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ABSTRACT Electroencephalography (EEG) serves as an effective diagnostic tool for mental disorders
and neurological abnormalities. Enhanced analysis and classification of EEG signals can help improve
performance in classifying the disorders and abnormalities. A new approach is examined here for enhancing
EEG classification performance using a novel model of data representation that leverages knowledge of
spatial layout of EEG sensors. An investigation of the performance of the proposed data representation
model provides evidence of consistently higher classification accuracy of the proposed model compared with
amodel that ignores the sensor layout. The performance is assessed for models that represent the information
content of the EEG signals in two different ways: a one-dimensional concatenation of the channels of the
frequency bands and a proposed image-like two-dimensional representation of the EEG channel locations.
The models are used in conjunction with different machine learning techniques. Performance of these models
is examined on two tasks: social anxiety disorder classification, and emotion recognition using a dataset,
DEAP, for emotion analysis using physiological signals. We hypothesize that the proposed two-dimensional
model will significantly outperform the one-dimensional model and this is validated in our results as this
model consistently yields 5-8% higher accuracy in all machine learning algorithms investigated. Among the
algorithms investigated, Convolutional Neural Networks provide the best performance, far exceeding that of
Support Vector Machine and k-Nearest Neighbors algorithms.

INDEX TERMS Machine learning, EEG, CNN, spatio-temporal features, emotion recognition, SAD.

1. INTRODUCTION!

Electroencephalography (EEG) is a widely used mechanism
for diagnosing mental states and brain disorders. EEG records
electrical patterns resulting from brain activity using elec-
trodes wired onto the scalp. EEG is among a variety of brain
sensing methods, used for diagnosis in research and clinical
practice, which include positron emission tomography (PET),
computed tomography (CT), and functional magnetic reso-
nance imaging (fMRI). EEG has key distinguishing attributes
of excellent temporal resolution and cost-effectiveness com-
pared with other methods [2]. The waveform of each EEG
sensor is divided into five main frequency bands [3], labeled
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as Delta, Theta, Alpha, Beta, and Gamma (3, 0, «, 8, )
waves. EEG is widely used for noninvasive monitoring and
it serves an important role as a diagnostic tool in brain-
computer interface (BCI) applications [4]. EEG data are used
to evaluate various mental disorders, such as Alzheimer’s
disease, strokes, migraine, sleep disorders, and Parkinson’s
disease [5]. The modeling of the data and subsequent anal-
ysis may not, however, always yield the best results as the
data are complex and degraded by noise and artifacts. It is
beneficial to examine new models that may lead to improved
performance of the EEG analysis. In the past, many classifi-
cation algorithms were devised for analyzing EEG data [6],
using machine learning techniques. These include linear dis-
criminant analysis, neural networks, support vector machines
(SVM), nonlinear Bayesian classifiers, k Nearest-Neighbor
(kNN) classification, hidden Markov models, a combina-
tion of classifiers, and other techniques for EEG-based BCI
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applications [7]. Of the many past studies on EEG classifica-
tion, only a few have paid attention to spatial locations and
configuration of the EEG channel sensors for the purpose of
creating models that may achieve improved performance in
the analysis tasks. Furthermore, they were primarily focused
on the asymmetry between electrodes in the left and right
hemispheres. Since EEG signals are highly correlated in
the spatial, temporal, and spectral domains, we propose a
model that is designed to preserve the information extracted
from all three domains. Factoring in the sensor topology is a
key driving factor in our research. We investigate two data
representation models for classification - a 1-Dimensional
(1D) Concatenated Data Representation (1D-CDR) model
and a 2-Dimensional (2D) Interpolated Data Representation
(2D-IDR) model. Note that the model labels refer only to the
spatial dimension and the time dimension is not factored into
the labeling. The 1D-CDR model ignores the sensor layout
while the 2D-IDR model factors it in with different interpo-
lation methods. We hypothesize that 2D-IDR model would
outperform 1D-CDR model. This hypothesis is validated in
our results as the performance of 2D-IDR model surpassed
that of 1D-CDR model by yielding 5-8% higher accuracy
in all machine learning algorithms investigated. Among the
machine learning methods examined, Convolutional Neural
Networks (CNN) provided the best performance far exceed-
ing that of Support Vector Machine (SVM) and k-Nearest
Neighbors (kNN) algorithms.

To assess the efficacy of the 2D-IDR model, its perfor-
mance on two important classification tasks is examined. The
first task focuses on Social Anxiety Disorder (SAD) detec-
tion. SAD, the world’s third-largest mental health problem,
affects about 7% of the population [8]. It is characterized
by the fear of negative evaluations and avoidance of social
interactions [9]. The process of diagnosing SAD was offi-
cially recognized in 1980 by Diagnosis and Statistical Manual
for Mental Disorders (version DSM-III). Over the years,
the criteria evolved and are now described in the fifth edition
of the manual (DSM-5) [10]. The effectiveness and reliability
of the process of DSM-5 diagnosis are critical in accurate
assessment of the underlying disorder [11]. Analysis of EEG
data using machine learning in SAD diagnosis has seen only
limited study. Identifying SAD patients by visual detection
of differences in the EEG signals is impractical. Automated
methods of detecting SAD such as those based on machine
learning algorithms are therefore adopted to pave the way
for potentially highly accurate diagnosis, better connectivity
analysis, and improved understanding of treatment responses
in SAD [12].

The second classification task we examined for assess-
ing the efficacy of the 2D-IDR model is emotion recogni-
tion using the DEAP dataset [13]. The study of EEG-based
emotion recognition is very widely used in many fields
such as psychology and neuroscience. Emotions are a very
important factor in correct interpretation of actions and
play a crucial role in everyday communication. EEG-based
emotion recognition task can be subject-dependent or
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subject-independent [14]. In this paper, both subject-
dependent and subject-independent approaches are investi-
gated. A preliminary version of a part of this study was pre-
sented at [IEEE EMBS Conference on Neural Engineering [1].
The work reported here goes well beyond the initial study
as summarized in Section V. One question that we sought to
address is whether our proposed method was applicable in
analyzing tasks other than SAD diagnosis. We wanted to use
publicly available datasets to demonstrate the applicability
of our method. Toward that end, we decided to apply our
method to the DEAP dataset, which is publicly available,
and it is recorded with stimuli present, unlike SAD. Several
changes were made in our algorithms and these are described
in Section V. All these changes resulted in a more robust
performance and better accuracy than the previous model,
as can be seen in the 92.19% SAD accuracy reported in
this work which exceeded the 87% accuracy reported in our
previous paper.

