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Automatic Road Extraction from High-Resolution
Remote Sensing Images Using a Method
Based on Densely Connected Spatial
Feature-Enhanced Pyramid

Qianggiang Wu ', Feng Luo, Penghai Wu

Abstract—Road extraction is an important task in remote sens-
ing image information extraction. Recently, deep learning semantic
segmentation has become an important method of road extraction.
Due to the impact of the loss of multiscale spatial features, the
results of road extraction still contain incomplete or fractured
results. In this article, we proposed a deep learning model, which
is called the dense-global-residual network that reduces the loss of
spatial information and enhances context awareness. In the dense-
global-residual network, the residual network is used to extract the
features at different levels. To obtain more abundant multiscale fea-
tures, a dense and global spatial pyramid pooling module based on
Atrous Spatial Pyramid Pooling is built to perceive and aggregate
the contextual information. The proposed method obtains better
results on the GF-2 road dataset and public Massachusetts road
dataset of aerial imagery. In order to prove the effectiveness of our
method, we compared with four methods, such as DeepLabV3+,
U-net, D-LinkNet, and coord-dense-global model, and found that
the accuracy of our method is considerably better. Moreover, the
dense-global-residual network can also effectively extract roads,
especially trees and building shadows that occlude the road. In
addition, our method can successfully extract roads in regions
of different development levels in universality experiments. This
indicates that the proposed method can effectively maintain the
completeness and continuity of roads and improve the accuracy of
road segmentation from high-resolution remote sensing images.

Index Terms—Deep learning, dense and global spatial pyramid
pooling (DGSPP) module, remote sensing image, road extraction.
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1. INTRODUCTION

OAD extraction from remote sensing images is an impor-
R tant topic in modern society. It is of great significance to
traffic management, urban planning, and map updating [1]-[3].
However, due to the complex road background and the similarity
of the spectrum, high-precision road extraction is still difficult
to obtain.

The methods for remote sensing image road extraction are
mainly divided into feature-based, classification-based, and deep
learning approaches [4], [5]. Feature-based methods mainly
extract roads from images by considering their features, such
as road extraction methods based on shape [6], texture [7]-[9],
and geometry [10], [11]. Feature-based methods have a good
effect on simple and regular road extraction, but they have poor
extraction effects on complex roads and require substantial post-
processing to repair the initially extracted roads. Classification-
based approaches such as the maximum likelihood methods (ML
classification methods) [12], support vector machine methods
(SVM classification methods) [13]-[15], Markov random fields
classifier methods (MREF classification methods) [16]-[18], and
mean shift-based methods [19] extract road fragments from the
image and further refine them by customizing rules that are based
on the spectral and spatial features of the road. Although the
accuracy is better than that of the feature-based methods, the
extraction results depend largely on the accuracy of classification
rules, which require manual design. Due to the spectral similarity
of roads, buildings, parking lots, and other objects, the extraction
accuracy is not high.

Deep learning technology has made remarkable achieve-
ments in the fields of computer vision and artificial intelligence
[20]-[22], and more researchers have applied this method to
remote sensing image information extraction [23]-[29]. The
fully convolutional network (FCN) proposed by Long et al.
[30] greatly advanced image segmentation by using standard
convolutional layers to replace the fully connected layers. There
are increasingly more applications of fully convolutional neural
networks based on FCN extensions, especially in road extraction
[31]-[34]. However, due to the loss of spatial features caused by
pooling in the downsampling process and the underutilization
of features caused by simple convolution, FCN has difficulty in
completely recovering the resolution of the input feature maps.
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To solve this problem and to apply a deeper network to improve
network performance, the residual network (ResNet) [35] and
the densely connected convolutional network (DenseNet) [36]
were proposed. They both strengthen the transmission of upper
and lower information flow and improve the feature reuse rate.
Zhang et al. [37] combined ResNet and U-net [38] to extract
road networks, which are designed with few parameters but
achieve good performance. Recently, Wang et al. [39] proposed
coord-dense-global model (CDG), which uses DenseNet, the
coordconv module, and the global attention module to construct
the road map from remote sensing imagery. Although these
FCN-based methods perform well in road extraction, they per-
form poorly when nonroad objects occlude the road. Because
they are affected by a complex background, it is difficult to
consider multiscale features in downsampling. Therefore, mul-
tiscale contextual features (semantic information) are critical to
the integrity of road extraction. The local detail features help
to accurately segment roads, while the global context features
help reduce misclassification and maintain road connectivity. In
the field of semantic segmentation, there are two mainstream
methods used to gather contextual information by extracting
multiscale features [40]-[43]. One method uses a U-shaped
structure with skip connections; FCNs based on a U-shaped
structure obtain contextual information by connecting multi-
level information [38], [41]. The other method uses dilated
convolutions (or atrous convolutions) to increase the receptive
field and extract multiscale features. For example, Chen et
al. [42] designed parallel dilated convolutions with different
dilation rates to obtain more multiscale contextual information
in DeepLabv3+4-. Zhou et al. [43] used dilated convolution with
a combination of parallel and cascading modes to expand the
receptive field and aggregate the contextual information and
ultimately improved the accuracy of road result segmentation
and achieved superior performance in the CVPR DeepGlobe
2018 Road Extraction Challenge. Although these two methods
can extract multiscale features to obtain the context informa-
tion, there are still some problems. The method based on the
U-shaped structure is insufficient in extracting the target fea-
tures, resulting in an incomplete consideration of context infor-
mation. The dilated convolution-based methods cause a loss of
spatial information due to the continuously dilated convolution,
which leads to a “chessboard effect.” Moreover, because atrous
spatial pyramid pooling (ASPP) is located at the bottom of the
network, it is effective for large-scale target feature extraction
but loses small-scale targets.

