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ABSTRACT Recently, synthetic aperture radar (SAR) ship detection is used in many applications within
the marine field, such as fishery management, traffic control, and urgent rescue operations. Meanwhile,
deep learning-based methods have bought new capabilities for ship detection in SAR images on account
of high accuracy and robustness. However, several challenges remain to be addressed: 1) the shapes of the
ships in SAR images have a relatively extreme aspect ratio comparing to the target objects in the optical
images, and 2) complex background and clutter noise result in adverse effects for the network to extract
prototypical SAR target features, which limit the ship detection performance. To address these issues, this
paper proposes two effective approaches to augment the feature extraction ability of the network. Firstly,
IOU (Intersection over Union) K-means is carried out to settle the extreme aspect ratio problem. The IOU
K-means, as a preprocessing step, clusters a set of aspect ratios from datasets that are suitable for ship
detection. Secondly, we embed a soft thresholding attention module (STA) in the network to suppress
the impact of noise and complex background. The comparison results with several state-of-the-art object
detection algorithms confirm the efficiency and feasibility of proposed approaches.

INDEX TERMS Ship detection, soft thresholding attention module, feature denoise, deep learning.

I. INTRODUCTION
As one of the important applications of remote sensing, ship
detection in synthetic aperture radar images has attracted
significant attention in recent years [1]–[8]. Ship detection
is also applicable to tactical deployments and ocean defense
early warning systems. In terms of civil applications, it is
also beneficial to fishery [9], traffic control [10] and maritime
surveillance [11], [12]. Despite the wide practical value in
these fields, until now, SAR images detection technology still
lags behind the optical images because of their dissimilar
mechanisms [13].

For this reason, many innovative methods are proposed
to solve this problem, which promotes the accuracy and
robustness of ship detection techniques. According to our
investigations, various types of ship detection methods can
be divided into two main categories: (1) Traditional feature
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extraction techniques, and (2) modern deep learning-base
techniques.

The traditional feature extraction techniques for ship detec-
tion from the SAR images include methods such as statis-
tical distribution-based [14]–[16], multiple-scale-based [17],
template matching [18], and multiple polarization-based
[19], [20]. These methods are highly dependent on manual
feature extraction and availability of prior knowledge such as
predefined thresholding and the distributions of sea clutters
[21]–[24]. Generally, most traditional ship detection systems
consist of four steps: land masking, preprocessing, prescreen-
ing, and discrimination [25].

Land masking is a pre-required stage for most tradi-
tional ship detection system. Registering the SAR images
with the existing geographic maps is a common means of
landing masking [26], yet the easiest methodologies have
many shortages. For instance, tidal ranges are self-evident
and some minuscule islands and rocks are easily been over-
looked, such issues may happen with registration errors.
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Manual registration can reduce errors, nonetheless, it is not
intelligent and cost-effective. Other methodologies to terri-
tory masking are to automatically recognize the coastline
utilizing particular algorithms. The vast majority of shore-
line extraction algorithms are based on the light of these
image handling steps, where the speckle noise is removed
and using an edge operator. The edge map is then expanded
using a mean filter followed by thresholding to distinguish
between land and water [5], [27]–[30]. Although the cur-
rent coastline extraction algorithms overperform registration,
these methods are unable to detect in real-time detection in
complex sea conditions and their performance is significantly
deteriorated.

The objective of the preprocessing stage is to improve
the accuracy of the next detection stage. The prescreening
stage seeks out the probable ship regions throughout the
image. Defining a global threshold of the image is a simple
way to proclaim any pixel value beyond the threshold as
an anticipative ship pixel. To overcome the speckle noise
and region inhomogeneity of the SAR images, constant false
alarm (CFAR) is introduced. CFAR calculates the threshold-
ing adaptively. Based on the CFAR, a series of new algorithms
have been stated, such as cell-average CFAR, two-parameter
CFAR [31], bilateral CFAR [32], etc.

These CFAR-based techniques usually have two draw-
backs hindering their development and applications. Firstly,
a set of guard windows should be set corresponding to the
size of the detected ships. If different sizes of ships are
densely clustered, the settled guard windows result in missing
detection. Secondly, the CFAR methods rely on the sliding
window techniques which are time-consuming. The follow-
ing stage is the discrimination phase. To discriminate the true
target from the false alarms, discrimination algorithms need
to extract prototypical (e.g., area, aspect ratio, orientation and
wake) and handcrafted features for the target discrimination.
These approaches also require expert knowledge to choose
advisable features.

The most noteworthy peculiarities of the modern deep
learning-based (DL) techniques are their ability of automatic
feature extraction, good feature expression level and high
recognition accuracy [33]. Upon availability of a labelled
dataset, DL trains and learns under the supervision of data
to accomplish accurate object detection tasks. State-of-the-
art deep learning-based object detection methods are either
two-stage or one-stage detectors [34].