The main contributions of this work are summarized as

follows:

o We introduce a new model 2D-IDR for EEG analysis
that integrates the spatial configuration of the EEG sen-
sors in the analysis of the data. This integration allows us
to utilize the channel spatial configuration information
and build a 2D image-like representation of the EEG
samples.

o« We provide a novel robust framework that can be
applied to various recognition and classification tasks.
The experiments conducted using our approach demon-
strated significant improvements over other methods
that disregarded the spatial topology of the sensors. The
model’s ability to capture spatial information can be
utilized in other state-of-the-art classifiers.

« To the best of our knowledge, no EEG studies to date
utilize machine learning techniques for SAD detection.

Il. RELATED WORK

Over the years, several studies have been conducted to deter-
mine the underlying estimators and treatment outcomes in
SAD patients. For instance, Harrewijn et al. [15] found that
delta-beta correlation can be used as an EEG measure of anx-
iety for subjects carrying out a social performance task. In a
different study, Miskovic et al. [16] showed that a cognitive
behavioral treatment for SAD was associated with reductions
at delta-beta frequency coupling. Finally, a recent review of
the most frequently studied EEG predictive biomarkers for
SAD was presented by AL-Ezzi et al. [17], which included
frontal alpha asymmetry and delta-beta coupling as estima-
tors. While many studies focused on SAD analysis, to the best
of our knowledge, no EEG studies to date have investigated
SAD detection using machine learning methods.

On the other hand, EEG-based emotion recognition has
been widely studied over the years. Since the DEAP dataset is
publicly available, it allows us to have a better perspective on
the differences between the methods and on the variability
in their performances. Piho and Tjahjadi [18] investigated
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TABLE 1. Survey of recent studies in emotion recognition using DEAP dataset.

Spatial configuration used

Valence Accuracy  Arousal Accuracy

Study Classification Method
Piho and Tjahjadi [18] SVM/KNN/NB
Chen et al. [19] combined Features Using CNN
Chao et al. [20] DBN-GCs
Ullah et al. [21] SDEL
Lietal. [22] hybrid CNN and LSTM
Hao et al. [23] CapsNet
Wang et al. [24] EmotioNet
Proposed method CNN

No 89.61% 89.84%
No 88.76% 86.98%
No 76.83% 75.92%
No 82.81% 74.53%
Yes < 82% < 82%
Yes 66.73% 68.28%
Yes 72.1% 73.3%

Yes 91.85% 91.06%

reduced EEG data of emotions using mutual information-
based adaptive windowing and achieved an average accuracy
of 89.61% and 89.84% for valence and arousal, respectively.
Chao et al. [20] integrated deep belief networks with glia
chains learning framework using multichannel EEG data and
achieved average accuracy of 76.83% and 75.92% for valence
and arousal states classification, respectively. In their study,
Ullah et al. [21] proposed a sparse discriminative ensemble
Learning (SDEL) algorithm for computing the most dis-
criminative subset of EEG channels, and obtained 82.81%
and 74.53% accuracy for valence and arousal, respectively.
Another recent study on DEAP dataset was conducted by
Chen et al. [19] using deep CNNs with temporal features,
frequential features, and their combinations to achieve an
average accuracy of 88.76% and 86.98% for valence and
arousal, respectively.

The studies mentioned earlier followed procedures that
did not exploit the knowledge of EEG sensor config-
uration. In contrast, Li et al. [25] proposed a method
called R2G-STNN to learn discriminative spatial-temporal
EEG features using a region-attention layer that adjusts its
weights to reflect the contributions of specific brain regions.
In another study, Jin et al. [26] designed a novel spatial feature
selection method based on an improved objective function
for the common spatial pattern algorithm using L1-norm
and Dempster-Shafer theory, which resulted in an optimal
spatial feature selection. In particular, for DEAP dataset,
Li et al. [22] took the spatial configuration into account and
proposed an emotion recognition method using EEG multidi-
mensional feature images and hybrid deep neural networks,
where the highest accuracy achieved for valence and arousal
is 82%. Another study that utilizes spatial topology is pro-
posed by Chao et al. [23]. Here, the authors suggested a deep
learning framework (CapsNet) based on a multiband feature
matrix of the EEG signal. Finally, a 3D convolutional neural
network for EEG-based emotion recognition is presented by
Wang et al. [24], where the electrode topology and time
domain information are considered in constructing the input.
A summary of these emotion recognition research studies is
listed in Table 1, for valence and arousal.

While several studies considered the spatial configuration
in the construction process of their models, the work pre-
sented in this paper proposes a significantly different method,
which is described in Section III. The models differ from
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each other with respect to input construction and classifica-
tion techniques. This includes, but is not limited to, input
dimensions, input representation, and interpolation method
(if used) for the locations of the missing electrodes.

lIl. METHOD

A. EEG DATASETS USED IN THIS STUDY

The two datasets investigated in this study are the SAD and
DEAP datasets that are described next.

1) SAD DATASET

In this study, one of the EEG datasets we used was the
SAD dataset which was obtained from the Department of
Psychiatry at the University of Illinois at Chicago (UIC).
The multi-channel EEG data were collected from two subject
groups. The first consists of 32 SAD patients, and the second
of 32 healthy subjects. The brain activity was analyzed in
resting state, that is, in the absence of any stimulus. The dura-
tion of the EEG recordings was 4 minutes on average. Data
were collected from 34 electrodes positioned on the left and
right mastoids, using a BioSemi (Amsterdam, Netherlands)
34-channel cap (32 channels based on 10-20 system plus
FCz and 1z), with electrooculogram recorded from four facial
electrodes. The signals were digitized at 24-bit resolution
with a Least Significant Bit (LSB) value of 31.25 nV and a
sampling frequency of 1024 Hz.

2) DEAP DATASET

The DEAP dataset is used for emotion analysis. Specifically,
in this research, valence and arousal were assessed. DEAP
is a publicly available EEG dataset [13] that contains signals
from 32 participants. Each participant watched 40 one-minute
long videos and evaluated themselves on the basis of four
emotional states: arousal, valence, liking, and dominance on
a scale of 1-9. The data are recorded over 32 channels on the
scalp. For our analysis, a classification task of two output
labels is considered. A rating value greater than or equal to
5 is mapped to 1 (aroused; pleasant), otherwise, it is mapped
to O (relaxed; unpleasant).

