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Abstract—Objective: Cognitive workload monitoring (CWM)
can enhance human-machine interaction by supporting task
execution assistance considering the operator’s cognitive state.
Therefore, we propose a machine learning design methodology
and a data processing strategy to enable CWM on resource-
constrained wearable devices. Methods: Our CWM solution is
built upon edge computing on a simple wearable system, with
only four peripheral channels of electroencephalography (EEG).
We assess our solution on experimental data from 24 volunteers.
Moreover, to overcome the system’s memory constraints, we
adopt an optimization strategy for model size reduction and a
multi-batch data processing scheme for optimizing RAM memory
footprint. Finally, we implement our data processing strategy on
a state-of-the-art wearable platform and assess its execution and
system battery life. Results: We achieve an accuracy of 74.5% and
a 74.0% geometric mean between sensitivity and specificity for
CWM classification on unseen data. Besides, the proposed model
optimization strategy generates a 27.5x smaller model compared
to the one generated with default parameters, and the multi-
batch data processing scheme reduces RAM memory footprint
by 14x compared to a single batch data processing. Finally,
our algorithm uses only 1.28% of the available processing time,
thus, allowing our system to achieve 28.5 hours of battery life.
Conclusion: We provide a reliable and optimized CWM solution
using wearable devices, enabling more than a day of operation on
a single battery charge. Significance: The proposed methodology
enables real-time data processing on resource-constrained devices
and supports real-time wearable monitoring based on EEG for
applications as CWM in human-machine interaction.

Index Terms—Cognitive Workload Monitoring, Human-
Machine Interaction, EEG, Wearable Devices, Edge Computing.

I. INTRODUCTION

WHILE the level of automation in work environments is
likely to rise in the years to come [1], human operators
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are still expected to play an essential role in system supervision
(monitoring, diagnosis, and planning) [2]. In fact, automation
has fundamentally changed human-machine interaction (HMI)
in system operation by driving human operators from labour-
intensive activities to mentally-intensive supervision tasks [2],
[3]. Furthermore, despite reducing the amount of manual work,
automated system supervision requires continuous levels of
vigilance and prompt responses, thus it can be even more bur-
densome than previous tasks [2]. As a result, highly automated
environments still suffer from performance fluctuations and
human errors due to limited humans cognitive resources [3]–[5].

Furthermore, human errors are the foremost source of
operation failures in highly automated and safety-critical
environments [6]. Such failures can cause serious accidents,
for instance, in rail routing and aerial traffic control [6].
Hence, beyond the need for solutions to maintain human
performance, there is also an urge for improving safety in highly
automated task execution. In this context, the assessment of
the operator’s cognitive workload (CW) in real-time has been
already proposed for automation level regulation [5], [7], [8].
More specifically, CW can be utilized in HMI to increase the
awareness of the operator’s cognitive state, thereby enabling the
regulation of operation demands automatically with different
levels of the system’s task execution assistance [8]–[10].

Although CW assessment is a challenging endeavour en-
compassing various factors (e.g., mental and physical demands,
performance metrics, and frustration level) [7], it has been
widely studied as a tool to assess operators’ performance
while executing tasks in diverse contexts [6]–[16]. Among
CW assessment metrics, prior works considered physiological
signals suitable for CW monitoring (CWM), regarding the
possibility of continuous and unobtrusive data acquisition [5],
[6], [17]. In particular, electroencephalography (EEG) has been
successfully used to correlate brain activity variations to task
demand levels [5], [6], [9], [11], [12].

However, traditional commercial EEG data acquisition sys-
tems are considered cumbersome for daily monitoring [18],
and their use might be associated with social stigma [6], [19].
Even though there are commercial wireless EEG headsets on
the market, using such systems for CWM would require EEG
streaming to another platform for data processing. Streaming
data reduces the system’s reliability and requires more battery
capacity to account for the power-hungry wireless link [20].
To overcome these limitations, we consider a CWM system
that embeds in the same device both data acquisition and
processing, thus guaranteeing a reliable CW assessment in real-
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time and long-term operation (for at least 8 h/day). Moreover,
such a system also has to be unobtrusive and easy to set up,
minimizing interference with the task execution.

The latest smart wearable devices, employing the edge
computing paradigm, can perform continuous data acquisi-
tion and on-board machine learning (ML) to achieve high
classification rates [21]–[24]. Hence, we envision a wearable-
based solution to address the previously stated requirements
for CWM. Nevertheless, most wearable systems are based
on resource-constrained platforms, presenting very limited
processing capacity, memory, battery, and data transmission
throughput [25]. Therefore, a wearable CWM system also
requires a tailored data processing algorithm to reduce workload
and RAM memory usage. Particularly in CW assessment, the
algorithm RAM memory requirement is critical as it is necessary
to process long time-series (various seconds of physiological
data) [15], [16], [26].

In order to employ a resource-constrained wearable platform
for CWM, in this work, we propose a machine learning (ML)
design methodology and data processing strategy based on only
four channels of EEG, designed to enable the use of a simple
acquisition system to assess the operator’s cognitive state.
Particularly, we adopt the edge-computing paradigm, proposing
a lightweight data processing scheme to tackle memory and
battery life constraints [27]. The main contributions of this
paper are:

• A solution for real-time CWM on wearable devices
composed of an ML design methodology and a data
processing strategy, both validated on an experimental
data set. We reach an accuracy of 74.5% and a 74.0%
geometric mean of sensitivity and specificity on unseen
data.

• A feature extraction scheme for processing data of long
time-series in multiple batches. The proposed scheme
reduces the RAM memory footprint of our data processing
strategy by 14x compared to a single batch processing,
hence allowing its deployment in a resource-constrained
embedded platform.

• A model size optimization strategy for reducing flash
memory requirement in Random Forest (RF) low-level
representation. By reducing our final model size by 27.5x,
the proposed strategy enables the use of our RF model in
flash-limited embedded wearable platforms.

• An implementation of the proposed data processing
strategy for real-time CWM on a state-of-the-art wearable
platform, which reaches 28.5 hours of operation on a
single battery charge (225 mA · h battery).

The rest of the paper is organized as follows. Section II
presents a state-of-the-art overview on CW assessment, mainly
focusing on physiological-signal based monitoring and wearable
systems for CWM. In Section III, we present our proposed
methodology for designing and validating our CWM solution
for wearable devices. Section IV provides more details regard-
ing adopted machine-learning methodology for data processing
design and validation. Section V presents our proposed system
implementation for real-time CWM. Section VI details the
experimental setup for evaluating the proposed methodology,

and Section VII presents the results and discussion. Section VIII
concludes this work.

II. RELATED WORK

CW is a complex concept with various definitions in the
literature, yet most of them relate cognitive engagement or
capacity to task demands [6]. The CW concept is widely
associated with human performance on task execution. More-
over, prior works advocated that CW yield information on
the operator’s cognitive state to regulate the level of task
execution assistance on automation [5], [33]. Hence, the use
of CW has the potential to enhance HMI, thus improving
performance. However, continuous CWM requires unobtrusive
assessment metrics and systems. Henceforth, we present prior
methodologies for CW assessment. Moreover, we focus on
previous applications targeting long-term and real-time subject
monitoring based on physiological signals.

