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ABSTRACT Energy conservation techniques are crucial to achieving high reliability in the Internet of
Things (IoT) services, especially in the Massive IoT (MIoT), which stringently requires cost-effective and
low-energy consumption for battery-powered devices. Most of the proposed techniques generally assume
that data acquiring and processing consume significantly lower than that of communication. Unfortunately,
this assumption is incorrect in the MIoT scenario, which mostly involves the low-power wide-area net-
work (LPWAN) and complex data sensing operations (e.g., biological and seismic sensing) using ‘‘power-
hungry’’ sensors (e.g., gas sensors, seismometers). Thus, sensing actions may consume even more energy
than transmission. In addition, none of them support end-users in controlling the trade-off between energy
conservation and data precision. To deal with these issues, we propose an adaptive sampling algorithm that
estimates the optimal sampling frequencies in real-time for IoT devices based on the changes of collected
data. Given a user’s saving desire, our algorithm could minimize the device’s energy consumption while
ensuring the precision of collected information. Practical experiments over IoT datasets have shown that our
algorithm can reduce the number of acquired samples up to 20 times compared with a traditional fixed-rate
approach at extremely low Normal Mean Error value around 3.45%.

INDEX TERMS Constrained devices, energy efficiency, massive internet of things, sampling algorithm.

I. INTRODUCTION
Recently we have been witnessing the explosion of the Inter-
net of Things, aiming to bring every physical object into
digital worlds [1]. Leveraging the novel advantages in micro-
electronic and telecommunication, the smart devices in IoT
significant increase in both quantity and quality perspectives.
A massive number of these devices are deployed to enhance
human awareness about surrounding objects. According to
Cisco, 1 trillion smart sensors are connected to the Internet
by 2020, and up to 45 trillion in the next 20 years [2].
Relied on real-time analytic insights on collected data, IoT
offers disruptive opportunities to maximize business profits
and user experiments in several areas, from manufacturing,
logistics to transportation, health care. Boston Consulting
Group reported that business to business spending on IoT
technologies, applications, and solutions reaches 267 billion
dollars by 2020, especially in manufacturing, transportation
and logistics, and utilities [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhenyu Zhou .

As a result of significant growth, Massive Internet of
Things (MIoT) has been emerging as a novel technology
referring to a large volume of constrained IoT devices that
stringently require excellent coverage, cost-effective, and
low-energy consumption. Among several cutting-edge con-
nectivity solutions for MIoT, the LPWAN technologies such
as Sigfox and LoRA have been considered as the most
potential candidates, while cellular-based connectives such
as 5G or NB-IoT are under developing and testing pro-
cesses. Although these protocols support low-power trans-
mission via the radio wave, energy consumption sources may
come from other parts of the devices, such as processing
operations, sensing actions. On the other hand, frequently
collecting and analyzing a large amount of raw monitoring
data from plugged sensors on IoT devices notably consume
both resources and times due to involving expensive opera-
tions, such as powering sensing components or performing
complex queries [4]. If these devices are battery-powered,
such operations quickly drain their power source capacity,
to the point that it may lead to suddenly interrupt all run-
ning operations and strongly impact the whole MIoT system.
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Moreover, the battery has a limited energy capacity. Recharg-
ing or replacing such battery is extremely costly or even
impossible because the IoT devices may be deployed in hos-
tile environments (e.g., under the sewer networks or in the
deep forest). Thus, it is no wonder why energy consump-
tion remains a vital challenge to achieve energy-efficiency
requirements in IoT, specially MIoT [5]. The MIoT scenario
in our work refers to a massive number of constraint devices
(battery-power, limited memory, and CPU) connecting to the
Internet using lower power connections (such as LPWAN,
NB-IoT, and 5G). These devices may equip ‘‘power-hungry’’
sensors and be deployed in wide geographic regions.

In general, a typical IoT device has four principal
components:
• A sensing subsystem senses and collects information
from the environment.

• A processing subsystem manages all device operations.
• A communication subsystem transmits the collected
data.

• Apower source supplies the energy needed for all device
operations.

The device must have a sufficient lifetime to fulfill the
application requirements [6]. Many approaches have been
proposed to minimize energy consumption such as compress-
ing data [7], [8], aggregating data before sending [9], [10],
and predictive monitoring [11], [12]. They all target minimiz-
ing the radioactivity as they assume that the communication
subsystem is the most consumed energy source, and the
energy consumption of sensing and processing subsystems
are negligible. However, in IoT devices, the sensing subsys-
tem may consume more energy than other device compo-
nents. With the exponential growth of the Internet of Things
and its applications, the IoT sensors supporting environmen-
tal information perceptions increase in both quality and quan-
tity. The sensors are more complicated and able to deeply
aware of environmental information. However, these sensors
require high energy consumption to accomplish these tasks,
namely ‘‘power-hungry sensors.’’ For example, a catalytic gas
sensor consumes massive energy (about 600 mW) to power
a bridge circuit containing the wiring resistances to detect
the heat, which is released by catalytic oxidation between
combustible gases and a platinum treated wire coil. In con-
tract, the transmission protocols in the MIoT context become
more energy-efficiency due to the emergence of LPWAN
technologies, such as Sigfox, Lora, andNB-IoT. Table 1 and 2
present the power consumption of radio chips and common
sensors, respectively. We observe that sensing operations
consume significantly more energy than transmission. For
example, Semtech SX1272 radio chip needs 26 mW to trans-
mit data, whereas gas sensor Hanwei-MC needs more than
twenty-time energy (about 600 mW) to detect the presence
of gases in an area. The consumption is caused by various
factors [13]:
• Power-hungry transducers: Many sensor types use high
power resources to perform sensing tasks such as multi-
media sensors or chemical sensors.

