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ABSTRACT Cloud computing has been one of the most popular distributed computing paradigms. Elasticity
is a crucial feature that distinguishes cloud computing from other distributed computing models. It considers
the resource provisioning and allocation processes can be implemented automatically and dynamically.
Elasticity feature allows cloud platforms to handle different loads efficiently without disrupting the normal
behavior of the application. Therefore, providing a resource elasticity analytical model can play a significant
role in cloud resource management. This paper presents Controlling Elasticity (ControCity) framework for
controlling resources elasticity through using ‘‘buffer management’’ and ‘‘elasticity management’’. In the
proposed framework, there are two essential components called buffer manager and elasticity manager in
the application layer and middleware layer, respectively. The buffer management controls the input queue of
the user’s request and the elasticity management controls the elasticity of the cloud platform using learning
automata technique. In the application layer, applications are received by cloud applications and, then, placed
in the control of the buffer. Buffer manager controls the queue of requests, and elasticity manager of the
middleware layer using the learning automata provides a solution for controlling the elasticity of the cloud
platform. The experimental results indicate that the ControCity reduces the response time by up to 3.7%,
and increases the resource utilization and elasticity by up to 8.4% and 5.4%, respectively, compared with the
other approaches.

INDEX TERMS Cloud computing, elasticity, buffer management, learning automata.

I. INTRODUCTION
In recent years, the computing trend moved toward the
cloud computing paradigm, particularly when large com-
puting resources are required to serve a cloud application,
using the ideas of computing power as a utility to deliver
a unified service to the end-users [1], [2]. In cloud com-
puting, the IT infrastructures such as storage, servers, and
network can be dynamically provisioned according to the user
requirements using on -demand self-service delivery model
[3], [4]. One of the considerable properties that differentiate
cloud computing from other computing paradigm is elastic-
ity [5]. Elasticity property allows the cloud platforms to effi-
ciently add or remove the cloud infrastructures (e.g., VMs)
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automatically according to the number of users for supporting
the rapid fluctuation of loads to serve better.

A. RESEARCH MOTIVATION AND CHALLENGES
Since the end-users may have irregular access to cloud appli-
cations over time, it is difficult to handle load fluctuations
with the traditional infrastructure [6], [7]. Load fluctuations
are the points where the workload of the system changes con-
tinuously. This is one of the important issues that should be
considered for managing cloud infrastructure as the backbone
of the cloud platform. If load fluctuations of cloud appli-
cations using elasticity property is not correctly managed,
the whole cloud platform can fail and Quality of Service
(QoS)would be adversely affected and it may face to the over-
provisioning or the under-provisioning issues [8]–[10]. In the
over-provisioning issue, the cloud infrastructures allocated
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are greater than the user needs, and this leads to useless cost
to lease the cloud infrastructures while QoS requirements can
be satisfied. In the under-provisioning issue, the allocated
cloud infrastructures are smaller than the user needs, and this
causes violation of Service Level Objectives (SLOs) agreed
between end-users and cloud platform. Therefore, managing
the cloud infrastructure to guarantee elasticity property of
cloud platform can play an important role in cloud resource
management to deal with the under or over-provisioning
issues.

B. OUR APPROACH
In this paper, we designed an autonomous framework for
controlling elasticity in a cloud platform that includes two
major components name buffer manager and the elastic-
ity manager. The buffer manager component is responsible
for controlling the input queue of the requests, and it fol-
lows a reference autonomous computing model proposed
by IBM [11]–[13], which is called the MAPE (monitoring-
analysis-planning-execution) control loop. The monitoring
phase observes the number of incoming requests and the
buffer remaining space as inputs analysis phase to predict the
number of future requests. The planning phase using learning
automata [14] determines the size of buffer memory to be
low or high, or kept in the same state [15]. Besides, the elas-
ticity manager component is responsible for controlling the
elasticity of the cloud platform using the learning automata
technique based on QoS analysis.

C. CONTRIBUTIONS
The main contributions of this research can be summarized
as follows:
• Designing an autonomous framework for managing of
elasticity feature in a cloud platform.

• Utilizing a learning automata technique as a decision-
maker into the elasticity manager component of the
proposed framework to control the elasticity of the cloud
platform.

• Evaluating the performance of the proposed solution
under three real workloads by performing a series of
experiments for improving elasticity and resource uti-
lization.

D. ORGANIZATION OF THE PAPER
The rest of this paper is organized as follows: In Section 2,
we focus on a literature review of related works. Section 3
describes the proposed solution in more details. Section 4
presents an evaluation and discuss the experimental results.
In Section 5, we conclude the paper and present future works.

E. RELATED WORKS
In this section, we review research studies about the elasticity
management mechanisms in cloud environments.