A. CW Assessment Measures

Prior research on CW assessment relies mainly on three
types of measures: surveys [34], performance metrics [7], and
physiological signals [5]. Among them, the application of
surveys is the simplest solution, but it requires the interruption
of the task for the subject to report on their cognitive condition.
Performance metrics can be used to overcome this problem,
assessing CW based on performance scores during task exe-
cution. However, such metrics are system dependent, thus not
always available in real-world applications. On the other hand,
physiological signals are considered a more comprehensive
metric for CW assessment, relating responses from the central
nervous system (CNS) and autonomic nervous system (ANS) to
cognitive demand variations [5], [6]. Moreover, physiological
signals’ reliability for assessing CW has been validated in
various settings, leveraging unobtrusive and continuous data
acquisition during experimental tasks [5]–[13], [15], [16], [26].

In this paper, we adopt physiological signals to foster CWM
use in HMI as we consider it the only suitable alternative
for real-time assessment daily. In this direction, we assess
prior works aiming at CWM based on physiological signals
and machine learning. Table I presents works with high CW
classification performance but also relates other applications
on mental state monitoring with data processing on the edge.

Particularly, following a multimodal CWM approach, [11],
[15], [16], and [26] employ various signals to monitor CW,
achieving classification accuracy from 80.20% to 82% on
unseen test sets and up to 93.61% on cross-validation. The
wide range of classification performance is influenced by the
considerable intra- and inter-subject response variability when
coping with task demands [35] and is also related to the diversity
of experimental setups available in the literature. Furthermore,
the findings of [11] and [26] indicate that EEG features
contributed the most to different levels of CW discrimination.
Although [15] and [16] reach relatively high accuracies using
only peripheral signals, such an approach requires the subject
to wear various acquisition systems and sensors. Thus, it
reduces its likelihood of adoption for daily use. Additionally,
a wearable multimodal CWM approach would also require
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Table I
STATE-OF-THE-ART (SOA): SELECTED WORKS ON MENTAL-STATE MONITORING APPLICATIONS USING PHYSIOLOGICAL

SIGNALS AND OTHER WEARABLE AND EDGE COMPUTING-BASED APPLICATIONS.

Work Target
Application

Wearables
(MCU)

Signals Win.
size

Methods
Applied

Detection
Performance

System

[28] Drowsiness No EEG, EOG 8 s ELM, SVM
(2 class)

Acc: 94.70% Nihon-Koden EEG
2110

[23] Stress Yes EEG, ECG, EDA - 15 features; SVM
(2 class)

Gmean: 86.94% MindWave, Bio-
Harness, Shimmer

[29] Stress Yes ECG, RSP, SpO2,
Accelerometer

35 s 16 features; SVM
(2 class)

Acc: 96.7% In-house
ASIC

[30] Stress Yes PPG, EDA 20 s 30 features; KNN
(3 class)

Acc: 75% In-house device

[31] Seizure De-
tection

Yes
Cortex-M4

EEG 4 s 54 features; RF
(2 class)

Gmean: 94.50% e-Glass

[32] Gesture
Recognition

Yes
PULP SoC

EMG 2 s 8 features; HD com-
puting (11 class)

Acc: 84.30% BioWolf

[11] CW No EOG, ECG, RSP,
EEG (6 channels)

10 s 43 features; ANN
(3 class)

Acc: 82% Grass P511

[26] CW No EOG, ECG, EEG
(16 channels)

30 s 82 features; SVM
(3 class)

Acc: 93.61%* Nihon-Koden EEG

[12] CW No EEG
(14 channels)

4 s 4 features; SVR
(3 class)

Acc: 69.0% Emotiv Epoc

[10] CW No EEG
(25 channels)

2 s 26 features; LDA
(2 class)

Acc: 85% Biosemi ActiveTwo

[15] CW Yes PPG, RSP, SKT,
ECG

60 s 24 features; XG-
Boost (2 class)

Acc: 80.20% Biopack

[16] CW Yes
Cortex-M3

SKT, ECG, EDA,
PPG, RSP

60 s 13 features; RF
(3 class)

Gmean: 81.70% Shimmer
Empatica E4

This
work

CW Yes
Cortex-M4

EEG
(4 channels)

56 s 17 features; RF
(2 class)

Gmean: 74.0.%,
Acc: 74.5%

e-Glass

EEG: electroencephalography; EOG: electrooculography; ECG: electrocardiography; RSP: respiration; EDA: electrodermal activity;
EMG: electromyography; PPG: photoplethysmogram; SKT: skin temperature; SpO2: oxygen saturation; Acc: accuracy;
Gmean: geometrical mean of sensitivity (Sen) and specificity (Spec); * Reported on cross-validation.

more circuitry and higher algorithmic complexity, which poses
higher energy requirements for data processing. Therefore, we
chose to employ only EEG on our proposed CWM solution.

Prior works have found correlations between certain EEG
band power oscillations and task complexity. For instance, the
authors of [11] observed that theta (4 - 8 Hz) band activity from
central electrodes on the scalp were the features that contribute
the most to CW assessment. Moreover, theta band power is
found to increase from low to high task demand variation,
especially on the frontal cortex [5], [9], [33]. Meanwhile, the
alpha (8 - 12 Hz) band power has shown an inverse correlation
with task complexity [5], [9]. Finally, the beta (12 - 30 Hz)
spectral band has also been used by various works to assess
CW [5], [6]. Besides EEG band powers, entropies and statistical
features have been also used for CWM [36], [37].

Most of the previous works employing EEG have made use
of caps or headsets covering the midline scalp area. However,
both EEG caps and headsets are considered cumbersome in
daily use [18], [19]. On the other hand, [11] and [12] also
reported salient features over the side frontal and temporal
areas when classifying different levels of CW. Thus, there are
opportunities for new wearable solutions exploring peripheral-
scalp electrode positioning and also targeting the lack of light
and easily deployable CWM devices.

B. Wearable Systems for CWM on the edge
Uncomfortable acquisition equipment, long subject prepara-

tion time, unreliable CW assessment, and short battery life are

examples of hurdles preventing CW assessment in real-time
for daily use. Consequently, these are problems we have to
solve to provide operators’ mental state awareness on HMI
in highly automated systems. Additionally, as stated before,
solving such problems entails the use of tailored wearable
devices. Nonetheless, we found no complete wearable solution
in the literature for CWM.

Indeed, we found a few recent works targeting CWM based
on wearable and multimodal sensors [15], [16]. The authors of
[15] proposed an ensemble-based machine learning technique
(i.e., XGBoost) to assess subject CW, reaching 80.20% accuracy
in differentiating between two levels of cognitive demands.
However, even though targeting a CWM system, they do not
implement their methodology on a wearable platform, relying
on a commercial wireless system for data acquisition. On the
other hand, in [16], the authors propose a self-aware machine
learning algorithm for CWM during manual labour for wearable
devices. It includes the estimation of the energy consumption
for executing the feature extraction and inference stages of
the proposed algorithm on an ARM Cortex-M3 development
board. Nevertheless, they do not implement the algorithm in a
specifically designed wearable device suiting their application
needs. Hence, [16] does not consider the entire system design.