TABLE 1. Power consumption of existing sensor chips [14].

TABLE 2. Power consumption for transmission of existing Radio
Chips [15].

• Power-hungry Analog/Digital converter: Some sensors
need converting collected data from analog to digital
formats.

• Long acquisition time: Some sensing operations may
require from seconds to minutes.

Therefore, saving energy in the communication subsystem
is not enough. The IoT systems need to be concerned about
the sensing subsystem’s energy by decreasing the number of
acquisitions.

In general, the energy consumption of all subsystems
(including sensing, processing, and communicating) highly
relates to sampling frequency either directly or indirectly.
By default, battery-power devices are in sleep mode and only
waked-up to collect samples via sensing subsystems. These
samples are then required to transmit to gateways directly
or locally process on the device after successfully collect-
ing. A typical data collection process of a device includes
three main steps: (1) the device waking up the sensing sub-
system to perform environmental information perception.
(2) the sensed data is then stored in temporary memory and
pre-processed by the processing subsystem. (3) The com-
munication subsystem transmits the data to the gateway or
cloud server for further processing. Thus, the data collection
process highly relates to all subsystems’ energy consumption,
including environmental information perception via sensing
action. Amongmethods used to decrease sampling frequency,
Adaptive Sampling is a technique for dynamically adapt the
sampling rate to definedmetrics [16].When themetric stream
is stable, it automatically reduces the sampling rate to con-
serve energy. In contrast, when the input stream’s fluctuation
is detected, the sampling rate is increased to collect more
data about current events. Despite owning several advan-
tages, applying existing adaptive sampling techniques into
MIoT context is still a challenge, because: (1) The adaptation
process requires a large volume of data [17], which are
not stored or process by MIoT devices; (2) They require
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data-specific thresholds [18] or fixed metric distribution [19];
(3) There is a delay in detecting fluctuations in the data [20].
Moreover, none of them supports end-users in express-
ing their desired level of saving energy. In other words,
the end-users can not control the sampling rate. This lim-
itation is critical in MIoT because each radio connectivity
technology has amaximum number of messages per day [21].
Network providers immediately banned the devices violating
this limitation. On the other hand, through the desired saving
level, the end-user is able to control the trade-off between
the amount of saved energy and data precision. Enabling this
capability makes the adaptive sampling method suitable for
variousMIoT use cases, which demand different priorities for
saving energy. For example, fire-forest detection applications
require higher priority for data correctness than conserving
energy, whereas soil monitoring applications focus more on
preserving energy.

To address the mentioned limitations, we propose an
User-driven Adaptive Sampling Algorithm (UDASA) that
estimates in real-time the optimal sampling frequency for IoT
devices based on the changes of data in history. By taking into
account a user-desired saving level, our algorithm ensures
output frequency in a corresponding range, while maximizing
the correctness of collected information. As a result, UDASA
enables end-users to control the trade-off between conserving
energy and data precision. Practical experiments on NOAA
and IoT datasets have shown that UDASA reduces the num-
ber of acquired samples up to twenty times compared to
a traditional fixed-rate approach at low error around 6.4%
and 3.45%, respectively. These error values mean that recon-
structed data from samples are 93.6% and 96.55% similar to
the original. Our key contributions are summarized below:
• An UDASA for prolonging device lifetime in Massive
IoT context is presented. The proposed algorithm could
estimate the optimal sampling frequency in real-time
following a given saving level from end-users.

• The robustness and applicability of our proposal are val-
idated over real datasets with respect to various param-
eter settings. Enabling end-users to control the saving
level makes the algorithm more applicable to several
user-cases in the MIoT context.

• We compare the superiority of UDASAwith the existing
adaptive sampling algorithms in terms of energy conser-
vation and data precision.

The remainder of the paper is organized as follows.
In Section II, we formalize the problem of adaptive sam-
pling with user-desired saving levels and related defini-
tions. The UDASA algorithms are presented in Section III.
Section IV reports the evaluation of our method through real
datasets. Section V discusses related work, and conclusions
are reported in Section VI.

II. PRELIMINARIES
A. RELATED DEFINITIONS AND CONCEPTS
Definition 1 (Median Absolute Deviation): Given dataset X
including n data points X1,X2, . . . ,Xn, the Median Absolute

TABLE 3. Table of notations.

Deviation (MAD) of data point Xi ∈ X collected at time i,
denoted as 4θ(Xi), which is defined that:

4θ (Xi) = median(|Xi − median(X )|) (1)

Definition 2 (Linear Interpolation): In mathematics, linear
interpolation is a curve fitting method. It is used to compute
new data points within given data points by using linear
polynomials. For example, given 2 data points (x0, y0) and
(x1, y1), a new data point (x, y) with x ∈ (x0, x1) is interpo-
lated from:

y− y0
x − x0

=
y1 − y0
x1 − x0

(2)

Definition 3 (Sigmoid Function): Sigmoid function refers
to a continuous, monotonically increasing function that is the
special case of the logistic function. It has a characteristic
S-shaped curve, which is defined that:

S(x) =
1

1+ e−x
(3)

In general, the sigmoid function is bounded by a pair of
horizontal asymptotes 0 < S(x) < 1 when x →∞.