Ullah et al. [16] have studied the cloud elasticity prop-
erty by focusing on control theoretical mechanisms and pro-
vide a comprehensive taxonomy from the point of view of

control theory as an implementation mechanism. Besides,
they investigate some research challenges such as heterogene-
ity, interoperability, computational overhead analysis, uncer-
tainty, scalability, oscillation, and resource usage analysis
that needs to be further addressed. Albonico et al. [17] have
proposed a mechanism that manages the elasticity feature of
web applications according to their QoS requirements. Their
mechanism controls automatically the workload generation
to manage web applications using elasticity states including
scaling out, ready, and scaling in states. Finally, they evaluate
their solution on Amazon EC2 and indicated that their solu-
tion can manage web applications in minimal time.

Salah et al. [18] design an analytical model using Markova
chains to ensure proper elasticity for cloud-hosted applica-
tions and services. Their model utilizes the offered workload
and the number of VM instances as an input to estimate the
minimal number of VMs required to satisfy a given Service-
Level Objective (SLO) criterion. Besides, their proposed
model can estimate the number of load balancers needed
to achieve proper elasticity. They evaluated their proposed
model using practical scenarios of cloud elastic services that
include web service, Netflix video streaming, and the Ama-
zon Web Services (AWS) cloud platform. Their numerical
results indicated the effectiveness of their proposed analytical
model outperforms in capacity engineering and estimation of
the cloud computation and network resources for different
real-world scenarios compared with other algorithms.

Zhang et al. [19] have designed a lightweight container-
based framework named auto-scale for controlling the elas-
ticity feature to deal with load fluctuations in the small
devices. Their proposed framework consists of four compo-
nents namely, the monitoring mechanism, history recorder,
decisionmechanism, and executionmechanism. Further, they
describe the elasticity feature mathematically for quantifying
cloud elasticity using container-based auto-scaling mecha-
nisms. They validate their framework on the Mesosphere
Data Center Operating System cloud infrastructure using
the stress workload and illustrated that their framework
can manage the tradeoff between stability and elasticity.
Nouri et al. [20] have presented an autonomic decentralized
elasticity controller for managing resources on web appli-
cations in cloud environments. Their proposed controller
utilized a reinforcement learning-based technique to handle
workload arrival patterns using a set of states and actions.
Their simulation results under real-world workloads demon-
strated that their proposed controller reduces SLA violations
percentage and cost of provisioning cloud infrastructure.

In [21] an elasticity control algorithm for containerized-
based cloud infrastructure for augmenting the load balanc-
ing is introduced. Their proposed algorithm utilized two
agents, namely the master agent for coordinating between
hosts and the host agents for monitoring and predicting
resource utilization using Autoregressive Moving Average
(ARMA) prediction model. Their numerical results indicated
that their proposed algorithm outperforms in terms of elastic-
ity and power consumption compared with other algorithms.
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FIGURE 1. A high-level overview of ControCity framework.

Jrad et al. [22] have introduced a framework for evaluat-
ing elasticity mechanisms for service-based business pro-
cesses in cloud environments. Their proposed framework
includes a set of domain-specific languages to facilitate
the description and the evaluation of elasticity mechanisms.
Al-Dhuraibi et al. [23] have proposed a model-driven elastic-
ity management system according to the Open Cloud Com-
puting Interface (OCCI) standard. Their solution considers
both VM and container virtualization technologies, both ver-
tical and horizontal scaling, and multiple cloud providers,
simultaneously. Also, their proposed elasticity system handle
the heterogeneity of elasticity mechanisms on three popu-
lar cloud providers namely, Amazon Web Services (AWS),
Microsoft Azure and Google Cloud Platform.

Finally, Jamshidi et al. [24] propose a dynamic self-
adaptive method based on the fuzzy controller for organized
elasticity management in cloud computing. The proposed
method has applied to Azure and OpenStack based on self-
learning fuzzy controller that confirms and improves fuzzy
rules at real-time execution.

Overall, since elasticity property is trying to adapt the
load changes to available resources at any time by allocating
/reallocating/deallocating resources in an autonomous man-
ner. First, the current studies focused on controlling elasticity
property on behalf of resources and infrastructure and did not
pay attention to controlling the elasticity from the perspective

user requests using a buffering technique. Secondly, most of
the previous studies have only utilized the prediction mod-
els or machine learning techniques for controlling elastic-
ity, while our proposed solution combines machine learning
techniques (i.e., learning automata) and prediction models
(i.e., Moving Average prediction model) to ensure elasticity
feature.