B. DATA PREPROCESSING

EEG data are complex with high temporal resolution. The
signals are easily contaminated with various artifacts and
undesired noise, such as electromyogram artifacts, residual
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eye movements, and other muscle activities. Hence, prepro-
cessing the data which includes artifacts removal, is very
critical for proper analysis.

1) SAD DATASET PREPROCESSING

The preprocessing of the SAD dataset is implemented offline
using Fieldtrip and Brain Vision Analyzer (Brain Products,
Gilching Germany) software. The data were converted to a
linked mastoid reference and band-pass filtered. Eye move-
ments and ocular artifact corrections were performed [27],
and semi-automated rejection of epochs containing artifacts
with voltage step higher than 50 1V between samples was
applied. Additional artifacts were removed by visual inspec-
tion. The frequencies of interest are in the range 0-48 Hz,
covering the five different frequency bands (5,60,«,8,y).

2) DEAP DATASET PREPROCESSING

The EEG data in the DEAP dataset are first downsampled
to 128 Hz to adequately capture the data content in the
0-48 Hz range. Next, the electrooculogram and electromyo-
gram artifacts are removed. As delta waves usually corre-
spond to deeper sleep [28], useful and informative data for
emotion analysis are known to lie in the frequency range
4-45 Hz. Hence, a bandpass filter was applied to take the
content in the first band, § [0-4 Hz] out of the analysis process.
Eye artifacts were removed using a blind source separation
technique, and the data were averaged to the common average
reference (CAR) where the common average of the entire
electrode is subtracted from a specific channel of interest,
resulting in a zero-mean signal distribution [29]. The data are
partitioned into 60-second segments for each recording, and
a 3-second pre-trial baseline is removed.

C. DATA ANALYSIS AND FEATURE EXTRACTION
The constant switching of meta-stable states of neurons
assembling during brain activity is manifested as nonsta-
tionary phenomena in the EEG data, which consequently
limits the reliability of the conventional analysis. However,
the data is quasistationary over short time periods. Therefore,
in our data analysis, each channel signal is normalized and
divided into N windows in which the data are assumed to be
stationary. For each window, a time-domain wavelet packet
decomposition (WPD) is applied to extract the content of the
five frequency bands, from which the energy and entropy of
these bands are extracted as features. Based on the sampling
frequency and statistical properties of the signals, multiple
sizes of window segments were examined and a segment of
size N=5 seconds and N=4 seconds were found to provide
better results for SAD and DEAP datasets, respectively. The
subjects’ cognition and emotional states can be assessed by
analyzing the EEG signal content in all frequency bands.
The energy and entropy of the content of each windowed
segment are computed for the k frequency bands (k = 5 for
SAD, k = 4 for DEAP) separately as described later in
Egs. (1) to (4). The analysis is based on the energy and
entropy content of these signals represented in two different
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FIGURE 1. Packet wavelet transform decomposition tree.

ways: (i) concatenation of the channels of the k frequency
bands and (ii) an image-like 2D representation of the EEG
channel locations. The latter method is further discussed in
Section III-E.

D. WAVELET DECOMPOSITION

After segmenting the data into multiple windows, wavelet
packet decomposition (WPD) is applied to the data in the
time domain to extract the EEG features. A wavelet packet
transform decomposition tree with 2 levels is shown in Fig.1.
Here A, and D,,,, denote the approximation and detail coef-
ficients, respectively, at level m with n denoting the number
©0,1,2,..., om—1 _ 1) of the parent unit labeled from left to
right at level m — 1.

Since EEG signals are non-stationary, Fourier methods are
not suitable for the time-frequency analysis of such signals.
However, wavelet transforms can capture the local behavior
of the signal and can adequately capture both frequency and
time information of transient non-stationary signals. Hence,
they are more appropriate and preferable to use for EEG
analysis and decomposition [30], [31]. For both datasets,
WPD was used to extract the EEG frequency bands. In WPD,
both the detail and the approximation coefficients obtained
at each level are decomposed at subsequent levels to create
a full binary tree. In each level of WPD, the signals are
processed with both low-pass and high-pass filters followed
by downsampling by a factor 2. Each output at every level
before computing the final set of outputs is decomposed into
(i) a detail signal obtained using the branch containing the
high-pass filter, and (ii) an approximation signal obtained
using the branch containing the low-pass filter. For SAD
dataset, the data are filtered and downsampled to 128 Hz
and decomposed using a 4-level WPD and Daubechies 4
(db4) mother wavelet. All five frequency bands are used for
the analysis of SAD. Table 2 contains the ideal subbands
chosen for each frequency and the relevant decomposition
coefficients. In the case of the DEAP dataset, for each data
segment, a 4-level WPD was applied to the input similarly to
SAD dataset. However, unlike in the case of SAD analysis,
only 4 frequency bands, Gamma, Beta, Alpha, and Theta are
used for the emotion recognition task.

It should be noted that db4 wavelet is chosen due to its
orthogonality and smoothing features, which are used for
optimal detection of changes in the EEG signal [32].

In both datasets, the energy and entropy content are both
extracted as features. The mean wavelet energy E; of wavelet
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TABLE 2. Wavelet packet decomposition for SAD.

Frequency band  Frequency range(Hz)  Decomposition level
Gamma 32 — 48 Hz Ao
Beta 12 — 32 Hz D417 Doy
Alpha 8 — 12 Hz Agq1
Theta 4 — 8 Hz Dyo
Delta 0—4Hz Ago

coefficients at resolution level j is defined as:

- |Gk
E= 211G €]

Nj
where C; ;. is the k-th wavelet coefficient at resolution level j
and N; is the number of wavelet coefficients at that level. For
each frequency band, C; wavelet coefficients at a resolution
level j correspond to the Cy,;, coefficients detailed in Table 2.

