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Abstract: Because small targets have fewer pixels and carry fewer features, most target detection
algorithms cannot effectively use the edge information and semantic information of small targets in
the feature map, resulting in low detection accuracy, missed detections, and false detections from
time to time. To solve the shortcoming of insufficient information features of small targets in the
RetinaNet, this work introduces a parallel-assisted multi-scale feature enhancement module MFEM
(Multi-scale Feature Enhancement Model), which uses dilated convolution with different expansion
rates to avoid multiple down sampling. MFEM avoids information loss caused by multiple down
sampling, and at the same time helps to assist shallow extraction of multi-scale context information.
Additionally, this work adopts a backbone network improvement plan specifically designed for
target detection tasks, which can effectively save small target information in high-level feature
maps. The traditional top-down pyramid structure focuses on transferring high-level semantics
from the top to the bottom, and the one-way information flow is not conducive to the detection of
small targets. In this work, the auxiliary MFEM branch is combined with RetinaNet to construct
a model with a bidirectional feature pyramid network, which can effectively integrate the strong
semantic information of the high-level network and high-resolution information regarding the low
level. The bidirectional feature pyramid network designed in this work is a symmetrical structure,
including a top-down branch and a bottom-up branch, performs the transfer and fusion of strong
semantic information and strong resolution information. To prove the effectiveness of the algorithm
FE-RetinaNet (Feature Enhancement RetinaNet), this work conducts experiments on the MS COCO.
Compared with the original RetinaNet, the improved RetinaNet has achieved a 1.8% improvement
in the detection accuracy (mAP) on the MS COCO, and the COCO AP is 36.2%; FE-RetinaNet has a
good detection effect on small targets, with APs increased by 3.2%.

Keywords: target detection; RetinaNet; multi-scale feature enhancement; bidirectional feature pyra-
mid network

1. Introduction

The task of object detection has always been one of the main tasks in the field of com-
puter vision. In recent years, thanks to the development of convolutional neural networks,
the performance of target detection algorithms has made great progress. Target detection
algorithms based on convolutional neural networks can be divided into two categories:
one is a two-stage target detection model, such as R-CNN [1], Fast R-CNN [2], Faster
R-CNN [3], Mask R-CNN [4], R-FCN [5], etc. The two-stage target detection algorithm
distinguishes the foreground and the background in the first stage to generate candidate
regions and then extracts features in the second stage to classify and regress the target. The
other is a single-stage target detection model, such as SSD [6], YOLOv1 [7], YOLOv2 [8],
YOLOv3 [9], YOLOv4 [10], RetinaNet [11], EfficientDet [12], etc. The single-stage target
detection algorithm directly generates the class probability and position coordinate value
of the object, and the final detection result can be directly obtained after a single detec-
tion. In general, compared with the two-stage target detection model, the single-stage
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detection model is faster, but the detection accuracy of targets (especially small targets) is
slightly lower.

In recent years, researchers have been committed to improving the accuracy of the
model as much as possible while ensuring the speed of the single-stage target detection
model. As a result, many one-stage target detection algorithms with fast speed and high
accuracy have emerged. The paper [13] constructed a top-down feature pyramid network.
By fusing high-level strong semantic feature maps and low-level high-resolution feature
maps, high-level semantic information is transferred to the lower layers, and the accuracy
of the network is improved by fusing multi-scale information. The paper [11] designed
the focal loss to solve the problem of a serious imbalance in the proportion of positive
and negative samples in single-stage target detection, making RetinaNet more accurate
than the most advanced two-stage detection model at the time. Among the existing target
detection algorithms, RetinaNet solves the problem of category imbalance by introducing
focal loss, which has attracted wide attention from researchers. The standard RetinaNet
uses ResNet as the backbone network, uses a top-down feature pyramid network to fuse
multi-scale semantic information, and adds two subnets to the back end of the network
for target classification and bounding box regression. However, the standard RetinaNet
has a good detection effect for large and medium targets, but the detection effect for small
targets is not satisfactory.

Through the analysis and research of RetinaNet, we find the two most critical factors
that affect the small targets detection performance of RetinaNet. First, the small target
information will be lost to varying degrees in the deep and shallow layers of the feature
extraction network. On the one hand, the traditional feature extraction networks (such as
VGG16 [14] and ResNet [15]) are to repeatedly perform convolution and maximum pooling
down sampling operations to extract features. Although a certain degree of semantic
information is preserved, it is difficult to extract multi-scale contextual information from
the shallow layer to distinguish the background and the target. We use an auxiliary
multi-scale feature enhancement module to assist in the extraction of multi-scale shallow
features and merge them with the features extracted from the backbone network, which
greatly improves the expression ability of small targets. On the other hand, target detection
algorithms usually use a backbone network specially designed for image classification,
which causes small targets to be ignored in the high-level feature maps of the network.
Although the down-sampling feature map with a larger multiple has high-level semantic
information, the resolution of the high-level feature map is greatly reduced, which is not
conducive to target positioning. This problem also exists in RetinaNet: RetinaNet uses
ResNet as the feature extraction network, and adds two additional feature layers, P6 and
P7, to improve the detection effect of large targets. This results the resolution of P7 to 1/128
of the original, making smaller targets are not visible in the feature map of this layer. Even
if the FPN merges deep and strong semantic information with the shallow layer, the small
target is missing in such a deep feature map, the semantic information of the small target is
also lost. The task of target detection is different from the task of classification. It not only
needs to judge the category of the object but also needs to locate the position of the target in
space. This work aims to improve the detection effect of small targets without reducing the
detection effect of large targets. Inspired by DetNet [16], the backbone network designed in
this work can make the deep feature map retain a larger receptive field without increasing
the number of down sampling, which is conducive to retaining the small target information
in the deep feature map.