II. PROPOSED CONTROCITY APPROACH
In this section, we explain our ControCity framework in
more details, as shown in Figure 1. The proposed framework
consists of three main layers: the application layer, the mid-
dleware layer, and the infrastructure layer. In this framework,
there are two important components called buffer manager
in the application layer and the elasticity manager in the
middleware layer. In the application layer, applications are
received by cloud applications and then placed in the control
of the buffer. Buffer manager controls the queue of requests,
and the elasticity manager of the middleware layer using
the learning automata provides a solution for controlling the
elasticity of the cloud platform.

In the proposed approach, elasticity management has a part
called QoS mapper unit, which is responsible for receiving
cloud information including the amount of Machine Instruc-
tion Per Second (MIPS) allocated and the MIPS consumed.
The next step of the workload and the degree of service
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provision violation occurred and the learning automata will
be used to provide the right amount of resources. The infras-
tructure layer is responsible for underlying cloud resource
management. In this layer, each VM is placed in one of these
layers. The VM may migrate from one layer to another by
reconfiguration [2]. If the input requests to each layer exceed
the service limit, the load regulator on each layer creates a
queue request, by which, after being released, each virtual
machine is offered a request.

In the following, we describe the main components of
the ControCity framework in more details. Also, the exist-
ing applied notations of the proposed solution are shown
in Table 1.

TABLE 1. Notations of the proposed solution.

FIGURE 2. The overall buffer structure in the proposed method.

A. BUFFER MANAGER
Figure 2 shows the overall structure of the buffer in the
proposed method. Specifically, in the proposed solution,
the buffer is composed of two parts of an administrator and
decision-maker and a part of management. The decision-
maker part is responsible for increasing or decreasing buffer

memory based on the input request traffic, and the manage-
ment part is responsible for sorting and scheduling the input
requests to send. The amount of buffer remaining space and
the input request traffic are effective in decisionmaking of the
monitoring and decision unit. Specifically, the decisions of
themonitoring and decision unit are applied to buffermemory
by management.

FIGURE 3. Structure of each user request.

According to the structure in Figure 3, each request con-
tains the user ID, the cost, and the deadline for the response
time. If the cost and response time exceed this limit, the vio-
lation of the terms of service has occurred. In the proposed
method, the buffer management comprises three queues;
in which each queue specifies the priority of the requests.
In order to specify the priority of requests, Eq. (1) is used.

Prii = α ×
1

Current_timei
+ (1− α)×

1
DeadLineTimei

(1)

In Eq. (1), theCurrent_Timei, is the arrival time of the request
and the DeadlineTimei is the time limit for the response.
α is the amount of weight for each of the parameters. There-
fore, the input requests are placed in one of the queues
based on the request time and the priority. The three types
of priorities of top, normal and low are considered.

FIGURE 4. Buffer management structure.

Figure 4 shows the structure of the input request segmen-
tation. If the length of each queue is considered in buffer B,
the buffer length is equal to B∗3 and generally, if the queues
are B1, B2, and B3 respectively, then, the following relation-
ship can be used about the buffer memory.

B = {B1 ∪ B2 ∪ B3} (2)

According to Figure 4, the input request is initially prioritized
by the classifier and then it is placed in its queue. Due to the
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attempts made in the previous step, the size of buffer memory
varies with traffic, but the overflow may happen due to any
reason; so, there is no more space in buffer memory to add
a new request; in this case, the request must be deleted from
the buffer.

In the proposed solution, the user’s request is made under
SLA rules. Each SLA consists of several objectives or SLOs.
In this research, the user’s request structure includes two
objectives of cost and response time. The user can simul-
taneously submit multiple requests to the cloud provider.
Figure 3 shows the structure of each user’s request.

The deletion of requests from each queue is made sepa-
rately. The key point in eliminating the request from the queue
is that a request must be removed from a queue that has the
maximum amount of survival time. This means that the oldest
request with the longest queuing time in the queue will be
excluded; but the most important thing is that low- priority
queries must be removed first, and then in the absence of
space, the medium- priority queries, and at last in the absence
of space, high priority queries will be removed. So, if the
buffer memory space is full and a new request arrives, one
of these three modes will occur:

1) FIRST MODE (RECEIVING A HIGH- PRIORITY REQUEST)
In this mode, equation (3) is performed. First, if the num-
ber of requests in the low- priority queue is more than the
considered threshold, it will be removed. Otherwise, if the
number of requests in the average-priority queue is more than
the considered threshold, it will be removed and, otherwise,
the queue will be executed from the high- priority queue.