The total energy is defined as

N

Eipt = Z Ej @)

J=1

and the relative wavelet energy is calculated as follows
Ej
! Etat
The wavelet entropy is defined as

wj = —qjlogg; “)

E. IMAGE REPRESENTATION OF THE EEG DATA

Data acquisition is performed by positioning M electrodes
over five areas on the scalp: Frontal (F), Central (C) Temporal
(T), Parietal (P) and, Occipital (O), where M is 34 for SAD
data and 32 for DEAP data. It is hypothesized that knowl-
edge of the location of the channels can provide improved
detection accuracy in the analysis of the data. To investigate
this hypothesis, two main data models are examined using M
channels and B extracted features. Suitable choices of fea-
tures considered in this study are the energy of the frequency
bands or a combination of energy and entropy. B € {5, 10} for
SAD, where the choice B=5 features corresponds to the case
when only the energy of the 5 frequency bands is used for the
analysis, and B=10 corresponds to the case when both energy
and entropy are used. In the analysis of the DEAP dataset,
B € {4, 8} as only 4 frequency bands were used. In the first
model, i.e. 1D-CDR, the M channels of the B features are
concatenated by creating a M xB feature matrix over each
window, without accounting for the location of the channel
electrodes (34 x B for SAD, and 32 x B for DEAP). Therefore,
an input sample to the network is a M x B matrix, in which
the i-th row consists of B feature values corresponding to the
i-th of the M electrodes. For the second model, i.e. 2D-IDR,
a 3D array of size KxKxB is constructed consisting of a
stack of B two-dimensional Kx K arrays each corresponding
to one of B features estimated from the electrode signals over
a uniform KxK grid. As explained later, we choose K=15.
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FIGURE 2. Layout of 34 electrodes on scalp.

In this model, the image pixel locations may not coincide with
any of the M electrode locations and the B feature values over
the Kx K grid are estimated by applying various interpola-
tion techniques. Hence, an input sample for this model is a
KxKxB array in which each Kx K grid represents an image-
like spatially interpolated configuration of the electrodes over
the scalp for each of the B features.

For both datasets, an image of size 15 x 15 was computed to
construct an image-like representation of the channels layout.
The M channels are mapped to specific pixels in the image
based on their locations. A layout of the channels’ locations
for SAD data is shown in Fig. 2. The red circles represent the
electrode locations used in recording the data. Both datasets
follow the international 10-20 System that allows EEG elec-
trode placement to be standardized. A 2D mapping array
of the electrodes’ location is shown in Fig. 3 to illustrate a
possible mapping of size 15 x 15.

To fill in the missing pixel feature values, the Inverse Dis-
tance Weighting (IDW) interpolation method was used [33]:
for an interpolated value e at point x, only the samples u; =
u(x;) with sensor locations x;, i = 1, ...n;, that are within a
radius dy,q from the grid point x, are used in interpolating the
value with the weighted average:

Yo wilou

iy wilx) ®

u(x) =

If d(x, x;) < dpax is the euclidean distance between points
x and x;, then w;(x) = m At locations x where no
sensors lie within a distance of d,,, i.e. "Border Points"
(BP), the estimate is made with the nearest sensor value. The
value of d,,,, is experimentally determined by investigating
different choices of d;;4x in the KxK grid.
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FIGURE 3. A mapping matrix of the EEG channels.
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FIGURE 4. Input data organization diagram of 1D-CDR (left) and 2D-IDR
(right) models.

Other interpolation methods were also considered, such
as padding all locations with no sensors with zeros, IDW
with zero values at border points (IDW with 0 BP), nearest-
neighbor interpolation, bilinear interpolation, and cubic
b-spline interpolation [34]. However, they were all found to
be inferior to the method mentioned above. This is further
discussed in Section V, where a summary of average perfor-
mances of different interpolation methods in SAD, tested on
the main CNN, is provided.

The value of K was selected by investigating performance
accuracy after constructing images of different sizes Kx K.
The value K = 15 was found to give higher accuracies
when compared with other sizes tried on both datasets. In this
investigation, images of size KxK were considered for the
analysis where K = {10, 15, 20, 25}. For SAD dataset, K =
15 yielded the highest accuracy. For DEAP dataset, both K =
15 and K = 20 gave significantly good results. However,
K = 15 was chosen as the location is adequately captured
without making the image size too large thereby increasing
the computational load.

Fig. 4 shows the organization of the sensor data in the two
models. The energy and entropy features are calculated in
each time segment. In the 2D-IDR model, the points with zero
values correspond to locations with no sensor value. The val-
ues of such points are filled out using interpolation techniques
such as the one indicated in (5) for IDW interpolation.
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IV. EXPERIMENTS
After the data are collected and preprocessed, two models for
each dataset are used as previously discussed.

SAD Dataset Experiments: In the first model, 1D-CDR,
the energy and entropy for the five frequency bands are calcu-
lated separately in each window of 5 seconds. Hence, for each
window, a feature matrix of dimensions 34 x B is constructed.
There are 34 channels or electrodes and 2 values of energy
and entropy are extracted from each of the 5 frequency bands,
giving a choice B € {5, 10} as discussed earlier. Each row
of the M = 34 rows in the matrix represents one channel.
The second model, 2D-IDR, adopts the image representation
technique of the EEG data described earlier in Section III-E.
A 3D array of 15 x 15xB is constructed for each segment,
where the third dimension comprises of the energy and/or
entropy values of all the frequency bands.

DEAP Dataset Experiments: The models are again built in
a manner similar to SAD models. However, the dimensions
are different. For the first model, 1D-DCR, the energy and
entropy for only 4 frequency bands are calculated separately
in each window of 4 seconds. Hence, for each window an
energy matrix of dimensions 32 x B is constructed, as 32 chan-
nels were considered, B € {4, 8}. In the second model,
2D-IDR, a 3D energy array of 15 x 15xB is built for each
window. For both models in each dataset, each matrix is con-
sidered as a single sample for the training or testing dataset.

A. ACQUISITION OF TRAINING AND TESTING EEG DATA

1) TRAINING AND TESTING USING SAD DATASET

To train the network, a stratified 8-fold cross-validation pro-
cedure is applied. where the classifier is trained 8 times
using a different fold for testing in each run. A total of 7
folds (56 subjects) are used for training and validation (20%
validation and 80% training) and the remaining fold (8 sub-
jects) is used in the testing stage. We employed Bayesian
optimization using Keras API for hyper-parameter selection,
where the validation set was used for hyper-parameter tuning
and to prevent overfitting. The hyper-parameters included
the optimizer, activation functions, learning rate, dropout
rate, number of layers, and the filter size used to extract the
features. In both models, for every time window of size N
seconds, a feature matrix is constructed and considered as
a single sample, where N = 5 seconds. For each subject,
multiple samples are gathered by sliding a moving window
of size N with no overlap of windows over all channels. The
samples collected for the training, validation, and testing sets
do not overlap, that is, different samples collected from a
specific subject cannot be used for training and testing at
the same trial. Samples are labeled 1 if they belong to SAD
patients, and O otherwise. For every trial, each testing subject
is evaluated as follows:

: e Di
patient if &= Th
control else

prediction = { 6)

where Th = 0.5, p; is number of samples classified as 1 for
subject i, t; is total number of samples for subject i. The
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performance variation using a set of different threshold values
was investigated. In both datasets, for Th € [0.4, 0.65],
the performance of each model remained almost unchanged.
If we increase the threshold to 7h = 0.7, the accuracies drop.
Therefore, Th = 0.5 was kept as the chosen threshold value.