Secondly, RetinaNet adopts the traditional top-down FPN structure, so that feature
transfer will be restricted by one-way information flow. Although the pyramid structure
used by RetinaNet can transmit strong semantic information from the top layer to the
bottom layer, this structure can only inject high-level semantic information into the previous
layer and ignores the transmission of shallow high-resolution feature maps. Additionally,
because the shallow spatial feature information is gradually faded in the bottom-up transfer
process, the small target loses the guidance of the high-resolution feature information after
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layer-by-layer convolution and down sampling, resulting in a decrease in model detection
performance. Although the papers [12,17] all adopted a two-way feature pyramid network
to achieve multi-scale feature fusion, adding additional branches to shorten the process
of shallow feature propagation, these works only reuse the shallow features extracted
from the backbone network in additional branches, and cannot capture rich contextual
information. This work combines the multi-scale feature enhancement module with the
bidirectional feature pyramid network, which greatly enriches the shallow multi-scale
context information. When detecting objects of different scales, especially small targets,
low-level and middle-level high-resolution information and high-level strong semantic
information are required [18]. This work implements this point of view and believes
that transferring high-level information to the previous layer while transferring low-level
information to the next layer is the key to multi-scale target detection, especially small
target detection.

Overall, through the research and analysis of the RetinaNet, we propose a one-stage
target detection algorithm with the following contributions to improve the detection
accuracy of small targets:

1. We propose a simple and effective parallel multi-scale feature enhancement module,
which can expand the characteristics of the receptive field without down sampling by
using dilated convolution and assist the backbone network to extract shallow features
with multi-scale context information.

2. We introduce a method to improve the backbone network specifically for the target
detection task, which effectively reduces the gap between the feature extraction
network in the detection task and the classification task. This method enables the
high-level feature map of the backbone network to preserve the texture information
of small targets as much as possible while preserving large receptive fields and strong
semantic information.

3. We combine the auxiliary multi-scale feature enhancement module with the origi-
nal FPN structure to construct a bidirectional feature pyramid network containing
multi-scale shallow information. Unlike most bidirectional structures that reuse the
backbone network to extract features in additional branches, this article uses the
multi-scale feature enhancement module as the input of the additional branches,
which brings brand-new feature information to the network.

2. Related Work

The task of small target detection has always been a challenge in the field of computer
vision. For most single-stage target detection models, including SSD [6], YOLO [7–10],
RetinaNet [11], etc., they perform poorly on small target detection tasks. Reviewing the
development of target detection algorithms, the methods to improve the accuracy of
target detection are mainly to adopt better feature extraction networks, add more context
information, and multi-scale feature fusion.

Better feature extraction networks: Most target detection algorithms use better fea-
ture extraction networks to improve the accuracy of the detection algorithm. SSD [6]
used VGG-16 as the basic network, and the performance of extracting features is relatively
weak, which is one of the reasons for the relatively poor detection effect of SSD. In sub-
sequent improvements, DSSD [19] replaced the VGG with ResNet-101, which improved
the performance of the model. YOLOv2 [8] also abandoned the inception structure used
by YOLOv1 [7] and constructed a darknet-19 with stronger feature extraction capabilities.
YOLOv3 [9] also constructed darknet-53 as the backbone network, which is faster and more
effective than ResNet-101. Overall, most advanced target detection algorithms use deeper
networks to extract features. Since larger objects are predicted on the deeper feature maps,
the requirement for the receptive field corresponding to the original image ratio is also
large, so RetinaNet has added two additional layers P6 and P7 based on ResNet to improve
the detection effect of large targets. However, on the one hand, the deeper the feature
map, the more blurred the edge definition of the object, and the weaker the corresponding
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regression. On the other hand, the resolution of the deep feature map is small, and it is
difficult to see small objects on the deep feature map. Even if networks such as FPN [13]
and RetinaNet [11] add the shallow layer to the deep layer with strong semantics, since the
small object target has disappeared in the deep feature map, a large part of the semantic
information will still be lost. To solve this problem, DetNet [16] constructed a network
dedicated to detection tasks. In the backbone, dilated convolution was used to reduce
the number of down sampling and maintain the large receptive field while retaining the
texture information of the small target. In the paper [18], to use low and medium-level
information to detect small targets, an additional LSN lightweight network was added to
extract shallow features. However, training from scratch may encounter convergence prob-
lems, and the performance of the auxiliary network is even worse than that of pre-training.
The multi-scale feature enhancement module used in this work is different and it can be
used as an auxiliary branch in the network for end-to-end training.

