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ABSTRACT Network Intrusion Detection is one of the most researched topics in the field of computer
security. Hacktivists use sophisticated tools to launch numerous attacks that hamper the confidentiality,
integrity and availability of computer resources. There is an incessant need to safeguard these resources
to avoid further damage. In the proposed study, we have presented a meta-classification approach using
decision jungle to perform both binary and multiclass classification. We have established the robustness of
our approach by configuring an optimal set of hyper-parameters coupled with relevant feature subsets using
a production-ready environment namely Azure machine learning. We have validated the efficiency of the
proposed design using three contemporary datasets namely UNSW NB-15, CICIDS 2017, and CICDDOS
2019. We could achieve an accuracy of 99.8% pertaining to UNSW NB-15 whereas the accuracy in the case
of CICIDS 2017 and CICDDOS 2019 datasets has been 98% and 97% respectively. A distinctive ability of
the proposed model lies in its finesse to detect thirty-three modern attack types considerably well. Unlike
conventional stacking ensembles, the proposed solution relies on a train-test ratio of 40:60 to establish the
legitimacy of predictions. We also conducted statistical significance tests to compare the performance of
classifiers involved in the study. To extend the functionalities further, we have automated the proposed model
that can be a reliable candidate for real-time network intrusion detection.

INDEX TERMS Azure, Bayes point machine, Decision jungle, Fisher score, locally deep SVM, meta-
classification, mutual information, Spearman correlation coefficient, stacking, significance tests.

I. INTRODUCTION
Technological advancements occurring in the field of cyber-
security emphasize on the application of Artificial Intelli-
gence (AI) techniques to improve the security landscape [1].
Over the years, both adversaries as well as the research
community have been relying on AI approaches to offend
and defend computer networks. Cyber criminals use well-
equipped tools to compromise organizational assets whereas
security experts count on modern machine learning algo-
rithms to mitigate the ever increasing cyber threats.

DeepLocker [2], an AI based malware (presented at the
Black Hat USA 2018 conference by IBM) conceals its pay-
load and cannot be detected bymany antivirus softwares. Fur-
thermore, Generative Adversarial Networks (GAN) are often
employed by attackers to gain unauthorized access. GAN [3]
is a deep neural network architecture that is endowed with
an innate ability to imitate real-world data. Besides, there are
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many applications built using machine learning techniques
that can mimic human voices often used by hacktivists.
We have noticed in recent times that vast amount of data
is generated on networks. Thus it becomes indispensable to
apply machine learning techniques to distinguish between
malicious and normal network instances. Most of the recent
cybersecurity applications are built using AI that focus on
probabilistic, behavioral, mathematical and statistical tech-
niques to address the recurring problem [4]–[7].

It is imperative to analyze the mammoth data generated
on the networks using an effective deployment environment.
Therefore, harnessing the power of both cloud computing and
machine learning helps immensely to speed up the execution
process [8]. Some authors have discussed the significance of
machine learning algorithms for network intrusion detection
by considering the cloud environment due to its scalability
and elasticity [9]–[12].

Typically, an intrusion detection system (IDS) can be
categorized as host-based or network-based as per their
deployment strategies [13], [14]. The former monitors the
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host systems to detect suspicious activities whereas the latter
inspects the network traffic to discover malicious events.
Additionally, misuse (signature-based) and anomaly-based
are the other two types of IDS based on detection
mechanisms.

Signature-based intrusion detection systems operate by
comparing the stored signature against an incoming pattern.
On the other hand, anomaly-based IDS create normal pro-
files and diagnose deviations if any. Generally, a normal
profile is formulated by closely monitoring the on-going
activities of users, network and applications for a specific
duration [15], [16].

We have composed this article in the following manner.
Section II reviews some state of the art methods in the
field of network intrusion detection. Section III highlights
the importance of automated machine learning. Section IV
outlines the important aspects of the three datasets used in
the study. Section V emphasizes upon the application of
stacking ensemble in the field of network intrusion detec-
tion. Section VI describes the experimental strategy fol-
lowed to formulate the proposed framework. Subsequently,
Section VII presents the empirical findings along with a brief
discussion. Finally, Section VIII concludes the article.

To be precise, our contributions are:

• We have proposed a reliable intrusion detection frame-
work that is based on stacking approach to identify
thirty-three modern attack types.

• We have relied on some pragmatic base learners to
further boost the performance of decision jungle, the
meta-classifier.

• We have automated the stacking ensemble on Azure
cloud and deployed it as a web service for better
accessibility.

• We have validated the potentiality of our approach using
standard metrics and experimental results suggest that
the model can also handle a larger test set (60%) given a
comparatively smaller training set (40%).

• We have compared the performance of both binary and
multiclass classifiers using statistical significance tests.

II. RELATED WORK
In the context of the proposed work, we have emphasized
on the concept of meta-learning to enable extensibility and
adaptability. Although a few research endeavors [17], [18]
have aimed at achieving reasonable performance by reducing
the incidence of false alarms, execution time was not paid
much attention.

We also assert that automation is a primary concern
while deploying predictive models. Eventhough unprece-
dented success has been achieved using deep learning [19],
automating the deep learning models for network intrusion
detection poses several challenges in terms of Quality of
Experience (QOE) and scalability [20]. Therefore, we have
relied on shallow learning techniques in this work to achieve
the desired performance.

Meta-classification in the proposed work is calibrated
by considering some robust algorithms that are quite pop-
ular in the purview of machine learning. Combinative
approaches, when employed in a classification problem con-
text reduce bias and variance to a substantial extent. Hybrid
approaches [21], [22] offer a way of combining algorithms
to enhance performance. Thus integrating the functionalities
of algorithms are mostly preferred in the field of machine
learning.

The application of stacking is noteworthy in the realm
of machine learning as it improves validation accuracy and
establishes a robust basis for business intelligence [23], [24].

Meta-classification is implicit to stacking that works
by acquiring knowledge from different base classi-
fiers and aggregating their outputs to produce the final
predictions [25].

Random forest and weighted K means clustering algo-
rithms were used to build a hybrid framework. Random forest
served as a classifier whereas k-means clustering was used to
develop an unsupervised approach so that anomalous clusters
could be determined based on the features [26].

An amalgamation of genetic algorithm and fuzzy logic cul-
minated in a robust approach [27] to detect network intrusions
and an accuracy of 96.53% and a false positive rate as low as
0.56% was achieved.

The application of KDD cup 99 dataset was found to
be infeasible for this work due to the shortcomings asso-
ciated with historical traffic and thus network data was
obtained from the State University of Londrina. The data
found in KDD cup 99 dataset, apart from being decades
old also comprises of packet traces rather than flows
and thus the anomaly detection approach could become
computationally complex whenever the network is large
enough [27].