2) TRAINING AND TESTING USING DEAP DATASET

A very important aspect of the emotion recognition task
is whether the task is subject-dependent or independent.
A subject-dependent task entails partitioning the training and
testing data from same participant. However, different sam-
ples taken from the same video cannot be used in both the
training and testing data. A Subject-independent task entails
testing on a group of participants that is different from the
training group. According to [35] there exists a physiological
linkage with emotion recognition, which makes the recogni-
tion depend on age, culture, and gender. Both the structure
of the training and testing data and the physiological linkage
make the performance accuracy in a subject-independent task
lower than a subject-dependent task. A summary of the com-
parison is provided in Section V.

A stratified 8-fold cross-validation is applied to the DEAP
dataset. Again, 7 folds are used for training and validation,
and the remaining fold is used for testing. The average
accuracy is found after the classifier is trained 8 times. Leave-
one-out-cross-validation (LOOCV) or Leave-one-subject-
out-cross-validation (LOSOCYV) were also considered for this
dataset and are discussed in Section V.

The window size taken to create a sample is N = 4
seconds. For every 60 seconds of video, the samples are
gathered from all 32 channels by sliding a window of size
N with N /2 overlap.

The choice of the shift size for each dataset was made
experimentally after examining different shift values. The
window shifts that were tested are N /4, N/2, N, and 3N /2.
Early stopping was applied by monitoring the validation loss
to avoid overfitting.

The number of folds for cross-validation was chosen to
be k = 8 for both datasets after exploring various folds of
sizes k = {5, 8, 10}. A fold of size k = 8 was found to yield
the best results in terms of accuracy, computational cost, and
being a divisor of the number of subjects.

B. DATA AUGMENTATION

One of the key challenges in machine learning algorithms in
general and deep neural networks specifically is not having
sufficient training data to properly perform a classification
task [36]. Training with small datasets might cause the model
to be highly biased to the data in the training set, mak-
ing the model perform poorly on the validation or testing
set, as it cannot generalize what it learned to unseen sam-
ples. These models suffer from overfitting. Regularization,
dropout, batch normalization, and data augmentations are
some of the methods used to tackle the problem of over-
fitting [37]. Image augmentation technique is introduced to
help improve the classification performance by creating more
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robust models with the ability to generalize. Data augmenta-
tion refers to suitably generating data by creating new sam-
ples to expand the training dataset. It is done by performing
transformations on the original images while preserving the
label which is invariant to certain perturbations. In this work,
horizontal and vertical shift augmentation is used to expand
the training set by 4 times. This translation is done by moving
the image along the X or Y directions, specifically, a shift
of 1 or both 1 and 2 pixels is done on the image while
preserving the image size. For 1D-CDR model, images are
shifted by a specified number of pixels to the right, left, up,
and down. The deleted rows or columns are simply replaced
by the previous row or column respectively. For 2D-IDR
model, the shift is done over the first 2 dimensions only. The
third dimension which corresponds to the energy or entropy
of the frequency bands is filled according to the feature value
it has at that specific location.

C. CNN NETWORK STRUCTURE

In recent years, the use of deep learning solutions has
become very popular in many applications. Deep learning-
based methods have repeatedly shown improved performance
compared with other classical machine learning algorithms
on a wide variety of problems [38]. Specifically, CNNs have
rapidly become a methodology of choice for image-related
tasks, including, medical images processing [39]. CNNs
are a specific kind of feedforward deep neural networks.
Their architecture is characterized by arranging convolutional
layers, pooling layers, and fully-connected layers. In our
study, the input to the network is arrays of data containing
energy and/or entropy values of subband signals which can
be viewed as images.

A sequential model is built for SAD classification task as
shown in Fig. 5. The first layer in this model is a 2D convolu-
tion layer with kernel size 3 x 3, 64 output filters, and ReLu
activation over the outputs. It is then followed by a similar
2D convolution layer and a max-pooling layer with a pool
size of 2. A dropout with rate=0.25 is performed. The input
is then flattened and fed to a fully connected (FC) layer with
128 output dimension and ReLu activation. Another dropout
is performed with rate=0.2 followed by a final fully connected
layer with Softmax activation and output dimension that
equals 2 corresponding to the two labels in the recognition
task. Dropout is a regularization method that is used to reduce
over-fitting. A similar configuration is used for the emotion
recognition task, where the first layer is a 2D convolution
layer with kernel size 3 x 3, 32 output filters, followed by
a max-pooling layer of size 2 x 2. Another convolution layer
follows with 64 output filters and a max-pooling layer with
a pool size of 2. Dropout with rate=0.45 is performed. The
output is then flattened and fed to a fully connected layer with
Relu activation and 64 output dimension. Another dropout is
performed with rate=0.25 followed by a fully connected layer
with Softmax activation and output dimension that equals 2.
It should be noted that batch normalization was applied to
the input from both datasets and the convolutional layers to
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FIGURE 5. Convolutional neural network structure.

reduce the internal covariate shift [40]. We started from a
filter size of 3 x 3 for the convolutional layers as the input has
arelatively small-sized dimension. The filter size, the number
of layers, and feature maps are further increased, but the
structures specified above achieved better results.

V. RESULTS

In the study, inputs are constructed based on two models.
These models are investigated for their classification per-
formance using different classifiers, different types of fea-
ture values, and two different datasets. 1D-CDR model is
constructed with no consideration of the spatial locations of
EEG electrodes by simply concatenating the channels of the
frequency bands. 2D-IDR model, on the other hand, factors
in the electrode spatial configuration over the scalp.

The inputs to the classifiers of SAD and DEAP datasets
are built using two groups of features: energy of the frequency
bands, or a combination of energy and entropy. In each sliding
window, the energy and entropy contents of the correspond-
ing frequency band of each channel can be extracted accord-
ing to Eqs. (1) to (4). For instance, if only the energy features
are considered in the analysis, then for each channel we will
have B features, where B is the number of frequency bands
used in the analysis. The features can then be used to construct
the samples following the configuration of the desired model.