More contextual information: There are many works dedicated to increasing the
information outside the bounding box, that is, adding more contextual features to improve
the accuracy of target detection. DSSD [19] used deconvolution to construct a wide and nar-
row hourglass structure and improved the detection effect of small targets by introducing
large-scale context information in the target detection. The paper [20] mentioned that each
pixel has a larger receptive field to avoid missing important information during prediction.
Increasing the effective receptive field size is also a way to enrich context information.
Target segmentation, image classification, and target detection all require sufficient context
information to reduce the possibility of misclassification. Inception series [21–24] designed
a series of multi-branch convolution structures to improve the training effect by increasing
the width of the neural network. This structure sets up convolution kernels of different
sizes in each branch and enriches the context information of the features by extracting
features of different receptive field sizes. However, due to the heavy traces of Inception’s
manual design, ResNext [25] combined the Inception structure with the residual struc-
ture, added the idea of multi-group convolution, and constructed a multi-branch model
structure. Each branch of the module has the same topology, which makes the model
highly modular. RFBNet [26] used dilated convolution to generate a larger receptive field,
captured more contextual information in a larger area, and kept the feature map at a higher
resolution. The auxiliary multi-scale feature enhancement module is inspired by this kind
of structure. It acquires receptive fields of different sizes in multiple branches and adds
more context information to the shallow layer.

Multi-scale feature fusion: FPN combined low-resolution, strong semantic feature
maps with high-resolution, low-semantic feature maps through a top-down and horizontal
connection structure to build high-level semantic feature maps at all scales. This is very
important for small target detection. Following this idea, to shorten the transmission path
between the bottom and top features, the paper [17] added a bottom-down path enhance-
ment branch based on FPN, which further enhanced the positioning ability of the network.
The paper [12] also introduced a weighted two-way feature pyramid network, which is
conducive to the simple and fast multi-scale feature fusion of the network. However, most
of these two-way feature pyramids are extracted from the reused backbone network. In this
work, additional feature enhancement modules are added to form a symmetrical two-way
structure to enhance the feature information and to increase the diversity and richness
of information.

3. Method

This section introduces the overall structure of the detection model, and then intro-
duces three main parts, including the improved Resnet-D, the parallel auxiliary multi-scale
feature enhancement model MFEM (Multi-scale Feature Enhancement Model), and the bidi-
rectional feature pyramid network. The bidirectional feature pyramid network proposed in
this work combines the features extracted by ResNet-D and the multi-scale context features
extracted by the MFEM, which are from the backbone network and MFEM, respectively. It
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makes the data flow transfer in a symmetrical way, improves the transmission efficiency of
shallow features and improves the network’s ability to express small targets.

3.1. Overall Architecture

Figure 1 shows the overall structure of the network, which is mainly composed of
three parts: improved ResNet, MFEM, and bidirectional feature pyramid network. Inspired
by DetNet, this work improves ResNet and named it ResNet-D. The backbone discards the
64 and 128 times down sampling in the original RetinaNet and uses the dilated residual
structure to replace the conventional residual module so that the high-level feature map
has a larger receptive field while retaining more small target textures information.
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Inspired by the Inception structure and the idea of grouping convolution in ResNext,
this work designs a multi-scale feature enhancement module, which is a multi-branch
structure with different receptive fields and can greatly enrich the shallow context infor-
mation. The constant receptive field at each prediction layer in RetinaNet captures only a
fixed contextual information. Inspired by the Inception structure and the idea of grouping
convolution in ResNext, this work designs a multi-scale feature enhancement module
(MFEM). MFEM uses 4 dilated convolution branches with different dilation rates to extract
feature maps with different receptive fields, that is to extract more features beyond the
target to improve the discrimination ability of the standard RetinaNet prediction layer.
We start by down sampling an input image with a simple pooling operation to match its
size with that of first prediction layer of FE-RetinaNet. Then, the down sampled image
is passed through our multi-scale feature enhancement module. In this work, the MFEM
is combined with RetinaNet to construct a bidirectional feature pyramid network with
a feature enhancement module. On the one hand, this structure can merge the features
extracted from the backbone network with high-level semantic information and the shallow
high-resolution features from top to bottom. On the other hand, it can use the bottom-down
branch fusion of the shallow high-resolution features extracted by the feature enhancement
module. Experiments show that this structure can effectively improve the accuracy of small
target detection.
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3.2. Improved Backbone Network ResNet-D

The commonly used feature extraction strategy in existing detection frameworks is
usually to repeatedly stack multiple convolutional layers and maximum pooling layers
(such as ResNet-50) to construct a deeper feature extraction network to generate strong
semantic information. Semantic information refers the information expressed by images
closest to human understanding. High level semantics is the feature information obtained
after several times of convolution (feature extraction) and its receptive field is large and
the extracted features are more and more abstract. Such a feature extraction strategy is
more beneficial to image classification tasks that are more inclined to translation invariance.
Different from image classification, target detection also requires accurate object description,
and local low/medium level feature (such as texture) information is also the key.