Drop

=


Re q From Q3 With Least TTL if Count (Q3)>qmin

Re q From Q2 With Least TTL if Count (Q2)>qmin

Re q From Q1 With Least TTL Otherwise
(3)

2) SECOND MODE (RECEIVING AN
AVERAGE PRIORITY REQUEST)
In this mode, equation (4) is performed. First, if the number of
requests in the low- priority queue is more than the considered
threshold, it will be removed. Otherwise, the elimination is
done from the average-priority queue.

Drop

=

{
Req From Q3 With Least TTL if Count (Q3) > qmin
Req From Q2 With Least TTL Otherwise

(4)

3) THIRD MODE (RECEIVING A LOW PRIORITY REQUEST)
In this mode, equation (5) is applied, in which the request is
only deleted from the lower priority queue.

Drop = Re q From Q3 With Least TTL (5)

When there are multiple requests in queues, and each one
is ready to be sent, first, the buffer scheduler sends the top
queue requests and after completing, it will go to the average
and low priority queue, respectively. Equation (6) shows the
structure of sending requests according to their priority.

Send_Req =


Req ∈ Q3 if Q3 is not empty
Req ∈ Q2 if Q2 is not empty
Req ∈ Q1 Otherwise

(6)

The requests are submitted to the Elasticity Management
Unit, respectively, so that the unit decides on resource allo-
cation based on the information received from the service
quality mapping unit.

FIGURE 5. Monitoring decision system in buffer management.

B. MONITORING AND DECISION SYSTEM
The monitoring and decision system in the proposed
approach acts on the MAPE structure. Due to the fact that
this structure consists of 4 phases of monitoring, analysis,
planning, and execution, all phases have a specific function in
the proposed method. The proposed method is based on the
loop and acts on the buffer decision-maker. Figure 5 shows
the MAPE structure. According to Figure 5, the monitoring
phase observes the number of incoming requests and the
buffer remaining space as inputs analysis phase. Data col-
lected by the monitoring system is provided to the analysis
phase. The analysis phase is responsible for predicting the
future status of input requests based on the current status.
According to the prediction of the analysis phase and the
amount of buffer space remaining, the planning phase using
learning automata determines the size of buffer memory to be
low or high, or kept in the same state. The decisions taken by
the planning phase is sent to the execution phase to make this
decision operational.

The monitoring phase of the MAPE structure monitors the
received traffic requests and the amount of buffer space avail-
able. The monitoring phase has a knowledge base. It checks
the buffer status at certain intervals and extracts its required
variables and records them in its knowledge base. The knowl-
edge base consists of two parts: the storage sections of
input traffic and remaining buffer space. The structure of the
knowledge base records part I is shown in Table 2 and the
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TABLE 2. Structure of the knowledge base records part I.

TABLE 3. Structure of the knowledge base records part II.

structure of the knowledge base records part II is shown
in Table 3.

C. QOS MAPPER UNIT
This unit is responsible for saving responsive information
and service delivery to the request. After recording the data,
the unit calculates the amount of violation of service terms
and informs the elasticity management about it. The data
storage structure of this unit is presented in Table 4.

TABLE 4. Structure of service quality information for a request.

The amount of violations of service conditions is calcu-
lated by the knowledge of service quality. If the response time
exceeds the allowed response time to the request, the Equa-
tion (7) shows how to calculate the amount of service viola-
tion for the response time. Similarly, if the cost of responding
to a request exceeds the intended cost, Equation (9) shows
how to calculate the amount of service violation for the cost.

SLA_ViolationResponse = ResponseTime − Deadlinetime
SLAV_CountResponse=Count

(
SLA_ViolationResponse>0

)
(7)

SLA_ViolationCost = CostRes − CostReq
SLA_CountCost =Count(SLA_ViolationCost>0) (8)

In Equation (7), Response Time is the response time to the
request, andDeadline Time is the allowed response time for a
request. In Equation (9), CostReq is the initial cost considered
for the request and CostRes is the final cost of responding to
the request.

D. WORKLOAD PREDICTION
One of the most important parts of the MAPE structure is
the analysis of results. Future requests will be considered in
the traffic prediction analysis phase. The more accurate the
prediction is in this part; the planning design phase will have
a higher quality. In the proposedmethod, the averagemobility
prediction structure of Moving Average (MA) has been used.