To further strengthen the spatial information, we propose a
deep learning model, called the dense-global-residual network
(DGRN), which reduces the loss of spatial information and
enhances the context awareness. ResNet has powerful feature
reuse capabilities. In the DGRN, a ResNet is used to extract the
features at different levels. To obtain more abundant multiscale
features, we built a dense and global spatial pyramid pooling
(DGSPP) module based on ASPP to perceive and aggregate the
contextual information. In addition, for the road extraction of
GF-2, we constructed a standard semantic segmentation sample
dataset of extracted road by the GF-2 remote sensing images.

II. METHODOLOGY

The road network of remote sensing image has the characteris-
tics of rich local detailed information and large distribution span
of the global road network. Moreover, it is affected by complex
backgrounds, such as backgrounds that include the shadows
of buildings. Relevant local details can effectively distinguish
roads from the surrounding ground features. Therefore, itis very
important to maintain detailed spatial information for road ex-
traction. ResNet has effective feature extraction capabilities. The
model in this article uses improved ResNet as the main network,
which can make full use of road details. The ASPP-based method
[42], [44]is an effective means to extract multiscale information;
it has achieved state-of-the-art performance in target extraction
tasks. In order to extract target features of different scales and
levels, we designed DGSPP and introduced the coding part of
the network to enhance the spatial information perception of
ResNet and improve the accuracy of road extraction.

A. Dense-Global-Residual Network

The overall network is shown in Fig. 1. The network consists
of three parts: encoding, bridge, and decoding. The encoder part
consists of four residual blocks and a DGSPP. The DGSPP is
located between the third residual block and the fourth residual
block and is used to extract the multiscale features of the road,
construct the spatial feature pyramid, and aggregate the context
information, as shown in the green box in the coding part of
Fig. 1. Because contextual information plays an important role
in the quality of the extraction results [45], the bridge part is
composed of downsampling, upsampling, and residual blocks to
supplement the extraction of contextual information. There are
five residual blocks in the decoding part. In the decoding process,
the high-level feature information and the low-level features of
the corresponding layer of the encoding path are concatenated to
enhance the feature information. Eventually, the network output
will obtain a segmentation map of the same size as the input
image. In addition, to improve the generalization ability of the
model, we have improved the residual unit.

B. Improved Residual Units

The residual unit consists of a batch normalization (BN)
layer [46], a rectified linear unit (ReLU) [47], a convolution
layer, and a shortcut connection layer. Because BN has strict
requirements on batch size, when the batch size is small, the error
of normalization will increase rapidly, weakening the model’s
generalization ability. Due to memory limitations, the batch
size often fails to meet the BN requirement during training.
Compared to BN, the calculation of the group normalization
(GN) [48] is independent of the batch size. When the batch size
is small, the accuracy is stable, and the generalization ability
is very strong. Therefore, we have improved the residual unit.
In this article, we change the BN into the GN according to the
actual situation. The formula of the residual unit is defined as
follows:

Yy = h(l’l) + F(l’bwl) (1)
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Fig. 1.  Architecture of the dense-global-residual model proposed in this article.

241 = f(yr) @)

where x; and x;4; represent the input and output in residual
unit /, F'(+) represents the residual function, f(-) represents the
activation function, and h(-) represents the identity mapping
function.

