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ABSTRACT Device to device (D2D) communication has recently been established in the literature as an
effective means to increase the frequency spectrum and enhance the efficiency of energy consumption
in future cellular systems. However, certain issues, resulting from reusing resources in the same cell,
have caused serious perturbations. We study issues pertaining to D2D communication, such as dual mode
selection, channel allocation and power control, aiming at the maximization of the overall throughput of
the system, while at the same time ensuring that the generated interference is kept minimized. This is an
NP-Hard problem that decomposes the optimization problem into two layers: the inner layer, where the DQN
algorithm is used as an indicator of the optimal transmission power that should be allocated to the D2D pairs
in accordance with their mode of operation, and the outer layer, where strategic decisions, such as which
communication mode to use and how to allocate the channels, are made. We have proved the superiority of
the proposed scheme, in terms of both system throughput and performance, through simulating experiments
involving different scenarios.

INDEX TERMS Device to device, mode selection, channel allocation, power control, throughput, NP hard.

I. INTRODUCTION
The architecture of the fifth-generation networks (5G) is
expected to comprise heterogeneous networks that can be
integrated with multiple advanced communication technolo-
gies to satisfy the quest for high-performance [1]. As of 2017,
there were 8.4 billion connected devices across the world.
It has been predicted that this number will surpass 75.4 billion
by 2025 [2]. The growth rate is tremendous and
would be increasing in the next decade, and thus bring
Device-to-Device (D2D) resource allocation to be the hottest
topics. [3]. It is expected that the reuse of identical wireless
radio resources among users of the same cell (CU) will
result in increasing the efficiency of the used frequency and
saving large amounts of wireless bandwidth. However, with
evitable mutual interference between the cell users and the
D2D pairs, arising out this usage, reusing resources is a little
more critical [4].
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A. RELATED WORKS
Recently, the question of how to allocate the resources of
D2D networks has drawn the attention of researchers all
over the world and many research works, such as literature
works [4]–[9], [11], have been carried out (for the inter-
ested reader, a thorough coverage of the topic can be found
in [4]). The work in [5] concentrated mostly on optimizing
the throughput of D2D networks while ensuring that the
cell priority registration constraints are satisfied. However,
the dense nature of D2D networks renders this work impracti-
cal. An efficient practical resource allocation scheme, focus-
ing mostly on the disturbances caused by resource reuse
in D2D enabled networks, was presented in [6]. Resource
allocation methods proposed in [5] and [6] are completely
base-station controller. Due to the dense nature of D2D net-
works, this centralized control might lead to significant over-
head [13]. Indeed, device-centralized architecture, in which a
user’s device can use its local information to guide his actions,
are more suitable for dense D2D networks and facilitate
distribution of control in the network [13].
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A resource distribution scheme, that can be used for
resource allocation, mainly by allowing ad-hoc D2D net-
works to organize themselves during the uplink transmission
of the cell system, was introduced in [7]. Despite the relative
improvement in the throughput of the system, the proper
functioning of this method requires significant message pass-
ing. Literature work [4] has investigated the feasibility of
using power control and model reuse selection criteria jointly
and has demonstrated that this method has great potential
for improving the performance of D2D-based systems. The
method proposed in [8] used fractional programming to
improve the usage of resources as well as energy consumption
in a D2D network within a tractable iterative solution strategy
framework. Moreover, a thorough survey on how to apply
different game theory models to the D2D resource allocation
problemwas presented in [9]. Matching theory concepts were
also thought of in [17], as a possible solution to the resource
allocation problem and applied through a novel method
that can be used to allocate power and channels accord-
ingly, in addition to improving the overall cellular network
throughput in D2D enabled systems. However, the works
in [4], [7], [8], and [9] do not account for the presence of
multiple D2D pairs on the same resource block, which can
improve the overall system resource utilization, particularly
in dense networks. In [11], author propose a polynomial time
proportionally fair resource allocation scheme for D2D users
that respect the rate requirements of the CUs.The proposed
scheme can potentially work with any resource allocation
scheme for CUs and can be adapted to the time and location
varying channel conditions.

