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ABSTRACT In order to solve the problems of unbalanced sample data and the lack of consideration of
temporal information in existing Siamese-based trackers, this paper proposes a Siamese recurrent neural
network and region proposal network (Siamese R-RPN), which can be trained in an end-to-end manner.
Siamese R-RPN is consisted of Siamese network, recurrent neural network and region proposal network.
Image features extracted by the Siamese network are strengthened by the channel and spatial attention
mechanisms, and are sent to the RPN for classification and regression. Temporal information is processed
by a recurrent neural network-based Long Short-Term Memory (LSTM) to predict the rough location of the
target, it is mapped to the anchor feature map of the RPN for anchor selection. This makes the positive and
negative samples participating in the training procedure to become more balanced and representative.
Because of the collaborative use of temporal and spatial information, the tracker proposed in this paper has
achieved state-of-the-art performance on three large tracking benchmarks—OTB 2015, VOT2016 and VOT
2018—where this verifies its effectiveness.

INDEX TERMS Object Tracking, Recurrent Neural Network LSTM, Siamese Network, Region Proposal
Network, Attention Mechanism

I. INTRODUCTION
Object tracking is widely used in such applications as

video surveillance, intelligent transportation, autonomous
driving and human-computer interaction [1]. Given the initial
state of the target tracked in the first frame, object tracking
can estimate the unknown state (such as position and scale)
of the target in successive video frames. Although significant
advancements in the area have been reported, no satisfactory
method is available to cover all tracking scenarios due to the
variety of the relevant scenes, changeable environment, and
such complex conditions as deformation, occlusion, blurring
and rapid movement caused by the motion of objects [2-4].
Object tracking is thus still considered as a challenging task.
Convolutional neural networks have been successfully

applied to object detection and recognition because of their
powerful feature representation capabilities [5], and this has
inspired the introduction of deep learning to solve the
challenges posed by object tracking [6-8]. Although this
helps to improve the accuracy of tracking, deep learning-

based target tracking algorithms are computationally
expensive when extracting deep features or fine-tuning the
network online. This makes it difficult for them to meet real-
time requirements.
To satisfy real-time requirements, Siamese network [10],

which refers to correlation filtering [9], has attracted
considerable research attention. Siamese network is a special
neural network architecture consisting of two or more
weight-sharing sub-networks. Its core is mainly to convert
target tracking into a matching problem, and learn a general
similarity function offline from a large number of videos. A
one-stage tracker Siamese-RPN [11] based on the Siamese
network was recently proposed. It avoids the time-consuming
pyramid needed to estimate the scale of the target by adding
a region proposal network after the Siamese network [12] for
enhancing tracking performance.
Although the above technique can yield satisfactory

performance, Siamese-RPN often misjudges the target in
case of interference from another target similar to the actual
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one during the tracking process. This causes the tracking
bounding box to easily drift to the interfering target or the
background of the image. This may occur for three reasons: 1)
The features extracted by the Siamese network are not fully
utilized. Siamese-RPN or other Siamese-based trackers
mostly use ResNet as feature extraction network. They use
features extracted from the last layer of ResNet to distinguish
the foreground (target) from the background. In the case that
similar targets interfere with a given target, two targets may
belong to the same type of object and have similar high-level
semantic features. This makes it challenging to distinguish
them using only features of the last layer of ResNet, even
though it contains more semantic information than the other
layers. 2) The number of positive and negative samples is
unbalanced during training. The target of tracking occupies
only a small part of the image, whereas the region proposal
network (RPN) generates the region proposal as positive and
negative samples in the entire image through the anchor
mechanism. As a result, the number of positive samples is
much smaller than that of negative samples. It then becomes

challenging to fully train the Siamese network using an
unbalanced number of samples. The negative samples
obtained are mostly easy negative samples, which contain no
or little interference and similar semantic information. In
case of interference by similar semantic information to that
sought, the performance of the tracker is significantly
degraded [13]. 3) In the Siamese-RPN, feature extraction is
performed based on the idea of target detection by
transforming multi-frame target tracking tasks into single-
frame target detection tasks. However, there are important
differences between target tracking and target detection.
Target detection focuses on identifying different classes of
targets. The spatial features of a single image are fully mined
and the relationship between multiple images is forgotten. In
addition to the need to distinguish different categories of
objects, target tracking needs to handle interference by
objects belonging to the same class as the target. Moreover,
target tracking is a temporal task where multiple images are
linked. If only spatial features of a single image are
considered, the trained tracking model is rendered limited.

