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Joint exploitation of spaceborne SAR images and GIS techniques for urban 
coherent change detection 
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A B S T R A C T   

This paper proposes a simple and fast method for the identification of structural changes affecting buildings in 
urban environments by using a combination of Synthetic Aperture Radar (SAR) imagery and Geospatial Infor
mation System (GIS) processing. 

The identification of changes in urban settlements is of great interest for damage assessment after natural 
disasters, cadastral mapping and monitoring urban development or illegal activities, such as the construction of 
unauthorized buildings. 

Satellite remote sensing is useful in this scenario and SAR data is attractive due to its wide and ubiquitous 
coverage, the day and night all-weather availability, the exact repetition of the acquisition geometry, the 
repeated illumination and the sensitivity to slight changes in the geometrical structure of the targets in the scene. 

This sensibility is an advantage, but turns into a drawback especially in an urban environment where every 
subtle change may cause an unwanted detection. 

This environment is indeed one of the most challenging for the detection of those changes that are of any real 
interest since these events are masked by thousands of irrelevant detections. 

This paper tackle this problem with a combination of an improved, high-resolution coherent change detection 
technique called M-CCD and with a GIS post-processing. The result is a map of changes affecting buildings that 
are of a significant scale and consequently of a certain interest in an urban environment. 

In this contribution, the complete workflow is detailed and an assessment of the detected changes is done with 
high resolution optical images through visual photo-interpretation. A comparison with other SAR and optical 
change detection methods is also carried out.   

1. Introduction 

The detection of changes is one of the most important applications of 
Synthetic Aperture Radar interferometry. 

The free and open availability of systematic repeated-pass SAR im
ages, made possible with the ESA mission Sentinel-1 starting from 2014, 
provided a huge boost in the research field concerning change detection 
(Colin Koeniguer and Nicolas, 2020; Hakdaoui et al., 2019; Luo et al., 
2019; Olen and Bookhagen, 2018; Washaya et al., 2018). 

The advantages of SAR sensors with respect to optical sensors in this 
particular field are manifold: the complete immunity to cloud coverage, 
the possibility to sense the scene even at night, the repeated geometry of 
acquisition and illumination and, the most important, the high sensi
tivity to fine changes in the geometrical structure of the scene (Moreira 
et al., 2013). 

The monitoring of urban settlements is a particularly interesting 
topic in the remote sensing community. Tracking the rapid changing in 
the urban landscapes and its effect on the environment (Ehrlich et al., 
2018), monitoring buildings construction or demolition (Chini et al., 
2018; Tamura, 2015) and the generation of land cover land use maps 
over human settlements (Atwood and Thirion-Lefevre, 2018; Pan et al., 
2019) are just three of the multitude of possible applications of remote 
sensing and change detection over civilized areas (Gamba et al., 2008; 
Melchiorri et al., 2018; Montuori et al., 2016). 

A SAR is a coherent sensing system in which both the amplitude and 
the phase of the signal backscattered from the targets on the ground are 
measured. The amplitude is related to the radar reflectivity, like for 
optical images, while the phase is sensitive to the target’s location with 
the accuracy of the centimeter. 

One could choose to use just the first one and search for a change in 
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the radar reflectivity. This method, while effective for the detection of 
big changes in the radiometric signature of the targets, is ineffective in 
the case of subtle changes where the scattered energy remains the same 
between two acquisitions. The simplicity of radiometric-based methods 
contributed to the proliferation of the incoherent analysis in literature 
(Aiazzi et al., 2013; Bovolo and Bruzzone, 2005; Bovolo et al., 2013; 
Bujor et al., 2004; Marin et al., 2015; Rignot and van Zyl, 1993). 

Coherent change detection (CCD), instead, exploits the phase of the 
backscatter, that is related to the wavelength (5.6 cm in C-band), leading 
to a much higher sensitivity. Also these techniques, as the incoherent 
ones, were extensively discussed in the literature (Biondi, 2018; Jung 
et al., 2016; Mian et al., 2019; Novak, 2005; Perissin and Wang, 2011; 
Wahl et al., 2016). 

The sensibility of the system to small changes is a double-edge blade. 
A huge number of changes can be triggered due to slight variations that 
are not of interest: these nuisance detections are numerous, therefore 
they can hinder the recognition of interesting changes. 

Obviously, this problem only becomes worse as the SAR operational 
frequency increases since the wavelength is reduced and the phase 
sensitivity is higher. 

The detection of unwanted changes is particularly pronounced in 
turbolent and ever-changing environments like the urban one, where 
plenty of sources of decorrelation are present from parking lots to green 
areas and streets. The challenges for a coherent change detection 
method are not only limited to the space domain (a lot of unwanted 
detection in different places), but also in time since multiple changes 
may occur along the total observation period. 

In this scenario, assuming a model where only one change happens in 
the whole time series can be insufficient, therefore, a more robust esti
mator must be implemented together with a method to suppress all the 
changes that are not of any interest. 

The method here proposed for detecting changes affecting buildings 
exploits the sensitivity of coherent approaches while reducing at most 
the number of false alarm basing on the maximization of the change 
likelihood. This is achieved by:  

1. Combining a fine phase calibration to compensate for the effect of 
elevation;  

2. A hierarchical identification of multiple changes occurring over the 
same target. This method will be called from now on Multiple- 
Coherent Change Detection (M-CCD);  

3. An a-posteriori processing to generate clusters of changes over the 
same building and provide a proper threshold to detect them. 