Due to the critical topic of mode selection in D2D
communications, many research work on how to select the
optimal mode of operation has been carried out. A mode
selection method, focusing mostly on the preservation of the
quality of both the communication between the D2D pairs
and the cellular links, was proposed in [14] to lessen the
interference caused by D2D communications. Mode selec-
tion in [15] considered network information such as link
gain, noise level and signal-to-noise-and-interference ratio
(SINR). In [5], an opportunistic algorithm that can be used for
mode selection and sub-channel scheduling has been devel-
oped and applied in Orthogonal Frequency Division Multiple
Access (OFDMA) based D2D systems.

Regarding channel allocation, in [10], by exploiting
device-to-device (D2D) communication for enabling user
collaboration and reducing the edge server’s load. Author
propose a one-to-one matching algorithm based on the Pareto
improvement and swapping operations and extend the one-to-
one matching algorithm to a many-to-one matching scenario.
[12] study the downlink channel allocation in D2D-assisted
small cell networks with heterogeneous spectrum bands.
To derive the solution, the author decomposes the optimiza-
tion problem into two games: a potential game and a coalition
game. Then, a potential game-based scheme using an interfer-
ence graph and a coalition schemewith D2D user transferring
is proposed to solve these two games, respectively.

Regarding power distribution, in recent years, the machine
learning (ML)-based approaches have been rapidly devel-
oped in power control [16]. These algorithms are usually
model-free, and are compliant with optimizations in prac-
tical communication scenarios. Additionally, with develop-
ments of graphic processing unit (GPU) or specialized chips,
the executions can be both fast and energy-efficient, which
brings in solid foundations for massive applications. [17],
author study resource allocation algorithm design is formu-
lated as a non-convex optimization problem which jointly
designs the power allocation, rate allocation, user schedul-
ing, and successive interference cancellation (SIC) decoding
policy for minimizing the total transmit power. To strike a bal-
ance between system performance and computational com-
plexity, the author propose a suboptimal iterative resource
allocation algorithm based on difference of convex program-
ming. Joint mode selection and power control methods have
also been investigated in [18], [19] to further improve the
performance. The works in [20] has studied how to optimally
allocate resources and control power for a single D2D pair
and a single CU. [15] develops a kind of resource sharing
algorithm based on the interference-aware algorithm. It is
almost the most optimal, but the computational complexity is
high. Interference mitigation can be achieved through reusing
CU resources properly or exploiting the multiuser diversity
inherent in cellular networks.

B. CONTRIBUTIONS
In this paper, we consider a scenario in which block level
resource allocation for CUs has previously been done at
the base station (BS), at each of its subframes. Because of
massive downlink traffic in frequency-division duplex (FDD)
based cellular systems, we will be focus only on the uplink
resource blocks. We keep the QoS of each subframe for
ensuring the minimum rate allocated to every single CU,
and satisfying modest functional demand. If the received
signal-to-noise ratio (SINR) at the BS is greater than the
SINR needed by the CU to guarantee its proper functioning,
the SINR gap can be utilized to allocate power to D2D users.

We consider joint mode selection, power control, and
channel allocation to maximize the throughput of the entire
system. It is proved that the proposed scheme blended of three
patterns can reach a higher throughput with the increasement
of users from a lot of experiments and simulations. Other
evaluation indexes (distance between users and number of
resource blocks) are used to illustrate the advantage of the
proposed algorithm in improving system throughput com-
pared with the algorithm considering only one or two modes.
Finally, the validity of our algorithm is proved by using the
Fairness index of Jain’s Fairness index. The main contribu-
tions of this paper are as follows:

1) First of all, the selection of D2D model is done accord-
ing to quality of link in order to alleviate the conse-
quences of choosing unreliable D2D links; the method
we propose here is applicable to the transmission mode
selection, resource block allocation and power control
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problems, as for guaranteeing that the delay and reli-
ability requirements of D2D are met, and is differ-
ent from the one proposed in [5], as which considers
different transmission modes to approach the resource
sharing among D2D pairs problem.