Two-stage methods are also called region proposal-based
methods, which divide the framework of detection in two
stages. The first stage engenders a set of candidate pro-
posals and categorizes them as foreground or background.
The second stage then classifies the specific categories and
regresses the coordinates of anchors. The highest accu-
racy with low-efficiency object detectors is achieved by the
two-stage methods, such as R-CNN [35], Fast R-CNN [36],
Faster R-CNN [37], MSCNN [38], and Cascade R-CNN [39].
In contrast, one-stage detectors achieve the predicting classes
and bounding boxes directly based on the regression, such

as YOLO [40]–[42], SSD [43], and RetinaNet [44]. These
detectors have been optimized for higher speed but their
accuracy is often lower than that of the region proposal-based
methods. Deep learning-based methods have made signifi-
cant advancement in the field of optical image detection. Nev-
ertheless, the discrimination between nature scene images
and SAR images such as imaging mechanisms and imaging
objects result in performance degradation. Therefore, sev-
eral challenges still exist: 1) the aspect ratio of the ships
in SAR images is relatively high, so hand-picked anchor
ratios set by the natural scene images in SAR images are
not suitable. The proposals generated from the feature maps
are also difficult to regress, hence cause inaccurate position-
ing; 2) ships in the SAR images are minuscule and densely
clustered which are easily submerged in noise and complex
background (e.g. offshore, inshore, in the inland rivers, and
around cays which are visually similar to the ship). Such use-
less information in images may harm extracting the feature
of ships.

To address these problems, in our paper, two novel and
effective methods are proposed to build a deep ship detector.
Firstly, we design IOU k-means as data preprocessing to
cluster on training set bounding boxes to automatically obtain
good prior anchors instead of choosing priors by hand[41].
We do not use regular k-means with Euclidean distance
because larger boxes result in larger errors than that of the
small boxes. Therefore, IOU k-means which is independent
of the size of the box leads to higher IOU scores and improves
the performance. This method attempts to verify the impact of
the model performance of anchors with different scales and
aspects. The network can also easily learn to predict good
detections if we pick better priors that are adaptive for SAR
image ships. Secondly, we design an attention mechanism
called soft thresholding attention (STA) block that embed
in the network to perform denoising in the feature-level.
The STA block, as a feature-level denoising method, can
adaptively learn a set of thresholding according to the global
information of the features to suppress noise. Comparing
with the image-level denoising methods, it can automatically
reduce the loss of useful information and suppress complex
background and noise such as land speckle and sidelobe
effect.

The main contributions of this paper are listed in the
following:

1) We propose IOU k-means as data preprocessing, to clus-
ter good prior anchors that are suitable for ship detection
to improve the regression ability.

2) We propose SAT block as a feature-level denoising
method for the first time in the field of SAR ship
detection.

The rest of this paper is organized as follows.
Section 2 presents the proposed approaches. Section 3 the
experiments are presented, including the dataset and experi-
ment analysis. Section 4 is a discussion, and Section 5 pro-
vides our conclusions.
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FIGURE 1. The architecture of Faster R-CNN.

II. METHODOLOGY
In this section, we elaborate on the details of the proposed
approach.

A. BACKGROUND ON FASTER R-CNN
Faster R-CNN is a two-stage detector and mainly contains
three main structures: the convolution networks (ConvNets)
as the backbone to extract feature maps, and the region
proposal network (RPN) to generate the region proposals.
These proposals are then utilized for object classification and
bounding box regression in a subnetwork. Images are fed
to the ConvNets to obtain their feature maps, and then the
RPN is applied to collect a set of the rectangular object pro-
posals and their corresponding foreground and background
scores. Region of interest (ROI) aligns these object proposals
to sub-network. Finally, these transformed object proposals
are given to the subnet for predicting the bounding boxes
and classification of the targets included ship. The network
structure is illustrated in Figure 1.

B. CONSTRUCTING THE FEATURE EXTRACTION NETWORK
A backbone in Figure 1 shows the bottom-up route for fea-
ture extraction and the top-down route for feature fusion.
The bottom-up pathway regularly includes CNNs to obtain
image’s stratified features. With the decrease of the spatial
resolution from the bottom to top, the semantic information
in the feature maps is then reinforced as the network is
getting deeper. The top-down pathway feature pyramid net-
work (FPN) mainly solves the multi-scale problem with the
fusion of high-resolution low-level features and low- resolu-
tion high-level features. The top-down pathway hallucinates
higher resolution features by up-sampling spatially coarser
and the lateral connection merges feature maps of the same
spatial size from the bottom-up pathway and the top-down
pathway.

In our experiment ResNet (see, Table 1) is shown as the
bottom-up pathway, we use the feature activations output by
each stage’s last residual block. We indicate the output of

TABLE 1. Two columns refer to ResNet-50 and STANet-50. Inside the
brackets are shapes and operations with specific parameter settings of a
residual building. The number of the stacked blocks in each stage is
presented outside the brackets. The inner brackets following by the STA
module indicate the output of thresholding.

these last residual blocks as {C1,C2,C3,C4} for the 2nd,
3rd, 4th and 5th stage outputs. Starting from the 2nd stage,
we use a stack of 3 layers included 1 × 1, 3 × 3, and 1 × 1
convolutions, where the 1 × 1 layers aim to reduce and then
increase the dimensions, leaving the 3×3 layer a bottleneck
with smaller input /output dimensions. The 2nd, 3rd, 4th and
5th stages are composed of 3, 4, 6 and 3 residual blocks,
respectively. The widths (the number of channels) of the
convolutions of four stages are {Cw, 2Cw, 4Cw, 8Cw} respec-
tively and they have strides of {4, 8, 16, 32} pixels with the
respect to the input image. To substitute our top-down feature
maps, with a coarser-resolution feature map, we upsample the
spatial resolution by a factor of 2, using the nearest neigh-
bour upsampling technique. After that, the lateral connection
applies 1 × 1 convolution to reduce the channel dimensions
to 256 and then merge the upsampled map and corresponding
bottom-up map by element-wise addition. Finally, we append
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3× 3 convolution on each merged map to generate final fea-
ture maps. The final maps set is denoted by{P2,P3,P4,P5},
corresponding to {C2,C3,C4,C5} that are of the same spa-
tial sizes.