The method is detailed in Section 2 together with the complete 
processing chain. 

In Section 3, a case study for the city of Manchester (UK) is presented. 
For the data processing we used several configurations of the proposed 
estimator each one with different combination of polarization, estima
tion window and threshold for the detection. Since a ground truth of 
changes in not available in this scenario, high-resolution optical images 
have been exploited to provide a first interpretation of the changes. 

In Section 4 we provide a comparison with other SAR and optical 
change detection techniques. In the last section conclusions are drawn. 

2. Methodology 

In this section the complete workflow is presented starting from the 
mandatory pre-processing of the data and ending with the GIS-based 
post-processing. In Fig. 1 the entire scheme is depicted. 

2.1. Data pre-processing 

SAR images need an ad-hoc pre-processing: this includes amplitude 
calibration, fine coregistration (at sub-pixel level) (Sansosti et al., 2006), 
and, in the case of burst-mode acquisitions like for Sentinel-1, a proper 
debursting (De Zan and Monti Guarnieri, 2006). This is sufficient for 
incoherent change detection methods. 

If coherent processing is needed, also the phase of the images needs 
to be properly calibrated (Freeman, 1992). Since the phase senses the 
sensor-target optical path, the following elements have an impact on the 
measure:  

1. The satellite changes position between one acquisition and the other 
since it is not able to repeat exactly the same orbit (see Fig. 2). This 
condition generates in the interferometric data a term that is pro
portional to the local topography.  

2. The variation of the optical path due to the different conditions of 
propagation in the atmosphere.  

3. The change in the position of target or in the structure of a part of the 
many scatterers inside the resolution cell. 

The first two terms must be compensated if the final objective is the 
assessment of the changes. The first one can be removed by using a 
Digital Elevation Model of the scene while the second by jointly 
exploiting a stack of images as widely discussed in (Manzoni et al., 2020; 
Monti-Guarnieri et al., 2018). Note that it is necessary to compensate the 

Fig. 1. Processing scheme.  
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topographic phase up to the limits represented by the knowledge of the 
exact orbit and the DEM vertical and horizontal resolution. This is the 
reason why a further step is necessary to estimate and remove the re
sidual topographic component in the interferometric phase. 

2.2. Residual height estimation 

In an urban environment the compensation of the topographical 
phase may be inaccurate due to the large discrepancy between the DEM 
and the real topography of the scene. The presence of a residual term due 
to the elevation of the target can generate two unwanted effects:  

1. False alarms can be triggered by the imperfect compensation of the 
sensor-target distance due to DEM errors;  

2. A geocoding error that locates the target in a wrong geographical 
position, preventing the proper functioning of the GIS post- 
processing. 

The latter problem can be better explained by looking at Fig. 2: the 
target at position P will be geolocated at position P′ if its elevation q is 
assumed to be null. The location error on the ground would be d = q/ tan 
(θ), which could account for tens of meters in an urban scenario. The 
solution is to recur to a processing able to extract the residual height q 
from the data and, in turn, using the local incidence angle θ to find the 
displacement d to compensate for. 

In the following we detail the technique used for the estimation of 
the residual height and we evaluate the performances of the method. In 
presence of a single point scatterer in a resolution cell, a pixel of the ith 

SLC image can be modeled as (Hanssen, 2001): 

gi = ρej4π
λ

B⊥i
Rsin(θ) q

= ρejkzq (1)  

where ρ is the complex reflectivity function entailing both the amplitude 
and the phase of the backscattered signal, Bi

⊥ is the normal baseline 
between the master orbit and the ith slave, θ is the local incidence angle, 
q is the residual height to estimate, R is the slant range distance between 
sensor and target, λ is the wavelength and kz is the so called vertical 
interferometric wavenumber (or height-to-phase conversion factor). 

Since the geometry of the acquisition is known very well thanks to 
precise orbits available for Sentinel-1 products, the only parameter to 
estimate in eq. 1 is the residual height. The simplest solution is to 
explore a set of possible heights by cross-correlating the complex time 

series of a pixel with the model for the topographic phase. 
This operation actually minimizes the L2 norm of the difference 

between the data and the model: 

q̂ = argminq ‖ g − m(q)‖2
2̃argmaxqgHm(q) (2)  

where g = [g1 g2 g3 … gN]T is the complex time series of a single pixel 
in the scene and 

m(q) =

⎡

⎣e− j
4πB⊥1
λRsinθ q, e− j

4πB⊥2
λRsinθ q, …, e− j

4πB⊥N
λRsinθ q

⎤

⎦

T

(3)  

is the vector containing all the phase terms due to the residual topog
raphy. The mean accuracy in the estimation of the height can be derived 
by a simple linear model where the unwrapped phases are employed. 
The model is the following: 

ϕ = Kzq+w (4)  

where ϕ is the Ni × 1 vector containing the time series of the phases of a 
single pixel in the scene, Kz is the Ni × 1 vector containing all the phase 
to height conversion factors as in eq. 1, q is the residual height to be 
estimated and w is the Ni × 1 vector representing the noise. The variance 
on the estimate is easily derived as: 

σ2
q =

(
Kz

T Kz
)− 1σ2

w (5)  

with a σw = 1 rad, an average baseline of 30 m and an average incidence 
angle of 35 degree we can obtain a standard deviation from eq. 5 of 4 m 
with as low as 10 images: more than enough for the purpose of this 
paper. 