2) Furthermore, the proposed scheme uses three algo-
rithms complementary to obtain a higher system
throughput; a lightweight heuristic algorithm is to
implement pattern selection among the proposal, and
a Hungarian algorithm for optimal solutions and phys-
ical resource block (PRB) allocation problems; the last
one is a power distribution algorithm which is based
onDQN. It takes advantages of local observations, such
as interference levels, large-scale channel quality and
traffic loads, to make decisions accordingly.

3) Last of all, we have also carried out an anal-
ysis on the number of D2D pairs involved in
communication, the maximum communication dis-
tance and outage threshold to assess their impact on
the performance of system. The simulation results
demonstrate that the proposed scheme is superior to
contemporary algorithms.

The rest of this paper is arranged as follows. Section 2 is
system model. Section 3 describes the optimization prob-
lem. Section 4 presents the three algorithms of this
paper. Section 5 gives simulation results. Section 6 is the
conclusion.

II. MODEL
A typical LTE cell has Nc active CU and Nd D2D pairs. The
allocation of resources in the system is achieved by BS.

According to the LTE standard, we divide the time into
subframes of 1ms duration and made allocation decisions in
each subframe. Each physical resource block (PRB) has a
frequency width of 180KHz and a duration of 0.5ms. The two
PRBs unite to form a resource block, the smallest resource
unit that BS can assign to a user. We presume that there
are a total of M uplink resource blocks available for CU.
We designed a wireless backflow model for all users, where
in each subframe, the BS can allocate all resource blocks to
CU and D2D. A CU can get multiple resource blocks N in
each subframe, but each resource block can be allocated to
at most one CU. Given the resource block allocation of CU
in each subframe, we believe that CU has the minimum rate
requirement. Once a suitable channel is available, CU can
share its resource block with D2D pair, while still satisfying
their rate constraints.

The interference scenario is depicted in Figure 1, where
CU c and D2D pair d share the same uplink resource blocks.
Let dT and dR denote the transmitter and receiver of D2D
pair d . The parameters corresponding to four possible link
types, namely from CU c to the BS, from the transmitter
to the receiver of D2D pair d , from the transmitter of D2D
pair d to the BS, and CU c to the receiver of D2D pair d
are differentiated through subscripts cB,dTdR,dTB and cdR
respectively.

FIGURE 1. System scenario of the device-to-device underlaying
communication.

A. CHANNEL MODEL
As showed in figure1,we considering a K -user downlink
MIMO system, where the BS is equipped with Nt ≥ K
antennas, and the users have a single antenna [25]. Denote
the downlink channel for user k as hHk , where hk ∈ C(Nt )

is a column vector and follows distribution CN (0,Rk ), the
C(Nt ) denote a complex number set consisting of Nt complex
numbers. The channels between users are mutually indepen-
dent. User k knows hk perfectly, and the global statistics Rk
is known by all the users.

Let H = [h1, h2, . . . , hK ] ∈ C(Nt )×K be the channel
matrix for all the users andW ∈ C(Nt )×K denote the recorder
for the downlink transmission. The received signal y =
[y1, y2, . . . , yK ]T at the user side is:

y = HHWx + n (1)

where x ∈ Ck is the vector of transmission symbols that
satisfies E{xxH } = IK , the precoder W satisfies the sum
power constraint tr{WHW } ≤ P, and n ∼ CN (0, IK ) is the
Gaussian noise.

In general, the desired precoder W is a function of the
CSI(channel state information) H , which is initially avail-
able at the user side. To assist the precoding, each user can
feedback B bits of CSI related information to the BS.