Fig. 1. Architecture of Siamese R-RPN. The image features extracted by the Siamese network are input to the region proposal network (RPN) after
being strengthened by the channel attention and spatial attention mechanisms. The outputs of the classification and regression branches are obtained
through the correlation convolution operation. A two-layer LSTM is used in the recurrent neural network to predict the rough position of the target,
then the rough location is mapped to the anchor feature map of the RPN for anchor selection, which is carried out to remove the invalid anchor and
realize transition of position from coarse to fine. The dotted line indicates that the selected anchor points are mapped to the RPN, which reduces the
classification and regression calculation of anchor box, and makes the accurate location of the subsequent target better. The classification branch
outputs 2k channels, representing the classification probability of the foreground and the background in k anchor boxes. The regression branch
outputs 4k channels, representing the four fine-tuned coordinates corresponding to the k anchor boxes.

II. RELATED WORK
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As shown in Fig. 1, this section first introduces the
Siamese-based tracker using a neural network, then discusses
the effect of the anchor-based on detection, and finally
describes the results of research on the attention mechanism
in computer vision.

A. Siamese-based tracker
In recent years, Siamese-based object tracker has attracted

considerable research interest because of its excellent
accuracy and real-time performance. The Siamese network
usually contains two or more network branches with the
same parameters, and determines the position of the target of
tracking by mapping features extracted from paired images to
the feature space for comparison. The network was first used
in GOTURN [17] for target tracking, where it can be
regarded as a deep regression method with a processing
speed of up to 100 fps. The SINT algorithm proposed by Tao
[18] transforms the target tracking problem into a matching
problem, it is implemented through a neural network.
However, a large number of candidate boxes are generated,
and it need to be processed in each frame, which is time-
consuming. In the same year, SiamFC [12] was proposed by
Bertinetto. It is more practical than SINT. A Siamese
convolutional neural network is used in it as feature extractor,
the similarity between patches in the form of a sliding
window is calculated through a simple correlation operation.
Finally, the patch with the highest score is defined as the new
location of the target. To locate the target in the search image,
all possible locations can be exhaustively tested, the patch
most similar in appearance to the target is selected. A balance
between accuracy and speed is thus struck in SiamFC, it
requires no model update. For work on the shortcomings of
SiamFC without scale estimation, the interested reader can
refer to the concept of Faster R-CNN [5]. The RPN (region
proposal network) was first introduced to SiamFC by
defining tracking as a local detection task [19] and replacing
multi-scale detection with bounding box regression to obtain
the maximum response bounding box. This yielded a high
accuracy for fast single target tracking. The extractor-aware
module introduced in DASiamRPN [20] was trained with
high-quality sample pairs based on SiamRPN, the local-to-
global search strategy was used when tracking failed. This
enables the algorithm to be extended to deal with long-term
tracking problems. To obtain a more accurate position of the
target, SiamMask [21] used image segmentation to replace
the rectangular target bounding box. In addition, Zhang [22]
and Martin [23] updated the model to improve its
performance. Besides, Zhong [57] proposed a hierarchical
tracker that learns to move and track based on the
combination of data-driven search at the coarse level, and
coarse-to-fine verification at the fine level.
Since SiamFC was introduced, many improvements on it

[20-26] had been proposed, but most of them were based on
shallow networks such as AlexNet [27]. No study to date has
examined improving the performance of the object tracker by
enhancing the backbone network. Due the effect of the
padding layer, the performance of the Siamese network

tracker does not improve, but degrades when a deeper
network is used. SiamRPN++ [28] was a recent a solution to
this problem. Through a simple and effective spatial sensing
sampling strategy, uniform sampling is performed in the
range of 16 to 64 pixels from the center of the offset. This
enables deep networks (ResNet [29]) to track. Multi-layer
aggregation was also employed to further use the deeper
features. The residual unit proposed in SiamDW [30] made
for a deeper and wider network architecture for the Siamese
tracker. Experimental results had shown that if the model is
properly trained, the performance of the tracker can be
substantially improved when using a deeper network.
SiamBAN [58] and SiamCAR [59] used the anchor-free
strategy to avoid complex anchor boxes settings and achieves
good tracking performance