After the estimation of the residual height the DEM of the scene is 
updated, the compensation for the topographic height can now be per
formed correctly and the geocoding locations are corrected as well. 

2.3. Single change detector 

Coherent change detection methods exploit also the phase informa
tion typical of any coherent acquisition system being in this way sensible 
to small variation of the geometric structure of the scene. Several 
methods have been exploited in the past using multi-temporal and/or 
multi-polarimetric SAR data (Akbari et al., 2016; Barber, 2015; Jung 
et al., 2018). 

A review of the algorithm presented in (Monti-Guarnieri et al., 2018) 
is fundamental to introduce the novelty provided by this contribution in 
the next section. 

The time series of a pixel in a SAR image can be seen as a realization 
of a zero mean, complex multivariate normal process with probability 
density function (PDF) 

f (x) =
exp

(
− xHC− 1x

)

πNi |C|
(6)  

where C is the covariance matrix, Ni the number of images in the stack 
and ∣ ⋅ ∣ the determinant operator. 

The algorithm proposed is based on the Generalized Likelihood Ratio 
Test (GLRT) which involves the comparison between two PDFs. 

The covariance matrix can be modeled in two ways (for the sake of 
clarity we assume to have just 4 images in the stack):  

1. A matrix C0 representing a stable target is composed as follows 

C0 = σ2
p

⎡

⎢
⎢
⎣

1 γp γp γp
γp 1 γp γp
γp γp 1 γp
γp γp γp 1

⎤

⎥
⎥
⎦ = σ2

pΓ0 (7)  

where Γ0 is the so-called coherence matrix and σp is the backscattered 

Fig. 2. The acquisition geometry of a multipass SAR. The resolution along the z 
coordinate is given by the synthetic aperture obtained with multiple passages. 
The master acquisition is denoted with M while Bi

⊥ is the normal baseline be
tween the master and the ith slave. 
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power and γp is the interferometric coherence.  

2. A matrix CNc representing a target that decorrelates after the image 
Nc is composed as follows (we suppose again 4 images and the 
decorrelation happening after image Nc = 2) 

C0 = σ2
p

⎡

⎢
⎢
⎣

1 γp 0 0
γp 1 0 0
0 0 1 γp
0 0 γp 1

⎤

⎥
⎥
⎦ = σ2

pΓNc (8) 

In the two models just presented a further assumption has been 
made: the backscattered power doesn’t change between one image and 
the other. The final detector can be formulated as: 

Z(x) = log
(

f (x|C0)

f (x|CNc )

)

= Nslog
(
|ΓNc |

|Γ0|

)

− NsTr
((

Γ− 1
0 − Γ− 1

Nc

)
Γ̂x

)
≶
H1

H0

Λ

(9) 

where Ns is the number of independent samples used to estimate the 
coherence matrix Γ̂x and Λ is a threshold for the detection. 

All the possible ΓNc are tested against Γ0 and when Z(x) happens to 
be under a certain threshold a detection is triggered. 

This kind of processing is suitable when we want to reach high res
olution and we need high sensibility to small changes. For the detection 
of big changes such as construction and destruction works, a simple 
incoherent analysis (on a couple of images or a time series) can be suf
ficient: this kind of processing is more cost effective in term of compu
tational load, but the final accuracy is reduced due to the missed 
exploitation of the phase information provided by any coherent acqui
sition system. 

CCD, moreover, maintains a large number of degrees of freedom in 
the sense that several parameters may be tuned resulting in completely 
different outputs: the threshold, the polarization, the estimation win
dow, the number of images used and their temporal sampling are all 
independent parameters that must be tuned. 

The presented method was designed for the detection of a single 
change in the stack. The single change model is the most appropriate in 
the case of a stable area that is affected by a sudden decorrelation (see 
(Monti-Guarnieri et al., 2018)), but this is not the case in urban envi
ronments. In fact, in such an evolving domain multiple decorrelations 
are frequent. 

2.4. Extended CCD for multiple changes: M-CCD 

In case of an unknown number of changes, the statistically optimal 
detector becomes quite rapidly unfeasible since we have to test all the 
possible coherence matrices with all the possible number of changes (i.e. 
all the matrices with one, two, up to Ni − 1 changes): this is computa
tionally unfeasible since the total number of test to perform is in the 
order of 2Ni− 1 − 1. 

Two sub-optimal detectors (from now on called M-CCDs) can be 
formulated with a significantly lower computational load:  

1. Local minima M-CCD: supposing only one change in the covariance 
matrix it’s possible to find all the local minima under a certain 
threshold in the GLRT history: this solution is computationally 
inexpensive since the number of covariance matrices to be tested is 
just Ni − 1.  

2. Segmentation-based M-CCD: supposing again only one change in the 
covariance matrix the algorithm proceeds by finding the absolute 
minimum of the GLRT history. If it’s over threshold the procedure 
ends with no detections, while if it’s under threshold the dataset is 
segmented and the GLRT repeated in the two subsets now generated. 
The procedure continues in a recursive manner until no more abso
lute minima are detected under threshold. This method is compu
tationally more intensive than the first one. 

In Fig. 3 an artificial example is shown where a dataset is generated 
with 20 images and with 2 change points at images 10 and 17 respec
tively and with a very high coherence level γp = 0.8. In this specific case 
both local minima and segmentation approach can correctly detect the 
two change points. 