For instance, we can rely on inconspicuous system design
to obtain a hidden wearable platform capable of performing
unobtrusive data acquisition while the operator executes their
daily tasks. Moreover, a simple wearable platform with few
monitored physiological signals (i.e., EEG) can decrease subject
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Fig. 1. a) ML-based design methodology for CWM on wearable devices; b) real-time CWM for HMI solutions.

preparation time and use less circuitry to reduce energy con-
sumption. Additionally, by using the edge-computing paradigm
to process the data on-board, we can assess CW at the data
producer’s site [27]. Hence, we reduce the latency and the
device’s energy consumption [38] by avoiding streaming data
to another platform with more computation power. In fact, we
found prior works targeting other applications such as epileptic
seizure detection [31], [39], and gesture recognition [32], which
reported battery life from 1.22 to 2.71 days of operation on a
single charge. Finally, the use of EEG for CWM depends on
new electrode placement strategies to avoid unwanted bulky
design (e.g., the design proposed in [39]).

Nevertheless, the use of a new electrode placement might
require further investigation into its viability for CW assessment.
First, midline scalp positions were found to display the highest
correlations with task demand variations among investigated
electrodes. Second, the amount of RAM memory required to
assess CW on wearable platforms is also a hard restriction to
be addressed by the application design. For instance, there is no
clear definition among previous CW assessment works regard-
ing the required data window size (e.g., 10 s [11], 30 s [26],
and 60 s [15]). To overcome these problems, we explore a
design methodology based on machine learning to devise a
lightweight data processing strategy. For instance, we divide
the original data segment into smaller data batches to execute
data filtering and feature extraction (cf., Subsection V-C).

III. COGNITIVE-WORKLOAD MONITORING AT THE EDGE

We aim to provide awareness of operators’ cognitive state
during HMI by monitoring CW in real-time with wearable
devices. Moreover, we target a seamless integration of CWM
and HMI, proposing an unobtrusive and easy-to-set-up solution
to reduce interference with daily supervision-task execution.
Hence, we present a solution composed of an ML design
methodology for CW assessment based on only four EEG
channels and a system implementation including a data
processing strategy for CWM on a state-of-the-art wearable
platform (Fig. 1). However, the use of wearable platforms
poses a major challenge in obtaining a reliable CW assessment.
The reduced set of electrodes available and the minimal data
processing capacity limit the use of well-established artifact-
removal methods in real-time, like those based on blind source
separation [18].

Therefore, we propose a lightweight CWM solution to over-
come such challenges and validate its viability experimentally.
This solution is composed of an ML design methodology and
a data processing strategy to reduce memory consumption
while mitigating artifacts confound in the CW assessment. Our
solution relies on three pillars: 1) identification and removal
of artifacts along with band-pass filtering to mitigate baseline-
wander and high-frequency noise; 2) a feature extraction scheme
for processing data in small batches to reduce memory and
smooth and dilute remaining artifact effects; 3) a feature
selection and an ML model generation based on data of various
subjects to increase the model likelihood of learning the actual
underlying process relating variation of CW to the task demands
while ignoring random artifact effects. These steps are further
detailed in Sections IV and V.

A. CWM Design Methodology and Validation

We propose a flexible ML-based design methodology
(Fig. 1a) and data processing strategy for our CWM solution,
validating them on the experimental data set described in
Subsection VI-A. Our proposed methodology is based on the RF
classifier, considering a combination of past modelling success,
lightweight inference execution, and model interpretability. We
devise and validate our data processing strategy for CWM,
obtaining the ML model to be integrated to our wearable
device’s firmware as the final output.

Our ML-based methodology is mainly built over five steps,
see Fig. 1a. First, we remove artifacts and filter noise, then
divide data in windows of various sizes. Second, we extract
a total of 68 features from each segment, as described in
Subsection IV-B4. Then, we select two important parameters:
1) the EEG window providing the best classification accuracy
among the various tested segments; 2) the number of trees to be
used in the RF model. In the fourth step, we perform a recursive
feature elimination on cross-validation (RFECV) to reduce
the model complexity while trying to improve classification
performance. Finally, we use a hyperparameter optimization
method to reduce the final RF model size (in bytes), allowing
for its integration to the firmware of our resource-constrained
wearable platform.
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B. Real-Time CWM System Design

Fig. 1b presents our wearable system implementation tar-
geting real-time CW awareness on HMI solutions. Our CWM
system is based on a state-of-the-art wearable device for
unobtrusive EEG monitoring. The platform is embodied on
glasses temples, a suitable and inconspicuous design for daily
use without mobility constraints. The hardware features four
high-resolution EEG channels, based on a low-power analogue
front-end, and a Bluetooth-low-power (BLE) system-on-chip.
Moreover, an ultra-low-power microcontroller is embedded
for data processing, reducing application battery requirement.
Finally, it is entirely based on off-the-shelf and industrial-grade
components, facilitating production and price scaling.

Our data processing strategy can be divided into three
stages: 1) noise and artifact removal; 2) feature extraction
(power, entropy, and statistical features); 3) cognitive-workload
level classification based on an RF model. After each CW
inference, the operator’s CW state is sent through the BLE
interface to the automated system for further use. Furthermore,
targeting the implementation of our methodology on resource-
constrained wearable devices, the data processing strategy
requires adaptations, for instance, to reduce its memory footprint
and processing requirements. In particular, the maximum
EEG window size that could be processed on the wearable
device is limited due to the relatively small amount of RAM
memory available. To counteract this problem, we propose a
data processing scheme allowing the division of each EEG
window into smaller data batches. In the proposed scheme, the
final feature values are obtained cumulatively or as averages
of intermediate batch results. Hence, we can achieve one
inference each batch processing. Section V-C provides a
detailed description of the calculation of each chosen feature.

IV. MACHINE LEARNING MODEL DESIGN AND
VALIDATION

In this section, we describe the design methodology we have
followed to develop and validate the proposed data processing
methodology for our CWM solution. Particularly, we obtain a
lightweight processing flow including a final RF model for a
binary classification problem of CW states.

A. Cognitive-Workload Classification Algorithm

Implementing an ML-based data processing strategy on
resource-constrained platforms requires the design of a
lightweight algorithm, both in terms of RAM memory require-
ments and execution time. Among available ML algorithms,
we chose RF [40] as it provides a robust and fast ensemble
classification method (apart from previously stated qualities).
Moreover, its algorithm includes two mechanisms to mitigate
data overfitting: 1) boostrapping, which increases the training
data set by sampling random subsets of observations with re-
placement; 2) taking random sets of features when considering
splits for each node in a decision tree.