C. Dense and Global Spatial Pyramid Pooling Module

To solve the problem of small-scale detailed feature loss of
ASPP and further improve the perception ability of the spatial
information, we proposed the DGSPP module to build a spatial
feature pyramid and to perceive and extract the multiscale road
features. Compared with ASPP, DGSPP can obtain a larger
receptive field, more multiscale features, and richer context
information. The specific improvements are as follows: The
DGSPP replaces the parallel connections in the traditional ASPP
with dense connections. For each layer, the output feature maps
of all preceding layers are used as inputs, and its own output is

‘ Dense Dilated
Convolutional Block |

Dilated Conv
> (1x1,3x3)
d=3

| ) N T)nclli\
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'
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Fig. 2. Structure of dense global atrous spatial pyramid pooling based on
atrous spatial pyramid pooling. Dilated Conv(1 x 1,3 x 3) represents a 1 x 1
dilated convolution and 3 x 3 dilated convolution, and d represents the dilation
rate.

used as the input of all subsequent layers, as shown in Fig. 2.
This design effectively connects the dilated convolution layers
by combining the advantages of parallel and cascading modes,
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which not only obtains larger receptive fields and rich multiscale
information but also generates denser and larger feature pyra-
mids, as shown in part of “Dense Dilated Convolutional Block”
in Fig. 2. Therefore, this method is more adaptable for roads with
multiscale features. The final output is a feature map generated
by multirate and multiscale convolution that covers the global
semantic information and local detailed information. Global
context feature information [49]-[54] is very important for
semantic segmentation, and it helps to classify pixels correctly
and can improve the completeness and accuracy of the extraction
results. Global pooling has the ability to improve global context
awareness [55]; so we retain the global pooling branch to avoid
the ASPP kernel degradation problem and supplement the global
information with the output in another way, as shown in part of
“Global Pooling” in Fig. 2. DGSPP is composed of a dense
dilated convolutional block and global pooling, as shown in
Fig. 2.

From the above, the DGSPP consists of densely connected
dilated convolutions and global pooling. The two parts can be
formulated as follows:

X1 = Fra,([Xo, X1, X2,..., X1 1]) 3)
where X represents the received total feature maps in layer
L, and [Xg, X1, Xo,...,X_1] represents the feature map
formed by concatenating the outputs from all previous lay-
ers. F'i 4, represents dilated convolution, d; represents the di-
lation rate of layer /, and K stands for the size of dilated
convolution

Y = X, + F(Xo) )
where Y represents the final output of DGSPP, X, represents the
feature map of densely connected atrous convolution, and F'(+)is
defined as a composite function of two consecutive operations:
global average pooling and a 3 x 3 convolution layer.

D. Implementation Details of Network

The network consisted of three parts: 1) encoding, 2) bridge,
and 3) decoding. These three parts are mainly composed of 10
residual blocks and DGSPP. At the top of the network, a 7 x 7
convolution layer with stride = 2 was used to extract the features
as the initial input. In the encoder part, the residual block mainly
contained a 3 x 3 convolution layer with stride = 2 and two
1 x 1 convolution layers with stride = 1. We designed DGSPP
to obtain the multiscale features and contextual information.
Correspondingly, the decoding path also comprises five residual
blocks, in which the strides of the convolutions are all 1. In
the decoding part, the low-level features are upsampled and
connected to the feature maps of the corresponding encoding
path. The middle part is the bridge connecting the encoding
and decoding paths. At the bottom of the network, a 1 x 1
convolution layer with a ReLU activation function was used to
output the final feature maps with the same resolution as the
input image. The detailed parameters and output size of each
unit are presented in Table I.

TABLE I
IMPLEMENTATION DETAILS OF DENSE-GLOBAL-RESIDUAL NETWORK

Unit Stride  Output size
Input 512x512%3
Conv(7x7) 2 256%256x16
Residual Block1 2 128x128x64
Encoding Residual Block2 2 64x64x128
Residual Block3 2 32x32x256
Residual Block4 2 16x16x512
Bridge Residual Block5 1 16x16x512
Residual Block6 1 32x32x512
Residual Block?7 1 64x64%256
Decoding Residual Block8 1 128x128%128
Residual Block9 1 256%256x64
Residual Block10 1 512x512%16
Output Conv(1x1) 1 512x512x2

Labels

Fig. 3.

Examples for GF-2 road dataset images.

III. EXPERIMENTS
A. Datasets

Gaofen-2 (GF-2) images are an important part of high-
resolution remote sensing imaging. To verify the performance
of the model, we made a GF-2 road dataset based on GF-2
remote sensing satellite images, as shown in Fig. 3. Among
them, we produced 28 GF-2 images distributed in Hefei, China
and Tianjin, China, including 16 images of size 4909 x 4672 and
12 images of size 4578 x 4442 with a resolution of 1 m. We use
manual labeling to create the road labels. We divided these 28
images into a training dataset (20 images), a validation dataset
(2 images), and a test dataset (6 images). The road labels of the
training dataset are used by the model to learn and understand
the features of the road. In order to effectively learn the road
features, we train the model as fully as possible. This article
crops the training set and validation set to increase the number
of samples. Finally, the numbers of images used for training and
validating are 5892 and 1480, respectively, and these images
have a size of 512 x 512. After the training, we tested four
4578 x 4442 remote sensing images of Hefei, China, and two
4909 x 4672 remote sensing images of Tianjin, China.