An insightful study [28] that focused on the systematic cat-
egorization of anomaly detection was presented. This com-
pendious article emphasized on the application of various
analytical methods and usage of benchmark datasets for net-
work intrusion detection.

C4.5 decision Tree and one class SVM were used to
formulate misuse and anomaly detection models [29]. The
known attack information contributed towards building nor-
mal profiles thereby demonstrating the competency of hybrid
approaches.

A selective ensemble method called SELECT was pro-
posed to identify anomalies. SELECT worked in two stages
for combining multiple results from various detectors and
then collectively derive their consensuses too [30]. Ensemble
approaches have shown promising results in both supervised
and unsupervised learning domains [31]–[34].

A comparative study [35] was conducted to assess the
performance of SVM against different classifiers and the
results indicated that the stacked implementation of SVM and
random forest resulted in an accuracy of 97.5% whereas an
accuracy of 91.81% was achieved by SVM individually upon
validation using NSL-KDD dataset.
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The proficiency of ensemble classification was demon-
strated using weighted majority algorithm [36] and results
of the classifiers were combined using Particle Swarm
Optimization (PSO) generated weights thereby improving
accuracy. Recent approaches to anomaly detection rely on
distributed architecture that normally consists of a key com-
ponent namely signature-based module further coalesced by
an anomaly detection component to improve the overall
attack detection rate [37].

Gaussian dissimilarity measure was used to obtain the best
subset of features and the application of feature clustering
seemed to be a promising solution for anomaly detection [38].

Selecting the best features can contribute towards maxi-
mizing the objective function and it can be achieved by choos-
ing the top ranked features. Given the pattern recognition
literature, feature selection is performed using filter-based,
wrapper based and embedded methods. Quite interestingly,
in recent years, nature inspired approaches are being used
extensively for feature engineering.

An intelligent dynamic swarm based rough set was
employed for feature selection and simplified swarm opti-
mization was used to classify the samples of KDD cup
99 dataset. An accuracy of 93.3% was obtained using this
approach by using only six features [39].

In order to eliminate irrelevant features, a wrapper-
based approach namely cuttlefish optimization algorithmwas
employed and ID3 served as a classifier [40]. Cuttlefish oper-
ates by using two processes: reflection and visibility. When
applied as a global search strategy, the aforesaid processes
help to attain an optimal solution. Five features contributed
towards achieving a favorable detection rate of 91% [40].

A subset consisting of 16 features contributed towards
an average classification rate of 98.4%. The IDS [41] was
developed using neurotree as the classification engine.

A random effects logistic regression model was developed
to study the uncertainty factors involved in network character-
istics and stepwise variable selection was applied to eliminate
multicollinearity issues. A classification accuracy of 98.68%
was accomplished by the model that considered KDD cup
99 dataset for validation [42].

GA-LR [43], a wrapper based approach that considered
20 features to propose an IDS was put forth using Genetic
algorithm and logistic regression. Decision tree was used
for classification. False alarm rate was reported as 6.39%
with respect to UNSW NB-15 dataset whereas an accuracy
of 81.42% was achieved using the aforementioned algorith-
mic combination.

Information gain was employed to select relevant fea-
tures from UNSW NB-15 dataset to generate an accuracy
of 85.78% although the false alarm rate was definitely higher
(15.64%) [44].

III. AUTOMATED MACHINE LEARNING
Over the years, research in the field of network intrusion
detection has focused scrupulously on the technical compo-
nent but somehow the automation has been sidelined [45].

Network intrusion detection study is certainly a step beyond
increasing attack detection rate and reducing false alarms.
In other words, developing and deploying models that can be
made accessible to end-users.

Apart frommerely differentiating between normal network
patterns and attacks, an attack-specific evaluation is often
encouraged whenever we try automating intrusion detec-
tion models. Therefore, in the proposed work, we have also
emphasized upon multi-class classification task.

The aforementioned line of reasoning compelled us to look
into the recent articles that have emphasized on building
robust intrusion detection models. We observed that there is a
dearth of research initiatives in the field of network intrusion
detection using Machine Learning as a Service (MLaaS)
paradigm.

The automation of models in a production-ready environ-
ment is often overlooked. Therefore, we consider automa-
tion in the proposed work so that the model could be made
available to the end-users. In an automated machine learning
set-up, it is possible to use machine learning models off
the shelf thereby advancing business intelligence. Typically,
automation is necessary whenever there arises a need to
deploy computationally intensive machine learning models.
One such feasible option to consider could be MLaaS for
automation.

Conceptually, automated machine learning suggests that
data scientists need not have to devise a neural network or a
logistic regression model from scratch but can use automated
algorithmic components available on MLaaS to leverage the
benefits. As a proof of concept to automated machine learn-
ing, MLaaS helps data scientists to realize the potential of
automation. In other words, the task of automation is accom-
plished using MLaaS paradigm.

Data, being the core of machine learning applications,
is often difficult to store and process. MLaaS provides a scal-
able and efficient interface so that machine learning practi-
tioners can focus only on conducting experiments using their
datasets without being concerned about storage, computation
and networking hassles.

As and when the complexity of data increases, machine
learning poses several challenges as explained in [46] per-
taining to processing speed, concept drift, variance and bias
issues, noisy data, class imbalance, etc. Thus, automating a
machine learning task becomes vitally important.

One of the cornerstones of automated machine learning
is certainly Hyper-Parameter Optimization (HPO) [47] often
difficult to achieve. Thus, in the proposed work, we employed
a production-ready platform namely Azure Machine Learn-
ing to simplify the process of developing machine learning
pipelines. One of the suggested ways to deploy a predictive
model is to provision it on a virtual machine and gather
actionable insights about its performance in a real-time
environment.

Fundamentally, it is imperative to understand that there is
a substantial difference between executing algorithms on a
stand-alone device and cloud enabled platforms. Although
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TABLE 1. Summary of recent seminal works on network intrusion detection.

we have used well-established algorithms in our work, it is
important to note that all these algorithms are executed on
an MLaaS paradigm that offers ample scope for automatic
tuning of hyper-parameters thereby reducing human effort.

Enabled with Machine Learning Operations (MLOps),
AzureMachine Learning helps in improving the performance
of workflows.

In a real-time scenario that involves enormous networking
data, the credibility of traditional machine learning frame-
works is highly questionable. On the other hand, if empha-
sis is laid on the application of MLaaS environments like
BigML,Algorithmia, DataRobot [48] andAzure Studio (used
in the proposed work), it can help immensely to achieve
auto-scaling or load balancing [49], [50].

Table 1 presents an overview of some recent approaches
and also highlights the significance of our proposed approach.

IV. AN OVERVIEW OF THE DATASETS
An intrusion detection dataset is a representation of specific
attack types targeting a network and it becomes imperative
to choose appropriate datasets that reflect present-day attack
scenarios and possibly assist further towards real-time imple-
mentations. In view of the above mentioned considerations,
we have used three publicly available intrusion detection
datasets namely UNSW NB-15, CICIDS 2017, and CICD-
DOS 2019 for experimentation.