B. ADAPTIVE SAMPLING PROBLEM DEFINITION
Denote a data stream X , periodic sampling is a T interval
process (every T time units) of collecting a data instance
from X. The T value is also known as the sampling rate.
Thus, data point Xi is collected at time ti = i ∗ T . For
example, if T = 1 seconds, 20th data point is collected
at t20 = 20 seconds. The simplicity of periodic sampling
is well-fitted with constrained devices, which have limited
computational resources. For this reason, it is widely used for
IoT devices. However, selecting an effective T value is very
challenging because it is data-specific. Considering the data
stream illustrated in the top plot of Figure 1, if the sampling
rate (T value) is low, the IoT device generates and transfers
a massive volume of data over the network. This behavior
seriously damages the device battery and cloud resources
required to process such data. In case the T value is high,
the notable events may be ignored. For example, as shown
in the second plot of Figure 1, the events occurred at T20,
T60, and T120 are undetected due to increasing T value from
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FIGURE 1. Periodic and adaptive sampling.

1 minute to 7 minutes. Therefore, periodic sampling is inef-
fective for saving energy and guaranteeing data precision.

Adaptive sampling is a potential approach to mitigate peri-
odic sampling problems. It is defined as a collecting process
using dynamical sampling interval T ∈ [Tmin,Tmax], which
is calculated from data stream X based on estimation models,
denoted as f (X ). Suppose Xi is the latest sample from X
and X∗ is a reconstructed data stream of M after performing
adaptive sampling. The difference of X and X∗ is denoted as
ERR, which evaluates the accuracy of the estimation model.
The goal of adaptive sampling is to provide a maximum T
value to collect sample Xi+1 from X based on the estima-
tion model f (X ), while minimizing ERR and guaranteeing
T ∈ [Tmin,Tmax]. Thus, the problem is formalized into the
following equation:

T = argmax
T
{ f (Xi,X ,ERR) | argmin{ERR},

T ∈ [Tmin,Tmax]} (4)

As we can see from (4), ERR → 0 may lead sampling
interval T → Tmin that reduces energy-saving performance.
Thus, an effective adaptive sampling algorithm is capable of
balance the data accuracy and preserving energy to fulfill
given user-desired saving level.

III. USER-DRIVEN ADAPTIVE SAMPLING ALGORITHM
To mitigate the discussed limitations, we propose a
light-weight user-driven adaptive sampling algorithm to
improve energy-efficiency, while maintaining the high accu-
racy of collected information. In this section, we first present
the overall of our proposal. Then, we discuss each step along
with related definitions.

The general idea of UDASA is to dynamically adapt the
sampling frequency to the changes in sensed data in history.
Intuitively, a higher frequency is preferred to fully aware of
the events when there are significant changes (high variance).
For example, in forest fire warning services, the sudden
increases of current temperature are considered as notable

events (e.g., forest fire). Increasing the device frequency
to collect more data may help to deeper investigating such
events. In contrast, if the observed values are hardly fluctu-
ated, decreasing the frequency is demanded to reduce energy
consumption in sensing, processing, and transmitting oper-
ations. To actualize the above idea, we exploit an enhanced
sigmoid function to quickly adapt the sampling frequency
to the sudden changes in collected data D following given
user-desired saving level n. In theory, the valid value of n
is from 1 to∞. However, from the experimental evaluation
on real datasets, we recommend that the n value should be
from 1 to 20.

Let Ti+1 denote the sampling interval at time i+ 1, where
Xi is the last collected data point. Given the minimal sampling
interval ofMIoT system is Tbase (For example, Tbase of Sigfox
device is 10minutes. It is about 144messages per day), saving
level n, we calculate:

Ti+1 = fchange ∗ Tbase (5)

where

fchange = n+
1− n

1+ e−n∗D
(6)

with:

D = 4θi(Xi)−
n+ 1
2
∗ (WN ) (7)

In (7), the D value is computed by comparing the change
of the Median Absolute Deviation between incoming data
Xi and the mean of such deviation over last N data points
(denoted byWN ).

WN =
1
N

i∑
j=i−N

4θ (Xj) (8)

In the enhanced sigmoid function defined in (6), the saving
level n acts as an upper asymptote to ensure the next sampling
interval lower than n times minimal sampling interval (Tbase).
In detail, if D value is sufficiently large (the current change
of MAD is overwhelming their recent changes in last N data
points), the value of fchange converges to 1. As a result, the next
sampling interval is minimal to collect more data. In turn,
if the change of incoming data is minor, next sampling inter-
val converges to n times Tbase, with n is the given saving level.
Thus, in theory, the valid value of level n is from 1 to infinity.
With n = 1, the output sampling interval equals Tbase.
In other words, there is no energy saving. Increasing n values
are preferred in cases end users desire more saving. Note that,
if the level n value is notably high, the upper asymptote is
negligible. The next sampling interval only depends on the
changes of incoming data (reflected by D value).

lim
D→∞

fchange = 1⇒ Tmin −→ Tbase

lim
D→−∞

fchange = n⇒ Tmax −→ n ∗ Tbase

The value n+1
2 in (7), known as ‘‘equity factor’’, is used

to ensure that the change of current value 4θi(Xi) comparing
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withWN equal the change sampling interval Ti+1 comparing
with Tbase. For example, if the change of current value equals
n+1
2 times mean of this change over last N data points, the D

value in (7) is 0. For this reason, the fchange value in (6) is n+12 .
This means the next sampling interval Ti+1 equals n+1

2 times
Tbase.