The Massachusetts roads dataset [56] is the largest pub-
licly available road dataset in the world. The dataset contains
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Fig. 4. Examples for Massachusetts roads dataset images.

1171 images, which are divided into 1108 training images,
14 validation images, 49 test images, and corresponding label
images, as shown in Fig. 4. The size of each image is 1500
x 1500 pixels, and the resolution is 1.2 m/pixel. The dataset
contains various features, such as roads, grasslands, forests, and
buildings.

Because the number of images in the dataset is too small, it
is not conducive to the full training of the model. In this article,
the dataset is cropped to increase the number of samples. The
remote sensing images of the training and validation sets and
the corresponding label images are cut into 512 x 512 pixel
scale image samples (the entire image is first cut in order and
then randomly cropped on the image). According to the rules
of dataset division, all the divided sample data are randomly
divided into a new training set and a validation set with a 4:1
ratio. When examining samples, we delete a small number of
interfering images and their corresponding label images. Finally,
the training set contains 14 366 images of 512 x 512 pixels, and
the validation set contains 3592 images of 512 x 512 pixels.

B. Implementation Details

In this article, the proposed model uses TensorFlow as a deep
learning framework, the development platform uses JetBrains
PyCharm 2017, and the development language is Python. All
models are trained and tested on a computer configured with an
Intel Core(TM) 19-7980XE CPU and an NVIDIA GeForce GTX
1080 Ti graphics card.

The model in this article uses a cross-validation training
method, that is, the training set and the validation set are entered
into the model at the same time. Each training randomly selects
the batch size data of the validation set to calculate the loss and
accuracy and optimize the training of the model.

Because training the model has large GPU memory require-
ments, the method in this article takes the image with the size of
512 x 512 as the input of the network. Adam [57] is an adaptive
learning rate optimizer with high computational efficiency and
low memory requirements. Therefore, this article uses the Adam
optimizer to optimize the network and update the parameters.
In addition, the network proposed in this article uses binary
cross entropy (BCE) + dice coefficient loss [43] as the loss
function, the batch size is set to 4, the number of epochs is 50,

the number of iterations per round is 4000, and the initial learning
rate is set to 0.001. To better train the model, the learning rate
will automatically adjust with an increase in training epochs to
accelerate the convergence of the network combined with the
optimization. In the test process, we directly test the 1500 x
1500 pixel images in the test dataset, and it takes approximately
2—3 s for each image.

C. Comparative Studies Using Different Networks and
Evaluation Metrics

This article proposes an improved semantic segmentation
model that implements automatic road extraction of high-
resolution remote sensing images. To verify the performance of
this method, we compared the DGRN with four representative
deep learning network models of U-net [38], DeepLabV3+- [42],
D-LinkNet [43], and CDG [39] on two datasets under the same
conditions. The U-net network model is mainly used for medical
image segmentation. It can use deep feature localization and
shallow feature segmentation for accurate segmentation; so it has
better performance for the extraction of slender road features.
DeepLabV3+ is a new full convolution network model recently
proposed by scholars, which further improves the performance
of semantic segmentation tasks. D-LinkNet won the CVPR
2018: DeepGlobe Road Extraction Challenge. CDG is a novel
road extraction algorithm.

To quantify the effect of road extraction, in this article, we
use the most common evaluation metrics in the field of semantic
segmentation: Recall, IoU, and F1 score. At the same time, the
first two indicators correspond to the completeness and quality of
classic road extraction [58], [59]. They can evaluate the geomet-
ric quality of the extracted road network [60], [61]. This article
considers road extraction as a two-class classification problem,
and the prediction results are divided into two categories: road
and nonroad. For the binary classification problem, the sample
data can be divided into true positive (TP), false positive (FP),
true negative (TN), and false negative (FN) according to the
combination of the real category and prediction category. The
recall metric represents the correct pixels over the ground truth,
while the precision metric represents the correct pixels over the
prediction result. The F1 score is a powerful evaluation metric
for the harmonic mean of the precision and recall metrics. IoU
is the ratio of the intersection and union of real and predicted
values in different categories and adopted to evaluate the shape
and area [62]. The evaluation metric formulas are as follows:

precision = TPT+P FP Q)

Recall = 7TPTE’FN (6)
2TP

=N @

1o = FX T ®)

In order to comprehensively evaluate the quality of the
road network, this article uses topology criteria (Topological
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Fig. 5. Results of the GF-2 road test dataset.
Images
Labels
Ours
(a) (b)
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Completeness and Topological Correctness) [60], [61] to mea-
sure the connectivity of the road.