The design of the backbone network usually has two major problems: (1) Keeping the
backbone network with a high spatial resolution will consume memory and time greatly;
(2) Reducing the number of down sampling will result in a reduction in the receptive
field, which is not conducive to large target detection. Inspired by DetNet, this work
improves ResNet, aiming to improve the detection effect of small targets without reducing
the accuracy of large target detection. A new residual structure is introduced to solve these
problems, that is, the 3 × 3 standard convolution layer in the standard residual module is
replaced by the dilated convolution with a convolution core size of 3 × 3 and expansion
coefficient of 2, forming the dilated residual structure, which can effectively expand the
receptive field of the feature map, as shown in Figure 2b. Besides, a 1 × 1 convolutional
layer is added to the shortcut branch of the dilated residual structure, so that the seventh
stage can obtain new semantic information without down sampling, as shown in Figure 2c.
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The standard RetinaNet framework uses ResNet to extract features from the backbone
network (as shown in Figure 3a), and adds two additional feature maps P6 and P7 (P6
is obtained by convolution operation with convolution kernel of 3 × 3 and step size of 2
on C5, and P7 is obtained by applying Relu and convolution operation with convolution
kernel of 3 × 3 and step size of 2 on P6). Although it is beneficial to the detection of
large targets, high-level feature maps will be ignored due to number of down sampling
times being too great (as shown in Figure 3b). To make the high-level feature map have a
larger receptive field while retaining more texture information of small targets, this work
introduces more stages (namely C6 and C7) on the backbone network. In stages 6–7, we
replace the conventional residual module with the dilated residual structure with dilated
convolution (as shown in Figure 3c).
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The improved ResNet-D is shown in Figure 4. Based on the original 5 stages of ResNet,
two additional stages are added, aiming at following the design idea of RetinaNet to
improve the detection effect of the network on large targets. ResNet-D maintains that the
original residual structure is used in the first five stages, and the dilated residual structure
composed of three residual modules is used in the sixth and seventh stages, which can
fix the spatial resolution of the two stages to 32 times of down sampling and effectively
expand the receptive field of the high-level feature map. The down sampling multiples
of each stage of the modified network are (2,4,8,16,32,32,32), respectively, and the feature
map with 64 times and 128 times down sampling in RetinaNet is abandoned. There are
three expansion bottleneck structures in the sixth and seventh level convolution, which are
arranged in the order of (C, B, B). Since the space size is fixed after the fifth stage, in order
to introduce a new stage, we use an extended bottleneck and 1 × 1 convolution projection
at the beginning of each stage (Figure 2c). In this stage, the extended convolution is used
instead of the traditional convolution structure, which effectively avoids the low sampling
operation. Additionally, to reduce the number of network calculations, ResNet-D uses
1 × 1 convolution after the fourth stage to reduce the dimensionality of the feature map to
512 channels, and the number of feature maps until the seventh stage is 512.

Symmetry 2021, 13, x FOR PEER REVIEW 8 of 17 
 

 

map with 64 times and 128 times down sampling in RetinaNet is abandoned. There are 
three expansion bottleneck structures in the sixth and seventh level convolution, which 
are arranged in the order of (C, B, B). Since the space size is fixed after the fifth stage, in 
order to introduce a new stage, we use an extended bottleneck and 1x1 convolution pro-
jection at the beginning of each stage (Figure 2c). In this stage, the extended convolution 
is used instead of the traditional convolution structure, which effectively avoids the low 
sampling operation. Additionally, to reduce the number of network calculations, ResNet-
D uses 1 × 1 convolution after the fourth stage to reduce the dimensionality of the feature 
map to 512 channels, and the number of feature maps until the seventh stage is 512.  

A,512 A,512 A,512 C,512 B,512 B,512 C,512 B,512 B,512

Stage 4 output
16X stride

Stage 5 output
32X stride

Stage 7 output
32X stride

Stage 6 output
32X stride

1×1 conv，256

1×1 conv，
512

1×1 conv，256 1×1 conv，256 1×1 conv，256

 
Figure 4. Improved ResNet-D structure. 

3.3. Multi-Scale Feature Enhancement Module 
Since most detection algorithms use fixed-size convolution kernels to extract target 

features, they can only extract local characteristic information, and the size of the receptive 
field is limited, unable to capture rich contextual information, which is not conducive to 
detecting complex natural images. Inspired by the idea of acquiring different size recep-
tive fields in Inception and grouping convolution in ResNext, we design a multi-branch 
structure with different receptive fields. Firstly, the dilated convolution with different ex-
pansion rates is used to obtain different scales of information, and then the information 
with different scales is fused to obtain rich information. Multi-scale Feature Enhancement 
Module (MFEM) is a simple structure. It is an auxiliary branch directly connected with 
ResNet-D to assist in extracting shallow features that carry multi-scale context infor-
mation. This article introduces the feature extraction strategy used in MFEM and then 
describes the MFEM architecture. 

Multi-scale feature enhancement module MFEM: The standard RetinaNet uses Res-
Net to extract features, and feature extraction is performed repeatedly by convolution and 
maximum pooling. Although the down-sampling process retains a certain degree of se-
mantic features, it is still possible to lose low-level features that are helpful for detection. 
Besides, the current feature extraction network usually sets the receptive field of the same 
stage to the same size, which will lead to the loss of discriminative and robustness of fea-
tures. To make up for the loss of shallow features in the down-sampling process and im-
prove the discriminative and robustness of features, the MFEM module in this work pro-
vides an auxiliary feature extraction scheme, as shown in Figure 5. 