C. REGION PROPOSAL NETWORK(RPN)
As shown in Figure 2, the RPN includes a 3×3 convolu-
tion layer as a sliding window and two 1 × 1 convolution
layers to bring about the region proposals for classification
and regression. To generate the region proposals, we slide
a 3 × 3 convolution layer over each position of the con-
volution feature map output by the backbone. Then each
sliding window is mapped to a lower-dimensional feature and
at each sliding-window location. We simultaneously predict
the multiple region proposals. Generally, each position at
the centre of the sliding window over the feature map is
associated with k different scales and aspect anchors. In the
end, the regression layer has 4k output encoding the coor-
dinates of k bounding boxes, and the classification layer
outputs 2k scores that estimate the probability of ship or
background for each proposal. In other words, due to fusion
with low-resolution feature and high-resolution feature by
feature pyramid network, the anchors can be assigned at
different resolution stages 42, 82, 162, 322 toP2,P3,P4,P5.
Considering the diverse scale of ships, we use IOU K-means
in Section D to obtain efficient anchors to adopt in each stage.

FIGURE 2. The architecture of Region Proposal Network.

Depending on their intersection over union (IOU) ratios
with the ground-truth bounding boxes, a positive label is then
assigned to an anchor if its IOU is over 0.7 with any ground
truth box. A negative label is assigned if its IOU is lower than
0.3 for all ground truth box. Consequently, the 2000 region
of interests (ROIs) are collected for each image by top-N and
Soft-NMS operation on all proposals.

D. DETECTION NETWORK AND LOSS FUNCTION
For RPN, a binary class label (of being an object or not)
is assigned to each anchor and roughly regress predicted
anchors. In the detection network, we firstly obtain the map-
ping relationship between the original image and the feature
map in the anchor region. Then the ROI Align [45] is adopted
to generate a fixed size of 7×7 features for the featuremaps of
different sizes. Finally, all the 7×7 features are flattened and

fed to the fully connected layers for higher quality detection
refinement.

We minimize an objective function following the
multi-task loss and the overall loss function is as the
following:

L(pi, ti) =
1
Ncls

∑
i

(pi, pi)+ λ
1
Nreg

∑
i

piLreg(ti, t
∗
i ) (1)

where the λ is the parameter to balance the loss of classifica-
tion and regression, i is the index of an anchor in a mini-batch,
and pi is the predicted probability of anchor i being an object.
For a positive anchor, the ground truth label p∗i is 1, and is
0 otherwise; ti is a vector representing the 4 parameterized
coordinates of the predicting bounding boxes, and t∗i is that
of the ground-truth box associated with a positive anchor.

For bounding box regression, (x, y,w, h), (xa, ya,wa, ha)
and (x∗, y∗,w∗, h∗) can represent the predicted box, anchor
box and ground-truth box, respectively. We parameterize the
4 coordinates as following:

tx =
x − xa
wa

, ty =
y− ya
ha

tw = log(
w
wa

), th = log(
h
ha

)

t∗x =
x∗ − xa
wa

, t∗y =
y∗ − ya
ha

t∗w = log(
w∗

wa
), t∗h = log(

h∗

ha
) (2)

To make the predicted boxes close to the bounding boxes,
we utilize the smooth L1 loss function to minimize the error
for obtaining a good regressor:

Lreg(ti, t∗i ) = smoothL1 (ti − t
∗
i ) (3)

where

smoothL1 (x) =

{
0.5x2, |x| < 1
|x| − 0.5, otherwise

(4)

For category classification, we use the cross-entropy loss:

Lcls(pi, p∗i ) = −
∑

p∗i log(pi) (5)

E. ANCHOR PRE-DESIGN:IOU K-MEANS
Ship detection techniques based on deep learning usually
generate the predicted region proposals of the ship at each
position on the feature map. Hence, we may encounter an
issue with the anchors using deep learning methods. The
aspect and size of anchors are hand-picked which are not
suitable for the SAR ship detection. This is because most
of the deep learning models are designed for optical scene
images. Although the networkmay learn to adjust the anchors
appropriately, if we choose better priors for the model, we can
prompt it easier for the model to learn and predict good detec-
tions. Here we aim to pre-design better anchors on training set
bounding boxes which lead to higher IOU scores and become
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independent of the box size. Here we use IOU K-means and
for our distance metric we use:

d(box, centroid) = 1− IOU (box, centroid) (6)

We run IOU K-means for different values of k and plot
average the IOU with the closest centroid on three SAR
ship detection datasets in [46], [47] and the optical scene
images dataset called VOC2007, see Figure 3. As it is seen
in Figure 3, we choose k = 3 as a good tradeoff between
model complexity and high recall. The cluster centroids and
the size of anchors in SAR images are significantly different
than that of in optical scene images. There are smaller anchors
relative to the size of images and the aspect ratio of anchors
is also more obvious.