A. SAD DATASET RESULTS

The main results for SAD dataset classification are presented
using confusion matrices. In this case, accuracy is defined
as the ability to correctly classify a subject. The analysis is
subject-independent, and the confusion matrices for ID-CDR
and 2D-IDR models can be seen in Table 3. For each model,
the top part represents inputs built using the energy of the
frequency bands as features, and the bottom part represents
inputs built using both energy and entropy. In the fourth
column, the first entry includes the number of actual SAD
patients predicted as positive (patients), the number in the sec-
ond entry is actual patients predicted as negative (healthy
subjects), and so on.

We observe that regardless of the number of features used,
the accuracy and F1-score for the proposed approach based
on 2D-IDR model are higher. We conclude that 2D-IDR
model that factors in the location of the electrodes provides
superior performance, achieving a maximum classification
accuracy of 92.19% compared with 84.38% for 1D-CDR
model. Another important observation is that the number of
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TABLE 3. Confusion matrices for SAD.

Actual Positive ~ Actual Negative ~ Accuracy  F1 Score

Energy Predicted Positive 26 6 81.25%  81.25%
Predicted Negative 6 26

Energy & Entropy  Predicted Positive 28 6 84.38%  84.85%
Predicted Negative 4 2

1D-CDR

Energy Predicted Positive 29 4 89.06%  89.23%
Predicted Negative 3 28

Energy & Entropy  Predicted Positive 30 3 92.19%  92.31%
Predicted Negative 2 29

2D-IDR

TABLE 4. Average performance on SAD dataset(%).

Energy Energy & Entropy
Classifier ID-CDR  2D-IDR 1D-CDR 2D-IDR
kNN (k=5) 70.31 73.43 70.31 75
kNN (k=3)  70.31 76.56 71.87 78.13
SVM 73.43 80.5 76.56 81.25
CNN 81.25 89.06 84.38 92.19

features influences the accuracy, and it is higher when using
both entropy and energy features.

In this task, classification using SVM with radial basis
function (RBF) and kernel parameter ¢ = 0.4 was also
investigated. The optimum values of the hyper-parameters
were selected with a grid search method. In addition, k-NN
classifiers with k = 3 and k = 5 were investigated but were
clearly outperformed by the proposed CNN network in terms
of overall classification accuracy, as seen in Table 4 for data
using energy and entropy features.

It should be noted that 2D-IDR model gave significantly
higher accuracy than 1D-CDR model, regardless of the clas-
sifier type or feature values, thereby establishing the impor-
tance of 2D representation of the spatial configuration of EEG
Sensors.

B. DEAP DATASET RESULTS

In this subsection, the binary valence and arousal states,
low/high valence (LVHV) and low/high arousal (LAHA), are
estimated for the case of the DEAP dataset. The classifica-
tion is evaluated under two study cases, subject-dependent
and subject-independent. The classifiers used for the emo-
tion recognition task are the CNN network described in
Section IV-C, SVM, kNN classifier with k = 3 neighbors,
and kNN with k = 5 using both 8-fold cross-validation
and Leave-one-out-cross-validation (LOOCYV). The average
performance of 1D-CDR and 2D-IDR models is evaluated
using the energy of decomposed frequency bands as fea-
tures, or both energy and entropy.
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TABLE 5. Subject-independent average performance - DEAP(%).

Energy Energy &Entropy
Emotion  Classifier ID-CDR  2D-IDR 1D-CDR 2D-IDR
Valence kNN (k=3) 73.87 78.19 75.55 81.65
kNN (k=5) 71.92 76.4 73.83 80.73
SVM 75.36 81.52 78.13 83.38
CNN 82.36 87.64 84.77 91.85
Arousal kNN (k=3) 71.93 76.06 73.8 80.64
kNN (k=5) 69.87 75.41 71.33 77.58
SVM 74.16 77.06 75.82 81.43
CNN 82.61 85.94 83.94 91.06
TABLE 6. Subject-dependent average performance - DEAP(%).
Energy Energy &Entropy
Emotion  Classifier ID-CDR  2D-IDR 1D-CDR 2D-IDR
Valence kNN (k=3) 79.03 82.85 81.56 85.93
kNN (k=5) 76.45 81.03 77.24 81.92
SVM 80.27 84.96 81.68 85.31
CNN 84.63 88.97 88.02 94.48
Arousal kNN (k=3) 77.86 82.55 79.91 84.76
kNN (k=5) 77.12 80.05 77.94 82.05
SVM 76.34 80.93 79.75 83.04
CNN 83.72 90.26 86.07 93.66

1) The subject-independent case: First, a stratified 8-fold
cross-validation is applied with 7 folds correspond to 28 par-
ticipants and the last fold corresponds to the 4 remaining
participants. Table 5 represents the performance of subject-
independent task for valence and arousal recognition using
different classifiers. Then, for the CNN classifier only,
LOSOCYV was implemented where the test set included sam-
ples from videos belonging to only one subject. This resulted
in valence accuracies of 83.18% and 90.23% for 1D-CDR
model and 2D-IDR model, respectively. For arousal recogni-
tion, accuracies of 82.95% and 89.35% were achieved.

2) The subject-dependent case: As in the case of the
subject-independent case, 7 folds are used for training and
validation, and the remaining fold is used for testing. Table 6
summarizes the accuracies for the subject-dependent task on
valence and arousal. Furthermore, LOOCYV cross-validation
was used for subject-dependent valence and arousal classi-
fication tasks using the CNN classifier. An average valence
recognition accuracies of 86.46% and 92.25% were achieved
for 1D-CDR and 2D-IDR, respectively. As for arousal recog-
nition, accuracies of 84.55% and 90.88% were achieved.

Overall, it is observed from the mentioned tables that
2D-IDR model outperforms 1D-CDR model in all cases,
regardless of feature selection, classifier, or nature of the
study case (subject dependent/independent). For instance,
in subject-independent valence recognition, the highest aver-
age accuracy is 91.85% for 2D-IDR model and only 84.77%
for 1D-CDR model. Furthermore, by comparing the average
accuracies presented in the tables, it is concluded that includ-
ing the entropy in the feature selection scheme improves the
performance of the classifiers.