Although RF inference is relatively simple, storing an RF
model in an embedded platform might require considerable
amounts of flash memory. To tackle this problem, we explore
a hyperparameter optimization to homogenize the maximum

depth among all the trees in the forest. Hence, the matrices used
to store the model at a low-level representation are shallower
and less sparse. In practice, we train an RF model and parse
it to a header file [41], which is then used on the wearable
system’s firmware project. The following subsections provide
details on the ML method stages and final model optimization
to achieve a small size for deployment on the application.

B. ML Design Methodology for CWM

Our ML-based design methodology considers the simu-
lated search and rescue (SAR) mission data set described
in Subsection VI-A, previously pre-processed as described
in Subsection VI-B. We divide the available amount of data
sessions in cross-validation (training and validation) and testing
sets (as specified the Section VI-C). In this division, we consider
each data acquisition session as a unit, thus data from an
experiment per subject per day is never shared between different
classification sets. The cross-validation set is used for evaluating
parameters related to the ML model design, features selection
and further optimization, which are presented in the following
subsections. Moreover, in each step of our proposed ML
design methodology, we employ 30-fold cross-validation to
cover a representative amount of subject-data combinations.
The testing data is only used to assess models’ generalization
performance as unseen data. Additionally, in the following
steps, we guarantee that the same data are used throughout
performance comparisons.

1) EEG Artifact Removal: EEG signals are typically in
the order of tens of µV. Due to their small amplitude, EEG
acquisitions are normally contaminated with physiological
artifacts (e.g., blinking activity) and noise from various sources
(e.g., 50 Hz line voltage). To mitigate the effect of such artifacts,
we propose an artifact removal step composed of: a) an artifact
identification stage; b) an artifact removal stage Details of its
implementation are given in Subsection V-B. Additionally, we
filter the EEG data between 3 and 18 Hz (4th order Butterworth
filter) to further mitigate the remaining low-frequency artifacts
and remove high-frequency noise.

2) Feature Extraction: As an exploratory step toward
obtaining an appropriate EEG window size, we then segment the
data in various window sizes (e.i., 8, 16, 24, 32, 40, 48, 56, and
64 s) with 60% overlapping. Such a range of EEG window sizes
covers most of those proposed in prior works (Table I), allowing
us to have a better overview of the ML performance. Thereafter,
the segmented data is used for extracting the 17 features per
channel (Subsection V-C), yielding a total of 68 features per
segment. Additionally, to reduce inter-subject feature variability,
we subtract the subject’s baseline state, namely an average value
of features obtained during a baseline condition.

3) ML Parameters Selection: We train a RF model for
each previously defined window size (Subsection VI-A) and
evaluate its effect on the classification scores (defined in
Subsection VI-C). Moreover, we repeat this procedure for 100,
200, 300, 400, and 500 trees, also observing the effect of the
number of trees on the model performance. Both parameters
are selected taking into consideration the final performance
obtained in this step. Additionally, we also observe that the
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number of trees should be small enough to reduce the final
model size (in bytes) without compromising the classification
performance.

4) Feature Selection: After defining the window size and
the number of trees, the next step in our design methodology
is feature selection. It is intended for reducing the number of
input variables, thus, potentially improving the performance
of the RF model and reducing possible overfitting. Basically,
we aim to increase the model likelihood to learn the actual
underlying relationship of the training data by considering only
the input features that are most representative for classifying the
target variable. We execute the feature selection interactively
by applying an RFECV method. We rank the features by using
the RF returned feature weights and prune the less significant
ones after each iteration of the used RFECV method, thus,
producing a classification score for all subsets of features used.
Finally, we select the subset of features that provides the highest
classification score.

5) Model Size Optimization: By setting the hyperparameters
related to the RF tree maximum-depth, we limit the maximum
input/output pathway length in the model. Hence, we limit
one dimension of the matrices used to store the RF model
at a low-level representation and, in consequence, reduce the
final model size in the microcontroller’s flash memory. Three
hyperparameters can affect the tree maximum-depth in the case
of the MATLAB® RF algorithm, namely: 1) ’MaxNumSplits’,
the maximal number of decision splits (the larger the number,
the deeper the tree); 2) ’MinLeafSize’, the minimum number of
leaf node observations (the smaller the number, the deeper the
tree); 3) ’MinParentSize’, the minimum number of branch node
observations (the smaller the number, the deeper the tree). As
a result, based on ’MaxNumSplits’ and ’MinLeafSize’, we tune
our RF model using Bayesian optimization [42], thus obtaining
the out-of-bag quantile error estimate for various combinations
of these hyperparameter’s values. Considering this estimated
error value, we choose new hyperparameters values to generate
our final RF model.

C. Assessment of the ML Design Methodology for CWM

First, we assess our proposed ML design methodology for
CWM based on only four EEG channels by comparing the
results obtained using data from a full EEG-cap (19 channels).
We follow our proposed methodology, but adopting a different
set of numbers of trees on the first step of model design (i.e.,
200, 400, 600, 800, and 1000) and discarding five times more
features during the RFECV due to the higher number of features
(i.e., 19 channels x 17 features).

Second, to verify the robustness of our methodology against
artifacts, we obtain the classification results using an ICA-based
method to remove EOG artifacts. Thus, in this second approach,
we filter the data between 1 and 40Hz (Butterworth, 4th order,
zero-phase) and use the EEGlab’s runica [43] to decompose the
data into independent components. Then, each component is
verified for correlation with the available EOG reference. The
components with a correlation coefficient superior to 0.8 are
removed before back-projecting data into the original sensor
space [10].

Finally, we assess the generalization and robustness of the
proposed framework applying our methodology on STEW data
set [12]. This data set contains EEG data from 48 subjects,
which were acquired while subjects executed a multitasking
activity. The experimental setup employed the Emotiv EPOC
EEG headset sampling at 128 Hz (16 bits, 14 channels, right
mastoid reference). STEW data set contains two files per
subject, corresponding to two different tasks. Hence, we target
a binary classification considering the task as the ground
truth. Moreover, due to lack of data at rest condition, we
skip the subject feature baseline removal. Additionally, we
also include SoA comparison considering the studies in [15]
and [10], which also target CWM on the same data set presented
in Subsection VI-A.

V. REAL-TIME COGNITIVE-WORKLOAD MONITORING
SYSTEM DESIGN

In this section, we detail aspects of our proposed system
implementation for real-time CWM. In particular, we present
firmware and hardware design characteristics needed to execute
our proposed CWM data processing strategy.

A. System Operation

Using an ARM Cortex processor-based wearable device,
we adopt the ARM CMSIS real-time operating system port
(CMSIS-RTOS) as a base for our application’s firmware
development. To reduce processing overhead, we handle
data acquisition and peripheral communications (e.g., BLE
communication) employing direct memory access (DMA) and
interrupt service routines (ISR). Moreover, RTOS message
queues are used for data synchronization throughout the data
processing stages. The RTOS is temporized using a real-time
clock (RTC). The RTC facilitates deep low-power modes
activation when using the CMIS-RTOS tickless operation
mode, which is our target operating mode for reducing energy
consumption.