In this model, the prediction is obtained based on the average
number of requests in the preceding steps, and the number
of requests in the following steps. Equation (9) displays how
to calculate the number of requests in the following step by
using MA,

Wt+1 = µ+ ∈t +θ1 ∈t−1 +θ2 ∈t−2 +..+ θq ∈t−q

µ =
1
n

n∑
i=1

Wt−i (9)

where µ is the average number of requests in the previ-
ous steps. θ1. . .θq are the parameters of the MA prediction
model that are determined based on the number of requests.
εt . . . εt−q are random values with the normal distribution
and zero mean. Generally, these values are referred to as
white noise. In the planning phase, each queue of the buffer
consists of three modes of busy, idle and normal. In order
to determine the different states of a queue, the upper and
lower thresholds need to be defined. The method is that if the
buffer is not in normal mode, it should be modified. If each
buffer queue is placed in a state for two successive times and
the predicted workload is proportional to the buffer queue
state, the changes in the buffer queues will be adapted and
strengthened. The amount of buffer overflow (Eq. (10)) is
obtained by dividing the two variables of Available Bytes
(the available residual space) and Requested Bytes (bytes
required for current requests). These are two input variables.
Comparing the amount of overflow determines the upper and
lower thresholds. Buffer increasing, decreasing or being idle
is done based on these actions.

Buffer_Queueij =
RequestedBytes_Queueij
AvailableBytes_Queuei

(10)

RequestedBytes_Queueij determines the data volume of
the input request in the i-th queue at time t and
AvailableBytes_Queuei determines the total capacity of the
i-th queue. In the following, three modes of busy, idle and
normal are introduced. Suppose that the amount of input
traffic to the provider is greater than the queue length in the
buffer. In this case, the provider confronts a lack of memory
to hold input requests. Then, the queue is fully engaged, and
the algorithm increases the buffer length queue. Equation (11)
shows the busy mode of the i-th queue in the buffer.

Buffer_Queueit ≥ H_Thr

Buffer_State_Queueit = UP (11)

The queue memory is generally idle when the amount of
input traffic to the queue is lower than the least capacity
considered for the queue in the buffer. Then the buffer queue
will be in the idle mode and memory space reduction must be
done. Equation (12) shows the idle mode of i-th queue in the
buffer.

Buffer_Queteit ≤ L_Thr

Buffer_State_Queteit = Down (12)
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When the buffer queue is sufficient for input traffic, the buffer
is in a normal state and it does not do anything. Equation (13)
shows the normal mode in the queue.

L_Thr ≤ Buffer_Queueit ≤ H_Thr

Buffer_State_Queteit = Normal (13)

Let Buffer_State_Queteit denote the buffer state of the i-th
queue at time t and L_Thr , H_Thr be the lower threshold
and the higher threshold to determine the buffer state accord-
ing to the capacity of the i-th queue, respectively, where
H_Thr > L_Thr . Generally, the buffer state is expressed by
Equation (14):

Buffer_State_Queteit

=


UP if Buffer_Queueit > H_Thr

Normarl if L_Thr ≤ Buffer_Queueit ≤ H_Thr
DOWN if Buffer_Queteit < L_Thr


(14)

L_Thr , H_Thr depends on the amount of input traffic to
the queue (i.e., workload changes) and determined according
to the queue capacity. Let D = H_Thr − L_Thr denote
the difference between the lower threshold and the higher
threshold for the capacity of the i-th queue. The higher value
D leads to waste of the provided queue capacity (i.e., under-
load state) and extra and unnecessary cost while QoS require-
ments can be satisfied. Whereas, the lower value D results
in performance degradation due to inadequate the provided
queue capacity (i.e., over-load state) for serving user requests.
Therefore, we will need to adjust an appropriate value D to
determine the buffer state, accurately.

According to the i-th queue state at time t (Buffer_Queueit ),
for comparative training, the values ofU and P are calculated
as adding and decreasing queues.

A =


1 if Buffer_State_Queueit

= Buffer_State− Queueit−1
0 Otherwise

(15)

B =

{
1 if Buffer_State_Queueit = UP
0 if Buffer_State_Queueit = DOWN

(16)

Then, based on A and B, the final calculation is done.

Ut−1 +
∣∣∣RequestedBytes_Queueij − Predicted i∣∣∣
if A = 1 and B = 1 and Ut−1 > 0∣∣∣RequestedBytes_Queueij − Predicted i∣∣∣
if A = 0 and B = 1 and Ut−1 = 0

0 Otherwise

(17)

Lt =



Lt−1 +
∣∣∣RequestedBytes_Queueij − Predicted i∣∣∣
if A = 1 and B = 0 and Lt−1 > 0∣∣∣RequestedBytes_Queueij − Predicted i∣∣∣

if A = 0 and B = 0 and Lt−1 = 0
0 Otherwise

(18)

According to the values, Ut is considered as increasing the
queue and Lt is considered as decreasing the queue. Increas-
ing and decreasing the length of each queue are performed,
respectively, by Equations (19) and (20).