The enhanced sigmoid function aims to minimize the con-
secutive sensed data with similar values by decreasing the
sampling frequency when detecting the stability in collected
data (the changes are minor). In contrast, increasing the
sampling frequency is preferred to conserve data accuracy
when there are significant changes. The natural boundaries
(lower bound and upper bound) of the sigmoid function
ensure the sampling frequency changes under control. The
output frequency of our proposal is always higher than a base
frequency (Tbase). Thus, the accuracy of the collected data is
highly preserved. The key challenge is to detect the changes
quickly and robust to the outlier.

To solve this challenge, we exploit the Median Absolute
Deviation (MAD) stable with outliers than the standard devi-
ation (STD) that squares the distance from the mean. Thus,
fluctuated data values strongly impact STD values, whereas
the deviations of outliers are irrelevant to MAD values. As a
result, the D function defined in (7) not only quickly detects
the changes in data but is also robust to the outlier. On the
other hand, as a property of sigmoid function, the upper and
lower asymptotes of fchange function are n and 1, respectively.
Thus, regardless of the change of incoming data reflected
by D value, the next interval is in a specific range from
1 → n times Tbase. The other superiority of fchange function
is that its converging rate is managed via n value. Figure 2
illustrates the fchange function with different saving levels n
(from 2 to 5). The x and y axes are n ∗ D and fchange values,
respectively. As the figure shown, the fchange valueswith low n
values converge to their boundaries slower than the ones have
high n values. This demonstrates that by configuring n value,
the end-user is able to fully control the sampling frequency
conforming with several IoT application contexts.

FIGURE 2. The illustration of proposed enhanced sigmoid function
(fchange).

Our proposed algorithm exploits the extended sigmoid
function corresponding with a natural sampling process,

which is robust with faulty in sensed data. This scheme
ensures that the new frequency is calculated not only based
on the latest sensed data but also historical data. In more
detail, an anomaly value in sensor reading, which may be
significantly higher than the average change recently, does
not strongly impact on the next sampling frequency. The fre-
quency only changes when there are consecutive changes in
sensed data. As a result, our approach effectively determines
whether the device energy is either consumed or conserved
based on the trend of the sensed data rather than uncertain
changes on the last value. The pseudo-code for implementing
our proposal is presented as below:

Algorithm 1Adaptive Frequency for of Newest Data PointXi
Input: Dataset X , timestamp i, window size N , and saving
level n
Output: Sampling interval Ti+1
1. Initializing: Window WN = {Xi−N ,Xi−N+1, . . . .,Xi}
2. Calculating:WN =

1
N

∑i
j=i−N 4θ(Xj)

3. Calculating changing degree:
D = 4θ(Xi)− n+1

2 ∗WN
4. Calculating the next sampling interval:

Ti+1 = (n+ 1−n
1+e−n∗D ) ∗ Tbase

return Ti+1

IV. EXPERIMENTAL EVALUATION
A. METRICS OF MEASUREMENT
To evaluate the efficiency of our proposal, we use two
metrics:
• Normalized Mean Error (NME) indicates the overall
goodness of fit after normalizing between the original
signal and reconstructed signal from sampled data. This
factor is defined as:

NME =
1
n

n∑
i=1

|x̂i − xi| ∗ 100% (9)

with x̂i denotes the normalized ith data in the recon-
structed signal, xi represents the normalized ith data in
the original signal and n is the size of signal. Due to the
different numeric ranges of collected data, normalization
step is necessary before calculating the goodness of
fit to rescale the data distributions so that the overall
mean and standard deviation are 0 and 1, respectively.
For example, the temperature in house is typically in
range from 10 to 25, whereas the pH values of water is
from 0 to 14. A value xi in dataset X is normalized as
follows:

xi =
xi −max(X )

max(X )−min(X )
(10)

• Sampling fraction (SF) indicates the conserved
resources based on the reduction in transmitted mes-
sages. It is defined as the number of samples collected
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by UDASA over the original data size.

SF =
m̂
n

(11)

with m̂ and n are the sizes of sampled data according to
UDASA and original data, respectively.

B. BENCHMARK DATASETS
1) NATIONAL OCEANIC AND ATMOSPHERIC
ADMINISTRATION (NOAA) DATASETS
NOAA provides a set of real-time data about water-quality
from a place named ‘‘Jamestown’’. To reasonably compare
with state-of-the-art algorithms, we choose the same datasets
and monitoring durations with them, which are turbidity and
DO from 15 December 2016 to 15 March 2017. As shown
in the bottom plots of Figure 3, these datasets contain about
2179 data points with 1h interval sampling.

2) IoT DATASETS
These datasets are about temperature collected from two
IoT devices deployed in our working space. They are illus-
trated in the top plots of Figure 3. The first device produces
a dataset about 7683 data points, namely ‘‘IoTdevice1’’,
which has a sampling interval of 10 minutes for a sam-
ple. The dataset acquired from the second device is named
‘‘IoTdevice2’’, which is about 1731 data points with 1-hour
sampling interval.

FIGURE 3. The benchmark datasets: (a) IoTdevice1 dataset;
(b) IoTdevice2 dataset; (c) DO dataset; (d) Turbidity dataset.