In particular, in Fig. 3a the coherence matrix of the simulated sce
nario is depicted. 

In Fig. 3b two local minima of the likelihood function are found 
under threshold and they correspond exactly to the change points in the 
stack. 

In Fig. 3c, d, e the segmentation approach is depicted: in this case the 
absolute minimum is found at image 10 and, since it is under threshold, 
a detection is triggered and the dataset is segmented. In Fig. 3d the first 
subset is tested and no points are found under threshold. In Fig. 3e the 
second subset is tested and here a change is found under threshold. 

In this specific case, both approaches reach the correct result. The 
single change detector, instead, would have identified only the biggest 
change in the stack (the absolute minimum of the GLRT function). 

To compare the performances of the two procedures, a Monte-Carlo 
simulation has been executed. The setup of the simulation consists of a 
synthetic dataset of 30 images showing 3 changes at different time in
stants: one at the beginning of the dataset and two very close to each 
other in the middle. The number of samples used to estimate the 
covariance matrix is 3: such a small sample size is used to simulate the 
real scenario where we want to obtain the highest resolution possible 
and where the estimate of the sample coherence matrix has a large 
variance superimposed. In the framework of multi-change detector, 
there is not a unique way to define what is a correct detection and what 
is a false alarm since a detector may trigger a change in a correct posi
tion, but at the same time miss the others: the detection is correct, but 
it’s not complete. In our scenario we decided to be as severe as possible, 
so, when we simulate a dataset with multiple change points, if the de
tector triggers all the detection in the correct positions we call that a 
“correct detection” while if it detects just a portion of changes it’s not 
counted as correct detection. On the other end, a false alarm event is 
triggered even if only one change is detected in a synthetic dataset with 
no changes. 

From Fig. 4b it’s evident that the probability of false alarm is exactly 
the same for the two detectors. This is expected and it is due to the fact 
that the absolute minimum is always also a local minimum, thus, the 
number of false detections is the same. For high values of coherence, the 
curve converges to zero. 

The difference is in the probability of correct detection (Fig. 4a): the 
segmentation based approach is more reliable and it reaches good 
probability of correct detection even for relatvively low coherences 
where instead the local minima procedure is not detecting accurately 
enough. The reason is clarified in Fig. 3: a change in the middle of the 
time series generates an accentuated notch in the likelihood function, 
shadowing a possible change at the end (or at the beginning) of the 
dataset that would hardly be detected. 

On the other end, segmenting the stack is equivalent to eliminate the 
biggest change by taking only a portion of the coherence matrix 
increasing in this way the probability of triggering a detection in the 
correct position. For the following, we decided to keep only the second 
solution since it’s the one showing better performances, while keeping at 
the same time the computational processing quite low. 

From now on, every time we will refer to M-CCD, it is implied that we 
use the segmentation-based M-CCD just explained. 

In Fig. 4 we used just 3 looks to estimate the coherence matrix to 
obtain and high resolution estimate of the changes. It is important to 
remember that the samples used should be statistically homogeneous, 
otherwise the performances of the estimator are degraded. 

Statistical homogeneity in the space domain can be generally guar
anteed by performing a similarity test between pixels such as the Kol
gomorov Smirnov test (Ferretti et al., 2011). Such tests, however, are 
mainly based on the amplitude time series of a target. For the changes 
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that are of interest for this processing, an amplitude-based test may not 
be effective since the amplitude itself may not vary after the decorre
lation time instant. 

If two polarizations are used together to estimate a single coherence 
matrix (doubling in this way the number of looks) homogeneity must not 

only be searched in the space domain but also in the polarization 
domain. Usually two polarizations can see different objects: the 
assumption behind the usage of both at the same time is that we are 
searching for decorrelation of the signal that is in turn tightly related to 
the geometric structure of the target on ground. When the complex 

Fig. 3. (a) Coherence matrix with 20 images and two changes. (b) The likelihood function: two detection are triggered by the local minima approach since both local 
minima are under the threshold. (c) The absolute minimum is under threshold, so the segmentation approach triggers a detection. (d) The first subset from image 1 to 
10 is tested and no changes are found. (e) In the second subset from image 11 to 20 a change is found. 
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reflectivity changes (suddenly decorrelates) we assume it does so in both 
polarization having in this way statistical homogeneity between the two. 
If this hypothesis is not verified in practice, we are in presence of a Non- 
Homogeneous Pixel (NHP) in the set of pixels used to estimate the 
coherence matrix. In the following we will refer to NHP without speci
fying if the dishomogeneity happen in the space or polarization domain. 

In Fig. 5a Monte-Carlo simulation with a varying number of NHP has 
been made. The number of NHP inside the estimation window is limited 
from 1 to 4: if, for example, the VV polarization sees the decorrelation 

while the VH does not, the number of NHP is 3 out of 6 total looks in the 
window. 

Another interesting aspect is the threshold for the detection herein
after denoted by Λ. It’s important to notice that Λ depends on Ns, the 
true coherences between each interferometric couple, the total temporal 
size of the stack, and the position of the supposed change inside the 
dataset. For this reason, a threshold able to guarantee a Constant False 
Alarm Rate (CFAR) is not trivial at all to find (Mian et al., 2018). 