B. Anchor-based Detection
Since the application of deep learning technology to target

detection, many classic tools have been developed in the area,
of which the two-stage R-CNN [31] and single-stage SSD
[32] are representative. Such methods as Fast R-CNN, R-
FCN [33] and RetinaNet [34] have been derived from them.
These are all anchor-based methods. That is, they involve
setting fixed anchors of different sizes and aspect ratios on
the feature map, which contains all targets in the image, to
carry out the subsequent classification and regression
operations. However, the recent literature [35, 36] has
highlighted certain disadvantages of anchors. First, a large
imbalance between positive and negative samples occurs,
speed of training decreases because of the excessive number
of anchors. Second, the super-parameters of anchor size and
aspect ratio need to be set manually, and they are not
universal. Owing to the indeterminate nature of changes in
the location and scale of the target, a target tracker trained
with a fixed anchor often incurs a large calculation cost. In
case of different targets of tracking, automatically adjusting
the number and hyperparameters of anchors in a targeted
manner for superior performance and faster processing speed
has emerged as a direction of research.

C. Attention Mechanism
The attention mechanism is originally designed for

machine translation. It is now an important concept in neural
networks. In 2015, Bahdanau et al. [37] proposed the
attention mechanism to assign different weights to different
parts of the input for the purpose of differentiation. Xu et al.
[38] subsequently used the attention mechanism in computer
vision, it was also used for image captioning. The residual
attention network was proposed by Wang et al. [39] in 2017,
it is based on image classification. It involved adding an
attention mechanism to the residual network. Additional
attention models can be extracted from feature maps of
different depths by means of the residual connection, which
improves classification accuracy while significantly reducing
the amount of calculation required. Hu won the image
classification task in the ImageNet Competition with SENet
[40] in 2017. The core idea of SENet was to learn feature
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weights according to network loss, so as to increase the
weight of effective feature maps and reduce the impact of
invalid maps on the results. Experiments had shown that
feature map representation using the neural network can be
enhanced by appropriately designing the attention
mechanism. The performance of the network model can be
significantly improved while incurring only a small increase
in calculation
Inspired by the technologies of anchor-based detection and

the attention mechanism, this paper proposes a framework
called the Siamese R-RPN. As shown in Fig. 1, it is based on
the Siamese-RPN with certain improvements. Spatial and
channel attention mechanisms are introduced to process the
spatial features extracted by the convolutional neural network
to obtain comprehensive features of the image. This enhances
the ability of the tracking model to distinguish between
targets of the same class. Moreover, an improved recurrent
neural network LSTM [16] is used to learn the sequence of
video frames to obtain the temporal and motion-related
information of the target of tracking, where this can help
fine-tune the position of the target of tracking. Finally, the
end-to-end network is trained as a whole to integrate the
spatial – temporal information to accurately determine the
position of the target.
In terms of object tracking, most researchers have focused

on ways to optimize the network structure and extract

apparent features of the target. This paper proposes a
Siamese recurrent neural network and region proposal
network (Siamese R-RPN) that uses an improved recurrent
neural network LSTM to process the temporal information of
the target, which can achieve SOTA-level performance. The
main contributions of this article are as follows:
1) A recurrent neural network is introduced to the

Siamese-RPN. With this combination, the temporal and
spatial information of the target is fused to improve the
accuracy of the tracking model.
2) An anchor selection module is designed to improve the

balance and representativeness of the training samples. The
tracking model is fully trained by selecting anchors from
coarse to fine.
3) The spatial and channel attention mechanisms are added

to the Siamese network structure to fully mine the apparent
characteristics of the target image, enhance the target's ability
to resist intra-class interference and improve the robustness
of the tracking model.
4) A joint training loss function is proposed to form an

end-to-end network model to jointly train the Siamese
network and the recurrent neural network LSTM, all the
while it ensures that the tracking model satisfies the
requirements of the real-time performance.
5) A numbers of test experiments are conducted on

multiple benchmarks, and the results show that the proposed
tracker delivers excellent performance.

Fig. 2. Framework of the channel attention mechanism, where * is the element point multiplication operation acting on the feature map at the channel
level.

Fig. 3. Framework of the spatial attention mechanism, where * is the element point multiplication operation acting on the feature map at the spatial
level.