Topological completeness’s definition is shown in the follow-
ing equation:

Topological Completeness = T;LL—E )
L

where nj, represents all pairs of connected nodes in the label
image and ny g is the pairs of nodes that are connected at the
same time in the road network of the two images.

Topological correctness’s definition is shown in the following
equation:

. n
Topological Correctness = —EL

neg

(10)

(¢) (d) (e)

Demonstration of the experimental results of the Massachusetts roads dataset. The accuracy of (a—e) decreases in turn.

where ng represents all pairs of connected nodes in the label
image and ngy, is the pairs of nodes that are connected at the
same time in the road network of the two images.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. Results

After the training, the test set data of the GF-2 dataset and
Massachusetts roads dataset were used for testing. From the
perspective of qualitative analysis, we can see that each image
of the two test sets has a good result, and the road is completely
extracted and is located very close to the real label of the ground,
as shown in Figs. 5 and 6. To quantitatively verify the perfor-
mance of the method in this article, Table II lists the accuracy
of the test images of the GF-2 dataset, and Table III lists the
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TABLE II
TEST RESULTS OF THE GF-2 ROADS DATASET

Test Datasets IoU Recall F1
all images 80.39%  88.11%  89.09%
a 79.91%  87.03%  88.83%
b 84.10%  91.39%  91.36%
c 77.05%  85.05%  87.04%
d 82.77%  89.93%  90.57%
e 82.64%  90.02%  90.49%
f 75.85%  85.23%  86.27%

accuracy of the test images of the Massachusetts roads dataset.
As we can see in Table II, the overall accuracy (IoU, Recall, and
F1 score) of the test results are 80.39%, 88.11%, and 89.09%,
respectively. For all test images of the GF-2 dataset, the recall
and comprehensive evaluation index (F1 score) exceeds 85%,
and the accuracy of imageS5 is even higher than 91%. Although
the IoU is lower than the other two evaluation indicators, each
image still achieves good accuracy. As seen from Table III, the
overall accuracy (IoU, Recall, and F1 score) of the test results
are 62.48%, 71.97%, and 76.59%, respectively. Among them,

DeeplabV3+

|

U-net

D-LinkNet

Prediction results of CDG, U-net, D-LinkNet, DeepLabV3-, and the proposed dense-global-residual network (DGRN) on the GF-2 test images.

the IoU index of the highest and lowest accuracy results are
75.29% and 38.36%, respectively. In summary, the results of the
experiment preserved the continuity of the road, and there were
no mistakes, which show that the proposed model performs well
in the task of road extraction of high-resolution remote sensing
images.

B. Comparisons and Analysis

Fig. 7 shows the test results of all the methods on the
GF-2 road dataset. On the whole, the DGRN extraction re-
sults are very complete and consistent with the label; the
results contain no incorrect extractions, and the method has
a great advantage over the other four models, as shown
in the yellow box in Fig. 7. It can be seen from the
red marked box in Fig. 7 that the extraction results of
the methods DeepLabV3+ and D-LinkNet are broken. In
Fig. 7(c), the extraction result of the D-LinkNet method directly
shows the phenomenon of extraction failure. Among the four
models, the extraction results of the CDG model are the worst.
The degree of fragmentation of the extraction results and the
number of extraction failures are the largest among all images,
which is also consistent with the results of our quantitative
analysis. Table IV shows the accuracy statistics of all models.
The topological quality index accuracy of our method is higher
than other methods. This is basically consistent with our overall
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TABLE III
TEST RESULTS OF THE MASSACHUSETTS ROADS DATASET

Test Datasets TIoU

Recall F1

All images-average 62.48%

71.97% 76.59%

TABLE IV
COMPARISONS BETWEEN THE PROPOSED DGRN AND SEVERAL TYPICAL MODELS ON THE GF-2 DATASET

Model IoU Recall F1 Topological Correctness Topological Completeness
CDG 54.11% 74.61% 70.02% 66.00% 76.00%
U-net 56.32% 61.10% 71.86% 78.00% 63.00%
D-LinkNet  63.72% 68.76% 77.67% 80.00% 67.00%
DeepLabV3+ 79.24% 83.71% 88.38% 83.00% 82.00%
Ours 80.39% 88.11% 89.09% 85.00% 87.00%