The authors found that a good rule of thumb is to take a threshold 
that is doubled with respect to Ns. It’s useful to remark, also, that Ns is a 
conveniently small number: using a lot of samples in the space domain, 
in fact, would improve the quality of the estimate of Γ̂x at the expense of 
worsening the resolution. Using a stack of Ni images instead of just two 
allows the trading between space and time reaching in this way a very 
high resolution (at the expense of a higher computational burden). 

The final output of the CCD processing is a set of geolocated points, 
each one representing a triggered detection in a particular location and 
in a particular time instant. 

In order to further reduce the number of false alarms and to identify 
buildings affected by changes, a post-processing of such points is 
mandatory as explained in detail in the following section. 

2.5. GIS post-processing 

This procedure aims to process the detections obtained by the M-CCD 
in order to identify and extract only the buildings interested by changes. 
In order to do so, it is necessary to exploit a geospatial dataset related to 
land use/land cover. The availability of such datasets is ensured almost 
everywhere thanks to the diffusion of open data policies or crowd
sourced mapping initiatives such as OpenStreetMap (Jokar Arsanjani 
et al., 2015). 

It is worth remembering that the objective of this processing is not to 
classify or interpret the changes, but to simply identify them by 
excluding all the detection happening on non built-up areas such as 
parks, parking lots, water bodies and so on. The post-processing is a two- 
step GIS-based procedure. Since the change detection dataset refers to 
any generic change, the first step is a selection by location which allows 
the extraction of the subset of points specifically located inside the 
buildings polygons, thus the subset of points (or targets, in radar jargon) 

Fig. 4. (a) Probability of correct detection for the two sub-optimal algorithms. 
The M-CCD segmentation approach shows significantly better performances 
than the local minima approach. (b) False alarm rate for the two techniques. 
The probability of false alarm is the same for the two methods since an absolute 
minima is always also a local minima. 

Fig. 5. Probability of correct detection for the M-CCD in presence of Non Ho
mogeneous Pixel (NHP). The total number of looks is 6 in order to comply with 
the small number of looks in the case study (3) and dual-pol data (VV and VH). 
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that identifies changes over buildings. 
The second and final step focuses on the identification of the build

ings interested by changes (hereinafter SAR-detected buildings) and it is 
performed by associating to each building polygon the total number of 
points lying inside it. Obviously, the greater the number of points 
characterizing a building, the more significant the changes occurred. 

3. Case study 

3.1. Dataset description 

In this section, a validation of the entire procedure is carried out over 
the city of Manchester, UK (Fig. 6). 

In this example we used a set of 17 SAR images gathered by the 
constellation Sentinel-1 from June 2015 to December 2016. The 
description of the case study is summarized in Table 1. 

3.2. M-CCD results 

The CCD processing has several degrees of freedom: first of all the 
spatial window where the coherence matrix is estimated can be changed 
arbitrarily. A small window reaches higher resolution, but, the elements 
of the coherence matrix have high bias and variance superimposed 
(Touzi et al., 1999). 

The choice of the threshold is also tightly related to the number of 
independent looks taken for the estimation of the coherence matrix as it 
is clear from eq. 9. 

The polarization can be taken as VV only, VH only or VV + VH in the 
sense that both are averaged for the coherence matrix estimation. While 
different polarization can sense different aspects of the target on ground 
and therefore different behavior along time (Cloude and Papatha
nassiou, 1998), in this paper we assumed that a decorrelation happens 
simultaneously in the VV and VH polarization. If this assumption turns 
out to be true for a specific target we have doubled the number of looks 
used for the estimation of the coherence matrix, while if it turns out to be 
false we can relate to the case where there are statistically non- 
homogeneous pixels in the estimation window. 

In the following we have tested different combinations of parame
ters: each combination is hereinafter called RUN. Each RUN with the 

corresponding set of parameters is depicted in Table 2. 
The first three runs have a very small spatial window obtaining thus 

higher spatial resolution. The difference between the three is either the 
polarization used, the threshold or the estimation of the residual height. 
Note that, if one single polarization is used, the threshold is reduced 
accordingly to take into account the reduced number of looks. The last 
run has a much bigger spatial window (and a very stringent threshold) 
loosing resolution but gaining in estimation accuracy of the coherence 
matrix. A 31 × 5 pixels window corresponds roughly to an area on 
ground of 75m × 75m: an even bigger window can be used, but statis
tical homogeneity can’t be guaranteed in such an heterogeneous envi
ronments as the urban one. 

Fig. 6. Manchester, UK; extent of the region of interest provided in WGS84 reference system (Map data: @2019 Google).  

Table 1 
Description of the case study.  

Parameter Value 

City Manchester (UK) 
Area size 120km2 

Total number of buildings 62,331 
Platform Sentinel-1 A/B 
Number of images used 17 
Acquisition start June 2015 
Acquisition end November 2016  

Table 2 
Configuration for each RUN tested for the case study of Manchester.  

RUN Window 
size 

Resolution Pol Threshold 
(Λ) 

Estimated 
residual height 

RUN01 [5,1] 12 × 10 VV +
VH 

− 20 false 

RUN02 [5,1] 12 × 10 VV − 12 true 
RUN03 [5,1] 12 × 10 VV +

VH 
− 20 true 

RUN04 [5,1] 75 × 70 VV +
VH 

− 150 true  
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3.3. GIS post-processing 

The GIS post-processing was performed by exploiting the vector 
dataset of buildings of Manchester related to the year 2015, which is 
provided as open data by the national mapping agency for Great Britain 
(Ordnance Survey). 

Table 3 reports information about the detections resulting from each 
RUN. 