We exploit the ARM CMSIS software library [44] for
developing the data processing sub-routines. This library is
optimized for ARM Cortex processors, which allows us to
speed up data processing execution. Finally, we also use
the microcontroller’s floating-point unit (FPU) and its digital
signal processing (DSP) instructions to further optimize the
data processing strategy execution (i.e, filtering and feature
extraction). Hence, both approaches contribute to reducing
the overall system energy consumption by enabling longer
periods in low-power mode. Moreover, similar strategies could
be employed with other microcontrollers, considering their
specific features such as HW accelerators, manufacturers data
processing libraries, etc.

B. Real-Time Data Acquisition and Artifact Removal

Our proposed wearable system implementation relies on
only four EEG channels placed next to the F7, T7, F8, and
T8 electrode positions over the frontal and temporal lobes
(Fig. 2), in a linked-mastoids referential montage. Data storage
is handled using circular buffers, thus, allowing processing
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Front

Fig. 2. Proposed electrode placement by the 10-20 international system [49]

chunks of samples at each step. Tackling RAM memory
constraints of the target wearable platform, we propose a batch
data-processing scheme in which an EEG epoch is divided into
various smaller data batches. Each data batch is independently
processed and determines the amount of RAM needed.

After acquiring a data batch, we start executing the artifact
removal step. As stated in the previous section, first, we identify
artifacts within the acquired buffer. Then, we proceed with its
removal. The artifact identification stage is executed in three
steps. First, we filter the data between 0.5 and 30 Hz to remove
baseline-wander. Next, we enhance artifact peaks by applying
the relative-energy (RelEN) algorithm [45] to a frontal electrode
signal (i.e., F7). Third, we detect peak locations on the RelEN
signal considering the two threshold method described in [46].
The RelEn algorithm employs a long and a short data window
to calculate the relative energy point by point. In this work, we
empirically chose 4 s and 100 ms, respectively for the long and
short windows. For the peak detection, we use as thresholds
two and three times the standard deviation of the RelEN output
per batch.

Following the method proposed in [47], we estimate the
artifact using the Savitzky-Golay filter (3rd order, 41 coeffi-
cients) in a small region around the artifact peak position. As
blinking are the main expected artifacts, we apply the method
to 0.5 s of data around the detected peaks (i.e., 100ms before
and 400ms after the peak) [48]. After artifact estimation, each
trace is subtracted from the original signal.

Finally, we filter the data between 3 and 18 Hz to mitigate pos-
sible residual artifact energy and remove high-frequency noise.
We use infinite impulse response (IIR) filters (Butterworth, 4th

order) for all stages. The filter implementation is based on a
second-order-section (SOS) biquad structure to mitigate the
effect of filter coefficient quantization. In particular, we employ
the CMSIS biquad cascade IIR filter using direct form I SOS
structure on our application.

C. Feature Extraction Scheme

According to [5] and [6], several studies have assessed the
correlation of CW to variations in task demand levels using
EEG bandpowers (i.e., theta, alpha, beta). Besides employing
bandpowers, we also expect changes in the signal complexity,
amplitude, and waveform between different levels of CW [50],
[51]. Therefore, we include features in the time domain and
entropies that are able to capture such changes. To meet the
proposed data processing scheme, we select and implement a
set of features that can be either calculated cumulatively over
all data batches or obtained as an average value. Given an EEG

time series X, with possible values {x1, x2, ..., xn}, a total of
17 features are calculated per EEG channel as follows:

1) Time Domain Features: We estimate the standard devi-
ation (std), and calculate the skewness and kurtosis. Besides,
we also estimate the Hjorth activity (HA), mobility (HM), and
complexity (HC) parameters [50], yielding a total of six time-
domain features. All features but skewness and kurtosis are
obtained cumulatively among data batches, which are calculated
by averaging batch intermediate results. We obtain the mean
using (1) and variance using (2) cumulatively, according to [52],
[53]. Once reaching the end of a window size, std is then
obtained from the var.

xk = xk−1 +
(xk–xk−1)

k
(1)

sk = sk−1 + (xk–xk−1) ∗ (xk–xk) (2)

For 2 ≤ k ≤ n, variance is estimate as σ2
k = sk/(k–1) [52].

The last three features, the Hjorth parameters dependent
on the variance of X and its first and second derivative, as
can be observed in the equations below. The first and second
derivative’s variance are also estimated using (2).

HA(X) = var(X) (3)

HM(X) =

√
var(X ′)

var(X)
(4)

HC(X) =
HM(X ′)

HM(X)
(5)

2) Frequency Domain Features: We calculate the band
power of the following EEG bands: theta (4 - 8 Hz), alpha (8
- 12 Hz), and lower beta (12 - 16 Hz). Moreover, we also
obtain the following relative band power: 1) each of the
aforementioned bands concerning the total power; 2) theta
relative to the alpha band; 3) alpha relative to the beta band.
The power features are obtained using Welch’s Method to
estimated the power spectral density (PSD). In this case, each
data batch is a segment with 0% overlapping modified using
a Hamming window [54]. More specifically, we employ the
CMSIS fast Fourier transform (FFT) to obtain each segment’s
spectral power. It yields a total of 8 features in the frequency
domain.

3) Entropy Features: Entropy features are a set of nonlinear
measures that reflects the complexity of the EEG signals. In
particular, we extract Shannon (SEn), Tsallis (TEn), and Rényi
(REn) entropy, which are calculated as follows [51], [55]:

SEn = −
M∑
i=1

p(Ii) · log2 p(Ii) (6)

TEn =
1−

∑M
i=1(p(Ii))

β

β − 1
(7)

REn =
1

1− α
· log2

( M∑
i=1

(p(Ii))
α

)
(8)

P (I) is defined as the probability distribution of X given that
the kth possible element belongs to one of {Ii : i = 1, ...,M}
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possible intervals of a histogram with M bins. Applying our
data batch scheme, we first obtain a cumulative histogram
(M=20 bins) of all data batches within a window size and then,
estimate P (I). Following [51], we adopt α = 2 and β = 2 to
calculate Rényi and Tsallis entropies.

VI. EXPERIMENTAL SETUP

In this section, we describe the database and performance
metrics used for training and validating our proposed CWM
design methodology. Also, we present the wearable platform
used for our CWM system implementation and its firmware
execution profiling test to assess current consumption and
estimate our system battery life.

A. Data Set

We use the EEG data set acquired on the experiment
presented in [15] and [10]. Such experiments aimed at assessing
the drone operators’ CW level from their physiological signals
during a simulated search and rescue (SAR) mission. The
experimental setup accounted for subject comfort during data
acquisition, having them sitting in a comfort arm-chair in front
of a medium-size screen and interacting with the simulator with
a hand game-pad. This setup aims to reduce body and head
movements to decrease the number of muscular artifacts. EEG
signals were acquired using a Biosemi ActiveTwo system [56],
at 2048 Hz, having electrodes placed according to the 10-20
international system [49].

