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Abstract: In this paper, the integration of Type-2

fuzzy set theory and recurrent wavelet neural net-

work(WNN) is proposed to allow managing of non-

uniform uncertainties for identifying non-linear dy-

namic system. The proposed Type-2 fuzzy WNN is

inherently a recurrent multilayered network which

constructed based on a set of Type-2 fuzzy rules

and recurrent connections in the second layer of the

FWNN. Each rule comprises a wavelet function in

the consequent part. The structure has both ad-

vantages of recurrent and wavelet neural network

which expand the basic ability of fuzzy neural net-

work to deal with temporal problems. Both an-

tecedent and consequent parameters update rules

are derived based on the gradient descent method.

The structure is applied in the identification of dy-

namic plants which is commonly used in the liter-

ature. Simulation result from the identification of

a second-order non-linear plant confirms the bet-

ter performance and effectiveness of the proposed

structure.
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1 Introduction

The use of conventional modeling approaches in the

study of nonlinear dynamical system identification

suffers from some deficiencies, including lack of pre-

cise, strongly nonlinear and time-varying behavior,

formal knowledge about the system and a high de-

gree of uncertainty. Under such conditions, model-

free approaches such as artificial neural networks,

fuzzy logic systems and fusion of them which are

universal approximators, have been developed to

compensate for the effects of nonlinearities and sys-

tem uncertainties without significant prior knowl-

edge of system dynamics [1, 2].

Type-2 fuzzy logic systems as an extension of

its type-1 have better ability to deal with and model

uncertainties and measurement noise [3]. Different

optimization methods are applied to estimate the

parameters of neural network and fuzzy neural sys-

tems from numerical data. The methods can be

categories into two types: derivative-based (such as

gradient descent, least square) and derivative-free

optimization methods(such as particle swarm opti-

mization and genetic algorithm).

Back propagation error method is mainly

used for training feed-forward neural networks. Be-

cause of some deficiencies of BP algorithm like slow

convergence rate, being able to trap to local optima

and dependent to the initial condition, some differ-
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ent methods based on BP algorithm are developed

such as Momentum, adaptive learning rate. These

modifications accelerate the convergence of network

training, but they have not the ability to avoid areas

of local optima [4].

Wavelet function as the activation function

can enhance the advantages of neural networks for

faster learning ability and wavelet decomposition

for identification purposes. In literature, wavelet

neural network (WNN) and its integration with

fuzzy logic (FWNN) to determine an optimal defi-

nition of the premise and consequent part of fuzzy

rules, are applied in the identification and control

of nonlinear dynamical systems [5–8].

To enhance the approximation accuracy of

the network and capture the dynamic behavior of

the system, different kinds of feedback loops in the

topology of the network are embedded. The combi-

nation of RNN and fuzzy logic (RFNN) are applied

to various practical application [9–11], and different

methods for their parameters tuning are discussed.

In this study, a type-2 fuzzy recurrent wavelet

neural network(T2FRWNN) is presented which in-

tegrates FWNN and recurrent neural network to

benefits the advantages of both. The proposed dy-

namic identification structure is equipped the net-

works to process temporal information and learn se-

quences with using local internal feedback loops by

feeding the lower and upper of type-2 membership

function back to itself. Besides, network response in

handling the uncertainties and imprecision can be

achieved by utilization of type-2 FNN and wavelet

activation function. For the parameter adaptation

of the T2FRWNN, gradient descent is used.

The main body of this paper is organized as

follows. In Section 2, the structure of T2FRWNN

is introduced. In Section 3, the parameters update

rules based on gradient descent are derived. In Sec-

tion 4, simulation results are shown and discussed.

Finally, concluding remarks are given in Section 5.

2 Type-2 Fuzzy Recurrent Wavelet Neural

Network structure

The T2FRWNN structure benefits from recurrent

type-2 membership function in the premise part and

crisp wavelet numbers for the consequent part. In

other words, the structure is the recurrent version of

the so-called A2-C0 fuzzy system [12] which imple-

ments a recurrent wavelet fuzzy model. Each fuzzy

if-then rule base with I input variables considered

here is as follows:

Rr : If x1 is Ã1j · · · xi is Ãik and · · · and xI is

ÃIl then

fr = ρr

I∑
i=1

|ari|−
1
2 (1− z2ri)e

− z2ri
2 (1)

where K is the number of membership function and

fr is the output of rth rule (r = {1, 2..., N}). Ãik is

the kth type-2 fuzzy membership function related to

ith input variable. ρ is the weight coefficient between

the input and the hidden layer. Consequent part of

above rule involved a wavelet function of input variables.

Wavelets are defined by a family of functions a and b

(a > 0, b ϵ R) as dilation and translation respectively.

In this manuscript, among several families of wavelets,

Mexican Hat is considered as mother wavelet function.

Ψr(z) =

I∑
i=1

|ari|−
1
2 (1− z2ri)e

− z2ri
2 (2)

where ar = {ar1, ar2, · · · , arI} and br =

{br1, br2, · · · , brI} and xr = {x1, x2, · · · , xI} are in-

put variables.