RUN02 obtains the largest amount of total changes (more than 
240,000) while RUN03 obtains the smallest amount of total changes 
(about 14,000). It is worth noticing that the selection of the subset of 
changes located inside buildings allows for a significant reduction of the 
total number of identified changes: the initial detections are reduced by 
percentages which range between 66% and 84%. This means that a huge 
amount of changes that are not located on buildings are discarded by the 
first step of the GIS procedure. 

The extraction of the SAR-detected buildings (i.e. the buildings with 
at least one change) was performed by taking into account the whole 
time period of SAR imagery, i.e. from June 2015 to November 2016. 

As mentioned in Subsection 2.5, for each RUN, a vector dataset of 
buildings with the corresponding number of detected changes was 
generated. 

Table 3 also shows that the RUN02 identifies the largest amount of 
buildings with at least one change (11,313). RUN03, although charac
terized by a total number of changes lower than RUN04, identifies a 
number of SAR-detected buildings doubled (1675), meaning that there 
are many buildings with associated a very low number of changes. 

In RUN01 and RUN03 the threshold has been kept the same on 
purpose to evaluate the effects of the residual height estimation on the 
number of detections. In RUN02, on the other end, a much less 
aggressive threshold is used and the number of detections increases 
accordingly. 

Notice how the extraction the SAR-detected buildings decreases by a 
significant amount the total number of changes in the scene highlighting 
those changes happening over man-made structures. 

A more detailed analysis of results can be performed by taking into 
account the number of changes associated with each building. Fig. 7 
shows an example of SAR-detected buildings dataset derived from 
RUN01 on a limited area of Manchester. Buildings are classified ac
cording to the number of changes that characterize them: it is clear that 
most of the buildings are affected by a number of changes lower or equal 
to 5 (blue colored buildings). 

Fig. 8 shows, for each RUN, how the number of SAR-detected 
buildings varies according to different thresholds χ representing the 
minimum number of changes per building needed to classify a building 
as “changed”. 

As expected, the graph highlight that the more the threshold χ in
creases the more the number of changed buildings decreases. In 
particular, a steep drop in SAR-detected buildings number is showed for 
χ values ranging between 1 and 5: considering χ equal to 3, the number 
of SAR-detected buildings is reduced of 50% for RUN04 and of 70% for 
the other RUNS; if χ is set to 5, the SAR-detected buildings are reduced 
by 60% for RUN04 and by 85% for the other RUNS. This behavior points 
out the importance of the threshold parameter χ, which needs to be 
accurately calibrated. 

The operation of thresholding will discard some building that are 
changed (even one change is still a change after all), but it will also 
highlights those buildings that are much more affected by homogeneous 
and spatially extended decorrelation. When the threshold χ increases, 
the number of SAR-detected buildings for each RUN converge meaning 
that the choice of the configuration of the estimator is less and less 
important. If a lot of changes are inside the boundaries of a building, 
they will be detected no matter the size of the estimation window, the 
polarization or the selected detection threshold (Λ). 

To compare the degree of overlapping between the different RUNs 
with varying thresholds we used the Matthews Correlation Coefficient 
(MCC) defined as 

MCC =
TP × TN − FP × FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ (10)  

where TP stands for True Positive, TN for True Negative, FP for False 
Positive and FN for False Negative. The MCC is able to represent with a 
single number the confusion matrix: for a MCC equal to 1 there is perfect 
accordance between the two methods, while for MCC equal to − 1 there 
is perfect dis-accordance. 

The MCC has been computed by considering thresholds on the 
number of changes per building equal to 1,5,10 and 20. The results are 
depicted in Table 4a–d respectively. 

It is easy to see that when the threshold increases, all the coefficients 
increase. This means that the detections of the different RUNs with high 
thresholds are overlapping. In particular, the last column of each table is 
quite interesting: it represents the comparison between the first three 
high-resolution RUNs with the only low-resolution one. When χ in
creases we are discarding a lot of changed building and therefore we are 
making the high-resolution RUN working as the low-resolution one. 
When χ is lower, instead, there are a lot of changed building that are not 
detected by RUN04 making the MCC significantly lower. 

3.4. Comparison with high-resolution optical images 

Since no ground truth is available over the city of Manchester, we 
must rely on high resolution optical images for the interpretation of the 
changes. Due to the high cloud cover of northern UK, few images were 
usable and the ones that shown the highest resolution possible were 
available through the Google Earth Pro®database. 

While low resolution images like Sentinel-2, RapidEye and Planet
Scope are more regularly spaced in time, their spatial resolution or 
quality (due to cloud coverage or bad illumination conditions) is not 
sufficient for a visual interpretation. In Section 4, however, we will use 
RapiEye images for an automatic detection of changes to assess the 
performances of low-res optical images. Google Earth images, on the 
other end, are very coarsely spaced in time, but their resolution goes 
down to less than 50 cm allowing for a better visual interpretation. 

Since thousand of changed buildings have been detected, a random 
sample of buildings of significant size was extracted for each RUN by 
using the formula: 

S =
a

1 + a/N
(11)  

where 

a =
z2p(1 − p)

e2 (12)  

where S is the sample size to be taken, N is the total number of buildings, 
z is the pre-computed z − score derived from the desired confidence level 
(in this case equal to 95%), e is the desired margin of error (5%) and p 
the probability of changed building (set to the maximum level of un
certainty of 50%). 