FIGURE 3. Pre-designing anchor on two SAR datasets and an optical
images dataset. We run IOU K-means clustering on these datasets to
obtain good priors for our model. The left shows the average IOU score
we get with different k . We set k = 3 as a tradeoff for recall and
complexity of the model. The right image illustrates the aspect ratio and
size of the anchors for the SAR and the optical image datasets. Objects in
the SAR images are smaller than that of the optical images.

F. SOFT THRESHOLDING ATTENTION BLOCK (STA)
For satellite SAR system, the radar receives echo signals
including ground-based clutter and detection target from
the ground. As a coherent imaging system, SAR images
inevitably generate speckle. The speckled background in
Figure 4(a) acts as the noise on a single detected SAR
image. This is because it hides much information of the
observed scene which is crucial for ship detection. Besides,
considering the metal materials and the superstructure of
the ship, the ships have strong backscatters effect as shown
in Figure 4(b).

Therefore, in the multi-targets SAR images, the sidelobes
of the strong scattering point obscure the main adjacent
weak targets, leading to the missed detection of the weak
targets. The speckled background and the scattering sidelobes
reshape the ship appearances in the SAR images and interfere
with the detection process. We need to suppress these noise

FIGURE 4. Noise and complex background are harmful to ship detection.
(a) SAR image with the speckled background; (b) Ships in the SAR image
with scattering sidelobes.

and complex background to improve the target detection
ability.

Soft thresholding function is often utilized as a major
step in many signal denoising approaches [48], [49]. Gen-
erally, the raw signal is in the processing of domain trans-
formation in which the near-zero numbers are insignificant.
The soft thresholding function is then applied to transform
the nearzero to zero for signal reconstruction. However,
designing such thresholding requires high expertise in signal
processing and is often a challenging issue. Attention mech-
anisms in deep learning [50]–[52] are inspired by the bio-
logical visual system which can concentrate on the region of
objects and ignore some less important information.We com-
bine soft thresholding function and the attention mechanism
to automatically learn a set of thresholding using a gradient
descent algorithm. As a result, the integration of the soft
thresholding and attention mechanism in deep learning can
be a promising method to eliminate the noise-related and
complex background information and to construct highly
discriminative features.

In this paper, we perform a simple and lightweight archi-
tecture unit named soft thresholding attention (STA) block
embedded in the backbone, such as ResNet-50, to perform
denoising in the feature-level. Compared with the traditional
SAR denoise methods in the image-level, it can achieve a
performance improvement in the speckled background and
scattering sidelobes suppression. This is an additional advan-
tage of a lower computational complexity and information
loss. A feature map of the SAR image obtained by the radar
system is:

Y = X + N (7)

whereX includes the considered feature maps, Y is a complex
matrix with the same size as X which denotes the difference
between the reconstructed feature maps and the real scene
that includes noise and complex background. In consideration
of the sparsity of the feature maps, we can recover the consid-
ered features by solving the following optimization problem:

X̂ = min
X
{‖Y − X‖22 + λ‖X‖1} (8)
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the above function is continuous and strictly convex. It is
however not differentiable at x = 0. The final optimized form
of this function is:

X̂ = min
X
{‖Y − X‖22 + λ‖X‖1} =


Y − λ,Y > λ

0, |Y | < λ

Y + λ,Y < λ

(9)

λ is the regularization parameter in (8) and soft threshold-
ing in (9), which controls the reconstructed precision and the
sparsity of the estimated scene.

Instead of setting the negative feature to zero in the
ReLU activation function, soft thresholding function sets
the nearzero features to zero, so that useful negative fea-
tures can be preserved. The process of soft thresholding
and ReLU functions are shown in Figure 5(a). Meanwhile,
it can be seen observed that the derivative of output on
soft thresholding is either one or zero which is similar
to ReLU function. Both of them are effective in prevent-
ing gradient vanishing and exploding problems, as shown
in Figure 5(b).

FIGURE 5. Illustration of (a) soft thresholding function and (b) its
derivative.

Here we assume that
1) The value of λ is related to the global information of the

feature maps. A set of feature maps in each layer also
corresponds to a set of λ.

2) In the process of reconstruction, decreasing X̂ is pos-
itively correlated with the decline of the loss function
during the training process. Since the complex back-
ground and noise are suppressed in the feature maps,
the network can construct highly discriminative feature.
The more efficient the detection, the smaller the value of
the loss function.

The STA block is built upon a transformation mapping
between the input feature maps X ∈ RH×W×C and the
reconstruction feature maps U ∈ RH×W×C . Since the feature
maps in each channel can be associated with a suitable λ to
be reconstructed and suppress useless information, we expect
to exploit the global information of the feature map in each
channel to learn a set of thresholding. A diagram illustrates
the structure of an STA block is shown in Figure 6.

FIGURE 6. The structure of Soft thresholding Attention Block.