Ψr(z) =

I∑
i=1

|ari|−
1
2 (1− z2ri)e

− z2ri
2 (3)

where, zri =
xi−bri
ari

.

The structure of T2FRWNN proposed in this pa-

per includes seven layers. In the first layer, the number

of nodes is equal to the number of input signals. These
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nodes are used for distributing input signals. In the sec-

ond layer, each node corresponds to one linguistic term.

For each input signal entering into the system, type-2

membership functions are used. The type-2 MFs have

uncertain standard deviation and fixed center and the

membership degree µik(xi) and µ
ik
(xi) are calculated

according to (4) and (5).

µik(xi) = exp

(
−1

2

(xi + ξik − cik)
2

σik
2

)
(4)

µ
ik
(xi) = exp

(
−1

2

(xi + ξik − cik)
2

σik
2

)
(5)

where cik is center of type-2 MF, σik and σik are the

upper and lower standard deviation of the kth type-2 MF

of ith input. Moreover, ξik is the recurrent parameter

defined as (6) which store the past information of the

network. It is to be noted that the feed back weights of

nodes in layer 2 are interval values.

ξik =
θikµik

(t− 1) + θikµik(t− 1)

θik + θik
(6)

where θik and θik are considered as feed back weights of

the nodes in this layer. Nodes in the third layer represent

one fuzzy rule and perform a fuzzy meet operation on

inputs from layer 2 using an algebraic product operation

to obtain upper and lower firing strength wr and wr

which are calculated as follows:

wr = µÃ1(x1) ∗ µÃ2(x2) ∗ · · · ∗ µÃI(xI) (7)

wr = µ
Ã1

(x1) ∗ µÃ2
(x2) ∗ · · · ∗ µ

ÃI
(xI) (8)

Layer 4 determines the normalized values of the lower

and the upper firing strength corresponding to each node

in layer 3:

w̃r =
wr∑N
r=1 wr

and w̃r =
wr∑N
r=1 wr

(9)

Layer 5 is consequent layer. Nodes in this layer compute

the product of normalized firing strength w̃r, w̃r and

wavelet function of input variables. Layer 6 consists of

two summation blocks, one for summation of upper and

the other for summation of lower outputs of the previous

layer. Layer 7 calculates the output of the network using

(10)

yN = q

N∑
r=1

frw̃r + (1− q)

N∑
r=1

frw̃r (10)

= q

N∑
r=1

ρr|ar|−
1
2ψ(

X − br
ar

)w̃r

+ (1− q)

N∑
r=1

ρr|ar|−
1
2ψ(

X − br
ar

)w̃r

where q is the design parameter which enables to adjust

the lower or the upper portions, depending on the level of

certainty of the system [13]. Consequently, the adapta-

tion laws for the parameters and the proof of the stability

of the learning process are given using a time-varying q.

3 Parameter Update Rules For Learning

In order to obtain the learning algorithm for the parame-

ters gradient descent method with adaptive learning rate

is applied. The use of adaptive learning rate give an as-

surance of convergence and speeds up the learning of the

network. Moreover, a momentum is used to accelerate

the learning process. The parameters which should be

updated are the parameters of premise and consequent

part of fuzzy rules, including cik, σik, σik, θik and θik as

premise part of kth type-2 MF of ith input and ar, br,

and ρr as the consequent part of the rth rule. The error

function E(k) of T2FRWNN is defined by:

E(k) =
1

2

K∑
k=1

(y(k)− yN (k))2 (11)

where K is the number of input signals of the network.

The parameters mentioned above are adjusted as follows:

ρr(t+ 1) = ρr(t)− α
∂E

∂ρr
+ λ(ρr(t)− ρr(t+ 1))(12)

ari(t+ 1) = ari(t)− α
∂E

∂ari
+ λ(ari(t)− ari(t+ 1))

bri(t+ 1) = bri(t)− α
∂E

∂bri
+ λ(bri(t)− bri(t+ 1))

and for the coefficient q:

q(t+ 1) = q(t)− α
∂E

∂q
(13)
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cik(t+ 1) = cik(t)− α
∂E

∂cik
(14)

σik(t+ 1) = σik(t)− α
∂E

∂σik

σik(t+ 1) = σik(t)− α
∂E

∂σik

θik(t+ 1) = θik(t)− α
∂E

∂θik

θik(t+ 1) = θik(t)− α
∂E

∂θik

where α is the learning rate, λ is the momentum, i is the

number of input signals of the network (input neurons),

r is the number of rules (r = {1, ..., N}) and k is the

number of MFs (k = {1, ...,m}). The values of deriva-

tives in (12) can be calculated by the following formulas

(15)-(17):

∂E

∂ρr
=

∂E

∂yN

∂yN
∂fr

∂fr
∂ρr

(15)

= (yN (t)− y(t))(qw̃r + (1− q)w̃r)Ψr

∂E

∂ari
=

∂E

∂yN

∂yN
∂fr

∂fr
∂Ψr

∂Ψr

∂ari
(16)

= ν
1√
a3
e−

z2ri
2 (−z4ri + 3.5z2ri − 0.5)