AvailableBytes_Queuei

=

{
Ut + AvailableBytes_Queuei if B = 1
0 Otherwise

(19)

AvailableBytes_Queuei

=

{
AvailableBytes− Queuei − Lt if B = 0
0 Otherwise

(20)

After calculating the amount of increasing or decreasing,
the value and its decision are announced to the implemen-
tation unit. After decision making in the planning phase,
the decision is to implement in the implementation section.
According to the type and amount of change, the implemen-
tation section announces the changes to the buffer manager to
adjust the structure based on the decision-maker. According
to the type of a decision, the volume of the buffer increases
or decreases in one of the queues 1, 2, or 3.

E. ELASTICITY MANAGER
Specifically, no decision will be made for the first workload,
because the output of the service quality mapping unit does
not exist; but in the later stages, based on workload predic-
tion, scaling is performed at the buffer management stage.
So, according to the need for each layer request, the scaling
is done proportionally for that layer. For scaling each layer,
the decision-making structure is based on the current and the
predictedworkload of each layer. Equation (21) specifies how
to calculate the type and the extent of scaling.

Scaling =


UP WLCurrent < WLpredict
NO− UP WLCurrent = WLpredict
DOWN WLCurrent > WLpredict

Scaling_Amount = ABS(WLCurrent −WLpredict ) (21)

In the proposed structure, a learning automaton is placed on
each layer. If the structure of each layer is considered as an
automaton performance environment, this environment can
be represented by the triplet E ≡ {α, β, c}, in which the set
of environmental inputs or actions selected by the automaton
α = {ScaleDown, ScaleUp, NoOp}, and the outputs of β and
C are likely to be penalized. The key point about the envi-
ronment inputs is that these actions have been taken by the
previous decision-maker and will be reinforced or weakened
by the automaton. In this environment, β = 1 is considered as
an undesirable response or failure, and β = 0 is considered as
a desirable or successful response. C specifies the probabili-
ties of the penalty (i.e., failure) for the environment responses
and is defined as follows.

c = Pr ob {β = 1} (22)

Figure 6 shows the structure of the automata connection
with each application layer. According to the mentioned
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FIGURE 6. Automaton connection with the layer.

parameters, by choosing any action by automata, the prob-
ability of doing that will change. The equations (23) and (24)
are used for the reward or penalty of the selected operation,
where a is a reward coefficient and b is a penalty coefficient.
Pi(n) is the probability of the occurrence of the action i in
the step n, and specifically Pi(n + 1) is the probability of the
occurrence of the future event.

Pi (n+ 1) = Pi (n)+ α [1− Pi (n)]

Pj (n+ 1) = 1− Pi (n+ 1) (23)

Pi (n+ 1) = (1− b)Pi (n)

Pj (n+ 1) = 1− Pi (n− 1) (24)

One of themost important points is how to fine and encourage
selective action. In each cycle, after action selection, if the
Scale Up, Scale Down or No Op action is selected, respec-
tively the equations (25), (26) or (27) of the β - reinforce-
ment signal will be calculated. If β = 1, then, the selected
operation is fined by equation (25); otherwise, if β = 0,
then it is rewarded according to equation (26). If R_Ci is the
mean of the response time of the i-th layer and C_Ci is the
average cost of the i-th layer, then it is rewarded according to
equation (27).

β

=

{
1 R_Ci<

Ci.Rmax+Ci.Rmin
2 and C_Ci<

Ci.C max+Ci.C min
2

0 R-Ci≥Ci.Rmax or C-Ci≥Ci.C max

}
(25)

β

=

{
1 R_Ci≥

Ci.Rmax+Ci.Rmin
2 and C_Ci≥

Ci.C max+Ci.C min
2

0 R_Ci<
Ci.Rmax+Ci.Rmin

2 and C_Ci<
Ci.C max+Ci.C min

2

}
(26)

β

=

{
1 R-Ci > Ci.Rmax or C-Ci > Ci.C max
0 Otherwise

}
(27)

The dependent structure is used to determine the amount of
penalty and reward. Equation (28) specifies how to calculate
the reward coefficient.

a =
(

1
|R_Ci − Ci.Rmax| + |C_Ci − Ci.C max|

)
(28)

Equation (29) specifies how to calculate the penalty
coefficient.

b = 1−
(

1
|R_Ci − Ci.Rmax| + |C_Ci − Ci.C max|

)
(29)

III. PERFORMANCE EVALUATION
In this section, we evaluate the effectiveness of the proposed
approach for improving the elasticity feature in the cloud
environment. We first explain the experimental setup and
performance metrics, and, then, the experimental results are
discussed.

A. EXPERIMENTAL SETUP
In this section, we explain the simulation setup in more
details. The CloudSim toolkit [25] as a simulation framework
is utilized for modeling and developing the cloud computing
infrastructures. Besides, there are five physical hosts at each
cloud data center, so they all have the existing specification
according to Tables 5 and 6.