C. EVALUATIVE SIMULATION
To assess the performance of our proposal, we simulate the
evaluation process closed to real deployments on IoT devices.
The original dataset acts as an environmental context provid-
ing sensing values for the sampling algorithm. The detail of

the evaluation process is presented in the Algorithm 2. In the
first step, the sampled dataset contained sample data by our
proposed algorithm is initiated from the first N data points
of the original dataset (line 1). In the next step, the sam-
pling process is performed repeatedly until the next sample
exceeded the original dataset. In detail, sampling intervals are
real-time calculated using our proposed algorithm described
in Algorithm 1 (line 2.1), and their sensing values are derived
from the original dataset by using an interpolant method
defined in (2) (line 2.2). Then, the sampled values are added
to the sampled dataset (Line 2.3). In the final step, since
indicating the goodness of fit of the sample dataset and the
original dataset require equal data size, we perform upsam-
pling of the sampled dataset to the size of the original dataset
using simple interpolation [22] (line 3) before calculating the
evaluation metrics (NME and SF). This simulation process
is implemented by using Python programming language, and
performed on-device has the processor: Intel(R) Core(TM)
i5-6200U CPU@ 2.30 GHz, 2401MHz, 2 Core(s), 4 Logical
Processor(s), 4 GB of RAM.

Algorithm 2 Evaluation Process
Input: Dataset X, Window size N, Saving level n
Output: NME,FS
1. Y = [X0,X1, . . . .,Xi−1], i = N
2.While i < size(X ) do∥∥∥∥∥∥∥∥

1. Ti← UDASA(Xi−1,N , n)
2. Xi← Interpolation(X ,Ti)
3. Y = Y ∪ {Xi}
4. i = i+ Ti

3. X̂ ← UpSample(Y )
Return NME(X,X̂ ), SF(Y ,X )

D. SIMULATION RESULTS
The simulation results are separated into two parts. We first
evaluate UDASA performance (indicating via Sampling
Fraction and Normalized Mean Error) over real datasets
with various saving levels and window size settings. Then,
a comparison between our algorithm with baselines is pre-
sented. These results demonstrate that UDASA both effec-
tively reduces the number of samples (low SF) and maintains
the high-level goodness of fit between the original signal and
reconstructed signal from sampled data (low NME).

1) NOAA DATASETS
We first evaluate the proposed algorithm over the NOAA
datasets, including DO and Turbidity datasets, with different
parameters. Figure 4 and Figure 5 illustrate simulation results
at several saving levels over the DO and Turbidity datasets,
respectively. In this experiment, the window size (N) is set
to 30. With n = 1, shown in Figure 4(a), there is no reduc-
tion comparing with the original dataset. It means the sam-
pling frequency and sample size are unchanged. As a result,
the sample fraction value equals 1. Figure 4(b)-(d) present
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FIGURE 4. DO dataset with different saving levels: (a) Saving level 1 (no
saving); (b) Saving level 3; (c) Saving level 5; (d) Saving level 15.

FIGURE 5. Turbidity dataset with different saving levels: (a) Saving level 1
(no saving); (b) Saving level 3; (c) Saving level 5; (d) Saving level 15.

results with saving levels equal 3, 6, and 15, respectively.
We can see that increasing the saving level could significantly
decrease the SF values sinceUDASA acquires fewer samples.
For example, tripling the saving level from 1 to 3 over the DO
dataset reduces the sample size from 2179 to 992 samples
and the SF value is reported at 0.45. Increasing the saving
level to 5, the obtained data size is significant decrease to
541 points corresponding with the SF values is 0.25. Similar
simulation results are also found over the Turbidity dataset
in Figure 5.

FIGURE 6. The similarity among data trends with different saving levels:
(a) Turbidity dataset; (b) DO dataset.

Although collecting fewer samples, the trend of data is
highly preserved regardless of saving levels. Figure 6 pro-
vides an intuitive view about this preservation in the NOAA
datasets by combining the outcome of subplots in Figure 4
and Figure 5. Similar results are also presented in Table 4.
The NME values indicating the overall fit of reconstructed
data from sampled data and original data is extremely low. For
example, given the saving level 3 over the DO dataset, NME
value is about 2.21%. In other words, the difference between
corresponding values of the reconstructed data (from around
45% original data size) and the original dataset is only 2.21%.
TheNMEvalue slightly increases to 4.38%when saving level
equals 5. This increase is a result of the notable drop-off in
the number of collected data, which is reduced about 4 times.
Increasing the saving level to 20, the corresponding NME
is reported about 7.09%, even though UDASA only col-
lects a tiny number of samples roughly equaling 6% original
data size. Performing the same simulation over the Turbidity
dataset even provides better results. The NME values are
2.42%, 3.52%, and 5.51% for saving levels at 3, 5, and 20,
respectively.

TABLE 4. Simulation results with different saving levels over NOAA
datasets.

2) IoT DATASETS
Next, we evaluate the performance of UDASA over IoT
datasets with various saving level configurations and report
the results in Table 5. Similar to the simulation results of

135804 VOLUME 8, 2020



L. Kim-Hung, Q. Le-Trung: User-Driven Adaptive Sampling for Massive Internet of Things

TABLE 5. Simulation results with different saving levels over IoT datasets.

NOAA datasets, increasing saving levels could significantly
reduce the number of samples. For example, we can decrease
the sample size of IoTdevice1 datasets from 7683 samples
to 1587 samples or 541 samples when increasing the saving
level from 1 to 5 or 15, respectively. We also note in Table 5
that given a saving level, the SF values of two datasets are
nearly equal. For example, the SF values of IoTdevice1 and
IoTdevice2 datasets at saving level 3 are 0.43 and 0.44,
respectively. This can be explained that these datasets have
similar data distribution (trend, seasonality, and data range).
As a result, their D values calculated from Median Absolute
Deviation are the same. Remarkably, our proposal is highly
effective over IoT datasets. At the same saving level, theNME
values of simulation results over IoT datasets are significantly
lower than ones over NOAA datasets. For example, at saving
level 3, the NME value of the IoTdevice1 dataset is reported
about 0.75%, whereas this value of the DO dataset is 2.21%.