Firstly, the input image I  is sampled 4 times down by simple pooling operation to 
obtain tI , and the size of tI  matches the second stage feature diagram 2C  of ResNet-
D. The down sampled image outputs a feature map containing multi-scale context infor-
mation through a modular block convolution structure, including segmentation, conver-
sion, and aggregation operations. 

Figure 4. Improved ResNet-D structure.

3.3. Multi-Scale Feature Enhancement Module

Since most detection algorithms use fixed-size convolution kernels to extract target
features, they can only extract local characteristic information, and the size of the receptive
field is limited, unable to capture rich contextual information, which is not conducive
to detecting complex natural images. Inspired by the idea of acquiring different size
receptive fields in Inception and grouping convolution in ResNext, we design a multi-
branch structure with different receptive fields. Firstly, the dilated convolution with
different expansion rates is used to obtain different scales of information, and then the
information with different scales is fused to obtain rich information. Multi-scale Feature
Enhancement Module (MFEM) is a simple structure. It is an auxiliary branch directly
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connected with ResNet-D to assist in extracting shallow features that carry multi-scale
context information. This article introduces the feature extraction strategy used in MFEM
and then describes the MFEM architecture.

Multi-scale feature enhancement module MFEM: The standard RetinaNet uses ResNet
to extract features, and feature extraction is performed repeatedly by convolution and max-
imum pooling. Although the down-sampling process retains a certain degree of semantic
features, it is still possible to lose low-level features that are helpful for detection. Besides,
the current feature extraction network usually sets the receptive field of the same stage
to the same size, which will lead to the loss of discriminative and robustness of features.
To make up for the loss of shallow features in the down-sampling process and improve
the discriminative and robustness of features, the MFEM module in this work provides an
auxiliary feature extraction scheme, as shown in Figure 5.
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Firstly, the input image I is sampled 4 times down by simple pooling operation to
obtain It, and the size of It matches the second stage feature diagram C2 of ResNet-D. The
down sampled image outputs a feature map containing multi-scale context information
through a modular block convolution structure, including segmentation, conversion, and
aggregation operations.

The down sampled image It first generates the initial feature map Fint(0) through two
consecutive convolution layers with the size of 3 × 3 and 1 × 1,which is constructed as

Fint(0) = ϕint(0)(It) (1)

where ϕint(0) represents a serial operation, including a 3 × 3 convolution and a 1 × 1
convolution module. Then, the initial feature map Fint(0) is used to generate the interme-
diate feature set Fint(k) and k represents the number of branches of the multi-scale feature
enhancement module:

Fint(k) = ωint(k)(Fint(0)) (2)

where ωint(k) represents the kth packet of grouped convolution, including a 1 × 1 con-
volutional layer and an expanded convolutional layer with a convolution kernel size of
3 × 3 and expansion rates of 1, 2, 3, and 4, respectively. Then, four feature maps contain-
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ing multi-scale context information are fused in concatenate mode to obtain the fused
feature Fconcat:

Fconcat =
4

∑
k=1

Concat(Fint(k)) (3)

where Concat represents the merging of information between channels. Then, the initial
feature map Fint(0) is identically mapped by the shortcut branch, and the feature Fconcat is
fused by the addition method, and the fused feature is Fadd:

Fadd = Fconcat ⊕ Fint(0) (4)

where ⊕ denotes feature fusion by addition. The dimension of Fadd is upgraded through
the 1 × 1 convolutional layer to obtain the output feature N2, to prepare these converted
features for aggregation through the bottom-up pyramid branch:

N2 = Conv(Fadd) (5)

where Conv represents a 1 × 1 convolution operation, which is used to upgrade the output
feature to 256 channels. N2 represents the output feature after the feature enhancement
module, which has the same spatial resolution as C2.

Figure 6 shows the comparisons of feature heat maps after incorporating the multi-
scale feature enhancement module. Specifically, we performed experiments with the
improved RetinaNet combined with MFEM on MS COCO and contrasted experiment
results with original RetinaNet models. The improved RetinaNet model is trained on
Nvidia GeForce GTX TITAN X GPUs. The momentum parameter is set to 0.9, the batch
size is set to 32, and the initial learning rate is set to 0.001. For the first 160k iteration,
we use a learning rate of 10−3, then 10−4 for the 60k iteration, and 10−5 for the last 20k.
The original RetinaNet model uses the official pre training model. For the fairness of the
investigation, the backbone network used the unified ResNet-50 as the primary network
structure. For the original image of the MS COCO, the standard RetinaNet output features
are shown in column (b), which shows that RetinaNet is not sensitive to small targets.
After the auxiliary feature enhancement module is integrated, as shown in column (c), it
can be found that the characteristic thermal diagram of this network can better cover the
boundary of the object. This proves that the auxiliary multi-scale feature enhancement
module can effectively enrich the features of small-scale feature detection, and make the
network more concerned with the neglected small targets.