III. TRACKING ALGORITHM
Fig. 1 shows a diagram of the structure of the proposed

Siamese R-RPN. It includes a Siamese network, a recurrent
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neural network and a region proposal network. High-level
feature information extracted from only the last layer of the
neural network is used to distinguish the foreground from the
background of the image in the traditional Siamese network.
However, in the case of interference from similar targets, this
highly abstract semantic information and the lack of fine-
grained information that is conducive to detection make it
difficult to locate the target for the tracker. In response to this
problem, the channel and spatial attention mechanisms are
added to the Siamese network to improve its identification
capability, and it can enable the tracker to resist intra-class
interference. In addition, the location of the tracking target is
often uncertain. A target bounding box can be obtained by
traversing the full image when a fixed anchor is used.
However, a large number of candidate anchor boxes do not
contain the target of tracking in operation, it has no effect on
its final estimated position. This is a waste of computing
resources, and affects the processing speed of the model. To
solve this problem, an anchor selection module is designed
by combining an improved recurrent neural network with the
RPN to select the anchor from coarse to fine. While yielding
the representative anchor box, this method significantly
reduces the number of candidate anchor boxes. Finally, to
improve the training speed of the network model, the
recurrent neural network and RPN are jointly trained to
realize an end-to-end network model.

A. Channel and Spatial Attention Mechanisms
With the successful application of convolutional neural

networks in a number of fields, a large number of network
structures have been proposed, such as AlexNet, ResNet and
Inception [41]. Experimental results have shown that the
introduction of the attention mechanism to a neural network
structure [42] can improve the model's ability to represent
features.
The principle of the attention mechanism can be

summarized by (1):

FτF'  (1)
F and F' represent the input original feature map and

the feature map enhanced by the attention mechanism,
respectively, τ represents weights of the attention
mechanism module after training. These weights
correspond to values of the original feature maps one by
one. In order to obtain faster training speed and better
comprehensive performance improvement, we design a
concise structured channel attention mechanism and spatial
attention mechanism, as shown in Fig. 2 and Fig. 3
1) Channel Attention Mechanism
At the channel level, features of different channels have

different feedback-related effects on the target. The output
features of the channel convolution layers of different
targets also have different weights, these dynamic values
are related to the task target being executed. It is thus
necessary to obtain the weight by making the most of the
channel attention mechanism. As shown in Fig. 2, the input
feature map is first compressed in the spatial dimension to

gain two one-dimensional feature vectors. Considering the
value of each pixel and the maximum value of local pixels
in the feature map, the average pooling and maximum
pooling operations are applied to each channel feature map
to gain 1D feature vectors. These two feature vectors are
then sent to the convolutional neural network. Following
the application of the sigmoid function, the element
addition is performed to output the weight. Finally, the
feature map of the channel is processed using this weight:

)]}w),w(Max(F),[convconv
]w),w(Avg(F),[convσ{convτ

FτF'

2112

2112






(2)

Avg and Max represent the average pooling operation
and the maximum pooling operation, respectively, 
represents the sigmoid function, 1w and 2w represent the

respective network weights of 1conv and 2conv .
2) Spatial Attention Mechanism
Within the same feature map, different locations respond

to targets differently. The difference between discrete
pixels is enlarged when the feature map is spatially
enhanced, so that pixel values sensitive to the target area
increase and those irrelevant to it decrease. As shown in Fig.
3, a spatial attention mechanism is introduced to enhance
the feature representation of the location of a specific area.
The first step is to compress the feature map at the channel
level. Two 2D feature maps are obtained by the average
pooling and maximum pooling operations to process the
input features in the dimensions of the channel. After the
two feature maps are concatenated, the result is sent to the
convolutional neural network, and the weight is output
through the sigmoid function. Finally, the spatial feature
map is fine-tuned according to the obtained weight:

w]}Max(F)),(Avg(F);σ{conv[catτ
FτF'




(3)

Avg and Max represent the average pooling operation
and the maximum pooling operation, respectively, 
represents the sigmoid function, cat represents the
concatenation operation, w represents the network weight
of conv .

B. Anchor Selection
Siam-RPN achieves good results mainly due to the

design and use of the RPN module. As shown in Fig. 1, the
RPN has a classification branch and a regression branch.
The classification branch is used to identify the candidate
area as foreground or background while the regression
branch is used to regress the exact coordinates of the
candidate area.
The core of RPN module is to generate anchor boxes by

mapping the anchor feature map (each pixel in the feature
map is an anchor) to the original image. According to the
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fixed area scaling factor and aspect ratio, each anchor
corresponds to multiple rectangular boxes of different sizes.
The classification branch outputs 17 × 17 × 2k, where the
channel number “2” represents the classification of the
foreground and the background; the regression branch
outputs 17 × 17 × 4k, where the channel number “4”
represents the corresponding offset positional size of the
anchor box on the original image. The number of resulting
anchor boxes is 17 × 17 × k.
During training, the obtained anchor boxes are selected