FIGURE 7. IoTdevice1 dataset with different saving levels: (a) Saving
level 1 (no saving); (b) Saving level 3; (c) Saving level 5; (d) Saving level 15.

Figure 7 and 8 illustrate the sample data of IoTde-
vice1 and IoTdevice2 datasets at various saving levels. As the

FIGURE 8. IoTdevice2 dataset with different saving levels: (a) Saving
level 1 (no saving); (b) Saving level 3; (c) Saving level 5; (d) Saving level 15.

FIGURE 9. The similarity among data trend for different saving levels:
(a) IoTdevice1 dataset; (b) IoTdevice2 dataset.

figures showed, the data are very similar in trend regardless
of data size. This similarity is not only intuitive (shown
in Figure 9) but also represented by low NME values (shown
in Table 5). For example, given saving level 5, the NME
values of IoTdevice1 and IoTdevice2 datasets are 1.34% and
1.41%, respectively. These valuesmean that the reconstructed
data from samples (sample size equals around 22% original
data size) and original data are nearly 99% similar. These
results again demonstrate the superiority of our proposal
about effectively reduce the number of sample while maxi-
mizing the precision of collected data.

3) VARYING WINDOW SIZE
To assess the impact of window size (N value) setting on
UDASA performance, we report simulation results about SF
and NME values when varying the window size settings for
different saving levels in Figure 10 and Figure 11, respec-
tively. The window size values are simulated from 20 to 100.
As our expectation, this parameter does not strongly affect
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FIGURE 10. The changes of SF values when varying window size parameters over: (a) IoTdevice1 dataset; (b) IoTdevice2 dataset; (c) DO dataset;
(d) Turbidity dataset.

FIGURE 11. The changes of NME values when varying window size parameters over: (a) IoTdevice1 dataset; (b) IoTdevice2 dataset; (c) DO dataset;
(d) Turbidity dataset.

TABLE 6. Comparing NME values of UDASA with baselines over the DO dataset.

sampling performance, especially the SF value. In more
detail, plots in Figure 10 show that given a specific saving
level, SF values of all benchmark datasets are stable around
a constant value when changing the window size. Similarly,
the NME values of IoTdevice1, IoTdevice2, and Turbidity
datasets shown in Figure 11 hardly fluctuate under different
window size settings (Evaluated window size values are 20,
30, 40, 50, 60, 80, and 100). For example, these experiment
results of the IoTdevice1 dataset at saving level 5 shows that
the variance of NME values when increasing the window
size value from 20 to 100 is about 0.02%. This value of the
IoTdevice2 dataset is reported at 0.019%. However, there are
slight changes in NME values of the DO dataset between
different window size settings. By manually analyzing such
NME values, we notice that an abrupt disruption (at around
the 600th data instance) separates the dataset into two parts
with different trends, causing such changes of NME values.
These evaluation results again consolidate the effectiveness
and consistency of our proposal.

E. COMPARISON OF RESULTS
We do state-of-the-art common adaptive sampling algorithms
for energy-efficiency purposes, but evaluating all of them

is extremely heavy. Therefore, we compare our proposal
with DDASA [23] with different thresholds t , ASA [14],
ASAP [24], AMDR [25], and ASDR [26] which are the most
related to our proposal. Because the codes of DDASA and
ASA algorithms are unavailable, their evaluation results are
derived from the original papers.

As shown in Table 6, we compare the NME value of
UDASA over the DO dataset with the ones of our competitors
in different sample sizes. The better algorithm has lower
NME. At the sample size equals 1064, the NME value of
UDASA is 2.07% and slightly higher than the one of DDASA
(t=0.01) reported about 1.62%. However, our proposal shows
superiority over the competitors in all remaining cases. For
example, reducing the original dataset (2179 data points) to
297 and 421 samples, the NME values of our approach are
about 6.04% and 5.2% in comparison with 9.99% and 8.43%
of DDASA, respectively. Similarly, our proposal outperforms
ASAP, AM-DR, and ASDR. Decreasing to 200, 502, and
917 samples, the NME values of our algorithm are 7.61%,
4.72%, and 3.21%, respectively. These values of ASAP,
AM-DR, and ASDR are 11.57%, 6.11%, and 4.7% This
means that the reconstructed data from our selected points is
more likely to original data than others. On the other hand, our

135806 VOLUME 8, 2020



L. Kim-Hung, Q. Le-Trung: User-Driven Adaptive Sampling for Massive Internet of Things

approach is more consistent and robust than the competitors
in high power saving scenarios. This is demonstrated by
the minor changes of NME when significantly reducing the
number of samples. The variance of DDASA’s NME values
is around 2.91 in comparison with 13.6 of DDASA when
decreasing the sample size from 1064 to 297. In summary,
comparing with other approaches, our algorithm has better
performance demonstrated by lower NME, and it is robust
with various parameter configurations.

V. RELATED WORK
Energy efficiency for constraint devices is a highly interesting
topic in the context of the Internet of Things since power
management may involve several device operations, such as
sensing, processing, and transmitting. For instance, in the
agriculture scenario where IoT devices are widely distributed
in a large region, optimizing the energy consumption may
extend the device life cycle and significantly reduce the
maintenance cost. In what follows, a series of techniques and
frameworks to achieve energy-efficiency are presented.