To choose a series of parameters by exploiting the informa-
tion of each channel, we consider the signal to each channel
in the output feature. Normal convolution kernel is unable to
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exploit the contextual information in a global region due to
its local operation. To address this issue, we introduce extract
global spatial information into a channel descriptor which
achieved by using global average pooling (GAP) to generate
channel-wise statistic. Formally, a statistic z ∈ RC×1×1 is
produced by the squeezing input feature maps X through its
spatial dimensions H ×W , such as that the cth element of z
is:

zc =
∣∣∣ 1
W × H

H∑
i=1

W∑
i=1

xc(i, j)
∣∣∣ (10)

To build up themapping relation between the context infor-
mation of feature maps and the regularization parameters, λ,
we choose to apply a simple gating mechanism with sigmoid
activation to obtain the scaling parameters as:

s = σ (g(z,W)) = σ (W2δ(W1z)) (11)

where δ refers to the ReLU function, σ refers to the sigmoid
function, W1 ∈ RC/r×C , and W2 ∈ RC×C/r . To reduce
the model complexity, we parameterize the gate mechanism
with two fully-connection layers around the non-linearity,
i.e., a dimensional-reduction layers with ratio r , a ReLU and
then a dimensional-increasing layer returning to the channel
dimension of input feature maps. A sigmoid function is also
applied at the end of the gating mechanism so that the scaling
parameters are scaled to the range of (0, 1) as:

σ =
1

1+ e−z
(12)

The scaling parameter s is then multiplied by the statistic
global information vectors z to obtain the thresholding. This
arrangement is spurred by the fact that the thresholding for
soft thresholding function should be neither negative nor
excessively large. If the thresholding is larger than the largest
absolute value of feature maps, the output of soft thresh-
olding function is set to zero. Therefore, the thresholding is
expressed as:

λ = s · z (13)

During multiple iterations of training, irrelevant speckled
background and scattering noise of feature maps are set to a
near-zero value to suppress the noise.

III. EXPERIMENTS AND RESULTS
In this section, we evaluate the performance of our proposed
method for ship detection in the SAR images. Experiments
are implemented based on mmdetection [53] which is a
well-known open-source deep learning framework and per-
formed on a PC with Intel single Core i7 CPU, NVIDIA
GTX-1080TI GPUs, and 64GB RAM. The PC operating
system is 64-bit Ubuntu 16.04.

A. DATASET DESCRIPTION
To verify the validity and robustness of our proposed meth-
ods, we choose two SAR datasets for ship detection including

SSDD [47] and HRSID [46]. SSDD includes 1160 images
and 2456 ships, with an average of 2.12 ships in one image.
The SAR images in this dataset possess different satellite sen-
sors including Sentinel-1, RadarSat-2, TerraSAR-X. The res-
olution of these images is 1 10m with Strip-Map (UFS), Fine
Strip-Map 1 (FSI), Full Polarization 1 (QPSI), Full Polariza-
tion 2 (QPSII) and Fine Strip-Map 2 (FSII) imaging mode.
HRSID consists of 5604 cropped SAR images with an over-
lapped ratio of 25%. There is a total of 16951 ships in HRSID
with 3.02 ships per image. The original SAR imageries for
constructing HRSID are Sentinel-1B imageries, TerraSAR-
X, and TanDEM-X. Compared with SSDD, the SAR images
in HRSID dataset have a higher resolution (i.e., under 3m)
and contain detailed and accurately represented features of
the ships. Under different imaging modes of radar sensors,
the ships appear in different forms. A more detailed compar-
ison is shown in Table 2.

B. EVALUATION METRICS
To quantitatively appraise the performance and robustness of
our proposedmethods, we adopted three popularly used crite-
ria metrics including intersection over union (IoU), precision,
recall, and mean average precision (mAP). For single class
object detection, mean average precision (mAP) is defined
by:

mAP =
∫ 1

0
P(r)dr (14)

where r represents recall and P(r) denotes the precision value
that recall = r is corresponded to.

Precision =
TP

TP+ FP
(15)

where TP is the number of the True Positives which in the
number of cases where the real ships are correctly detected,
and FP is the number of the False Positives, i.e., missed
detections. Recall is defined as:

Recall =
TP

TP+ FN
(16)

where FN is the number of False Negatives, i.e., false alarms.
The value of mAP is obtained by the integral of the precision
over the interval from recall = 0 to recall = 1, i.e., the area
under the precision-recall (PR) curve. For the ship detection,
the larger the value of mAP, the higher the ship detection
performance. Nevertheless, mAP does not fully reflect the
performance of the object detection framework. Here we
divide mAP to calculate evaluation metrics AP, AP50 and
AP75 for more accurate bounding box regression, and APL ,
APM , APS for large, medium, and small objects, respectively.
We then convert all three SAR ship detection datasets to
Microsoft Common Object in Context (COCO) metrics as
above which are objective and comprehensive metrics for
measuring the performance of object detection tasks. The
generic mAP metric mentioned above is the same as AP50
metric in COCO. For AP50, when the IoU of the ground-truth
and the predicted box is greater than 0.5, the test case is
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TABLE 2. The characteristics of SSDD and HRSID.