A total of 24 volunteers (27.7 ± 4.8 years old) took part in
the experiment, executing the experiments twice (on different
days). All of them signed a written consent and the study
has the approval of the Cantonal Ethics Commissions for
Human Research Vaud and Geneva (no. PB2017-00295). The
experimental setup is the following:

• It was used a simulator for SAR with drones that includes
four different types of tasks, namely: 1) baseline (B), an
auto-pilot passive task; 2) flying (F) the drone through the
centre of a set of waypoints (circles marking the pathway);
3) mapping three objects (3M), a task of identifying three
objects by colour by pressing a video-game-like control
button over an auto-pilot flight; 4) flying and mapping
three objects (F3M), combining the two previous tasks to
create the highest level of workload among all tasks.

• During each experimental session (approximately 56 min
of data acquisition), a subject performed all the above-
described tasks three times: 1) on the first trial, each task
lasted five minutes, with three minutes of rest in-between;
2) during the second and third trials, tasks lasted three
minutes each without rest in between. The task sequence
was chosen randomly among participants.

The available data is grouped by experimental session, a
session per subject per day of the experiment, yielding a total
of 48 separated subsets of EEG (approximately 56 min of
data per session). Finally, according to the averaged self-
reported difficulty level stated in [10], the F is the second
most challenging task. Therefore, we use data from F3M
and F tasks for our ML binary model design and validation.
Additionally, the data of the first trial baseline task is used to

extract the subject’s baseline CW condition (as described in
Subsection IV-B).

B. Data Set Pre-Processing

In general ML-based approaches, the data set has to be pre-
processed before use. In relation to the target data set, first,
we modify the data to resemble the output of our proposed
wearable platform. We use the EEGLab [43] re-reference tool
to apply an average linked-mastoid reference. Additionally, we
downsample the data to 256 Hz.

Second, there are various specific factors (e.g., skills, atten-
tion, engagement) that can contribute to a subject not perceiving
a task as cognitively demanding. Hence, we remove data
sessions presenting not observable CW variation between tasks.
To this aim, we perform a pairwise statistical test to compare
the features extracted from the two selected tasks within a data
session (experiment per subject per day). Since the window
size is further selected in our methodology, we assess the
statistical difference for all previously defined ones using a non-
parametric two-sided Wilcoxon rank-sum test (5% significance
level) [57]. Finally, we discard the sessions having less than
33% (empirically chosen) of the total number of features with
statistical differences.

C. CWM Model Performance Assessment

We execute the ML model design and validation methodology
proposed in Section IV using MATLAB®. From the available
number of data sessions, first, we sort the testing set (20%) for
future model generalization assessment (unseen data). Second,
we divide the remaining data into training (60%) and validation
(20%) sets. All sessions have approximately the same amount
of data points per task, thus our data set is balanced. Therefore,
we evaluate the performance of our proposed ML design using
the accuracy (Acc), sensitivity (Sens), specificity (Spec), and
their geometric mean (Gmean) scores. These scores are defined
as follows:

Acc =
Tp+ Tn

Tp+ Tn+ Fp+ Fn
(9)

Sens =
Tp

Tp+ Fn
, Spec =

Tn

Tn+ Fp
(10)

Gmean =
√
Sens · Spec (11)

where Tp, Tn, Fp, and Fn stand for true positive, true negative,
false positive, and false negative, respectively.

D. Application Profiling and Battery Life Analysis

We target the e-Glass wearable device [39] as implemen-
tation platform for our real-time data processing described
in Section V. e-Glass is designed using extensively validated
off-the-shelf components, namely: 1) the STM32L476 ultra-low-
power ARM Cortex-M4 microcontroller, featuring a 1 MB flash
memory and a 128 KB RAM, and reaching up to 80 MHz
clock; 2) the ADS1299 EEG Front-End, a complete EEG
System-on-Chip in reduced package size; 3) the BlueNRG-MS,
Bluetooth-low-energy (BLE) network processor.
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The real-time data processing for CWM described in Sec-
tion V was implemented for e-Glass platform using the CMSIS-
RTOS. Among other advantages, the RTOS includes a run-
time tracing utility we use to profile the processing workload
per thread created. This tracing tool employs a secondary
timing source (i.e., a microcontroller timer peripheral) to collect
information on each thread’s total execution time. This statistic
includes the Idle task execution (automatically created by the
RTOS), allowing us to estimate the amount of idle processing
time. A second tracing tool we use is the data watchpoint and
trace component (DWT), available on e-Glass’ ARM Cortex-
M4 microcontroller. DWT includes a clock cycle counter, the
CYCCNT, which we use to determine the number of clocks
used by specific parts of code, aiming at optimization and
execution bottlenecks identification.

Considering the run-time statistic utility, we obtain the
execution profile for our firmware over a 60-minute period
(with 10 µs resolution). We process a 4 s data-batch while
e-Glass is in run mode (lowest processing overhead). Moreover,
we assess the firmware execution time breakdown by setting
the clock counter for each main processing block (i.e, artifact
removal, feature extraction, and the ML inference).

Finally, regarding battery life, we measured e-Glass’ current
consumption using a Fluke 8846A digital multimeter, 6.5 digit
resolution, 100 µA to 10 A current range (with up to 100 pA
resolution). The measures were taken at 4 Hz, considering
e-Glass at three different operation schemes: 1) running the
application, microcontroller always in run mode (main clock
at 80 MHz); 2) microntroller in deep sleep mode, peripherals
active; 3) running the application, activating RTOS tickless
mode (switching from run-mode to deep-sleep mode when
executing the Idle task). These three scenarios indicate the
maximum and minimum current consumption, and the target
operation mode current consumption (considering processing
overhead to switch between modes).

VII. RESULTS AND DISCUSSION

This section presents the results for the validation of our
proposed ML design methodology for CWM. We also present
the comparison with a full-cap solution, the ICA-based artifact-
removal technique usage, and the STEW data set. Finally,
we present the execution profiling results and battery life-time
estimation when implementing our proposed methodology on
the e-Glass platform.

A. ML Model Design and Evaluation

The first step for our ML model design is to select the
window size and RF number of trees. The obtained overall
cross-validation Gmean scores show a relatively small variation
for different window sizes and number of trees (ranging from
69.5−77.6%). The 56 s window size output the highest average
Gmean across all number of trees when using 200 trees. Hence,
we select the 56 s (with 60% overlap) window size and 200
trees as parameters to be used in the next steps of our ML
design methodology.

Second, we proceed with the feature selection step aiming
at reducing the number of features used by our RF model and,
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Fig. 3. Feature selection score evolution per number of most important features.

therefore, decrease the final computational load of this step on
the real-time implementation. We apply the RFECV pruning
the two least important features per iteration. Fig. 3 presents
the cross-validation Gmean scores and their standard deviation
for the RFECV process. We observe a fast rise in Gmean with
the increment of a few features, reaching the maximum score
value when using 18 features. From this point on, there is a
slowly decreasing trend with the increment of the number of
features.