to obtain more representative positive and negative samples
[43, 44], especially negative samples (hard samples) that
are difficult to distinguish. The IOU threshold is used in the
traditional method to select the anchor boxes according to
values of the overlapping area of each anchor box and the
ground truth box. However, it is difficult to find a
representative high-value sample for the anchor box by
screening in this way, especially for negative samples, it
leads to considerable redundancy. To solve this problem, an
improved recurrent neural network LSTM is introduced to
design the anchor selection module.
The core idea of anchor selection is that the improved

recurrent neural network LSTM is used to process temporal
information to predict the state information of the target in
the next frame, including position-related and scale-related
information. The confidence (the value is zero or one) of
the anchor is calculated through state information.
According to this value, the anchor is preliminarily selected.
Zero is eliminated and one is reserved.

Fig. 4. Structural diagram of two-layer LSTM.

According to the temporal characteristics of the object
tracking task, an improved recurrent neural network is used
to extract the temporal information of the video sequences

to predict the state of the tracking target. As shown in Fig. 4,
a two-layer LSTM is used, where each layer has 1,024 units.
The input tx and output 1

th of the first layer of the LSTM
are subjected to a concatenation operation to obtain

][ 1
tt ,hx as the input to its second layer LSTM. Compared

with the single-layer LSTM, two-layer LSTM [45] can
capture more complex information on the motion of the
target [46]. The equation below expresses how LSTM
extracts, saves and outputs temporal information through
the gate operation for each frame of the image. t represents
the t-th frame of the image, tx and 1th represent the input
to the LSTM and the output of its previous frame, W , R
and P represent the corresponding weight matrices, b
represents the bias term,  represents the sigmoid function,
 represents the element point multiplication operation.
Forward propagation output is used to return the current
coordinates th and save important memory-related

information tc .

)tanh(coh
)bcPhRxσ(Wo

cfzic
)bcPhRxσ(Wf

)bcPhRxσ(Wi
)bhRxWtanh(z

ttt

oto1to
t

ot

1t-tttt

f1tf1tftft

i1ti1titit

z1tztzt





















(4)

The output of the second layer of the LSTM is sent to a
fully connected layer to output the predicted position of the
target ],,,[ hwyx . This position is mapped to the feature
map to obtain the coordinates ]',',','[ hwyx . This is
regarded as the boundary of anchor selection, and all
anchors beyond this boundary are discarded while those
within it are retained. This helps realize anchor positioning
from coarse to fine and improve the representativeness of
the anchor box. The IOU threshold principle is used to
further filter the fine anchors. The anchor box with IOU>
0.7 is defined as a positive sample and that with IOU <0.3
as a negative sample. Thirty of the positive and negative
samples are randomly selected for training.
The above process can be expressed by (5):

0.3)(IOUA0.7)(IOUAA

CAA

pA1
pA0

C

)Fc(hp

30

1i
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1i
pftrain

i
icif
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
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
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


















(5)

th represents the output of the recurrent neural network

at time t and sp represents the predicted state obtained



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3072778, IEEE Access

Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

after going through a fully connected layer, including
],,,[ hwyx . ciA represents the i-th coarse anchor, iC

corresponds to the confidence of ciA , fA is the fine
anchor obtained from coarse to fine,  represents the
element multiplication operation, pfA  and nfA  are the
positive and negative samples corresponding to the fine
anchor, respectively, trainA is the positive and negative
sample pair which is finally sent to the model for training.

C. End-to-end network training
As shown in Fig. 1, the training of the proposed Siam R-

RPN involves two parts: one is the recurrent neural network
LSTM, the other is the classification and regression branch
of RPN. The following details the end-to-end training of the
network through the joint loss function.
1) RPN network loss function
The loss function in Faster R-CNN is used to train the

RPN network in this paper. Softmax loss is used to
supervise the classification branch. For the regression
branch, when the position and size of the input anchor box
is similar to the ground truth box, the transformation
between them can be regarded as linear, the anchor box can
be fine-tuned using linear regression to achieve the precise
position of the target. A smooth L1 loss function and
normalized distance are applied to train the regression
branch. hWyX A,A,A,A represent the coordinates of the

center, length and width of the anchor box, hwyx T,T,T,T
represent the center coordinates, length and width of the
target bounding box in the dataset, respectively. Then, the
normalized distance is expressed as (6).

       
h

h

w

w

h

yy

w

xx

A
Tln3δ,

A
Tln2δ,

A
AT

1δ,
A
AT0δ 





 (6)

Smooth L1 loss is expressed as:

 