TABLE 5. Data centers specification.

TABLE 6. Host specification.

TABLE 7. Virtual machines specification.

Also, we can consider three types of VMs that are offered
by any cloud provider: small, medium, and extra-large. The
configuration details of different types of VMs into the three
categories with the different capabilities are shown in Table 7.

To evaluate our approach, we used three types of real work-
loads, including three data sets of FIFAWorld Cup, ClarkNet
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and NASA. NASA data set includes 2 months of workload
and 3461612 requests. FIFA World Cup data set includes
88 days of workload and 1352804107 requests. ClarkNet data
set includes two weeks of workload and 338587 requests.
These workload traces extracted from well-known websites
and indicates realistic load variations which make the results
more realistic and reliable to be used in a real cloud platform.
In this paper, the time intervals are considered in 15-min
intervals. Thus, each day includes 96-time intervals. These
three real workloads traces are shown in Figure 7.

FIGURE 7. Workload patterns: (a) FIFA world cup (b) NASA (c) ClarkNet.

B. PERFORMANCE METRICS
We applied the following metrics for a comparison of our
approach with other strategies:

Elasticity: This metric is defined as the degree to which
a cloud computing platform adapted upon the fluctuation of
workloads and can be measured by the percentage of time
when the cloud platform is in normal-provisioning states and
is calculated by Equation (30) [26]:

E =
Tn
T
= 1−

To + Tu
T

(30)

where T denotes the total time that a system is operating for
a sufficiently long time period, To be the total time period
that the system is in the over-provisioning state, Tu be the
total time period that the system is in the under-provisioning
state, and Tn be the total time period that the system is in
the normal-provisioning state. Therefore, T includes all the
time periods in the normal, over-provisioning, and under-
provisioning states; that is, T = To + Tu + Tn
Utilization: The CPU utilization of the cloud platform is

defined as the ratio of the average amount of the allocated
Machine Instruction Per Secondd (MIPS) of VMs for serving
user requests to the average amount of the total MIPS that
is potentially offered by VMs into the cloud platform, and is
expressed by Equation (31)

U =
Allocated MIPS (VMs)
Total MIPS (VMs)

(31)

Response time: The actual response time is the time differ-
ence between the user request start time and the first response
time received from the user by the cloud platform.

C. EXPERIMENTAL RESULTS
To evaluate the performance of the proposed approach,
we design three scenarios based on three real workload traces
and performance metrics that were discussed in the previous
subsections, as shown in Table 8. We compare our approach
with two baseline approaches. The first on is called Auto-
matic Elasticity- Fuzzy Based System ‘‘AE_FBS’’ algorithm
[24], [27], which is a fuzzy rule-based controller linked
with a reinforcement learning algorithm that learns and
modifies elasticity policies at runtime for auto-configuration
of VMs in a cloud environment. The second approach is
called ‘‘CTMC’’ [18], which uses an analytical model based
on Continuous-Time Markov Chain (CTMC)to estimate the
number of virtual machines needed to adjust the resource
elasticity value of a cloud platform. Finally, our ControCity
approach is called Automatic Elastic-Buffer Management
Automata Learning ‘‘AE_BMLA’’ algorithm. The reason for
choosing these approaches for comparison with ours is (i)
these approaches are proactive, i.e., try to predict the number
of resources at any given time to deal with workload fluc-
tuations, and, (ii) these approaches follow horizontal scaling
(i.e., replication) for adding/removing VM instances from a
cloud platform to provide elasticity.

1) FIRST SCENARIO: IMPACT OF ELASTICITY METRIC
In this scenario, the elasticity of the AE_BMLA algorithm
is examined against CTMC and AE_FBS algorithms. One of
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TABLE 8. Different scenarios for evaluating the proposed approach.

the important parameters in comparing the performance of
the resource allocation algorithm is elasticity. To conduct this
experiment, ten different time intervals were selected from
each workload in a way that the number of requests from the
first to the tenth interval is ascending. Figure 8 displays the
elasticity of the AE_BMLA algorithm in comparison with
the CTMC and AE_FBS algorithms in the FIFA workload.
According to Figure 8, due to the queuing and use of the
controller structure to select the appropriate host and accurate
increasing and decreasing the virtual machine, the proposed
method shows a better performance about elasticity.

FIGURE 8. Comparison of elasticity in FIFA workloads.

Figures 9 and 10 illustrate the elasticity of the AE_BMLA
algorithm in comparison with the CTMC and AE - FBS
algorithms in the NASA and ClarkNet workloads. The elas-
ticity of the proposed method is higher than the CTMC and
AE_FBS algorithms at all three workloads.