A. ADAPTIVE SAMPLING
Considering that waking-up, collecting, and pre-processing
operations consume a similar proportion of energy compared
with transmitting, the fundamental idea of adaptive sampling
technique is to adapt the sampling rate to the observation
changes based on specific criteria ensuring the precision
of outcome information. We catalog the adaptive sampling
approaches based on such criteria.
Send-on-delta sampling: is the most commonly used in

wireless networks. The original of such approach is the
level-crossing sampling at late 1950s based on the idea ‘‘the
most suitable sampling is by transmission of only signif-
icant data, as the new value obtained when the signal is
changed by a given increment’’ [27]. Due to its popular-
ity, there are various temps expressing this strategy such as
event-based sampling [28], magnitude-driven sampling [28]
or deadbands [29]. Formally, given threshold δ, a message has
value yi at ti is sent if and only if

(yi − yk ) > δ (12)

With yk is the last message sent at tk . To prevent babbling-
idiot failure on such approach, the min and max sending
time, denoted by TL and TH , respectively, are defined as the
boundary of sampling interval (TL ≤ ti − tl ≤ TH ).
Integral Sampling uses the concept of integral or energy

of the error to deal with small oscillations in the signal. The
message is sent if the accumulated error of sampling, denoted
byCES, is greater than a pre-defined threshold ξ . Themin and
max-send-time are also applied. The CES value of a signal
x(t) is the difference between x(t) and accumulated value
from the most recent sample x(tk ).

CESxt =

ti−1∫
ti

[x(t)− x(tt−1)]2dt (13)

where i = 1, 2, . . . , n is the number of sample taken from t0
to tn [30].
Predictor-based sampling uses a model to predict the next

measure based on past values. The message x(t) is sent if it
significantly differs with the predicted value x̂(t). The crite-
rion of the difference may reuse either sen-on-data or interval
sampling. The model is built from a simplified statistic using
linear extrapolation [31]. To maintain the high information
quality, the predictor is used in the receivers to extrapolate
the signal value until receiving the new message. However,
updating the receiver predictor requires at least two samples,
which reduces the efficiency of this approach.
Gradient-based integral sampling is an extension of the

integral sampling approach with the optimization of wake-up
energy consumption—this method based on the fact that the
waking-up device consumes considerably larger than collect-
ing message. Hence, the next wake-up time is automatically
adjusted to the current gradient of the signal [32]. A max-
sleep-time is defined to avoid the signal gradient reducing to
zero.
Sigmoid-based sampling uses a sigmoid function to esti-

mate the changes of sampling rate based on the variance
of the last windowed signal [14], [23]. Let denote the
last message be x(t) belonging a signal window size W ,
the variance is the absolute difference of between x(t) and
x(t − 1) over the average value of W . Next, such variance
is compared with a predetermined threshold before calculat-
ing the new sampling rate is the multiplication of current
race and the sigmoid function of such variance. The new
rate is limited from 0 to 2 as a result of sigmoid function
properties.

Other methods apply adaptive sampling to reduce device
energy consumption for disseminating monitoring informa-
tion. Demistris et al. [19] propose an energy efficiency frame-
work for IoT devices, namely ADMin, supporting adaptive
monitoring rate based on variability and seasonal behavior of
current monitoring stream. To achieve this, ADMin exploits
a probabilistic learning algorithm to build a model used to
estimate the next stage of the metric stream. Instead of trans-
mitting all monitoring information, IoT devices only send
updates to the estimation model. Similarly, the authors in
[25] and [26] introduce a prediction-based method exploit-
ing least mean squares adaptive filters to reduce transmis-
sion data. In [24], the authors provide a method to reduce
local variance while preserving data deviations in time
series. In turn, LANCE [33] reduces energy consumption
by only sending the average of windowed values. Based
on the user-defined policies, the receiver decides summa-
rized values are useful. In [34], the authors introduce G-SIP,
an energy-efficiency IoT framework that updates only when
the values are changed in a way that can not be estimated by
using historical values. G-SIP uses an exponential weighted
average to adapt the update rate to the changes in collected
values. LANCE and G-SIP’s common disadvantages are slow
to adapt to sudden changes and using static thresholds that are
data-specific.
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B. OPTIMUM TASK SCHEDULING
Several works argue that minimizing energy consumption can
be achieved by optimizing task scheduling policy. In [35],
Zhou et al. address a joint route planning and task assignment
problem to optimize energy for unmanned aerial vehicles
(UAVs). The joint optimization problem is formulated into
a two-side two-state matching problem. In the first stage,
dynamic programming or genetic algorithms are exploited
to solve the route planning problem. Then, the authors use
the Gale-Shapley algorithm to solve the second-stage task
assignment problem. Its effectiveness is demonstrated by
theoretical analysis and practical evaluation results. Similar
works for UAVs, [36] aims to minimize energy consump-
tion by combining dynamic programming, auction theory,
and matching theory. The authors formulate a minimization
problem as a joint optimization involving both large-scale and
small-scale optimization. In terms of energy consumption,
trajectory scheduling, velocity control, frequency regulation,
relay selection, and power allocation algorithm are opti-
mized. The authors in [37] demonstrate that the optimization
of task scheduling in IoT devices is an NP-hard problem
in a pseudo-polynomial time and propose a dynamic pro-
gramming algorithm to cope with this problem. Their algo-
rithm prototype is evaluated on three common IoT platforms
(TMote, Raspberry PI, and Arduino), effectively adopting the
system parameters with different device battery conditions.
[38] proposes an enhanced version of the earliest deadline
first (MEDF) algorithm to reduce energy consumption while
maintaining low delay missing rate. A new task is scheduled
based on the current device energy level in the super-capacitor
and system timing constant. In a similar approach, [39] uses
an energy-aware lazy scheduling algorithm to optimize task
scheduling. Its effectiveness is evaluated on both low-cost and
commercial devices in practical scenarios. In [40], the authors
introduce a dynamic optimization model based on Markov
Decision Process (MDP). The proposed model considers the
priorities and deadlines of the tasks and battery capacity to
derive optimum scheduler. However, this MDP-based sched-
uler is insufficient for real-time tasks, so the authors propose
a greedy version of this scheduler for real devices. In [41],
the task scheduling problem of monitoring applications is
tackled with a Q-learning-based algorithm. The algorithm
applies an annealing strategy to update the scheduling pol-
icy to maintain a sufficient battery level for the device’s
functional jobs. In addition, it also defines the constraint for
sending the state values to reduce exchanged information
between nodes in Wireless Sensor Network.