==

(a)

Images "~ Labels Ours

Fig. 8.

w4
DeeplabV 3+

2 ——
D-LinkNet

U-net

Comparison of road extraction results under the influence of building shadows. From left to right are remote sensing images, road true value, our extraction

results, DeepLabV3+- extraction results, D-LinkNet extraction results, and U-Net extraction results.

evaluation of road continuity. As seen from Table IV, the ex-
traction accuracy of the DGRN reaches 80.39%, 88.11%, and
89.09% on the three evaluation indexes of IoU, Recall, and F1,
respectively. The accuracy values of the DGRN given by each
evaluation index are better than those of all the other compar-
ison methods. Compared to the results of the high-precision
DeepLabV3 + method, the IoU, Recall, and F1 results of the
DGRN are 1.15%, 4.40%, and 0.71% better, respectively, and
they are much better than those of the other three comparison
methods.

In the process of urban road image extraction, the results are
usually greatly affected by high-level shadows; so the extraction
effect is very poor. However, our model can effectively alleviate
such problems, as shown in Fig. 8. Fig. 8 is a partially enlarged
image of the extraction results, reflecting the performance of all
the extraction methods in overcoming the shadows of buildings.
From Fig. 8, we can see that the DGRN method can well

solve the problem caused by shadow occlusion of high-rise
buildings and can ensure the continuity and integrity of the road.
Compared with the other four methods, the DGRN extraction
results are better. Among them, the CDG and DeepLabV3+
have a certain extraction ability for the roads occluded by the
shadows of high-rise buildings, but the extraction results are
severely fragmented. U-net and D-LinkNet have poor resistance
to shadow interference, and most roads occluded by shadows
have failed to be extracted. The above qualitative analysis is
consistent with our quantitative analysis results. As shown in
Table V, our method surpassed other methods in all indicators.
From the road extraction results of the five methods, we can see
that due to the addition of DGSPP to the DGRN network, the
network can make good use of the feature information of the
road in the coding process. At the same time, the feature reuse
mechanism of DGSPP can reduce the loss of information in the
coding process, improve the utilization rate of the road feature
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Fig. 9. Prediction results of all methods with the Massachusetts roads dataset.

TABLE V
COMPARISON OF ROAD EXTRACTION RESULTS UNDER THE INFLUENCE OF
BUILDING SHADOWS

Model IoU Recall F1
U-net 40.00% 43.34% 56.93%
D-LinkNet  42.73% 45.32% 59.87%
CDG 47.50% 63.93% 64.27%
DeepLabV3+ 66.23% 69.11% 79.66%
Ours 68.51% 74.26% 81.24%

information, and finally improve the accuracy of the extracted
roads, which also shows that the DGRN is an advanced new
method for road extraction.

The DGRN method has achieved superior performance on the
GF-2 road dataset. To verify the effectiveness and advancement
of the DGRN, we further verified the DGRN model on the
Massachusetts roads dataset. The results of the Massachusetts
test dataset are shown in Fig. 9. The overall extraction result of
the DGRN is also the most complete and continuous, as shown
in the yellow box in Fig. 9. Almost all roads in the test image
are extracted, and there are few broken roads. From the red edit
box in Fig. 9, we can see that the results of the other three
methods have good performance overall and are able to extract
a more complete road contour. However, the road detail extrac-
tion performance is insufficient, and there are many fracture

CDG

DeeplabV3+

discontinuities in the results. Among them, the D-LinkNet
method [see the red box in Fig. 9(a) and (c)] and U-net method
[red box in Fig. 9(a)] extraction results exhibited partial road ex-
traction failure phenomena. Although DeepLabV3+- did not fail
to extract the roads, the degree of fragmentation of its extraction
results was the most severe. The overall performance of CDG
is already great, but there are still road breakage problems. At
the same time, to better analyze the performance of the model,
we conducted a quantitative analysis and listed all the statistical
indicators in Table VI. The topological criteria of our method are
higher than other methods. This is basically consistent with our
qualitative analysis of road continuity. From Table VI, we can see
that our accuracy is the highest on the three evaluation indicators
IoU, Recall, and F1. Compared with the CDG method with
the highest precision of the comparison methods, our method
obtained result accuracies that are 0.58%, 0.17%, and 0.49%,
higher than the result accuracies obtained by CDG; our result
accuracies are also much higher than those of the other two
road extraction methods. On the Massachusetts roads dataset,
the DGRN method has certain advantages over other network
models in road extraction tasks.