Table II shows that the cross-validation Gmean increases
from 74.7± 4.3% to 76.7± 5.0 % when the number of used
features reduces from 68 to 18 features. Moreover, we also
observe stable classification scores when using the selected
set of features on the unseen test data. In terms of model
size, models generated for the number of features (68 and 18)
would require quite a considerable number of bytes to be stored
on the microcontroller memory. Thus, a requirement of up to
3,126.0 KB (after compilation) of flash memory is not feasible
for wearable platforms. Therefore, we need an additional model
optimization step, towards model size reduction.

B. Optimization for Model Size Reduction and Generalization

In general, a decision tree (DT) model is a map of possible
outcomes, connecting inputs (features) throught a pathway to
each leaf (containing assigned labels). Each path includes nodes,
branching the way toward a possible outcome according to
feature weights. As a result, an RF model, an ensemble of DT
models, can be stored on the microcontroller flash memory in
groups of matrices containing the number of branches, path
lengths, branch weights, labels for each leaf, etc. The sum of
each matrix storage capacity is directly related to the model size
in bytes. More specifically, the maximum input/output pathway
length is one dimension of such matrices, thus, shallower
trees produce smaller models. Moreover, although limiting the
maximum tree depth causes the generation of more pathways
(e.g., leading to more leaves, branches, weights), shallower
trees also have higher input/output lengths homogeneity. Hence,
shallower threes also produce less sparse storage matrices.

To achieve a shallower tree, we optimize the hyperparameters
of our final RF model to reduce the maximum tree depth. In
the case of RF, we employ a Bayesian optimization concerning
the MaxNumSplits and MinLeafSize parameters and obtain
the error curve in Fig. 4. For the chosen hyperparameters,
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Table II
ML METHODOLOGY PERFORMANCE: THE INFLUENCE OF FEATURE SELECTION (RFECV) AND HYPERPARAMETER OPTIMIZATION IN PERFORMANCE

SCORES (±STANDARD DEVIATION) AND MODEL SIZE – e-Glass VERSUS FULL-CAP SOLUTION.

System RFE Model Feat. CV (%) Testing (%) Model
Config. CV Opt. (total) Acc Gmean Acc Gmean Sens Spec Size (KB)
e-Glass No No 68 74.7± 4.3 74.0± 4.8 76.4 76.1 82.3 70.1 2,901.0
(4 ch., Yes No 18 76.7± 5.0 76.0± 5.0 76.3 76.1 81.6 70.9 3,126.0
200 trees) Yes Yes 18 75.8± 4.7 75.1± 5.0 74.5 74.0 82.9 66.1 113.5
Full-Cap No No 323 80.6± 5.4 79.8± 6.0 81.2 81.0 76.7 85.7 5,646.9
(19 ch., Yes No 33 82.3± 5.2 81.7± 5.7 80.8 80.4 72.3 88.6 4,814.5
400 Trees) Yes Yes 33 82.0± 5.2 81.3± 5.8 80.5 80.2 73.3 87.7 645.7

the small the MaxNumSplits the shallower a tree. Also, as
larger the MinLeafSize as shallower a tree. Thus, we select the
model minimum feasible point located at MaxNumSplits=17
and MinLeafSize=1 (lowest error) to generate our final model.

Table II presents the scores for our final model and its
memory size after optimization. Our newly trained model
considers the above selected hyperparameters, employing the
feature set returning the highest Gmean score on the RFECV
(18 features in this case). The final model requires only
113.5 KB of memory, a 27.5x size reduction compared to the
one generated in the previous ML stage, which is leveraged by
the RFECV. In case we optimize model size for the full feature
set, we only achieve a 3.5x reduction (model size=824.5 KB).
Additionally, optimize model’s hyperparameters causes only
a small variation on classification scores. Hence, we obtained
a model showing marginal variation in classification scores
but with a considerable size reduction, thus allowing us
to fit it in our target platform flash memory. Nonetheless,
regarding a trade-off between size and accuracy, another set of
hyperparameters values can be chosen if further reduction
is required. In particular, by using MaxNumSplits=10 and
MinLeafSize=1, the model size is further reduced to 56.8 KB
while achieving a 75.3 ± 5.1% and 76.0 ± 4.8% of cross-
validation Gmean and Acc, respectively.

Finally, we use the final model to assess our proposed
methodology generalization to the unseen testing set. Our
results show a 74.0% Gmean score on the unseen test set
(Sens=82.9% and Spec=66.1%) and 74.5% of Acc, which are
within cross-validation score range. Thus, it indicates a good
model generalization.

C. CWM Design Assessment Results

We evaluate the performance of our proposed ML design
methodology for CWM and data processing strategy in three
different scenarios, as previously stated in Subsection IV-C.

First, we apply the ML design methodology using data from
a full EEG-cap, a common setup in the literature [5], [6], [10].
We obtain the highest cross-validation Gmean score using 400
trees. Thereafter, the RFECV and hyperparameter optimization
results are also given in Table II. Results show only a 5.7%
higher Gmean in CV (best one in average) and a 6.2% higher
Gmean for the testing set after model optimization compared
to the e-Glass solution. Similar differences are observed for
the other performance scores.

Furthermore, analysing the feature ranking returned by RF on
the RFECV, the 18 most important features are from 11 different
EEG electrodes over the frontal/central region of the scalp (i,e.,

Fig. 4. Model optimization: out-of-bag quantile error vs complexity
.

F3, C3, P7, Fz, F4, Cz, C4, T8, O2, Fp1, and Fp2). Although
providing slightly higher classification scores, such a solution
would not be feasible on a resource-constrained embedded
system. Such a system lacks RAM memory and processing
capacity for real-time evaluation and poses considerable battery
life restrictions. Besides, EEG caps or headsets are considered
cumbersome and less accepted by possible users, for instance,
due to social stigma [18], [19]. Therefore, the Gmean score
difference between e-Glass and a full-cap solution is considered
acceptable when observing the gains in usability, hardware
simplification, processing workload reduction, and battery life.
Additionally, as discussed in [6], human performance would be
more affected in more extreme CW conditions and we could
optimize the sensitivity of our proposed solution for those more
extreme conditions (e.g., optimizing decision threshold).

Second, our ML design methodology and data processing
scheme combines various steps to mitigate possible artifact
confound on our proposed CWM solution. More specifically,
we tailored an artifact removal algorithm for e-Glass, our
target wearable platform. To assess the robustness of our
methodology against artifacts, we employed an ICA-based
method for artifact removal to replace our proposed algorithm.
We obtain Gmean=73.1% and Acc=74.9% on the test set when
using ICA (CV-Gmean=73.1±5.9% and CV-Acc=73.8±5.5%).
Hence, such results indicate that our methodology provide
a similar CW assessment compared to a scenario in which
includes a gold-standard artifact removal step is used.

Next, we apply our ML design methodology for CWM to
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Table III
COMPARISON WITH THE SOA.