C. OPTIMIZED NETWORKING FUNCTIONS
Network operations are recognized as a significant energy
consumption source. Many existing works have studied net-
work optimization to prolong device battery. The authors
in [42] introduce a stochastic network optimization algo-
rithm for access control and resource allocation by exploit-
ing Lyapunov optimization. Without requiring the channel
state information, the proposed algorithm aims to optimize

sensing rate control, power allocation, and channel selec-
tion in both application and physical layer. Under various
simulation results, its ability to execute online with low com-
plexity is testified. Similarly, [43] studies the node trans-
mission behavior to build the model, which provides a
joint optimization of the data queue. The model can pre-
dict both long and short terms. The work in [44] considers
the optimization of channel selection for resource-limited
machine-types devices (MTDs) under the missing of global
state information. The optimization problem is formulated as
a one-to-one matching between MTDs and channels. Com-
bining machine learning, Lyapunov optimization, and match-
ing theory, the authors propose a matching-learning based
channel selection framework. The effectiveness and reliabil-
ity of the proposed framework are validated under various
simulated scenarios and parameter settings.

[45] presents a variable sample scheme, which supports
receivers adapting the sampling period to the current energy
state and the incoming packet length. A sampling information
bit is added to the request message header to indicate the com-
plete samples of the network packet. In addition, the authors
use the Markov decision process to model the transmission
system to minimize power transmission. To enhance effi-
ciency, an optimum re-transmission scheme is also presented.
In [46], the optimal deployment of data routing devices in
WSN is formulated as a multi-constraint mixed-integer linear
program (MILP). Due to the high complexity and strongly
effected by network size, a lightweight k-connected greedy
solution is also developed. [47] introduces an energy-efficient
IoT network for a 5G system leveraging RF energy from the
cellular traffic to transmit data. Through experiments in a
realistic traffic model, the authors prove that more energy is
saved when network utilization is increased.

D. OPTIMUM SENSING
Several works are proposed to optimize sensing operations
on devices powered by limited battery resources. The authors
in [48] exploit Mean Squared Error estimation (MSE) to
express the correlations in energy consumption between sens-
ing and transmitting operations. Through theoretical analysis,
they show that adjusting the sampling rate can achieve opti-
mum energy consumption. [49] introduces an asymptotically
optimal solution using power-law decaying covariance for
random processes. Assuming the energy consumption dis-
tribution follows a Poisson process, the authors discover a
Markovian property could be used to identify a lower bound
of sensing MSE. Typically, they split the time into fixed time
windows and estimate optimum sensing performance based
on the current battery level. In their experiments, the proposed
solution’s MSE values are lower than the uniform sampling
policy (fixed sampling rate). [50] presents optimum random
sensing policies, which randomly choose a set of candidate
sensing instants. This work addresses the sampling of a
band-unlimited continuous-time random process. At a given
candidate sensing instant, the sensor only performs sensing
operations only if the battery level is sufficient. The authors
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demonstrate that minimumMSE can be achieved by adjusting
the sampling period and sampling energy.

VI. CONCLUSION
In this work, a user-driven adaptive sampling algorithm
namely UDASA was presented. Given user-desired saving
levels, our proposed algorithm could minimize device energy
consumption while ensuring the accuracy of collected data.
Our practical experiments have shown that UDASA is robust
for different parameter values, and effectively decrease the
sample size with low error in reconstructed data. Applying
this algorithm to NOAA and IoT datasets could significantly
reduce the number of acquired samples up to 20 times in com-
parison with a traditional fixed-rate approach at extremely
low error around 6.4% and 3.45%, respectively. Comparing
with the existing adaptive sampling algorithm, UDASA is
superior in terms of the accuracy of the collected data. There-
fore, the energy-efficiency goal for constrained devices is
archived by our proposal. Also, its light-weight and ability
to control the energy-saving level make UDASA widely used
in various use-cases, especially in the MIoT context.

In the future, we will make UDASA become a non-
parametric algorithm by automatically estimate the window
size parameter following the properties of input data. More-
over, we will perform additional experiments on embedded
devices with various communication protocols to verify the
amount of saved energy. Combining UDASA with exist-
ing compression algorithms to enhance energy conservation
could be a potential approach.
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