22

2
22

1L

σ
1x,

σ2
1x

σ
1x,xσ0.5

σx,smooth (7)

Finally, the loss function of the RPN network is given by:

regclsRPN λLLL  (8)

where  is a hyperparameter used to balance the
relationship between clsL and regL , clsL represents the

cross-entropy loss function, regL is as shown in (9):

∑ ）（
3

0i
1Lreg ],i[δsmoothL


  (9)

2) Recurrent neural network LSTM loss function
During training, the output of the target bounding box

],,,[ hwyxpred GGGGG  of the recurrent neural network
LSTM, and the output of the target bounding box

]T,T,T,[T hwyx in the corresponding dataset are directly
fed into the smooth L1 loss function. The loss function of
the recurrent neural network LSTM is shown in (10):





3

0i
1LLSTM σ][G(i),smoothL (10)

Finally, the joint loss function of the Siamese R-RPN is
shown in (11):









3

0i
1L

3

0i
1Lcls

LSTMregcls

LSTMRPN

σ][G(i),smoothμ],i[δsmoothλL

μLλLL
μLLloss

）（

(11)

where  is a hyperparameter that controls the
relationship between the loss functions of the recurrent
neural network and the loss functions of the RPN network.

IV. Experimental results and analysis

A. End-to-end network training
1) Backbone
The backbone network used in this article is ResNet.

Inspired by SiamDW, ResNet is operated as follows: the
network step size is changed from 16 pixels to 8 pixels,
receptive field is expanded by using dilated convolution to
maintain the padding unchanged. The impact of padding on
network training accuracy is eliminated by cropping feature
maps. Under ensuring the depth of the network, entire target
area can still be captured by each anchor, avoiding strong
center deviation to the target, and solving the problem of
padding destroying absolute translation invariance in deep
neural networks.
2) Training
The Siamese R-RPN is pre-trained on the ImageNet-1k

classification task, and then on the GOT-10K dataset. GOT-
10K is a target tracking dataset released by the Chinese
Academy of Sciences [47]. It contains more than 10,000
videos divided into more than 560 categories. The bounding
boxes of the objects are all manually labeled for a total of
more than 1.5 million. During training, video slice processing
is performed on video streams of the dataset, where the slice
length is 20 frames. First frames of each video slice is used to
crop an image of size 127× 127 centered on the target as
template frame. Meanwhile, the same video slice is traversed,
and two consecutive images which are cropped of size
255×255 centered on the target are selected as the input of
the detection frame and the recurrent neural network. Finally,
such three images (template frame and two consecutive
images) are combined as a training sample. In this way, a
large number of combinations of training sample are
generated to train the Siamese network.
SGD is used to train the network from end to end. We set

the momentum of SGD to 0.9, the learning rate is dropped
from 0.01 to 0.0001. We iteratively train it for 50 epochs,
where each epoch can sample 20,000 combinations. The
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proposed model is trained on two NVIDIA Titan 1080Ti
GPUs.

B. Analysis of experimental results
The experiments are conducted on three challenging

tracking benchmarks: OTB2015 [48], VOT2016 [49] and
VOT2018 [14]. In the experiments, the run speed of
Siamese R-RPN can reach 32 FPS.
1) Experiments on OTB2015
OTB2015 contains 100 tracking video sequences,

providing a fair and standard test platform for tracking
algorithms. Success plots and precision plots are used as
evaluation indicators. The former indicate the ratio of
successful frames with overlap being greater than the given
threshold to all frames, when the threshold changes from
zero to one. The latter represents the ratio of video frames
where the distance between the center of the predicted
target and the true center is smaller than the given threshold.
In this experiment, our algorithm is tested, along with
SiamRPN [11], SiamFC [12], CFNet [50], SINT [18],
Staple [51], ECO-HC [52], CREST [53], PTAV [54], LCT
[55] and DSST [56] for comparative verification and
evaluation.
As showed in Fig. 5, the proposed method achieves

satisfactory results in terms of both success plots and
precision plots. Siam-RPN trained with pre-defined anchor
parameters achieves 0.637 on the success plot and 0.850 on
the precision plot, whereas our Siam R-RPN achieves 0.659
on the former and 0.871 on the latter. The recurrent neural
network LSTM is used in Siam R-RPN for anchor selection.
While reducing the number of anchors, it improves
performance. Compared with Siam-RPN, its corresponding
success and precision plots are higher by 2.2% and 2.1%,
respectively, it proves that using temporal information to
select anchors can improve the balance and
representativeness of the positive and negative samples,
which can fully train the tracking model such that it can
accurately track the target.