Work Database Signals Accuracy
[10] SAR EEG (25 ch) 77%
[12] STEW EEG (14 ch) 69% (79.2%*)
[15] SAR PPG, RSP, SKT, ECG 80.20%

This work SAR EEG (4 ch) 74.5%
This work STEW EEG (4 ch) 83.6%
*Adjusting it for 2 classes, as explained in Subsection VII-C

the STEW data set to assess its generalization capacity [12].
Following our methodology, we select the EEG window size of
32 s and obtain 200 trees as parameters for generating the RF
model in the feature selection and model optimization steps.
As final results ( see Table III), we achieve Acc=83.6% and
Gmean=83.6% in the testing set, within the range of values
obtained with our primary data set. Moreover, authors of [12]
reported an Acc=69.2% for a three-class problem. However,
a reformulation of their presented confusion matrix for a
two-class problem, grouping [12]’s results for the moderate
workload to the high condition count, returns Acc=79.2%. Such
reformulation is considered to be reasonable as we observe that
the median difference between moderate and high perceived
workload is relatively higher than the low to moderate in a
similar work [15]. Hence, our results are 4.4% superior to the
ones inferred from the original study. These results indicate that
our solution is robust and generally applicable albeit different
in experimental setup and methodology of data analysis.

Finally, a direct comparison with SoA is shown in Table III.
We achieve Acc=74.5% in the testing set, on par with the
results of SoA works targeting CWM with various biosignals
or using a full-cap solution. For instance, the authors in [10]
achieve Acc=77% for the same classification problem on SAR
database, but through the use of data from multiple channels.
In turn, the work in [15] reports Acc=80.2% also for SAR
database, but employing four peripheral physiological signals
to classify between baseline and F3M tasks. Therefore, our
proposed solution for CWM enables awareness of the operator’s
CW state on HMI, using edge wearable sensors with only four
EEG channels.

D. Execution Profiling and Battery Life Estimation

We implement our proposed methodology for CWM on the
e-Glass wearable platform. By profiling its execution for one
hour, we obtained the RTOS task run-time breakdown given in
Table IV. We can observe that 97.83% of the time e-Glass is
executing the Idle task (waiting for execution demands from
other tasks). Only 1.28% of the total time is used to run our
proposed ML data processing strategy for CWM. The remaining
time goes to processing overhead (e.g., battery charge control,
BLE callbacks, acquired data parsing). Therefore, our proposed
methodology is lightweight, allowing the e-Glass platform to
execute it in a relatively short period to improve battery life.

Regarding the proposed ML approach, Table V displays its
execution time breakdown when processing a 56 s EEG window
size in 14 batches of 4 s. Each 4 s data batch is processed in
approximately 56.4 ms (microcontroller main clock at 80 MHz),
60% of which is spent on feature extraction. Moreover, by

employing the proposed multiple data-batches feature extraction
scheme, we reduce the RAM memory footprint for our data
processing strategy by approximately 14x compared to a single
batch processing. Hence, the proposed data processing scheme
enables the algorithm execution on our wearable platform.

The inference period of 14.8 ms is quite small compared to
the total time (1.8%). However, if we consider other applications
using smaller window sizes, the inference time becomes
significant. For instance, with an 8 s window size, the inference
could account for 13.11% of the ML algorithm execution as
its execution time is about the same considering the same
number of features and trees. Similarly, for applications that
require higher inference rates, the size of the model becomes a
sensitive parameter when accounting for the total computation
time. In such cases, the inference execution time might be in
the same order of magnitude as the combined execution of
pre-processing and feature-extraction steps.

Table IV
TASKS PROFILING: EXECUTION TIME BREAKDOWN.

System Tasks Exec. Time (%)
Data management 0.29
Data processing 1.28
System manag. 0.59
RTOS TMR 0.02
Idle 97.83

Table V
ML PROFILING: EXECUTION TIME BREAKDOWN.

Data processing Tasks Exec. Time (ms)
Filtering 46.59
Artifact Removal 276.01
Feature Extraction 481.63
RF inference 14.79
Total 804.23

Finally, Table VI provides e-Glass’ current consumption
in three different scenarios. The first scenario corresponds to
the highest expected current consumption, on average, and the
second to the lowest. In the third scenario, we activate the
RTOS tickless operation mode, which is the target e-Glass
operating mode of our application.

Current measurements were taken on the battery side
as the average of a thousand samples. Due to the input
capacitive/inductive power-supply filtering circuitry and the
low frequency of high current events (e.g., a BLE transmission
occurs each 1 s), the obtained average current values provide
a reliable system power consumption assessment. Moreover,
the current measurements are within the expected range, as
follows:

• The first scenario includes the current consumption
throughout the entire platform, i.e, including the mi-
crocontroller (estimated as approximately 14 mA using
STmicroelectronics STM32CubeMX software v5.6), the
EEG front-end (approximately 4.6 mA, based on the
ADS1299 datasheet), BLE (mostly in sleep mode, drawing
3.5 µA). The difference is drawn by other circuitry (e.g.,
voltage regulators, pull-up resistor, etc.).

• During the second scenario, the microcontroller is kept
in deep-low-power mode after peripheral configurations.
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Hence, we observe that most of the current is consumed
by the ADS1299 chip.

• Using the third scenario, we assess the effect of the RTOS
tickless operation mode on the total current consumption.
We observe a 1.47 mA increment in current consumption
mostly related to the microcontroller operation to acquire
and process the EEG data.

In terms of battery life estimation, when operating on
the tickless mode, e-Glass can execute our proposed CWM
algorithm for up to 28.59 hours on a single battery charge
employing a 225 mA · h LiPo battery.

Table VI
MEASUREMENTS OF e-Glass’ CURRENT CONSUMPTION DURING

DIFFERENT OPERATION MODES.

System Operation Mode Current (mA)
Active (Run mode - 80 MHz) 22.45
Low-power (Deep-low-power mode) 6.4
Tickless (Run/Low-power modes) 7.87
Battery life (225 mA · h) 28.59 h

VIII. CONCLUSION

In this work, we have proposed a design methodology, and a
data processing strategy for CWM on wearable devices aiming
to provide a reliable and optimized tool to enable awareness of
the operators’ cognitive states on HMI. Then, we have validated
our design methodology on an experimental data set, reaching a
Gmean of 74.0% between sensitivity and specificity on unseen
data.

The proposed lightweight ML-based data processing strategy
for resource-constrained wearable devices implements two
solutions for the main memory-related problems in such
platforms, namely: 1) a data-batch processing scheme for
feature extraction, reducing the RAM memory footprint of
our real-time implementation by 14x compared to a single
batch processing; 2) a hyperparameter optimization strategy
aiming to obtain shallower RF models, lowering the final model
size by 27.5x (requiring only 113.5 KB of flash memory).

Finally, we have profiled the execution of our proposed
CWM data processing strategy in the e-Glass platform, in
terms of processing workload and energy consumption. Hence,
it requires only 1.28% of the available processing time to be
executed, drawing only 7.87 mA during operation.

All in all, our methodology can be executed on a resource-
constrained wearable platform, thus achieving 28.59 hours of
operation on a single battery charge. Therefore, in this work we
have provided a CWM solution for seamless integration into
modern and highly automated systems to enhance HMI, lever-
aging conditions for higher performance and safer operation
for more than a working shift.
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