∂E

∂bri
=

∂E

∂yN

∂yN
∂fr

∂fr
∂Ψr

∂Ψr

∂bri
= ν

1√
a3
e−

z2ri
2 (3zri − z3ri)

(17)

where

ν =
∂E

∂yN

∂yN
∂fr

∂fr
∂Ψr

= (y(t)− yN (t))(qw̃r + (1− q)w̃r)ρr

(18)

the coefficient q is updated as follows:

∂E

∂q
=

∂E

∂yN

∂yN
∂q

=

N∑
r=1

frw̃r −
N∑
r=1

frw̃r (19)

The derivatives in (12) are determined by the following

formulas (20)-(24):

∂E

∂cij
=
∑
j

∂E

∂yN
[
∂yN
∂w̃r

∂w̃r

∂µ
ij

∂µ
ij

∂cij
+
∂yN

∂w̃r

∂w̃r

∂µij

∂µij

∂cij
] (20)

T2FRWNN

Z-1,… , Z-d

Plant

Z-1,… , Z-d

u(k) y(k)

yn(k)

+

-

e(k)

Figure 1: Identification Scheme

∂E

∂σij
=
∑
j

∂E

∂yN

∂yN
∂w̃r

∂w̃r

∂µ
ij

∂µ
ij

∂σij

(21)

∂E

∂σij
=
∑
j

∂E

∂yN

∂yN

∂w̃r

∂w̃r

∂µij

∂µij

∂σij
(22)

∂E

∂θij
=
∑
j

∂E

∂yN

∂yN
∂w̃r

∂w̃r

∂µ
ij

∂µ
ij

∂θij
(23)

∂E

∂θij
=
∑
j

∂E

∂yN

∂yN

∂w̃r

∂w̃r

∂µij

∂µij

∂θij
(24)

where,

∂E

∂yN
= yN (t)− y(t);

∂yN

∂w̃r

= qfr (25)

∂w̃r

∂wr
=

1− w̃r∑N
r=1 wr

(26)

∂µik

∂cik
=
xi + ξik − cik

σ2
ik

;
∂µik

∂σik
=

(xi + ξik − cik)
2

σ3
ik

(27)

∂µik

∂θik
=
∂µij

∂ξik

∂ξik

θik
= − (xi + ξik − cik)

σ2
ik

(µik(t− 1)− ξik)

(θik + θik)
(28)

4 Simulation Example

In this section, one simulation studies of nonlinear sys-

tem identifications are considered regarding the proposed

model and learning algorithm to evaluate the perfor-

mance of proposed T2FRWNN. Fig.1 depicts the struc-

ture of the identification system. The inputs of the model

are delayed values from the nonlinear plant output and

delayed input signals from the plant. Here, the prob-
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lem is to find such values of parameters of proposed

T2FRWNN by using them in the system for all input

values the difference between plant output y(t) and the

T2FRWNN output yN (t) will be minimum. As an ex-

ample, identification of a second-order non-linear plant

that has been used in [14] is considered. The process is

described by the following difference equation:

y(k + 1) = f(y(k), y(k − 1), y(k − 2), u(k), u(k − 1))

(29)

in which,

f(x1, x2, x3, x4, x5) =
x1x2x3x5(x3 − 1) + x4

1 + x23 + x22
(30)

where y(k−1), y(k−2), y(k−3) are one-, two- and three-

step delayed outputs of the plant, respectively, u(k) and

u(k − 1) are current and one-step delayed inputs of the

plant. In order to have a comparison, the identification of

the same plant by using different models are considered

in [14] and [15]. For the simulation studies, the input

signal in this manuscript has the following expression:

u(k) =



sin(πk/25), k < 250.

1.0, 250 ≤ k < 500.

−1.0, 500 ≤ k < 750.

0.3sin(πk/25) + 0.1sin(πk/32)

+0.6sin(πk/10), 750 ≤ k < 1000.

(31)

Fig.2 shows the outputs of the plant and the

Model No.Params No.Rule RMSE

RFNN [16] 112 16 0.0114
RSONFIN [15] 36 − 0.0248

FWNN [8] 43 5 0.0282
FWNN [8] 27 3 0.0291

T2FRWNN − proposed 66 3 0.0168

Table 1: simulation results of different models

T2FRWNN system. Fig.3 shows RMSE values versus

each epoch number which illustrates the performance of

the T2FRWNN and the learning rules derived by the

gradient descent. The RMSE value of the proposed

T2FRWNN is illustrated in Tables 1, which gives the

result of other models as well.

Figure 2: Result of identification

Figure 3: RMSE value obtained during training of
T2FRWNN

5 Conclusion

This paper has proposed an T2FRWNN structure for

identification of dynamic plants. According to the de-

sign aspect of the proposed structure, the Type-2 Tagaki-

Sugeno fuzzy logic is integrated with wavelet neural net-

work which makes a fuzzy input space into different

wavelet-based subspaces. Besides, the recurrent part of

the structure gives the abilities to attract dynamics and

store temporary information. In the training aspect, the

parameter update rules of the structure are derived based
5



on the gradient descent algorithm. In the simulation ex-

ample of system identification, the proposed T2FRWNN

has a better performance in comparison with other mod-

els, despite smaller number of parameters.
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