3.4. Bidirectional Feature Pyramid Network

As mentioned earlier, both shallow and deep features are important for the detection
of small targets. However, the top-down one-way pyramid structure adopted by RetinaNet
focuses on transferring strong semantic information from the top level to the lower level,
enhancing the transfer of high-level features in an asymmetrical manner, while ignoring the
transfer of low-level features with rich positioning information. In addition, the standard
RetinaNet uses ResNet to extract features, and repeated down sampling operations will
cause low-level features to be lost. The bi-directional feature fusion used in this work
focuses on the downward transmission of high-level features on the one hand. On the
other hand, it focuses on the upward transfer of underlying features. This symmetric
feature transfer method takes into account the transmission efficiency of shallow features
and deep features, and solves the shortcomings of one-way information transfer in the
past. In addition, the bi-directional pyramid structure strengthens the transmission of
multi-scale shallow information in the bottom-up path to improve the accuracy of the
network’s detection of small targets.



Symmetry 2021, 13, 950 10 of 16

Symmetry 2021, 13, x FOR PEER REVIEW 10 of 17 
 

 

2 ( )addN Conv F=  (5) 

where Conv  represents a 1 × 1 convolution operation, which is used to upgrade the 
output feature to 256 channels. 2N  represents the output feature after the feature 

enhancement module, which has the same spatial resolution as 2C . 
Figure 6 shows the comparisons of feature heat maps after incorporating the multi-

scale feature enhancement module. Specifically, we performed experiments with the 
improved RetinaNet combined with MFEM on MS COCO and contrasted experiment 
results with original RetinaNet models. The improved RetinaNet model is trained on 
Nvidia GeForce GTX TITAN X GPUs. The momentum parameter is set to 0.9, the batch 
size is set to 32, and the initial learning rate is set to 0.001. For the first 160k iteration, we 
use a learning rate of 10−3, then 10−4 for the 60k iteration, and 10−5 for the last 20k. The 
original RetinaNet model uses the official pre training model. For the fairness of the 
investigation, the backbone network used the unified ResNet-50 as the primary network 
structure. For the original image of the MS COCO, the standard RetinaNet output features 
are shown in column (b), which shows that RetinaNet is not sensitive to small targets. 
After the auxiliary feature enhancement module is integrated, as shown in column (c), it 
can be found that the characteristic thermal diagram of this network can better cover the 
boundary of the object. This proves that the auxiliary multi-scale feature enhancement 
module can effectively enrich the features of small-scale feature detection, and make the 
network more concerned with the neglected small targets. 

   

   

   

   
(a) (b) (c) 

Figure 6. RetinaNet and improved RetinaNet combined with MFEM feature heat maps results.
(a) Original image; (b) Standard RetinaNet output features; (c) Improved RetinaNet output features.

Top-down branch: According to the definition of FPN, the feature layers with the
same space size are in the same network stage, and each feature level corresponds to
a network stage. The improved ResNet-D in Section 3.1 is taken as the basic structure,
and {C3, C4, C5} is chosen as the feature layer. The top-down path merges the stronger
characteristics of high-level semantic information through horizontal connections from top
to bottom. Consistent with the standard RetinaNet, each low-resolution feature image is
upsampled, and the spatial resolution is expanded to match the size of the next layer of
feature maps. The top-down path uses the 3rd to 5th stage features as input, namely

→
C = (C3, C4, C5) (6)

where Ci represents the output feature map whose resolution is 1/2i of the original image.
For example, for an image with an input size of 512 × 512, the resolution size of C3 is
64 × 64. For each horizontal connection path, a 1 × 1 convolutional layer is used to
reduce the dimensionality of each feature map to 256 channels, and obtain

{
Pin

3 , Pin
4 , Pin

5
}

,
corresponding to {C3, C4, C5}:

Pin
i = Conv(Ci), i = 3, 4, 5 (7)

where Conv represents a 1 × 1 convolution operation, which is used to reduce the dimen-
sionality of the output features of each stage to 256 channels.
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We use a top-down, horizontal connection method to construct a top-down pathway.
A top-down path can produce features with higher resolution and rich semantic features,
which are enhanced from top to bottom through a horizontally connected path. Each
horizontal connection merges feature maps of the same size into one stage. The top-down
feature fusion process of traditional FPN can be expressed as:

Pi = Pin
i ⊕ Resize(Pi+1), i = 3, 4 (8)

P5 = Pin
5 (9)

where ⊕ is the feature fusion operation, and Resize is the upsampling operation to match
the resolution of the feature image to be fused in the lower layer.

Bottom-up branch: This work does not reuse the features extracted from the backbone
network in the bottom-up branch-like PANet, but innovatively uses the multi-scale feature
enhancement module described in Section 3.3 as the input of the bottom-up branch. Since
each branch of the auxiliary feature enhancement module has a different receptive field, the
features passing through the structure can be used as input to enrich multi-scale shallow
context information.