UNSW NB-15 dataset has 42 features and samples found
in the dataset belong to nine attack categories namely
analysis, backdoor, denial of service, exploits, fuzzers,
generic, reconnaissance, shellcode and worms. UNSW train
and UNSW test are the pre-determined splits that consist
of 1,75,341 and 82,332 samples respectively [51], [52]. The
distribution of the various samples pertaining to each class is
given in Section VI.

CICIDS 2017 dataset [56] is comparatively a newer offer-
ing that was created using benign-profile system for recording
the abstract behavior of users. It encompasses benign and
attack traces that were derived based on user characteristics
of various protocols like HTTP/S, FTP, SSH and others.
Seventy-eight features are found in this dataset and for the

current study, we have considered 112,148 samples out of
which 32,372 belong to benign class and 79,776 samples
belong to various attack categories. Network instances per-
taining to fourteen attack types are found in this dataset
namely bots, infiltration, brute force, distributed denial of ser-
vice, DOS golden eye, DOS HULK, DOS Slowhttptest, DOS
Slowloris, FTP-patator, SSH-patator, heartbleed, portscan,
sql injections and cross-site scripting.

CICDDOS 2019 [57] is another new dataset that has only
DDOS attack instances in its topology with 87 features.
Some attack scenarios captured in this dataset include LDAP,
portmap, DNS, UDP-lag, UDP, NetBIOS, SSDP, MSSQL,
NTP and Syn. In order to derive a reliable estimate of the
proposed stacking ensemble, we selected 129,88 random
samples for experimentation. For additional information on
the taxonomy and testbed of DDOS attacks, [57] can be
consulted.

V. STACKING ENSEMBLE FOR INTRUSION DETECTION
In the field of network intrusion detection, some inherent
issues exist like low attack detection rate, high false alarm rate
and lack of sufficient training examples. In order to address
these challenges, relying on one learning algorithm may not
be ideal.

Besides, ensembles contribute towards improving clas-
sification accuracy and facilitate a reliable mechanism to
deal with minority classes quite effectively [58]. Another
significant advantage of using ensemble approaches is that
they assist in adapting to the ever increasing demands of
dynamic network traffic. As elaborated in [58], the primary
techniques used to combine classifiers are bagging, boosting
and stacking.

The primary advantage of stacking is meta-classification
that helps in generalizing to unseen/unfamiliar samples
adeptly. As highlighted in [59], stacking also helps in reduc-
ing false positive rate to a great extent. Ensemble-based
approaches have an advantage of combining the power
of multiple classifiers thereby reducing misclassifications.
Hence it is advisable to employ ensemble approaches in
the field of network intrusion detection [59]. A value-added
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FIGURE 1. Conceptual procedure of stacking ensemble.

contribution to the existing literature could be the develop-
ment of ensembles using MLaaS paradigm.

The predictive capability of a stacked ensemble can be
tested vigorously using MLaaS paradigm since it offers
a production-ready environment. Besides simplifying and
customizing machine learning pipelines, another significant
advantage of using MLaaS paradigm pertains to efficient
resource allocation.

Typically, it is quite tedious to train, test and deploy
ensembles but with newer and scalable paradigms like
MLaaS, the entire process can be simplified to achieve
superior performance. The current literature lacks dis-
cussion related to the application of ensemble based
approaches to network intrusion detection using MLaaS
paradigm.

Therefore, we have made an attempt to use an integrated
development environment like Azure Machine learning to
train, test and deploy the predictive model thereby accentuate
its benefits.

We used Azure Machine Learning Studio to build the
stacking ensemble. The reason to choose the aforementioned
predictive analytics interface can be attributed to its prowess
to merge data science and cloud resources thereby offering a
convenient API to both data scientists and cloud enthusiasts.
The conceptual workflow of stacking ensemble is depicted
in FIGURE 1.

The current literature lacks sufficient evidence regarding
the statistical significance needed to determine the perfor-
mance difference among algorithms. We have performed
statistical significance tests in our work as discussed in
Section VI.

When we started our preliminary investigation of choos-
ing the base classifiers and meta-learner, there were various
options to choose from in terms of some well-established
algorithms. Initially, we executed the algorithms indepen-
dently and the overall performance of decision jungle was
found to be the best for both binary and multiclass classifi-
cation tasks.

In the proposed work, decision jungle plays the role
of meta-learner to produce the optimal predictions. It is
noteworthy that the application of decision jungle in the
field of network intrusion detection has not been explored
much. As compared to traditional algorithms, decision jungle
uses multiple learning models and is equipped with the power
of ensemble learning thereby surpassing other conventional
classifiers.
• Decision Jungle
A recent extension to decision forest is the decision jun-

gle algorithm that was selected as the meta-learner in the
proposed work. Directed Acyclic Graphs (DAGs) form the
core of this algorithm that is also an established method to
conserve memory space [60].

As compared to a typical decision tree model, decision
jungle contributes towards improving generalization. Apart
from exhibiting strong discriminative power, it also limits the
exponential growth of decision trees [60].

Decision jungle has an innate ability to overlook noisy
features. We also contemplated on using decision forest for
meta-classification but the execution time of decision forest
was considerably longer during the trials.

For imbalanced data, quite common in machine learn-
ing, decision jungle seems to be appropriate. We adopted
a weighted mechanism to ensure that the minority classes
are not dominated by the majority classes. Generally, clas-
sifiers are affected by skewed distribution and become biased
towards majority classes.

In order to overcome bias issues, minority classes are
assigned larger weights. The weight assigned to a specific
class (Wclass) can be calculated using equation (1). nclass
signifies the number of samples found in a class whereas ni
indicates the total number of samples found in the dataset. ‘p’
represents the number of class labels.

Wclass =

1
log(nclass+1)
p∑
i=1

1
log(ni+1)

(1)
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FIGURE 2. Overall Methodology of the proposed framework.

In the proposed work, decision jungle (meta-classifier) is
equipped with the aforementioned weighted mechanism to
address the issue of class imbalance in order to generate
superior predictions.

The theoretical aspects of the remaining base-classifiers
used in the proposed work and their technical significance
can be consulted from [61]–[64].

The overall methodology of the proposed work was
devised in 6 stages as shown in FIGURE 2. As a value added
contribution to the existing literature, we have extended
the functionality of the proposed predictive model to oper-
ate on three virtual machines using Azure portal. The idea
behind using this strategy is to facilitate a web-service to
serve the cloud tenants who subscribe for it as per their
requirements.

We capitalized on the Azure cloud infrastructure to develop
the stacking ensemble owing to its evolutionary maturity over
the years [65]. We created machine learning pipelines on
Azure cloud by importing the machine learning libraries from
its rich collection of modules aimed at pre-processing, feature
selection and classification.