TABLE 3. Statistics of SSDD, HRSID, VOC2007 datasets.

predicted as a ship, and the intersection over union (IoU) is
defined as:

IoU (Bp,Bg) =
Bp ∩ Bg
Bp ∪ Bg

(17)

where Bp and Bg are the area of predicted, and ground-truth
boxes, respectively.

For the SAR ship detection, to quantitatively evaluate
the performance of the proposed framework, we utilize
the standard COCO metrics consisting of AP, AP50, AP75,
APS , APM , APL which are defined in Table 4. Therefore,
with the rising of IoU threshold, the bounding box regres-
sion is better and the ship is well-covered by the predicted
bounding box.

C. EXPERIMENT OF IOU K-MEANS
To prove the extreme differences of the object target between
the optical scene images and the SAR images, we run
IOU K-means to cluster the aspect ratio and calculate the
area of the pre-designed anchors of the SAR and opti-
cal scene image datasets. We then obtain the ratio of the
anchor size to the image size for these datasets as discussed
in Section D.

In Table 4, we present the statistics of the information about
images and anchors in the three considered data sets. Accord-
ing to the classification indicator of large, medium and small

TABLE 4. The COCO form Object Detection Evaluation Metrics.

objects in the COCO format, the anchors clustered in SSDD
and HRSID datasets mainly correspond to small and medium
objects. Furthermore, the anchors in VOC2007 dataset cor-
respond to small, medium and large objects. Subsequently,
we analyze the variance of the aspect ratio for these three data
sets. It is seen that the variance values in the ascending order
are of VOC2007, SSDD and HRSID, which are 0.01682,
0.02802, and 0.38096, respectively. It is also seen that the
SAR dataset has a more extreme aspect ratio than the optical
image dataset.

Finally, we analyze the ratio of the anchor area to the
image area and find that the objects in SSDD and HRSID
datasets occupy small areas of the image, whereas the objects
in VOC2007 account for relatively large areas. Therefore,
we need to modify the scale and aspect of the anchors before
training our model so it learns to efficiently detect ships in the
SAR images.

To further demonstrate the impact of the initial anchors
of different scales and the aspect ratios on the model perfor-
mance, we set 4 and 8 as original anchors’ scales respectively.
In this setting, scale = 8 is a general hyperparameter in
the optical scene image detection and we perform the IOU
K-means with k = 3, and k = 5 to cluster suitable anchor
aspect ratios. In Figure 6, we compare the results of different
scales and aspects on the Faster R-CNN. For HRSID and
SSDD datasets, the AP75 values of scale = 4 are around
10.8% and 6.7% larger than those of scale = 8, respectively.
For different aspects ratios of the anchors that are calculated
by the IOU K-means, this method achieves nearly 1.1%,
1.5% and 5.7% performance gains in HRSID dataset, and
1.4%, 0.9% and 6.7% improvement in SSDD datasets in
terms of APS , APM and APL , respectively. Note that the
performance improvement of detecting the large ships is the
highest. Therefore, this method seeks more reasonable initial
scales and aspect ratios of the anchors to reduce the difficulty
of the model learning and obtain more accurate prediction
results.
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FIGURE 7. The detection results with different scales and aspects on HRSID and SSDD datasets respectively: (a), (c) The impact of different scales of
initial anchors on the network performance; (b), (d) The impact of different aspects of the initial anchors and their corresponding results with small,
medium, and large objects.

TABLE 5. Quantitative results of the ship detection in SSDD and HRSID datasets based on Faster R-CNN detector. STANet50 (ResNet50 with STA model)
overperforms the benchmarking method.

D. EXPERIMENT RESULT AND ANALYSIS OF STANET
In this subsection, we examine the effectiveness of our pro-
posed method. We evaluate the STA model on SSDD and
HRSID datasets with Faster R-CNN detector and follow the
standard set of evaluating object detection by the standard
mean Average-Precision (AP) scores at the object scales or
different box IoUs.

The result is presented in Table 5, where the pro-
posed method, based on Faster R-CNN detector and
ResNet50 backbone, demonstrates significant improvement

on two SAR datasets. For SSDD dataset, STANet50+FPN
achieves 1.3% and 0.9% improvements in terms of mAP for
SSDD, andHRSID dataset, respectively. The results also con-
firm that our method enhances ship detection performance
and obtains higher spatial accuracy. Moreover, the value of
AP75 for STANet50 on SSDD and HRSID is 76.8% and
81.1%, respectively, which suggests improvements equiv-
alent to 5.2% and 1.8%, respectively. The value of AP50
is also improved. The results show that the bounding box
regression is more efficient and the ship is well covered by
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FIGURE 8. Detection results in four images, shown by the green rectangles. The red rectangles are the ground truth. The first and last two
columns of images belong to the HRISD and SSDD dataset, respectively. (a), (d), (g) and (j) demonstrate the original images and (b), (e),
(h) and (k) show detection results by Faster R-CNN with ResNet50, respectively. (c), (f), (i) and (l) display results by Faster R-CNN with
STA-ResNet50.
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TABLE 6. Quantitative results of the ship detection in SSDD and HRSID datasets based on Faster R-CNN detector. STANet50 (ResNet50 with STA model)
overperforms the benchmarking method.

the predicted bounding box. For APS , APM and APL , they are
also significantly improved. For SSDD, our STANet50+FPN
provides 1.5%, 0.7% and 4.3% gain in terms of APS , APM
and APL , respectively. However, it achieves 0.7% and 0.5%
improvement in terms of APS and APL , respectively for
HRSID. Compared with the evaluation of SSDD and HRSID,
it is seen that the STAmodel achieves a higher gain for SSDD.
This suggests that SAR images in SSDD may include more
noise such as complex background and speckles whereas
the images in HRSID are less noisy because of their high
resolution so the values of AP can be greatly improved due to
the characteristic of STA model. Therefore, the STA model
plays a significant role in improving detection performance,
especially satisfying the complex scene SAR ship detection.