Another important observation is the noticeable differ-
ences in performance between the subject-dependent and
subject-independent cases. The manner of construction of
the training and testing data in these two cases makes the
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TABLE 7. Statistical analysis of classification accuracy differences
between the compared models for different classifiers.

Classifier
kNN(k=3) kNN(k=5) SVM CNN
Arousal  p=0.002 p=0.0078 p=0.000 p=0.012
Valence  p=0.063 p=0.026 p=0.000 p=0.001

subject-dependent classifier achieve higher accuracies. How-
ever, the lack of generalization of such classifiers is the price
one has to pay. Moreover, using LOOCV or LOSOCV for
cross-validation resulted in a higher computation load com-
pared to 8-fold cross validation.

Due to the non-normal distribution of the classification
accuracies, Wilcoxon Signed Rank test was conducted to
investigate the statistical significance. We define the null
hypothesis to be that the 2D-IDR model does not provide
performance improvement over the 1D-CDR model and the
alternative hypothesis to be that 2D-IDR model does provide
performance improvement. A significance level of 0.05 was
considered. The upper-tailed paired Wilcoxon Signed Rank
test was performed to compute an exact p-value using a set
of 8 measurements, discarding all pairwise zero differences
and without continuity correction. Table 7 summarizes the
statistical significance of classification accuracy differences
between 1D-CDR and 2D-IDR models for subject-dependent
approach. The analysis is performed for valence and arousal
classification using energy and entropy features for all four
classifiers used to evaluate the performance. The results indi-
cate that 2D-IDR model yielded significantly higher accu-
racy than that of 1D-CDR model in all cases investigated.
While 1D-CDR is less complex than 2D-IDR, the latter aimed
to boost the classification accuracies while maintaining the
computational time within a reasonable range. 2D-IDR model
is more efficient in terms of classification performance and it
resulted in a noteworthy increase of 5-8% average accuracy
within a reasonable time. Specifically, for 2D-IDR model,
the CNN classifier had higher computational costs compared
with the other classifiers, but it achieved better classifica-
tion performance. This model can be integrated in real-time
applications to improve the analysis of different EEG-based
recognition and classification tasks. To further improve the
computing efficiency, the analysis can focus on specified
frequency bands with less features or smaller image-like grid
representation.

The EEG channels’ locations are represented as an image
of size KxK in 2D-IDR model. There are 34 channels in
SAD dataset, and 32 in DEAP. To fill out the empty pix-
els, a few interpolation schemes are tested, as mentioned in
Section III-E. For both models, the Inverse Average Weighted
interpolation technique is used as it yielded the best results
in the classifier performance. The average accuracies of dif-
ferent interpolation methods tested using CNN classifier are
presented in Table 8 for SAD dataset with energy and entropy
features.
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TABLE 8. Average performance of different interpolation methods using
CNN.

Interpolation method ~ Average recognition perf.(%)

Zero Padding 70.31
Nearest Neighbor 75
Bilinear 76.56
IDW with 0 BP 84.37
Cubic B-spline 89.06
IDW with NN BP 92.19

TABLE 9. Average performance using different image sizes KxK using
CNN.

Image size  SAD dataset DEAP (Valence) = DEAP (Arousal)
K=10 90.65% 88.28% 86.79%
K=15 92.19% 91.85% 91.06%
K=20 89.06% 92.17% 89.75%
K=25 85.93% 80.93% 82.16%

Regarding the choice of the image size, different values
of K pixels are considered in the analysis and the average
accuracies of 2D-IDR model classification performance are
represented in Table 9 for the CNN classifier for both datasets
in subject-independent cases.

It should be noted that for both datasets, a smaller number
of m out of M electrodes was also used in the analysis.
Features from m = 10 and m = 20 electrodes were selected
to assess the performance of both models using a reduced
number of electrodes. In all cases, regardless of the classifica-
tion task, 2D-IDR model still outperformed 1D-CDR model.
However, using all 34 channels for SAD and 32 for DEAP
gave superior results in terms of classification accuracies.

C. EEG HEMISPHERIC ASYMMETRY

It is well known that the anatomy, behavior, and function
of the two cerebral hemispheres of the brain are not identi-
cal [41]. In recent years, many studies have been conducted
to learn the asymmetric differences between the two hemi-
spheres in EEG data. For instance, Li et al. [42] proposed a
novel bi-hemispheric discrepancy model in emotion recogni-
tion and obtained deep representations of all the EEG chan-
nels’ signals. This inspired us to investigate the efficiency
of our method on the left and right hemispheres separately.
Specifically, electrodes on either the right or left regions
of the brain were employed in the analysis process of the
right or left hemispheres, respectively. Electrodes in the
cross-region or in the middle were eliminated when assessing
the recognition performance using data from either hemi-
sphere. The overall experimental results showed the follow-
ing: 1) The performance was inferior to the previous models
which utilized data collected from channels on both sides of
the scalp. 2) In both datasets, whilst utilizing data associated
with either left or right hemisphere only, 2D-IDR model still
outperformed 1D-CDR model with an increase of 5% in aver-
age classification accuracy. 3) For SAD, models based on data
collected from the right hemisphere exhibited an improved
performance compared to the left hemisphere, which may
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indicate increased brain activity in the right hemisphere for
people suffering from social anxiety. 4) For emotion recog-
nition models, the left hemisphere performed better than the
right hemisphere.

D. COMPARISON WITH EEGNET

To further emphasize the significance of the results achieved
by our model, the classification performances of both datasets
were investigated using EEGNet. EEGNet is a compact
convolutional neural network with successful generalized
architecture for EEG-based brain-computer interfaces [43].
The first block in the network is a temporal convolution,
followed by a depthwise convolution to learn frequency-
specific spatial filters. The second block is a separable
convolution block, which is a combination of a depthwise
convolution and a pointwise convolution. The last block
consists of dense layers and softmax classification at the
end. For performance analysis using EEGNet, only cross-
subject classification approaches are considered. There are
F1 2D convolutional filters of size (1,64), with filter length
64 chosen to be half the sampling rate of the data, which
is 128Hz in all cases. For the depthwise convolution, there
are D filters of size (C, 1) to learn the spatial filters, where
C is the number of channels. In the separable convolution
block, F2 pointwise filters are used. Finally, dropout rate is
chosen to be 0.25, as the training set sizes are larger in cross-
subject tasks compared to within-subject tasks. Different
combinations of F1 = {8,4,16}, D = {1,2,4}, and F2 =
{8, 16, 32, 64, 128} are considered. The best average classifi-
cation performances obtained for SAD, Valence and arousal
in cross-subject analysis using EEGNet are 75.5%, 72.35%,
and 74.76% respectively, substantially lower than what was
achieved with 2D-IDR model. Since EEGNet is considered a
successful generic EEG-based architecture, it was important
to provide a comparison between the methods.