VI. EXPERIMENTAL APPROACH
We conducted experiments using three train-test ratios such
as 60:40, 50:50 and 40:60. It is noteworthy that the most
dependable estimate of any implementation can be affirmed
using a train-test split that considers three characteristics like
size, randomness and uniqueness of the samples present in
the test set. It is worthwhile to mention that we have based
our inference about the performance of the stacking ensemble
by considering the largest test set from the aforementioned
train-test distributions i.e., 40:60.

Our comparative study also revealed that Dendron [17] is
a recent research endeavor that considered a larger testing
set for experimentation while training the algorithms using
a relatively smaller training set. Such breakthroughs further
establish the fact that machine learning practitioners are rely-
ing on reliable estimates to build robust intrusion detection
models.

We have enumerated the distribution of the three datasets
in TABLES 2 – 4. It must be noted that independent test sets
have been considered for experimentation.

Step 1: Pre-processing
With reference to intrusion detection, the datasets used for

experimentation encompass different kinds of features like
discrete, continuous and symbolic with contrasting ranges
that may lead to slow convergence. Machine learning algo-
rithms cannot deal with such formats and thus it becomes nec-
essary to do pre-processing. Boolean features do not require
any pre-processing whereas all nominal features require a
mapping to integer values. We applied logarithmic scaling
(base 10) to decrease their range.Min-max normalization was
applied to determine the minimum and maximum value of
ith feature so that each feature value could be transformed to
[0,1] by using equation (2).

v′ =
vi−min i

max i−min i
(2)

mini and maxi denote the minimum and maximum values of
the feature respectively whereas vi is the value of feature at
time i.

The idea behind doing this is to ensure that the training, val-
idation and test sets include the same proportion of instances
of each class as contained in the original dataset.

19728 VOLUME 9, 2021



S. Rajagopal et al.: Towards Effective Network Intrusion Detection: From Concept to Creation on Azure Cloud

TABLE 2. Distribution of samples in UNSW NB-15 train and test sets.

TABLE 3. Distribution of samples in CICIDS 2017 train and test sets.

TABLE 4. Distribution of samples in CICDDOS 2019 train and test sets.

It is important to note that only few samples are found per-
taining to heartbleed (11) SQL injection (21) and infiltration
(31) in the original dataset also.

Step 2: Optimal feature selection
We applied three filter-based feature selection methods

namely Fisher score, mutual information and spearman cor-
relation to formulate the best subset of features. Tables 5-7
depict the VIF values of features pertaining to three datasets.
It is worthwhile tomention that 9 features were selected based
on mutual information from the set of 42 features found in
UNSW NB-15 dataset. In order to select the 12 relevant fea-
tures from CICIDS 2017 dataset that contains 78 attributes,
we used Fisher score. A non-parametric measure called

TABLE 5. VIF of pertinent features related to UNSW NB-15 dataset.

TABLE 6. VIF of pertinent features related to CICIDS 2017 dataset.

TABLE 7. VIF of pertinent features related to CICDDOS 2019 dataset.

spearman correlation was applied on CICDDOS 2019 dataset
to select 13 features from the available set of 87 features.
• Fisher score
Fisher score is relatively a simple method to obtain the

scores of attributes in the dataset. As per equation (3), Fisher
Scores (FS) were calculated and 12 pertinent features were
included for classification from CICIDS 2017 dataset. Based
upon threshold that is computed by considering the average
fisher score value, the attribute space is decided. It can be
noted that a and b are the classes in consideration. na refers
to the samples found in the dataset. µi indicates the mean
score of the features and µi,a signifies the mean score of the
features in ath class. σi,a indicates the variance score of the
features found in ath class.

FS =

b∑
a=1

na(µi,a − µi)

b∑
a=1

naσ 2
i,a

2

(3)

VOLUME 9, 2021 19729



S. Rajagopal et al.: Towards Effective Network Intrusion Detection: From Concept to Creation on Azure Cloud

• Mutual Information (MI)
MI is often applied in information theory to determine the
dependency between two random variables X and Y. MI is
a measure of information on Y furnished by X [66]. If MI
between X and Y is zero, then are supposedly independent.
Formally, MI can be calculated using equation (4).

I (X : Y ) =
∑
x∈X

∑
y∈Y

P(x, y) log
P(x, y)
P(x)P(y)

(4)

P(X) and P(Y) are the marginal distributions of X and Y.
• Spearman correlation coefficient

Spearman correlation coefficient is calculated using the ranks
of the variables but not by considering actual values. In accor-
dance with Pearson correlation coefficient, Spearman coef-
ficient also ranges from -1 to +1 to quantify monotonic
relationships between two variables [67].

Using equation (5), Spearman rank correlation coefficient
(ρ) is calculated. Ri is the rank score of the ith x- value
whereas Si is the rank of the ith y-value. R indicated the
mean score obtained by considering all x-values. Similarly,
S indicates the mean score derived by taking into account
all y-values. Thirteen features were chosen for classification
using Spearman correlation from CICDDOS 2019 dataset
that originally has 88 features.

ρ =

∑
(Ri − R̄)(Si − S̄)√∑
(Ri − R̄)(Si − S̄)

(5)

Depending solely on the top ranked features introduces mul-
ticollinearity. Therefore, each predictor variable was inves-
tigated further to refine the feature subset using both feature
ranking and VIF [68], considering accuracy and false positive
rate as prime indicators of performance. In order to address
the issues of multicollinearity, the threshold of VIF was set
between 1 to 5.

The module statsmodels was imported onto Azure studio
to use the function variance_inflation_factor. Eg: It was
observed that features like dpkts, dbytes and dloss found in
UNSW NB-15 dataset exhibit considerable degree of corre-
lation that in all possibilities perturbs the final predictions.

Step 3: Design of the stacking ensemble
The stacking ensemble was designed using different clas-

sifiers that were found to be ideal for binary and multiclass
classification tasks. We applied the grid search [61] to tune
the hyper-parameters of all the classifiers since it offers a
wide coverage of the search space while tuning the appro-
priate values.

a) Configuration of stacking ensemble
The input matrix D represents the training set used by the

base classifiers at level-0 that consists of N samples and M
features. Y is the resultant matrix.

N


M︷ ︸︸ ︷(
D
)(

Y
)

With respect to binary classification, three base learners were
taken into account and their hyper-parameters were tuned
accordingly. F1-metric was used to assess the performance
of each classifier since it is an ideal metric when unbalanced
datasets are involved. Bayes point machine, logistic regres-
sion and locally deep SVM operated at level-0 to learn the
samples from the training set. Due to its superior perfor-
mance, decision jungle was selected as the level-1 classifier
to generate final predictions.

b) Training the ensemble
We applied 10 fold stratified cross validation to obtain the
predictions from each base learner (CV1......CVn). Stratified
cross validation is touted as a reliable estimate of a model’s
performance [64]. The meta-learner is trained using the
level-1 data.