The average improvement of elasticity in the proposed
method for all three workloads compared to the CTMC and
AE_FBS algorithms is 13.3% and 42%, respectively.

2) SECOND SCENARIO: IMPACT OF RESPONSE TIME METRIC
Response time as one of the most effective objectives of
SLA plays an important role in choosing a virtual machine.
If the requested response time identified by the allowed
response time, does not meet, then the correct scaling must
be done. Figure 11 shows the average response time of the
AE_BMLA algorithm in comparison with the two CTMC

FIGURE 9. Comparison of elasticity in NASA workload.

FIGURE 10. Comparison of elasticity in ClarkNet workload.

and AE_FBS algorithms in the FIFA workload. Due to the
desirable performance of learning automata as the decision-
maker in the increasing section of virtual machine system and
the two-stage queuing structure and finally, the correct con-
trol of the controller section as one of the important decision-
making factors, resource allocation is done correctly. More
accurate resource allocation will increase the response rate.
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FIGURE 11. Comparison of the average response time in FIFA workloads.

FIGURE 12. Comparison of the average response time in NASA’s
workload.

According to the results, the proposed method has a better
performance about the response time. Figure 12 shows the
average response time in the AE_BMLA algorithm compared
to the two CTMC and AE_FBS algorithms in the NASA’s
work load.

According to Figure 13, the average response time of the
ClarkNet workload in the proposed method is lower than the
CTMCandAE_FBS algorithms. This is due to the proper per-
formance of the learning automata and the appropriate buffer
management. In all three workloads, the average response
time in the proposed method is lower than the two CTMC and
AE_FBS algorithms, which indicates the improved quality of
service delivery in this structure. Compared to the CTMC
and AE_FBS algorithms, the average response time in the
proposed method for all three workloads has decreased by
11.4% and 18.8%, respectively.

FIGURE 13. Comparison of average response time in ClarkNet workload.

FIGURE 14. Comparison of the utilization in the FIFA workload.

3) THIRD SCENARIO: IMPACT OF UTILIZATION METRI
Figure 14 shows the average utilization in the FIFAworkload.
The precise monitoring of learning automata over request
logs is a very effective way to control the status of resources.
Due to the optimal performance of the controller program and
the use of learning automata, resource allocation is done in
a desirable manner. Correct resource allocation will provide
accurate service delivery to the requests. Specifically, due to
the correct supply of resources, the processor is best suited
for requests. Of course, when the number of requests is high,
the utilization level may reach to threshold one, and this is
due to the high number of requests that need to be received
by the processor.

The use of buffer management has greatly influenced the
proper control of requests and the decision making about
the elasticity of the cloud system. It means that the learning
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FIGURE 15. Comparison of the utilization in the NASA workload.

FIGURE 16. Comparison of the utilization in the ClarkNet workload.

automata can easily decide whether to increases/decreases
the virtual machine for the occurrence or response to an
incoming service. Figures 15 and 16 show the utilization of
the AE_BMLA algorithm in comparison to the two CTMC
and AE_FBS algorithms in NASA and ClarkNet workloads.
In all three workloads, the utilization of the proposed method
is higher than the CTMC and AE_FBS algorithms, which
indicates an improvement in the quality of service delivery
in this structure. Compared to the CTMC and AE_FBS algo-
rithms, the average utilization in the proposed method for all
three workloads increased by 8% and 17.2%, respectively.

IV. CONCLUSION
Cloud computing is the on-demand delivery of resources
through a cloud platform via the internet to the end-users. The
application providers use cloud infrastructures for hosting
their applications due to its elasticity feature. The cloud elas-
ticity feature allows application providers to grow or shrink

computing resources on-demand, which enables automatic
scaling of cloud resources according to workloadchanges.
Therefore, any elasticity mechanism must have the capacity
to estimate the desired resources to deal with workload fluctu-
ations and satisfying the SLO requirements for avoiding over-
provisioning or under-provisioning problems. In this paper,
an approach was developed to improve elasticity using buffer
management and centralized elastic management. The buffer
management is responsible for controlling the input queue
of the request, and the elastic management is responsible
for controlling the elasticity of the system using the learn-
ing automata technique. We evaluated the proposed solution
under real workloads trace, including three data sets of FIFA
World Cup, ClarkNet and NASA, and their experimental
result indicated that it significantly outperforms in terms
of the elasticity value, response time, and CPU utilization
compared with the other approaches. In future work, we will
arrange to investigate: integration of the proposed solution
with auto-scaling mechanisms, evaluation the proposed solu-
tion in a real cloud infrastructure such as OpenStack and
extension of proposed solution using colored Petri Net mod-
els. Also, we will utilize the deep Q-learning instead of
learning automata to gain higher accuracy.
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