Here we take three typical SAR scenes as the input of our
baseline and the proposed method and illustrate the detection
results in Figure 8. The figures in the first row in Figure 8,
represent the three typical scenes of sparsely distributed small
targets, densely clustered small targets, targets in complex
background, respectively. As it is seen in Figure 8 (a)-(c),
Faster R-CNN with STA-ResNet50 detects more offshore
ships with sparse distribution, and accurately detects more
inshore targets in a densely clustered ships background. From
the detection results shown in Figure 8 (d)-(f), it can further be
seen that STAmodule can improve the detection performance
of densely clustered targets. In Figure 7 (g)-(l), the ship
detection in pictures with a complex background results in
high false alarm rate and inaccurate detection. The STAmod-
ule addresses these issues through enhancing the extraction
of ship features and suppression of irrelevant background
as explained in Section 4.A. Comparing the four detection
results in the second and third rows of Figure 8, it can be seen
that the detector with STA modules can accurately locate the
target in various scenes.

E. COMPARISON WITH OTHER METHODS
We embed the STA modules into the popular detector frame-
works separately to check if denoising the feature map
facilitates ship detection. We select two popular two-stage
detection frameworks and a one-stage detection framework,

including Faster R-CNN [37], Cascade R-CNN [39] and
RetinaNet [44] which use FPN [54] in the backbone. For a fair
comparison, we only replace the pretrained backbone model
on ImageNet while keeping the other component in the entire
detector intact.

Table 6 presented the performance of embedding the back-
bone with the STA module on three state-of-the-art detec-
tors and two SAR datasets. We find that the STA module
introduces few additional parameters and extra calculations,
nevertheless the gain of detection performance is significant
with more than 1% AP point in terms of AP75. For ship
detection using the SSDD dataset, STANet-50 outperforms
ResNet-50 by 1.3%, 2.6% and 5.2% on COCO’s standard
AP75 metric for RetinaNet, Cascade R-CNN and Faster R-
CNN, respectively. On the other dataset HRISD, STANet-
50 achieves nearly 0.3%, 0.8% and 2.2% performance gains
comparing with ResNet-50 in terms of AP75 for these detec-
tors. For mAP and AP50 values, there are slight improve-
ment gains compared to AP75, however there is a significant
improvement comparing with the baseline. This corroborates
the generalization performance of the STA module for SAR
ship detection.

F. COMPARISON WITH OTHER ATTENTION MECHANISM
Next, we choose a representative two-stage detection frame-
work Faster R-CNN to compare STAwith several competitive
state-of-the-art attention modules, especially for objects with
mAP, AP50 and AP75 metrics. The original backbones are
replaced with the corresponding attention embedded ResNet-
50, which are pretrained on ImageNet, for a reasonable
comparison. The results presented in Tables 7 and 8 show
that the STA greatly improves the value of AP75 such as
5.2% improvement in SSDD dataset and 2.2% improvement
in HRSID dataset. These indicate that the STA module is
capable of retaining the feature representation of the precise
spatial area and denoise the irrelative areas such as complex
background and speckle noise. Therefore it improved the
robustness of SAR ship detection.

Meanwhile, the SE/ECA module, as a representative of
the channel attention module obtains an improvement that

29100 VOLUME 9, 2021



R. Wang et al.: STA Network for Adaptive Feature Denoising in SAR Ship Detection

TABLE 7. Comparison results with other attention models. The performance of the system which is based on Faster R-CNN detector for objects of three
scales on SSDD dataset. The size of the image inputs is 416 × 416. The best and the second best are marked as bold and blue, respectively.

TABLE 8. The performance of the system which is based on Faster R-CNN detector for the objects of three scales on HRSID dataset. The size of the input
images is 800 × 800. The notations are the same as in Table 7.

falls between CBAM and NL (Non-Local attention module).
It indicates that recalibrating channel-wise feature responses
is helpful for the representation of model both in opti-
cal images and SAR images. Comparing CBAM and STA
attention mechanism, CBAM is a method of fusing spatial
attention and channel attention, whereas the STA module
can be considered as a special spatial attention mechanism
for denoising feature maps. The performance of CBAM is
dropped compared to baseline and this suggests that using
the spatial attention mechanism for the SAR image should be
done carefully otherwise it may cause irrelevant spatial infor-
mation to be falsely enhanced and submerge the features of
the ships because of the characteristic of the SAR images. The
NL module is a method that integrates non-local mean [55]
operation and attention mechanism. We compare it with STA
and find that the NL module has a feature denoising function
in theory, but with a slight improvement and in some cases the
achieved performance maybe even worse than the baseline
for some metrics. In summary, the attention module proposed
based on the optical images is not necessarily suitable for the
SAR ship detection images, and STA module can reconstruct
the representative feature maps and suppress noise in feature
maps.