N


(
CV1

)
. . . . . . . . . . . .

(
CVn

)(
Y
)
−→ N


︷︸︸︷(
D
) M(

Y
)

c) Predictions
When the testing set is given to the meta-learner, it generates
the final predictions.

We designed the proposed stacking ensemble by utilizing
four heterogeneous classifiers namely locally deep SVM,
logistic regression, bayes point machine and decision jungle
to perform binary classification.
• Binary Bayes point machine (BBPM)

BBPM was selected owing to its Bayesian properties that
decrease overfitting to a considerable extent. The bayes
point signifies the posterior mean of the weights. BPM is
an improvement over SVM. The application of expectation
propagation message passing algorithm makes BPM quite
robust [69]. Two-class BPM was chosen as the module to
create a workflow. A significant hyper-parameter considered
for BPM is no of iterations that signifies the number of times
the message passing algorithm should iterate on the training
data.
• Binary Logistic Regression (BLR)

Another popular classifier namely logistic regression was
chosen as a base classifier to obtain accurate predictions.
It works by applying a logistic function to the training set and
thus predicting the probability for all the data points.

During the implementation of logistic regression algo-
rithm, parameter optimization was performed using Limited
memory-Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)
algorithm that searches the variable space using inverse of the
hessian matrix [70]. Two-class logistic regression was used to
create a workflow in order to optimize the predictions.
• Binary Locally deep SVM (BLDSVM)

LDSVM is a non-linear SVM that operates using sigmoid
function to gain consistent speed. As the name indicates,
it searches the local decision boundary instead of the com-
plete feature space for achieving faster predictions.

Locally deep SVM is quite efficient in dealing with com-
putationally deep features and is known to be exponentially
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FIGURE 3. Performance comparison of base classifiers with varying
hyper-parameters wrt UNSW NB-15 dataset iter = number of iterations,
ss = sigmoid sharpness, L-BFGS = memory size for L-BFGS.

FIGURE 4. Performance comparison of base classifiers with varying
hyper-parameters wrt CICIDS 2017 dataset iter = number of iterations,
ss = sigmoid sharpness, L-BFGS = memory size for L-BFGS.

faster than other traditional implementations of SVM that
further help in reducing computational costs [71].

RBF-SVM was also a contender for base level classifica-
tion in the proposed work but locally deep SVM performed
better in terms of achieving consistent speed and hence was
chosen as one of the base classifier to build the stacking
ensemble. An important factor that compelled us to choose
LDSVM is due to the local learning that it exhibits.

Local learning is definitely preferred as it partitions a
large problem at hand into sub problems and has the ability
to choose training samples quite similar to test cases thus
improving predictive accuracy [72].

A key parameter that was set to train locally deep SVM
was sigmoid sharpness that offers a linear operating range to
theta. A larger value if set introduces saturation that hinders
the performance of the learner. Therefore, a diminutive value
of 1 was assigned to sigmoid sharpness. Lambda refers to the
regularization weight and was set as 0.1.

In order to illustrate the performance exhibited individually
by the three binary classifiers, we have included bar charts as
shown in FIGURES 3 – 5.

FIGURE 5. Performance comparison of base classifiers with varying
hyper-parameters wrt CICDDOS 2019 dataset iter = number of iterations,
ss = sigmoid sharpness, L-BFGS = memory size for L-BFGS.

The values of the critical hyper-parameters corresponding
to the three base classifiers are considered along x-axis and
the performance is considered along y-axis.

The best performance was exhibited by locally deep SVM,
followed by bayes point machine. Although logistic regres-
sion emerged as an average performer, it was included in the
study as one of the base-classifiers because a local learn-
ing algorithm like locally deep SVM compensates for the
misclassifications done by a linear learner such as logistic
regression.

Concerning empirical analysis, BPM(iter = 30),
LDSVM(SS= 1.0) and LR(L-BFGS= 20) emerged as ideal
base classifiers towards building the stacking ensemble that
employed decision jungle as the meta-learner. We employed
multiclass neural networks, multiclass logistic regression and
multiclass decision forest as level-0 classifiers coupled with
decision jungle as meta-learner to build a multiclass model.
• Multiclass Neural Networks (MNN)

Softmax was applied as the activation function to determine
the multiple class labels pertaining to network instances.
Equation 6 can be applied to calculate the probability scores
of various classes using softmax function. ‘k’ represents
the number of classes, eyi refers to the exponential function
applied for each network instance. The term ‘eyj ’ ensures an
appropriate probability distribution i.e., a valid range (0, 1) to
all the output values generated by the function.

S(yi) =
eyi

k∑
j=1

eyj
(6)

The neural network classifier used in the proposed work
performed 100 iterations during the learning process. The
learning rate is a significant hyper-parameter since it is impor-
tant to ascertain how efficiently the neural network model
adapts itself to the learning process.

A very minute value of 0.1 was set as learning rate
with respect to UNSW NB-15 dataset whereas 0.2 was
assigned as learning rate while training the network to learn
samples pertaining to CICIDS 2017 and CICDDOS 2019
datasets.
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TABLE 8. Friedman average rank of all binary classifiers by considering F1-metric.

TABLE 9. Friedman average rank of all binary classifiers by considering recall.

TABLE 10. Friedman average rank of all binary classifiers by considering specificity.

TABLE 11. Results of Quade post-hoc test wrt specificity metric for binary
classification.

• Multiclass Decision Forest (MDF)
It is worthwhile to mention that only 8 trees were constructed
to avoid training overheads. Replicate was used as the resam-
pling method to develop the workflow to ensure the creation
of diverse trees.

The maximum depth of the tree and number of random
splits were set as 32 and 128 respectively that also happen
to be the default values. There is always a risk of overfitting
whenever we attempt to increase the depth of the tree.
• Multiclass Logistic Regression (MLR)

While creating a multiclass workflow, penalty terms are
added to the loss function. L1 weight was assigned a value 1.
Normally, L2 weights are used when the underlying data
suffers from severe multicollinearity but to a large extent,
we addressed multicollinearity before creating the workflow
while selecting the features.

Moreover, L1 weights are generally used to improve the
precision and recall of predictive models. L1 or Least Abso-
lute Shrinkage and Selection Operator (LASSO) [73] is the
preferred regularization method whenever there is a need to
ignore most of the irrelevant features.

Step 4: Statistical significance
While building machine learning models, it often becomes

imperative to compare the performance of classifiers and the
best way to achieve this is to perform statistical significance
tests.

Due to the presence of outliers and different characteristics
exhibited by feature vectors, an algorithm may behave differ-
ently on each dataset.

In the proposed work, we have looked into Friedman test
and Nemenyi post-hoc tests [74]. Friedman test is a non-
parametric test for analyzing the performance of classifiers
onmultiple datasets. Upon rejecting null hypothesis, post-hoc
test is conducted to determine the pairwise comparisons.