For each sample’s building, the verification of changes on the optical 
images was performed. It is worth noting that no threshold value χ was 

Table 3 
Results obtained from each RUN: number of total changes detected by the 
extended CCD method, number of changes only related to buildings, and number 
of buildings interested by at least one change.  

RUN Total changes Changes over buildings Buildings 

RUN01 61,181 14,844 4154 
RUN02 243,491 40,141 11,313 
RUN03 14,545 4973 1675 
RUN04 33,188 7818 724  
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imposed, thus all the buildings with at least one change were taken into 
account. Results of comparison, proposed in Fig. 9, show that for all the 
considered RUNS about 60% of SAR-detected changes are also visible in 
optical images (blue color bar). Besides the identification of new 
buildings or destroyed buildings, the SAR method proved to be able to 
detect also minor changes such as roofing replacements (Fig. 10a) or 
installation of photo-voltaic panels (Fig. 10b). 

For what concerns the disagreements, i.e. the SAR-detected changes 
to buildings not confirmed by optical, several different reasons can be 
adduced as an explanation. From the optical side, some changes can be 
missed due to different illumination conditions between the images. 
From the SAR side, there are many conditions that can cause the non- 
confirmed change detections. During the comparison activity, three 
different kinds of conditions were considered:  

1. The existence of parkings at the top of the buildings or adjacent to 
them (Fig. 10c);  

2. The presence of trees covering part of the buildings (Fig. 10d); 
3. The existence of construction sites, and thus storage areas for ma

terials and vehicles, nearby the buildings (Fig. 10e). 

According to the comparison analysis proposed in Fig. 9, parking 
areas (red color bar) could be responsible for most of the non-confirmed 
detections (22%–26%). Trees (green color bar) could generally affect a 
low percentage of the non-confirmed detections (3.5%–5%) with 
exception for RUN02, where the percentage increases to 8%. The con
struction sites (yellow color bar) were identified nearby the 3%–4.5% of 

Fig. 7. Classification of buildings according to the number of changes. Zoom of the results achieved by the joint SAR-GIS method over a limited area of Manchester 
(Map data: @2019 Google; Ordnance Survey data ©Crown copyright and database right 2013). 

Fig. 8. Number of changed buildings based on different threshold values χ.  

Table 4 
Matthews correlation coefficients (MCC) between RUNs (01,02,03,04) 
computed for different thresholds χ.  

(a) χ = 1  

01 02 03 04 

01 1 0.44 0.52 0.22 
02  1 0.28 0.15 
03   1 0.20 
04    1  

(b) χ = 5  

01 02 03 04 

01 1 0.55 0.61 0.40 
02  1 0.38 0.30 
03   1 0.32 
04    1  

(c) χ = 10  

01 02 03 04 

01 1 0.59 0.58 0.51 
02  1 0.38 0.39 
03   1 0.38 
04    1  

(d) χ = 20  

01 02 03 04 

01 1 0.57 0.56 0.62 
02  1 0.36 0.49 
03   1 0.41 
04    1  
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the SAR-detected buildings. Unlike the previous two cases, although 
they are not directly referred to the evaluated building, they still confirm 
a situation of urban change. Finally, the remaining percentage values, 
which range between 4.5% - 7% (gray color bar), refers to SAR de
tections not confirmed by optical for which no specific explanation was 
found; thus, they can be considered the added value provided by SAR 
with respect to optical. 

4. Comparison with other change detection techniques 

In this section we want to compare the proposed technique with 
other optical and SAR change detection methods. 

For what concerns SAR, we processed the same dataset with the 
Omnibus detector described in (Nielsen et al., 2016) and with the 
visualization tool REACTIV (Rapid and EAsy Change detection on Time- 
series using the coefficient of Variation). 

Given Ni images (Ni ≥ 2) the Omnibus detector tests if the polari
metric covariance matrices are all equal or not through a likelihood ratio 
test in which 

H0 : Σ0 = Σ1 = … = ΣNi

H1 : otherwise  

where Σi is the polarimetric covariance matrix for the ith observation. For 
the estimation of the polarimetric covariance matrix we used the same 
spatial window as in the M-CCD in order to have a fair comparison be
tween the two methods. 

The REACTIV detector uses instead the temporal coefficient of 
variation (standard deviation × mean− 1) described in (Ferretti et al., 
2001) to assess the temporal variability of the scatterers on ground. 
REACTIV simply encodes the coefficient of variation as the saturation in 
the HSV color space. The result is a map where colored and brilliant 
pixels are affected by a change, while desaturated pixels are the stable 
ones. For both Omnibus and REACTIV a detection with a suitable 
threshold has been used to produce a binary map where a pixel is 
marked as changed/not changed. 

In Fig. 11a small subset of the city of Manchester is represented 
where changes detected by Omnibus (Fig. 11a) and REACTIV (Fig. 11b) 
are highlighted in red. 

In the optical domain, instead, we used two RapidEye images with 5 
m of resolution acquired with a temporal baseline of less than one year 
(10th of June 2015 the first one, the 9th of May 2016 the second one). 

After a pre-processing consisting in atmospheric correction and his
togram equalization, the two images are compared by performing a 
Principal Component Analysis (PCA as in (Bustos et al., 2011)). From 
now on this method will be simply called OPCA (Optical PCA). A 
threshold is now imposed on the score values of the PCA to produce a 
binary map of changes. In Fig. 12 an example of detection is depicted. 