IV. DISCUSSION
In this Section, we use Faster R-CNN with ResNet50 as our
baseline model to further explore the advantages of the STA
module.

A. VISUAL ANALYSIS OF THE FEATURE MAPS
In general, as the convolution layers deepen, the size of the
feature maps is decreased and only more abstract semantic
meanings are preserved. If we visualize the feature maps
on the deep layer, the important spatial information can be
observed. Therefore, the feature map visualization verifies

the effectiveness of the proposed method. In this section,
we utilize the heatmap to visualize the spatial response of
different stages’ response where the blue colour indicates
low spatial response, and the red presents a high response.
To better understand the relationship between the feature
map and the original image, here we resize the feature map
to the same size as the images and then superimpose them
with a certain coefficient (c = 0.2). The results are shown
in Figure 8.

As it is seen in Figure 8, compared with our baseline,
the model’s response to the background becomes very low
because of the STA module. Furthermore, the detailed fea-
tures of the target are highlighted. By comparing the results
in Figure 8 (a), (e) and (i), it is also seen that the background
features are not suppressed in the first stage for our baseline
but the STA module enables suppressing the response of the
background in the feature map at the first stage.

Furthermore, we can assume that the model has limited
ability to suppress irrelevant information as the network
is deeper during the training process while the STA mod-
ule can improve this ability. The STA module results in a
more discriminative response of the target while suppressing
irrelevant background information, see, Figure 9(e) and (i).
This is the reason why it has good performance on densely
clustered ship detection in Figure 8(a). It is seen in
Figure 9(b), (f), (j), (k), (g) and (k), that the speckled back-
ground in the SAR image significantly interferes with the fea-
ture extraction of the model, STA also decreases the response
of the speckled noise in the feature map to focus on the target
feature. For the offshore clustered ships with less complex
background and noise in Figure 9(d), (h) and (i), STA obtains
more discriminative feature maps faster.

By visualizing the intermediate feature map of our baseline
and the proposed method, it is verified that CNN has a limited
ability to denoise and eliminate irrelevant information in
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FIGURE 9. Visualization of the feature maps: (a), (b), (c) and (d) denote the original image patches from HRSID and SSDD datasets;
(e), (f), (g) and (h) display the feature map in the first two stages of our baseline (ResNet50), respectively; (i), (j), (k) and (l) exhibit the
feature map of the first and second stages of our method (STA-ResNet50), respectively. The response intensity gradually decreases from
red to blue.
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FIGURE 10. Thresholding caused by the STA module at different depth in
the STA-ResNet-50 on SSDD. Each set of thresholding is named according
to the following scheme: STA_stageID_blockID.

feature extraction. By using STA, the denoising and suppres-
sion ability of the feature map is improved, hence that the
detection accuracy is increased.

B. THRESHOLDING ANALYSIS OF STA MODULE
To provide a clearer picture of the thresholding function of the
STA module, in this section we study example values from
the STA-ResNet-50 model and examine their distribution

FIGURE 11. Averaged thresholding values at different depth in the
STA-ResNet-50.

for different noise degrees at various depths in the network.
In particular, we would like to understand how thresholding
varies in different stages across images of different noise
degrees.

First, we calculate the thresholding values for different
depth in each STA unit. Figure 10 show the thresholding
values in all channels in the shallow stage and the deeper stage
for two images with different degree noise. It is seen that in
the shallow stage, for high background noise, the threshold-
ing values are generally lower than that of in the low-noise
images. It suggests that due to the limited representation
capability of the shallow stage, the noise slightly affects the
discrimination thresholding values between the target and
the background. However, given the action of multiple block
STAs in previous stages, the thresholding values of the target
and the background are fully distinguished in the deeper
stage. The thresholding values of low-noise and high-noise
images tend to be similar.

We make the following observation about the averaged
thresholding values in each stage and blocks for images
with different noise degree. Figure 11 shows the results for
two random samples at different STA units. A surprising
pattern is observed about the role of thresholding values
across various depth: the deeper the network, the more sim-
ilar thresholding values in the low and middle-level stages
(e.g., STA_2_3, STA_1_3). However, at much higher layers
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(e.g., STA_5_2), the information expressed by the feature
map is highly abstract, so the pattern is disappeared.

V. CONCLUSION
In this paper, we proposed two methods, the IOU k-means,
and the STAmodule. The IOU k-means is a pre-design anchor
technique that results in performance enhancement. The STA
module is an architectural block designed to enhance the
representational power of a network by empowering it to per-
form dynamic feature denoising and recalibration. Through
extensive experimental studies, we showed the effectiveness
of IOU k-means and STA module, which achieves signif-
icant improvement across multiple datasets in SAR image
ship detection. Besides, the experiments on IOU k-means
illustrated the distinction between optical and SAR images.
The STA module shed light on the limitations of the previous
architectures to adequately enhance the spatial response of
the targets’ feature and suppress irrelevant information. The
proposed method in this paper improves ship detection in
SAR images with complex background and noise.
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