In this context, the null hypothesis (H0) suggests that there
is no performance difference among classifiers whereas an
alternate hypothesis (H1) indicates that at least one classifier
performs differently.

Suppose, ‘d’ refers to the number of datasets and ‘k’ sig-
nifies the number of classifiers, Friedman test statistic can be
calculated as shown in equation (7).

Friedman statistic =
(d − 1)Q

d(k − 1)− Q
(7)

‘Q’ can be calculated as follows, shown in equation (8).

Q =
12

dk(k + 1)

k∑
j=1

(
Rj−

d(k + 1)
2

)2

(8)

Q is distributed with α degrees of freedom.
Rj refers to the ranks of the classifiers from j= 1,2,3. . . . k.
Rj can be calculated as shown in eqnarray (9).

Rj =
d∑
i=1

R
(
Xij
)

(9)

Xij refers to the performance results of classifiers involved in
the study. The lowest Friedman rank is assigned to the best
performing classifier. The threshold for p-value is 0.05 and
if there is any significance found, then quade posthoc test is
performed.
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TABLE 12. Friedman average rank of all multiclass classifiers by considering macro-average recall.

TABLE 13. Friedman average rank of all multiclass classifiers by considering micro-average precision.

TABLE 14. Friedman average rank of all multiclass classifiers by considering overall accuracy.

TABLE 15. Results of Quade post-hoc test wrt micro-average precision
for multiclass classification.

Tables 8-15 illustrate the performance of base classifiers
and the proposed model by considering recall, f1-metric
and specificity, macro-average, micro-average and overall
accuracy. It is worthwhile to note that the proposed model
outshines the other algorithms with respect to all standard
metrics.

In terms of the specificity metric, the results are significant
(p<0.05). Therefore, we reject the null hypothesis. Quade
post-hoc test is thus performed. From Table 11, it can be
inferred that the performance of the stacking ensemble is
better than logistic regression (p = 0.049).
However, the performance difference between locally deep

SVM and proposed model is not too significant (p = 0.321).
Similarly, there is no significant difference between the per-
formance of bayes point machine and proposed stacking
ensemble (p = 0.097).
We have also compared the performance of multiclass

algorithms against the proposed stacking ensemble to com-
prehend the performance differences. We have considered
macro and micro average scores to compare the performance
of multiclass classifiers.

Macro average scores are helpful when imbalance is found
among classes. Micro average is normally calculated by con-
sidering TP, TN, FP and FN of all the classes involved in the
study [75].

Micro-average precision is determined by taking into
account the sum of TP of all classes divided by the positive
predictions.

Macro-average recall can be calculated by considering the
recall scores of all the classes. On themulticlass classification
front, the results are significant w.r.t. micro-average precision
(p-value = 0.0396). Thus null hypothesis is rejected.

Upon conducting Quade post-hoc test, we derived the fol-
lowing results as shown inTable 15. It can be inferred that the
performance of the stacking ensemble is quite superior than
the performance of multiclass neural networks with respect
to multiclass classification.

However, the proposed model’s performance as compared
tomulticlass logistic regression andmulticlass decision forest
is not too significant.

Step 5: Creation of Virtual Machines
On Virtual machine 1 (VM 1), the stacking ensemble

operates to identify all the attack types found in UNSW
NB-15 dataset. Similarly, to identify attack types found in
CICIDS 2017 and CICDDOS 2019 datasets, we executed the
stacking ensemble on VM 2 and VM 3 respectively as evident
from FIGURE 6.

If cloud tenants need a security service to restrain only
DDOS attacks (CICDDOS 2019 consists of only DDOS
attack patterns), then it is suggested that such tenants sub-
scribe to VM 3 to fulfill their requirements according to pay-
as-you-go policy.

All three VMs were provisioned using the Azure portal
with 8 GB RAM on Intel Xeon platinum platform that sup-
ports 260 GB/second memory bandwidth for efficient pro-
cessing. We plan to upgrade the aforesaid VM configuration
in future to meet the growing requirements.
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FIGURE 6. A view of three virtual machines dedicated to three datasets.

FIGURE 7. Predictive solution transformed into a web service (binary).

Each virtual machine facilitates a dedicated operating envi-
ronment to users formitigating various attack types belonging
to heterogeneous data sources. Predictive solutions when
automated can be consumed by cloud users.

Since we conceptualized a framework that involved
automation, a comparatively larger test set was used to val-
idate the effectiveness of the web service so that we could
testify the requirements of tenants adeptly.

We have demonstrated the efficiency of the implemen-
tation by considering both binary and multiclass classifi-
cation tasks with respect to three datasets as elaborated in
Section VII.

Step 6: Deployment of web service
Typically, a normal instance is designated a probability

score greater than 0.5 and the scored label assigned as 1 fur-
ther indicates that the network instance under consideration
is normal.

In a real-time environment, it becomes crucial to imple-
ment such automated models to reduce the time and effort
of network security professionals thereby enabling rapid
responses.

FIGURE 7 represents a use case transformed into a web
service corresponding to a binary classification task. Upon
testing the web service, it can be ascertained whether the
output score pertains to attack or normal.

Given a random sample to testify the request-response
scenario, the web service generates probability scores as end
result.

FIGURE 8 represents a multiclass use case to identify
specific category of attack. A particular network instance was

FIGURE 8. Predictive solution transformed into a web service (multiclass).

FIGURE 9. 10-fold cross validation results using 60:40 as train-test ratio
w.r.t. UNSW NB-15 dataset.

identified as portscan attack with a probability score of 0.375
(as shown in Fig.8).
Whenever a network sample is seen as nefarious, it is

quite obvious that the probability scores would be less than
0.5 as noticeable in FIGURE 8 and it can be observed that
the scored probability for infiltration is 0.125. The scored
probability is 0 for attack types heartbleed, SQL injection and
Cross-site scripting (XSS).

It is evident that the highest probability score is assigned to
portscan attack type due to which the scored label is portscan
as predicted by the stacking ensemble.

VII. RESULTS AND DISCUSSION
We started our experimentation by taking into account all the
features found in the three datasets.
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TABLE 16. Prediction results on testing set of UNSW NB-15 dataset (60%)
considering all features and pertinent features.

TABLE 17. Prediction results on testing set of CICIDS 2017 dataset (60%)
considering all features and pertinent features.

TABLE 18. Prediction results on testing set of CICDDOS 2019 dataset
(60%) considering all features and pertinent features.

TABLE 19. Confusion Matrix.

However, only the pertinent features seemed to contribute
substantially towards improving the accuracy and reducing
execution time.

As a matter of fact, the proposed stacking ensemble per-
formed in a slightly different manner given two scenarios
namely, the presence of all features and pertinent ones as
illustrated in Tables 16-18.