Fig. 5. Success and precision plots on OTB2015.
2) Experiments on VOT2016
VOT2016 contains 60 challenging tracking videos

designed to evaluate the short-term tracking effect of
algorithms. To balance accuracy and robustness, the
expected average overlap (EAO) is used to evaluate the
overall performance of the tracking algorithms, the
normalized speed (EFO) is used to evaluate their operating
efficiency.

TABLE I COMPARISON BETWEEN THE PROPOSED METHOD AND STATE-OF-
THE-ART TRACKERS ON VOT2016 DATASET

Tracker EAO Accuracy Failure EFO
Ours 0.375 0.598 0.80 7.3
C-RPN 0.363 0.594 0.95 9.30
SiamRPN 0.344 0.560 1.08 23.30
C-COT 0.331 0.539 0.85 0.50
TCNN 0.325 0.554 0.96 1.10
ECO-HC 0.322 0.540 1.08 15.13
SSAT 0.321 0.577 1.04 0.50
MLDF 0.311 0.490 0.83 1.20
Staple 0.295 0.544 1.35 13.14
EBT 0.291 0.470 0.90 3.00

STAPLEp 0.286 0.557 1.32 44.80

Based on the four indicators of EAO, accuracy, failure
and EFO, the comparative results are shown in Table I.
Although EFO of our algorithm is not as high as that of
Siam-RPN, its EAO and accuracy improve by 3.1% and
3.8% compared with Siam-RPN, respectively, and its
failure index decreases by 0.28. Therefore, under the
premise of satisfying the requirements of real-time
performance, the overall performance of the tracking
algorithm is improved.
3) Experiments on VOT2018
VOT2018 [14] contains 60 tracking videos with a total of

21,356 frames. During the tracking process, if the area of
overlap between the tracking bounding box and the ground-
truth bounding box is less than a given threshold, this is
regarded as tracking failure, and the boxes are re-initialized
to the correct position five frames after the failure. The
main indicators for evaluating performance are EAO,
accuracy and robustness.
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TABLE II COMPARISON BETWEEN THE PROPOSED METHOD AND STATE-OF-
THE-ART TRACKERS ON VOT2018 DATASET

Tracker EAO Accuracy Robustness
Ours 0.398 0.594 0.243

LADCF 0.389 0.510 0.159
DaSiamRPN 0.384 0.586 0.280

MFT 0.383 0.276 0.140
RCO 0.376 0.507 0.155
SPM 0.338 0.580 0.300

ASRCF 0.328 0.490 0.234
ECO 0.276 0.480 0.280

As shown in Table II, Siam R-RPN is tested and

evaluated on the VOT2018, and the results are compared
with seven SOTA trackers. Although the robustness index
of the proposed method is not the best, its EAO and
accuracy is improved. Compared with DaSiamRPN, they
are improved by 1.4% and 0.8%, respectively. Robustness
is declined by 3.7%. The results show that the overall
performance of the proposed tracker is improved.
4) Analysis of Ablation Experiments
To verify the influence and effect of different parts of

Siam R-RPN on the performance of the tracking algorithm,
the ablation experiment on OTB2015 is analyzed based on
the AUC (area under curve of success plots) and precision.

TABLE III ABLATION STUDY OF THE PROPOSED TRACKER ON OTB2015

AlexNet ResNet-50 Attention
Mechanism LSTM RPN OTB2015

AUC Precision
√ √ 0.606 0.804

√ √ 0.638 0.852
√ √ √ 0.646 0.859
√ √ √ 0.653 0.866
√ √ √ √ 0.659 0.871

√ √ √ √ 0.622 0.821

1. Backbone network analysis
The performance of the tracker is closely related to the

features extracted by the backbone neural network. The
experimental results of the first and second rows in Table
III show that the ResNet-50 is used for the baseline neural
network, compared with the use of AlexNet, AUC and
precision are increased by 3.2% and 4.8%, respectively.
After the problem that the padding destroys the invariance
of absolute translation in deep neural networks is solved,
the features extracted by it help improve the accuracy and
robustness of the proposed tracker compared with shallow
neural networks.
2. Effect of attention mechanism
The second and third rows in Table III show that by

adding the attention mechanism, the AUC and precision of
the tracker are improved by 0.8% and 0.7%, respectively.
As a result, features enhanced by the attention mechanism
can help the RPN network better classify and return the
position of the target of tracking.
3. Effect of anchor selection module
A recurrent neural network LSTM is added to the Siam-