In addition, the model also has a great performance in solving
the problem caused by tree occlusion. Fig. 10 is a partial mag-
nification of the Massachusetts roads data test image, reflecting
the resolution of the tree occlusion problem by all methods. As
seen from Fig. 10, the DGRN method performs well in solving
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TABLE VI
QUANTITATIVE COMPARISONS OF THE DIFFERENT METHODS WITH THE MASSACHUSETTS ROADS DATASET

Model IoU Recall F1 Topological Correctness Topological Completeness
DeepLabV3+ 51.95% 60.22% 67.64% 79.00% 62.00%
U-net 56.91% 65.74% 72.11% 80.00% 66.00%
D-Linknet 60.71% 71.96% 75.15% 81.00% 72.00%
CDG 61.90% 71.80% 76.10% 82.00% 72.00%
Ours 62.48% 71.97% 76.59% 85.00% 74.00%

(a)
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Images
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Fig. 10.

D-LinkNet DeeplabV3+ U-net

Comparison of road extraction results under the influence of trees occlusion. From left to right are the remote sensing images, road true value, our

extraction results, D-LinkNet extraction results, DeepLabV3+ extraction results, and U-Net extraction results.

TABLE VII
COMPARISON OF ROAD EXTRACTION RESULTS UNDER THE INFLUENCE OF
TREES OCCLUSION

Model IoU Recall F1
DeepLabV3+ 48.54% 55.01% 65.19%
U-net 51.99% 5991% 67.47%
D-LinkNet  59.07% 65.73% 73.62%
CDG 59.24% 68.89% 74.25%
Ours 66.32% 79.66% 79.55%

the problem of tree occlusion, and all roads blocked by trees
are extracted. Although there is a discontinuity in the extraction
result of Fig. 10(c), most roads have been extracted with high
integrity. However, the other four methods are less capable of
solving such problems, and all results in which trees occlude the
roads are broken and discontinuous. In the images of Fig. 10(b)
and (c), the CDG and D-LinkNet methods also directly show
the loss of tree occlusion road extraction. The above qualitative
analysis is consistent with our quantitative analysis results. As
shown in Table VII, our method surpassed other methods in
all indicators. Compared with the four classical deep learning
methods, our DGRN method is also a new road extraction
method with high precision and strong anti-tree shielding ability.

C. Effect of the DGSPP Module

To reflect the importance of the improved DGSPP layer in the
road extraction process, the baseline model and the ASPP-Net
model are compared under the same training conditions. In
the baseline network model, we remove the improved DGSPP
layer. In the ASPP-Net model, we used ASPP to replace the
improved DGSPP layer at the same location in the DGRN
network. In addition, we perform validation experiments on the
GF-2 dataset and Massachusetts roads dataset. Fig. 11 shows
the extraction results of the GF-2 data. As we can see from
the marker box in Fig. 11, there are many discontinuities in
the baseline model and ASPP-Net model, and the condition
of road fragmentation is severe, which is consistent with the
performance of the evaluation indicators in Table VI. As seen
from Table VI, the extraction results of the DGRN in IoU,
Recall, and F1 are far higher than those of the baseline network
model. Compared with the traditional ASPP-Net network model,
we also achieved 0.29%, 0.49%, and 0.18% improvements in
ToU, Recall, and F1, respectively. The extraction results of the
Massachusetts roads dataset (Fig. 12) show that the integrity
of the DGRN extraction results is also far better than those of
the other two comparison models (see the red box in Fig. 12).
The road results extracted by the baseline network model and
ASPP-Net network model inevitably exhibit fracture and loss
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Fig. 11. Comparison of the three methods for road extraction on the GF-2 roads dataset.
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Fig. 12.  Comparison of the three road extraction methods on the Massachusetts roads dataset.

TABLE VIII
COMPARISON OF EVALUATION INDICATORS OF THE THREE ROAD EXTRACTION
METHODS ON THE GF-2 ROADS DATASET

Model IoU Recall F1
baseline  78.29% 86.60% 87.79%
ASPP-Net 80.10% 87.62% 88.91%
Ours 80.39% 88.11% 89.09%

problems. At the same time, to show the performance of the
model more intuitively, we calculated the accuracy indexes of the
model, which are listed in Table VIII. As seen from Table IX, in

TABLE IX
COMPARISON OF EVALUATION INDICATORS OF THREE ROAD EXTRACTION
METHODS ON THE MASSACHUSETTS ROADS DATASET

Model IoU Recall F1
baseline  53.70% 64.24% 69.53%
ASPP-Net 54.35% 63.77% 70.03%
Ours 62.48% 71.97% 76.59%

the Massachusetts roads dataset, the DGRN leads the traditional
ASPP-Net network model by 8.13%, 8.20%, and 6.56% in IoU,
Recall, and F1, respectively, and far exceeds the baseline basic
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model. Compared with the statistical results of the GF-2 dataset,
the statistical data of the Massachusetts roads dataset have more
advantages.