Table 19 provides a general view of the actual versus
predicted outputs.

We conducted binary classification task to determine the
efficiency of the proposed model to differentiate between
attack and normal instances. At the initial step, binary classi-
fication was performed and subsequently true positives, false
positives, true negatives and false negatives were recorded
before pursuing the multiclass classification task.

UNSW NB-15 is a dataset that has both binary and multi-
class labels in its composition but the remaining two datasets
namely CICIDS 2017 and CICDDOS 2019 contain only
attack-specific labels. Therefore, we labeled all the samples
found in these two datasets as either benign or malicious to
perform binary classification.

Concerning a perceptive analysis, it is evident that the false
positives and false negatives are quite less corresponding to
the three datasets that contributed majorly towards achieving
superior predictions.

All the testing sets considered in the proposed work are
independent. Tables 20 – 25 depict the results obtained so far
taking into account the testing composition of three datasets.

It is worthwhile to mention that the least execution time
taken by the stacking ensemble to generate optimal predic-
tions is 3 seconds with respect to CICIDS 2017 dataset.

TABLE 20. Confusion matrix on testing set of UNSW NB-15.

TABLE 21. Results obtained on testing set of UNSW NB-15.

TABLE 22. Confusion matrix on testing set of CICIDS 2017.

TABLE 23. Results obtained on testing set of CICIDS 2017.

TABLE 24. Confusion matrix on testing set of CICDDOS 2019.

TABLE 25. Results obtained on testing set of CICDDOS 2019.

When we considered 13 features for validating the effective-
ness of the proposed classification framework pertaining to
CICDDOS 2019 dataset, the execution time was reported as
5 seconds.

The theoretical importance of feature selection was dis-
cussed earlier but rational relevance of pertinent features is
highlighted by focusing on the testing time that decreased
considerably upon selecting a subset of features. Nonetheless,
variation in accuracy with respect to all the three datasets,
considering all features or pertinent ones has been quite trivial
but a drastic decrease in false positive rate was obvious upon
selecting only pertinent features.

It can be noted that the performance of the stacking ensem-
ble has been quite desirable as the accuracy is quite high
corresponding to all three datasets included in the study.
Apart from accuracy and false positive rate, we considered
some critical evaluation parameters to assess the performance
of the meta-classification approach and the equations (10) to
(15) represent the standard performance metrics.

True positives (TP) indicate the number of attack samples
predicted as attacks by the model whereas normal instances
predicted as normal is represented by True negatives (TN).
False positives (FP) and False negatives (FN) deteriorate the
performance of the intrusion detection model. False positives
are generated when normal samples are predicted wrongly as
attack by the model whereas the attack samples predicted as
normal denote false negatives.

The binary classification results achieved by the proposed
ensemble have been quite promising with respect to UNSW
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FIGURE 10. 10-fold cross validation results using 50:50 as train-test ratio
w.r.t. UNSW NB-15 dataset.

FIGURE 11. 10-fold cross validation results using 40:60 as train-test ratio
w.r.t. UNSW NB-15 dataset.

NB-15 dataset since the attack detection rate is 0.999. The
false positive rate is marginal corresponding to both UNSW
NB-15 and CICIDS 2017 i.e., 0.38 and 2.6 respectively.

A slightly higher false positive rate, 6.7% was recorded
pertaining to CICDDOS 2019 dataset although scores of
other evaluation metrics have been quite promising.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(10)

Precision =
TP

TP+ FP
(11)

FPR =
FP

FP+ TN
(12)

Recall =
TP

TP+ FN
(13)

F1− score = 2
(
Pr ecision ∗ Recall
Pr ecision+ Recall

)
(14)

Specificity =
TN

TN + FP
(15)

We applied stratified cross validation to obtain a reliable
estimate of the proposed ensemble. The idea behind using
stratified cross validation is to ensure that each subset con-
tains equal number of samples from each class so that there
is a proper balance established [76].

It is very time consuming to administer pre-processing
on the entire dataset. UNSW NB-15 is already available

FIGURE 12. 10-fold cross validation results using 50:50 as train-test ratio
w.r.t. CICDDOS-2019 dataset.

FIGURE 13. 10-fold cross validation results using 40:60 as train-test ratio
w.r.t. CICDDOS-2019 dataset.

in a pre-determined train-test ratio but CICIDS 2017 and
CICDDOS 2019 are huge datasets with redundant samples.
In order to extract only unique samples from these two
datasets, we used a module found in Azure Studio called
Remove Duplicate Rows thereby ensured the usage of inde-
pendent training and test sets to obtain reliable estimates.
We have illustrated the performance evaluation of the pro-
posed model based on different population sizes as shown
in FIGURES 9-11 pertaining to UNSW NB-15 dataset.

Although there are only slight variations between accu-
racy, recall and precision scores obtained using three dif-
ferent train-test ratios corresponding to three datasets, it is
worthwhile to emphasize upon the credibility of our proposed
model.

The most reliable results pertain to the train-test ratio of
40:60 that further establishes the proficiency of our approach
thereby corroborating that the proposed ensemble can indeed
be a reliable candidate for real-time network intrusion
detection.

19736 VOLUME 9, 2021



S. Rajagopal et al.: Towards Effective Network Intrusion Detection: From Concept to Creation on Azure Cloud

FIGURE 14. 10-fold cross validation results using 60:40 as train-test ratio
w.r.t. CICDDOS-2019 dataset.

FIGURE 15. 10-fold cross validation results using 40:60 as train-test ratio
w.r.t. CICIDS-2017 dataset.

FIGURE 16. 10-fold cross validation results using 50:50 as train-test ratio
w.r.t. CICIDS-2017 dataset.

FIGURES 12–14 is a demonstration of the performance
w.r.t. CICDDOS-2019 dataset by considering different pro-
portions of train-test ratios.

FIGURES 15-17 shows the performance of the pro-
posed approach by considering three different proportions of
train-test ratio wherein the number of folds (10-folds) and
performance are taken along x-axis and y-axis respectively
for CICIDS-2017 dataset.

In order to discern the capability of the proposed stacking
ensemble in identifying different attack types, we broadened
our study and performed multiclass classification task.

FIGURE 17. 10-fold cross validation results using 60:40 as train-test ratio
w.r.t. CICIDS-2017 dataset.

The overall accuracy achieved during binary classification
task is not enough to determine the performance of the clas-
sifier and thus we relied on a multiclass classification task to
gauge the attack-wise detection of the proposed ensemble.

We have emphasized on recall and precision in our study of
multiclass classification task since the former is a measure of
classifier’s completeness and the latter represents the exact-
ness of the classifier.

The bar graph shown in FIGURE 18 depicts the perfor-
mance of the proposed model by considering recall and pre-
cision scores of all thirty-three modern attack types involved
in the study.

