dynamic, and privacy-preserving malware detection mechanism. It can be seen 
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from Table 4 that our work, in addition to having these new features, has a compatible 

malware detection accuracy with peer studies. 

 

Table 4. Comparison of our study to other peer malware detection models 

 

Peer work 

 

Approach 

 

Malware-identifying 

technique 

 

Malware 

antagonism 

considered?  

 

Accuracy 

 

Self-protection 

of 

detection 

mechanism? 

Saxe & 

Berlin [4] 

Static Contextual byte ; 

PE ; PE metadata; 

String 2d histogram 

No >94% No 

Elhadi et 

al. [3] 

Dynamic API call graph No >94% No 

Fan et al. 

[5] 

Dynamic API records in ARFF 

format 

No >94% No 

Maiorca 

[6] 

Static and 

Dynamic 

API references 

String 

Yes >94% No 

Our 

method 

Dynamic 4-gramAPI fragment 

sequences 

Yes >94% Yes 

 

 

6. CONCLUSION AND FUTURE WORK 

 

One of the prominent challenges in the area of malware detections is that most existing 

malware detection mechanisms are unable to effectively deal with the situations where a 

malware program attempts to antagonistically confuse the malware detection mechanism by 

first prying into the malware detection mechanism and then changing or obfuscating its code 

to generate new variations of the malware according to the information obtained. Toward 

resolving this issue and realizing that an efficient way to do so is to protect the malware 

detection mechanism, we proposed in this paper a secure malware detection system SMD-DE 

which consists primarily of a PP-NBC whose internal malware detection mechanism is 

encrypted by the Paillier homomorphic encryption system.  Experimental results demonstrate 

that the proposed SMD-DE can correctly detect instances of malware with an accuracy of 

94.93%.    

As our future studies, we plan to investigate the detection of evasive malware and its 

related detection mechanism protection issues.  
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