E. EFFECT OF DATA AUGMENTATION

The performance results listed above belong to classifiers
with larger training sets, which were expanded using data
augmentation. The significance of creating a more robust
model by increasing the training dataset is reflected in the
higher classification accuracies of training with augmented
samples achieved in both models. Wilcoxon Signed Rank test
was conducted using augmentation as a factor, and p<0.05
was achieved indicating the significance of data augmenta-
tion. The results are summarized in Table 10 for 1D-CDR
and 2D-IDR models, where the third column represents the
performance of CNN using the original training set, and the
fourth column using the augmented training set.

F. COMPARISON WITH STATE-OF-THE-ART MODELS

The overall results of the experiments above establish the
importance of 2D spatial configuration of EEG data in learn-
ing robust representations from the samples created using
2D-IDR model. This model gave significantly higher accu-
racy than the 1D-CDR model, regardless of feature values,
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TABLE 10. Data augmentation effect.

Classification Accuracy(%)

recognition task  no augmentation  with augmentation

SAD 79.68 84.38
ID-CDR  Arousal 79.53 83.94
Valence 82.74 84.77
SAD 89.06 92.19
2D-IDR Arousal 87.27 91.06
Valence 87.15 91.85

classifier type or recognition task. This is in line with our
predictions that integrating the spatial configuration of the
sensors in the 2D-IDR model as prior information to the
classifier enhances its convergence and recognition perfor-
mances. Furthermore, the superiority of 2D-IDR model was
anticipated as shown in [44]. This work proposed a global
feature learning method that encapsulates the multi-channel
EEG signals into gray-level images. Their results demon-
strated that spatial characteristics are beneficial for recog-
nizing emotions. Consequently, the model can be applied
to either supervised or unsupervised EEG-based machine
learning frameworks. Samples created using 2D-IDR model
can be used in unsupervised learning methods where the
prior spatial-information of the electrodes can be utilized
in a variety of detection or clustering analyses of EEG
data.

Our proposed approach improved the emotion recog-
nition performance when compared with other spatial or
state-of-the-art methods using the same DEAP dataset, as can
be seen in Table 1 in Section II. Specifically, for 3D-based
frameworks, a recent study of emotion recognition using
DEAP dataset was conducted by Salama et al. [45]. The
authors proposed a 3D-CNN framework with ensemble learn-
ing and achieved recognition accuracies 96.13% and 96.79%
for valence and arousal classes respectively in the subject-
dependent case. This approach combined two 3D-CNN based
classifiers for the face data and the input video data. Then a
third model is created based on the fusion chunks from the
EEG, and face modalities. Although the recognition accu-
racy of this work was slightly higher than that of our work,
it should be noted that this method uses not only the EEG
data but also associated video data as well. Furthermore, it is
very specific for the emotion recognition task and is clearly
more computationally expensive. In a different study [46],
the authors created a 3D feature and convolutional network
from EEG signals by extracting time-domain features for
each channel and reorganizing them as a 3D feature matrix
according to positions of electrode sensors with no interpola-
tion of the non-electrode locations and without accounting for
the frequency bands. Here, the authors reported accuracies of
85.53% and 85.88% for valence and arousal in DEAP dataset,
respectively.

In SAD, to the best of our knowledge, no EEG studies to
date utilized deep learning methods for social anxiety diag-
nosis and classification. However, the results demonstrate the
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effectiveness of 2D-IDR model and the importance of the
sensors’ spatial configuration.

Finally, as mentioned in Section I, a preliminary version
of this work was presented at IEEE EMBS Conference on
Neural Engineering [1]. Here we investigated whether our
proposed method was applicable in analyzing tasks other
than SAD diagnosis. We used the publicly available DEAP
dataset. The use of a different dataset required additional
investigation of the previous study [1] to find the best config-
uration of the models’ frameworks. This included an adjust-
ment of frequency bands selection based on the dataset and
the task being performed. It also required analyzing DEAP
dataset in subject-dependent and subject-independent cases
and comparing them with state-of-the-art techniques. Also,
we investigated the choice of the image size k used in the
2D-IDR model for both datasets, the number of channels
used in both models for optimal results, and the performance
of both models using fewer sensors. Furthermore, we evalu-
ated the efficacy of the proposed method under hemispheric
asymmetry assumptions, we introduced new classifiers, and
we compared the performance with compact and generalized
EEG classifiers like EEGNet. In this work, we also incorpo-
rated data augmentation techniques and considered additional
information content used in feature selection which included
entropy of the frequency bands. All these changes resulted
in a more robust performance and better accuracy than the
previous model in [1], as can be seen in the 92.19% SAD
accuracy reported in this work which exceeded the 87%
accuracy reported in [1].

VI. CONCLUSION

In this paper, a new EEG-based classification approach was
proposed. Unlike many other studies, this approach factored
in the spatial configuration of the EEG sensors in a novel
image-like representation in the signal analysis. A model that
takes advantage of the knowledge of the locations of the elec-
trodes was created to construct the EEG dataset. In order to
assess the effectiveness of the model, two EEG datasets were
used for analysis: SAD for patient/control classification and
DEAP for emotion recognition. Overall results showed that
the performance of various classifiers based on this model
was 5%-8% higher in accuracy, compared with the same clas-
sifiers which ignored the configuration. In addition, the use
of the entropy along with the energy as relevant features in
the EEG based classification task reduced the error rate for
the different classifiers (CNN, SVM, kNN) in both datasets.
It is also found that data augmentation for the training set
is very important to further enhance the performance. This
improvement is especially noticeable for 2D-IDR model.
The effectiveness of the proposed novel image-like interpo-
lated data representation capturing the spatial configuration is
reflected in the results which prove its superiority over other
approaches, including those which also considered the spatial
topology of the sensors in their analysis. The superior perfor-
mance of 2D-IDR model was consistently achieved, regard-
less of the classifier type, features, and most importantly,
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the nature of the EEG dataset. For future work, the model
can be used in EEG-based unsupervised learning frameworks.
In addition, the spatial mapping technique can be enhanced
and applied to other EEG-related tasks.
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