The recall scores are quite superior pertaining to attack
classes like generic (99.1%), exploits (93.6%), fuzzers
(91%), reconnaissance (82.5%), shellcode (80.1%) and
worms (89.2%).

The results affirm that the proposed model achieved the
highest precision score with respect to generic attack type
i.e., 99.9%.

Eventhough the number of samples found in analysis and
backdoor classes are comparatively less, the proposed model
has been quite competent enough to achieve a good precision
score with respect to the two classes i.e., 95% and 92.18%.

Shellcode and worms are the other two minority classes
found in the testing set and the precision scores with
respect to these two minority classes are 96.28% and 94.3%
respectively.

The least precision score obtained so far pertains to DOS
(61.51%) but the comparative study reveals that Dendron [17]
and GA-LR [43] approaches also reported the precision
scores of DOS to be quite less that corresponds to 20.26%
and 36.090% respectively.

The detection rate of the proposed ensemble approach with
respect to backdoor is 32.4% and also the least recall score.

As compared to GA-LR [43] approach wherein the recall
score was reported to be 6.925%, the proposedmeta-classifier
has fared better.

The testing samples considered for backdoor attacks cor-
respond to 306 in [17] which is way lesser than the proposed
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FIGURE 18. Performance of the proposed approach w.r.t. thirty-three modern attack types.

work that considers 1746 samples of backdoor attack type for
testing the efficiency of the design.

A lower value of precision denotes higher degree of false
positives and thus reducing the false positives is one of the
primary objective of any intrusion detection system.

Similarly, decreasing false negatives is another critical con-
cern and a high recall score reveals that the number of false
negatives are lesser.

The proposed ensemble exhibited a superior performance
while predicting the samples of CICIDS 2017 dataset and also
saved computational time and resources considerably.

The findings reported in this work further indicate that
the proposed model achieved a very good performance with
respect to the detection of all DOS and DDOS attack types.

An exceptional recall score of 100% was reported by the
proposed model pertaining to heartbleed attack type. Simi-
larly, the best precision score of 100% was achieved while
detecting the samples belonging to heartbleed, infiltration,
SQL injections and SSH-patator too.

Although strong modeling capabilities were exhibited by
the proposed model with respect to twelve attack types
out of fourteen, the detection rate pertaining to web appli-
cation attacks like SQL injections and cross-site script-
ing (XSS) were on the lower side that may require tweaking
of hyper-parameters in future to achieve desirable results.

CICDDOS 2019 is relatively a newer dataset and we
have not come across ensemble approaches that have been

validated using this dataset. The highest recall and precision
scores achieved so far are 100% and 99.8% respectively that
corresponds to Syn attack.

The least recall score reported by the proposed multiclass
model is 38.6% with respect to DrDoS-MSSQL attack type
and the least precision score is 56.89% pertaining to LDAP
attack type. However, it can be recounted that the proposed
ensemble approach has achieved a feat since the size of the
testing set considered in the study is larger than the training
set.
• Comparison with recent state-of-the-art approaches
We have compared our proposed ensemble against some

recent techniques that used UNSWNB-15 dataset as enumer-
ated in Table 26. Our approach outperforms some state of the
art methods concerning both accuracy and false positive rate.

The false positive rate generated by the proposed approach
is definitely less that further emphasizes the adeptness of
both base learners and meta-learner considered in the study.
It is noteworthy that the Dendron [17] approach achieved a
very low false alarm rate but its accuracy was lesser than the
proposed model.

A recently proposed approach [77] that used decision tree
for classification also achieved a very low false positive
rate but the accuracy achieved by the model was relatively
lesser than the proposed model. It is evident from Table 27
that the proposed ensemble approach surpasses some recent
techniques that used CICIDS 2017 dataset.
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TABLE 26. Comparison with the baselines on UNSW NB-15 dataset.

TABLE 27. Comparison with the baselines on CICIDS 2017 dataset.

TABLE 28. Comparison with the baselines on CICDDOS 2019 dataset.

Sharafaldin et al. [56], founders of CICIDS 2017 applied
various classifiers and also extracted some significant
features using RandomForestRegressor to achieve the afore-
mentioned results but they evaluated the performance of clas-
sifiers using three standard metrics but false positive rate was
not specified.

It can be observed that tree based classifiers [56] have
yielded the best possible classification outcome and our
proposed model was also built along the same lines. The
meta-classifier employed in the study for both binary and
multiclass classification is also a tree-based classifier called
decision jungle.

It is noteworthy that DDOS attack detection is also carried
out in a robust manner by the propsed ensemble as compared
to some existing approaches mentioned in Table 28.

DDOS attack detection on Software Defined Network-
ing (SDN) is another research avenue for which CICDDOS
2019 dataset is being used lately [84].

In order to demonstrate the efficiency of the pro-
posed ensemble more appropriately, we have presented
the multiclass classification results using three confusion

matrices pertaining to three datasets as shown
in Tables 29 – 31. [Refer Appendix].

VIII. CONCLUSION
This article has emphasized on ameta-classification approach
to propose a network intrusion detection model on a cloud
environment. We have combined robust classifiers like bayes
point machine, logistic regression, locally deep svm and
decision jungle for binary classification and strong learners
like decision forest, neural networks, logistic regression and
decision jungle to perform multiclass classification.

We have highlighted the efficiency exhibited by the meta-
learner called decision jungle that is common to both binary
and multiclass classification.

In order to affirm the generalization perspective of
our implementation, we have used three datasets in our
study namely UNSW NB-15, CICIDS 2017 and CICDDOS
2019. Initially, the optimal feature subsets were identified
pertaining to each dataset and subsequently models were built
on Azure cloud to train the algorithms.
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In order to corroborate the critical findings of the pro-
posed work, we have also emphasized on statistical signifi-
cance tests. Unlike traditional train-test strategies adopted in
machine learning wherein a relatively larger training set is
often employed, we have emphasized on a larger test set to
determine the effectiveness of the meta-classifier.

The novelty of our approach lies in the fact that it is auto-
mated and is transformed as a web service.Whenever the web
service is provisioned, it can serve as a mechanism tomitigate
security incidents in complex large scale networks. Further-
more, in order to offer better customization capabilities to

cloud users upon subscription, we configured three virtual
machines, each dedicated to the detection of specific attack
types found in the three datasets.

In future, we plan to consider additional datasets in our
study and also incorporate Azure Data Lakes so that massive
network data can be furnished to the algorithms for pattern
matching and storage constraints can be also addressed to
a large extent. An interesting research avenue would be to
execute deep learning algorithms on MLaaS paradigm.

APPENDIX

TABLE 29. Confusion matrix w.r.t UNSW NB-15 dataset.

TABLE 30. Confusion matrix w.r.t CICIDS-2017 dataset.

TABLE 31. Confusion matrix w.r.t CICDDOS-2019 dataset.
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