This paper uses the output feature N2 of the feature enhancement module as the first
extraction layer, which has the same spatial resolution as C2. The spatial resolutions of
the subsequent {N3, N4, N5} correspond to {P3, P4, P5}.inally, C6 and C7 are reduced to
256 channels for feature fusion with N6 and N7 respectively. There is no down sampling
process at this stage. Similar to the top-down branch, the bottom-up branch still adopts
a horizontal connection method, using {P3, P4, P5, C6, C7} as input to obtain the output
feature Ni, represented as:

Pin
i = Conv(Ci), i = 6, 7 (10)

Ni = Resize(Ni−1)⊕ Pi, i = 3, 4, 5 (11)

Ni = Ni−1 ⊕ Pin
i , i = 6, 7 (12)

where ⊕ represents the feature fusion operation; Conv represents the 1 × 1 convolution
operation, which is used to reduce the dimensionality of the output features of this stage to
256 channels; Resize represents the down sampling operation, and the purpose is to match
the resolution of the upper layer feature map.

4. Experiments

To prove the effectiveness of FE-RetinaNet, we conduct experiments on the MS COCO.
The experimental conditions in this article are configured as follows: CPU is Intel i7-9700k;
memory is 32 G; GPU is NVIDIA GeForce GTX TITAN X; deep learning framework is
Pytorch 1.7.1; CUDA version is 10.1.

4.1. Datasets and Evaluation Metrics

The MS COCO is a huge data set composed of 80 different object categories, with a
large number of small targets (41% of all target objects), which is especially suitable for
evaluating the detection effect of small targets. According to the general classification
criteria, this work takes MS COCO trainval35k as the training set (including 80k training
and 35k verification images), minival as the verification set (composed of the remaining 5k
verification set), and test-dev as the test set to evaluate the model.

In the experiment of the MS COCO, the evaluation metrics used is mean Average
Precision (mAP). For IoU, the step size is 0.05 and the setting is from 0.5 to 0.95. For
different IoU, we calculate the corresponding mAP, and finally calculate the average of all
mAPs. AP50 refers to AP at IOU = 0.5, and AP75 refers to AP at IOU = 0.75. Objects with a
ground truth area smaller than 32 × 32 are regarded as small targets, objects larger than
32 × 32 and smaller than 96 × 96 is regarded as medium targets, and objects larger than
96 × 96 are regarded as large targets. Finally, the corresponding accuracy rates of objects
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of different sizes are counted: small target accuracy rate is regarded as APS, the medium
target accuracy rate is regarded as APM, and large target accuracy rate is regarded as APL.

4.2. Experiments on COCO Object Detection

The training of the model in this work uses batch stochastic gradient descent (SGD) to
optimize the loss function. The momentum parameter is set to 0.9, the batch size is set to
32, and the initial learning rate is set to 0.001. For the first 160k iteration, we use a learning
rate of 10−3, then 10−4 for the 60k iteration, and 10−5 for the last 20k.

Table 1 shows the comparison between the proposed algorithm and other algorithms
on the MS COCO test-dev. Similar to the baseline models, we selected ResNet-50 and
ResNet-101 as the backbone.

Table 1. Comparisons of FE-RetinaNet with other methods on MS COCO test-dev set.

Method Backbone Input Size AP AP50 AP75 APS APM APL

Two-stage methods
Faster R-CNN VGG-16 ~1000 × 600 24.2 45.3 23.5 7.7 26.4 37.1

Faster R-CNN w FPN ResNet-101 ~1000 × 600 36.2 59.1 39.0 18.2 39.0 48.2
Cascade R-CNN ResNet-101 ~1280 × 800 42.8 62.1 46.3 23.7 45.5 55.2

CoupleNet ResNet-101 ~1280 × 800 34.4 54.8 37.2 13.4 38.1 50.8
R-FCN ResNet-101 ~1000 × 600 29.9 51.9 - 10.8 32.8 45.0

Mask R-CNN ResNet-101 ~1280 × 800 38.2 60.3 41.7 20.1 41.1 50.2

One-stage methods
YOLOv2 DarkNet-19 544 × 544 21.6 44.0 19.2 5.0 22.4 35.5
SSD513 ResNet-101 513 × 513 31.2 50.4 33.3 10.2 34.5 49.8

RetinaNet ResNet-50 ~832 × 500 32.5 50.9 34.8 13.9 35.8 46.7
RetinaNet ResNet-101 ~832 × 500 34.4 53.1 36.8 14.7 38.5 49.1
YOLOv3 DarkNet-53 608 × 608 33.0 57.9 34.4 18.3 35.4 51.1
RefineDet VGG-16 512 × 512 33.0 54.5 35.5 16.3 36.3 44.3
DSSD513 ResNet-101 513 × 513 33.2 53.3 35.2 13.0 35.4 51.1
RFBNet VGG-16 512×512 33.8 54.2 35.9 16.2 37.1 47.4

RFBNet-E VGG-16 512 × 512 34.4 55.7 36.4 17.6 37.0 47.6
EfficientDet-D0 EfficientNet 512 × 512 34.6 53.0 37.1 - - -

EFIP VGG-16 512 × 512 34.6 55.8 36.8 18.3 38.2 47.1
Ours

FE-RetinaNet ResNet-50 512 × 512 34.2 52.8 37.1 16.8 37.2 47.6
FE-RetinaNet ResNet-101 512 × 512 36.2 56.4 39.3 18.0 39.7 49.9

Most two-stage detection algorithms rely on larger input images to improve the
performance of the model. In the single-stage detection algorithm, this paper takes the
input of ~500 × 500 for comparison. For an input of 832 × 500, the standard RetinaNet
obtained an experimental result with an AP of 34.4%. For the detection results (APL) of
large targets, RetinaNet obtained an excellent result with an AP of 49.1%, but its detection
accuracy (APS) for small targets was not satisfactory, with an APS of 14.7%. The algorithm
in this work uses the improved ResNet-101 as the backbone network, surpassing the
RetinaNet with ResNet-101 as the backbone network in all indicators, and obtains an AP
gain of 1.8%. More importantly, this algorithm has achieved better results in the recognition
of small targets, and the APS have increased by 3.2%.