In order to perform a fair comparison we binarized also M-CCD 
RUNs: a pixel is set to true if there is at least on change in the time series, 
false otherwise. The threshold χ now only represents a lower limit for the 
spatial extent of the change. 

To compare the different RUNs with all the different methods we 
used again the MCC described in Section 3.3. 

In Table 5 we can notice that when the threshold increases the degree 
of accordance also increases. When the threshold is small, the high 
resolution and high sensitivity M-CCD detects a huge amount of changed 
buildings that are not detected by the other methods due to the poor 
sensibility (radiometric SAR analysis) or poor resolution (optical): the 
MCC is thus quite low. 

When we increase the threshold we are discarding all those buildings 
affected by a small number of changes. The remaining ones are buildings 
that are severely affected by decorrelations that are usually visible also 
with optical imagery. Moreover, a change that involves a wide area 
usually has a strong radiometric signature (i.e. destruction, renovations, 
etc.) making easier for incoherent methods the detection: that’s why the 
MCC increases with the threshold. 

While the MCC improves, it still remains quite small: this is attrib
utable to the deep difference between the working principles of the 
different detectors analyzed. The M-CCD is a coherent high resolution 
method, Omnibus and REACTIV are incoherent high resolution method 
and the OPCA rely of low resolution images gathered by an independent 
sensor. These results highlight the importance of the threshold χ: making 
it bigger intrinsically lower down the resolution of the M-CCD processor 
making it more similar to the optical one. While it is possible to highlight 
changes involving a wide area starting from very high resolution change 
map, it is impossible to do the inverse. Starting from a low resolution 
image it is impossible to obtain a map of changes at high resolution. 

5. Conclusions 

This paper proposes a technique aimed at estimating changes in an 
urban scenario in a fast, robust and reliable way. 

Fig. 9. Validation of SAR-detected changes per building by 
photo interpretation of optical imagery. The percentage of 
agreement, i.e. the SAR-detected changes confirmed by opti
cal, is about 60% (blue color) for all the RUNS. Disagreements 
are due to the presence of parking, 22% - 26% (red color), 
trees, 3.5% - 8% (green color), and construction sites, 3% - 
4.5% (yellow color), nearby the SAR-detected buildings. The 
percentage of buildings in gray color (4.5% - 7%) represents 
the added value provided by SAR with respect to optical. (For 
interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)   
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The main challenge of any coherent change detector in an urban 
scenario is to discard a huge number of unwanted detections both in 
space and time. The former is due to subtle and uninteresting changes in 
the geometric structure of a target while the latter is due to the temporal 
instability shown by the urban environment when long time series are 
used. 

To overcome this drawback we have set up a simple workflow 
composed by a pre-processing routine, an extended CCD and a GIS-based 
post-processing. A case study has been performed over the city of 
Manchester (UK) where different M-CCD configurations have been 
tested. The GIS post-processing confirmed its capability to significantly 
reduce the detections identified by extended CCD method by removing 
60% - 80% of the total changes. Furthermore, by increasing the 

threshold on the number of detection falling inside the polygon repre
senting a building (χ), we are able to highlight major changes that are 
detected by all the RUNs. 

A manual comparison has been done with high-resolution optical 
images over the same area: a good agreement (about 60%) is presented 
between the two datasets and, in most of the cases where there is no 
agreement (28% - 31%), the cause of the divergence can be attributed to 
nearby parking lots or forested areas that fell inside the estimation 
window and that are able to trigger unwanted detections. 

Finally, a comparison with other techniques from both the SAR and 
optical world has been carried out. The accordance between the 
methods improves, as expected, with higher thresholds on the number of 
change detected per-building. 

Fig. 10. SAR-optical comparison: example of SAR confirmed 
detections due to roofing replacements (a) and photovoltaic 
installation (b); example of non-confirmed detections prob
ably due to the presence of parking areas (c), trees (d), and 
construction sites (e) nearby the building of interest. For each 
example the number of changes per building (Map data: 
@2019 Google; Ordnance Survey data ©Crown copyright and 
database right 2013) and the optical images related to the 
years 2013 and 2017 (Map data: Google, Maxar Technologies) 
are proposed.   
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The M-CCD is an high-resolution and high sensitivity method able to 
detects every subtle geometric change. By selecting a higher threshold 
we discard all the changes not involving a wide area, making the result 
more similar to the low resolution methods. It is important to notice that 
the sensibility is not changed after the thresholding, therefore we are 
still able to detect subtle changes conditioned to the fact that they 
involve a wide area (e.g. solar panel installation). 

The proposed processing chain is able to adaptively satisfy the user 
needs: if high resolution is required, then no threshold is applied and the 
full set of changes over buildings can be assessed. If instead it is 
important to highlight areas with wide changes, a simple thresholding is 
sufficient to discard a lot of unwanted detection. It is useful to notice that 
this is impossible by exploiting medium resolution optical images or 
SAR-based incoherent methods: in the former small changes can’t be 
detected due to the poor resolution while in the latter the sensibility will 

be poor with respect to the coherent method. 
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Fig. 11. Changes detected by Omnibus (a) and REACTIV (b) over a small subset of the city of Manchester. The two detectors use the same dataset of the M-CCD 
detector described in Table 1. 

Fig. 12. Changes detected by the exploitation of two RapidEye optical images and a PCA analysis on the difference between the two. The nominal resolution of the 
images is 5 m. 
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