In addition, the improved DGSPP layer can also adapt to
the interference of complex background features such as trees
and building shadows. Fig. 13 shows an enlarged view of the
details of the extraction results. It can be seen from the red box
in Fig. 13 that for the extraction results of the blocked road,
the DGRN model has the best performance, far exceeding the
other two models. It can be seen from Fig. 13(a)—(c) that the
extraction results of the baseline model are better than those
of the ASPP-Net model, indicating that the traditional ASPP
module has poor performance in solving the problem of trees
and shadow occlusion.

In conclusion, the improved DGSPP layer can reduce the loss
of the spatial feature information and extract the global context
feature information efficiently. It plays a key role in improving
the precision of road extraction, ensuring the integrity of the road
and resisting the interference of the background information.
Experiments show that the improved DGSPP layer is an effective
and advanced functional module.

D. Generalization Analysis of the DGRN

To verify the universality of the DGRN, GF-2 remote sensing
images of Hefei, Tianjin and Wuhu were tested in this article,
and the test results are shown in Fig. 14. Fig. 14 shows that the
roads in the three cities have been completely extracted, and the
Hefei image has the best extraction effect. As seen from the road
results of Tianjin, the connectivity of the road is well maintained.

Ours

baseline

" —ASPP-Net

Comparison of the extraction results of the three methods for road occlusion problems.

The extraction results of the DGRN model not only demonstrate
good global performance but also grasp the details of the road
well (see the red marker box in the Hefei image). It can be seen
from the image extraction results of Wuhu that the DGRN model
can effectively alleviate the interference phenomenon caused by
the shadow of urban high-rise buildings on road extraction (see
the red box in the Wuhu (c) image). In conclusion, the DGRN
model is a road extraction model with strong extraction ability
and good universality.

E. Analysis of Problems

The method in this article has achieved outstanding results
in the above comparative experiments, but due to the influence
of various factors, there are still a small number of roads that
are missed during the extraction process. Deep convolutional
neural network models also have these difficulties in road ex-
traction. As shown in the blue box in Fig. 14, the presence of
urban buildings, trees, and many other features around the road
network, as well as the roof in the image that has an appearance
similar to that of a road, contribute to the complex background.
Therefore, in the process of road information extraction, the
above factors interfere with the network model perception of the
target features. Simultaneously, due to the multiscale features of
the road network itself, the network model is required to have
an efficient multiscale feature perception capability. In the case
of complex backgrounds and multiscale road coexistence, the
method in this article significantly improves the anti-occlusion
ability compared with other methods (see Section IV-B for
details), but there are also a few local road discontinuities.
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Fig. 14.  GF-2 image extraction results from three different cities in China.

V. CONCLUSION

In this article, we analyze the problems of the FCN-based
methods, consider the road features, and construct an FCN
network called the DGRN that is suitable for road extraction
from high-resolution remote sensing images. Based on the struc-
ture of ResNet, the network introduces the DGSPP module in
the encoding process. The combination of the two not only
improves the reuse of the road features, which reduces the
loss of information, but also aggregates multiscale contextual
information to mitigate the effects of shadows, which improves
the consistency of the semantic segmentation. In addition, our
method was compared with U-Net, D-LinkNet, DeepLabV3+,
and CDG on the GF-2 dataset and Massachusetts roads dataset.
The GF-2 dataset experiment showed that the results of the
DGRN method were 1.15% higherinIoU, 4.4% higher in Recall,
and 0.71% higher in F1 score than those in DeepLabV3+, which
had the best effect on the four comparison models. On the
published Massachusetts roads dataset, compared with the CDG
method, which had the best performance of the four comparison
models, our method also achieved 0.58%, 0.17%, and 0.49%
improvements. In the case of occlusion, experiments on the two
datasets also showed the advantages of the proposed method
for road extraction. The better performance on the two datasets

Tianjin

verifies that the DGSPP module we designed has a strong
advantage in the extraction of multiscale feature information. In
the general experiment, our network also successfully extracted
roads from images of Tianjin, China, Hefei, China, and Wuhu,
China, and achieved good results. Therefore, the DGRN model
is a road extraction model with superior extraction performance
and strong generalization ability.

Although the DGRN model has achieved good extraction
results, when shadows of trees and houses coexist and the roof
is similar to the road, the road extraction results will still appear
slightly broken, which is also a difficult point in the current
road extraction process. In future research, we plan to use the
geometric feature information of the road to supplement the
missing feature information occluded by trees to ensure the
integrity of the extracted road.
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