4.3. Ablation Research

To verify the effectiveness of the strategy proposed in FE-RetinaNet, this paper studies
the impact of the proposed improvements (ResNet-D, bidirectional feature pyramid net-
work, and MFEM) on detection performance. ResNet-50 is used as the backbone network.
An ablation study was conducted on the COCO minival, and the results are summarized
in Table 2.
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Table 2. Comparisons of the algorithm effect of incorporating different modules.

RetinaNet ResNet-D Bidirectional FPN MFEM AP AP50 AP75 APS APM APL
√

32.3 50.6 34.5 13.7 35.5 46.3√ √
32.8 51.3 35.2 14.4 35.9 46.8√ √ √
33.5 51.9 36.1 15.1 36.1 47.1√ √ √ √
34.1 52.7 36.9 16.7 37.0 47.5

It can be seen that the backbone improvement strategy and feature enhancement
module proposed in this work can effectively improve the detection performance of the
algorithm, and the AP increased by 0.5% and 0.6%, respectively. It is worth noting that the
improvement proposed by the algorithm in this work has achieved greater gains in the
detection of small targets. After using ResNet-D as the backbone network, APs increased
by 0.7%; the integration of feature enhancement module MFEM increased APs by 1.6%.
Additionally, the overall performance of the algorithm is increased from 32.8% to 33.5% by
incorporating the bidirectional feature pyramid network. In this experiment, the top-down
branch reuses the backbone network features without adding the MFEM structure.

To further prove the effectiveness of the auxiliary multi-scale feature enhancement
module, this paper sequentially adds branches with different expansion rates and performs
experiments on the COCO minival data set. The results are shown in Table 3.

Table 3. Comparisons of adding branches with different expansion rates.

FE-RetinaNet r1 = 1 r2 = 2 r3 = 3 r4 = 4 AP APS APM APL
√ √

33.6 15.3 36.2 47.0√ √ √
33.8 15.8 36.5 47.2√ √ √ √
34.1 16.4 36.8 47.3√ √ √ √ √
34.2 16.8 37.0 47.5

The accuracy of small target detection (APS) is improved by 0.5%, 0.6%, and 0.4%,
respectively, with different expansion rate branches. When four branches with different
expansion rates are added to MFEM at the same time, the optimal result of AP is 34.2%,
and the accuracy of APS on small targets is 16.8%. This shows that the MFEM structure
can improve the detection effect of small targets by acquiring the shallow context features,
and the auxiliary multi-scale feature enhancement module can significantly improve the
performance of small target detection.

4.4. Small Target Detection Performance Comparision

In order to show the improvement of detection performance more intuitively, FE-
RetinaNet and standard RetinaNet are used to detect several selected images in the MS
coco dataset, and the results are shown in Figure 7. Specifically, we build the proposed
model using deep learning framework PyTorch. Our model is trained on Nvidia GeForce
GTX TITAN X GPUs with CUDA 10.1 and CUDNN 7.5. We use the improved model after
training to compare with the original model. Comparisons of RetinaNet and FE- RetinaNet
small target detection results on MS COCO as follows.

In the comparison diagram, (a) is the original image, (b) is the standard RetinaNet test
results, (c) is the improved method test results. In the first row, RetinaNet mis-detects the
streetlamp as a boat, and the improved FE-RetinaNet successfully avoids this error. From
the first to the fifth rows, it can be seen that the FE-RetinaNet detects small targets more
accurately than the original algorithm, and more small targets are detected. Among them,
the fifth row of boat targets has more background environment interference. It can be seen
that the improved FE-RetinaNet target detection algorithm can more accurately detect and
classify small and medium targets in the input image. In complex scenes, FE-RetinaNet
can detect more small targets compared with the original RetinaNet.
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5. Conclusions

Aiming at the problem of RetinaNet’s poor detection effect on small targets, this work
proposes an improved FE-RetinaNet target detection algorithm. First of all, to address the
problem of feature loss of small targets in high-level feature maps, this work introduces
an improved backbone network. Besides, this work also constructs a parallel feature en-
hancement module to generate multi-scale context features. Then, the feature enhancement
branch is combined with the improved backbone network to form a bidirectional feature
pyramid network to enhance the transmission efficiency of shallow features. The algorithm
is tested on the MS COCO. The experimental results show that the detection effect of the
improved method has been greatly improved, and the mAP on the COCO has increased
by 1.8%. The integrated auxiliary multi-scale feature enhancement module effectively
improved the detection effect of small targets, and the APs on the COCO increased by 3.3%.
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