RPN with ResNet-50 as the backbone network for anchor
selection. The second and fourth rows in Table III show
that through the collaborative use of LSTM and
convolutional neural networks, the AUC and precision of
the tracker are increased by 1.5% and 1.4%, respectively.
However, the AUC and precision when only the attention
mechanism is used, are increased by only 0.8% and 0.7%,
respectively. Anchor selection is implemented in Siam R-
RPN using LSTM. It can improve the balance and
representativeness of tracking model in terms of positive
and negative samples, which enable it to accurately locate
the target. Moreover, coarse to fine selection, which helps

avoid the situation where the target frame drifts to the
image background, the overall performance of the tracker is
improved.
4. Universal analysis
To verify that the designed modules have an effect on

different neural networks, ablation experiments are
conducted on AlexNet and ResNet-50. The second and fifth
rows in Table III show that once the attention mechanism
and LSTM are added to the tracker based on ResNet-50, the
AUC and precision are increased by 2.1% and 1.9%,
respectively. The first and sixth rows show that once the
attention mechanism and LSTM are added to the tracker
based on AlexNet, the AUC and precision are increased by
1.6% and 1.7%, respectively. Thus, each proposed module
can improve the performance of the tracker on different
backbone neural networks.
5) Analysis of Qualitative Experiments
This section qualitatively compares the performance of

the proposed method with Siam-RPN and Siam-FC on
some examples of OTB2015, as is shown in Fig. 6.
Compared with the other two trackers, Siam R-RPN uses
the attention mechanism to strengthen the extracted features,
thus it has a strong resistance to intra-class interference.
The first, second and third lines of Fig. 6 show that object
tracking tasks performed in complex scenes often encounter
interference from similar targets. Siam-RPN and Siam-FC
are able to detect objects appearing in the image, but they
could not distinguish whether the detected object is the
target of tracking, and often misjudge it. Siam R-RPN is
able to accurately locate and track the target because of its
fuller use of the features. Moreover, the results in the fourth,
fifth and sixth rows show that the use of anchor selection
helps prevent the tracking bounding box from drifting into
the background, leading to strong anti-occlusion ability. In
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addition, the results in the seventh row show that Siam R-
RPN can accurately locate the tracking target, and provide
the target bounding box in case of rotational deformation of
the target.

Fig. 6. Qualitative results of the proposed method in comparison with
other trackers on OTB2015.

In order to better analyze the experimental results,
visual analysis is performed on the correlation convolution
response maps, which are represented by heat maps, as
shown in Fig. 7. In the heat maps, the score is expressed in
accordance with the color depth, the red color represents
the highest score, which denotes the target location
predicted by the tracking algorithm.

Through the frame-by-frame inspection of the heat
maps, when similar target interference, similar background
interference and target occlusion are encountered during the
tracking process, the performance of Siam-RPN will be
greatly reduced, and the correlation convolution response
maps are difficult to accurately predict the location of the
tracking target. Siamese R-RPN can solve these challenges
well. By observing the heat map, we find that Siam-RPN
obtains target candidate boxes from all anchor points, but
the motion range of the tracking target is limited, and the
actual number of effective anchor points is fixed, thus

processing all anchor points has defects. On the one hand, a
large number of calculations will slow down the speed; on
the other hand, invalid anchor points will contain
interference information, which will affect the accurate
tracking results. However, Siamese R-RPN uses temporal
information to predict rough location of the target and
select anchor points to eliminate a large number of invalid
anchor points, this can solve these challenges and achieve
better performance.

Fig. 7. Visualization of the correlation convolution response maps
generated by SiamRPN and Siamese R-RPN on VOT 2016.

V. Conclusion
A Siamese recurrent neural network and region proposal

network (Siam R-RPN) trained in an end-to-end manner is
proposed in this paper. Channel and spatial attention
mechanisms are introduced to the feature extraction of
Siam R-RPN for improving its feature representation. The
recurrent neural network LSTM is used to generate the
bounding box for the position of the tracking target, which
is mapped to the anchor feature map of the RPN network
for anchor selection to remove invalid anchors. Finally, the
finely tuned anchor box is sent to the classification and
regression branches to obtain the accurate position of the
target. This paper demonstrates a means of cooperatively
using temporal and spatial information in target tracking
tasks. Its excellent tracking performance shows the
potential of recurrent neural networks for target tracking.
However, fully utilizing and mining the temporal
information needs to be further studied.
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