B. CSI EXCHANGE VIA D2D
In parallel to cellular communications, users exploit reliable
D2D links to exchange the CSI directly. For example, D2D
communication can be implemented in out-band mode with
no interference to cellular communication, using existing
technologies such as WiFi Direct, Bluetooth, and ZigBee.

Denote the CSI hk of user k known by user j as ĥ
(j)
k , which

is modeled as follows:

hk = ajk ĥ
(j)
k +

√
1− a2jkξ

(j)
k + h

(j)⊥
k (2)

where αjk ∈ [0, 1] is a parameter to capture the quality of the
CSI obtained via D2D, ξ (j)k is a zero mean random vector with
distribution CN (0,4kj) to model the noise due to quantization
or transmission delays, and h(j)⊥k is orthogonal to both ĥ(j)k and
ξ
(j)
k to model the portion of CSI hk that is not to be transmitted
to user j. In particular, αjk = 0 means there is no D2D from
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TABLE 1. List of notations.

user k to user j, and hence user j has no knowledge of hk ,
whereas, αjk = 1 means there is perfect D2D, and user j
knows perfectly hk − h

(j)⊥
k .

After the exchange of CSI, user k has the imperfect global
CSI Ĥk ∈ CNt×K given by:

Ĥk = [ĥ(k)1 , ĥ
(k)
2 , . . . , ĥ

(k)
k−1, ĥk , ĥ

(k)
k+1, . . . , ĥ

(k)
K ] (3)

Consider to exchange the CSI via D2D using a limited
amount of bits and the transmission delays are negligible.
As proposed in [21], an efficient mechanism in correlated
channels is based on signal subspace projection. Conceptu-
ally, if the channel subspaces of user k and j are partially
overlapping, then only the portion of CSI that lies in the
overlapping signal subspace is needed to be exchanged. The
intuition is that if the two users have non-overlapping channel
subspaces, they do not need to exchange the CSI because their
preferable precoding vectors would not create interference to
each other.

Therefore, let Rk = Vk3kVH
k be the eigendecomposition,

where 3k is an Mk × Mk diagonal matrix containing the
nonzero eigenvalues of Rk sorted in descending order (with
Mk being the rank), and Vk is anNt×Mk semi-unitary matrix.
The channel of user k can be written as hk = h(j)k + h(j)⊥k
where h(j)k = VjVH

j hk and h
(j)⊥
k = (I − VjVH

j )hk . As a result,

h(j)k contains all the necessary information for user j and is
orthogonal to h(j)⊥k . Consider to quantize h(j)k into ĥ(j)k using Bd
bits; the quantization error can be modeled by (2), where the
parameters αkj and 4 can be computed using distortion-rate
theories [21], [22].

Now, for the interference scenario depicted in Figure 1,
the BS is exposed to interference from D2D transmitter dT ,
and CU c causes interference to D2D receiver dR. Thus for a
subframe n, when resource block k of CU c is reused by D2D
pair d , the received SINR of CU c at the BS is given by:

SINR[n] =
PcH k

cB[n]

σ 2
N + P

k
dT [n]H

k
dTB[n]

(4)

III. D2D COMMUNICATION MODEL
A. CELLAR MODE
In the cellularmode, twoD2Duser(DU) as a conventional CU
communicates through eNB(Base Station), and no D2D link

is established. Intuitively, this mode is preferred if two users
are too far away from each other, in which case two channels
(one downlink and one uplink) will be assigned to the D2D
pair. Although the performance of a D2D pair working in
cellular mode is the same as that of a regular cellular user,
we assume that any other D2D pair will not reuse its channel.

The uplink signal-to-noise ratio (SINR) K of D2D pair can
be expressed as:

ξ
(1)
k,up =

p(1)k hDk,B
σ 2
N

(5)

p(1)k represents the transmitting power K of D2D pair in
cellular mode, and σ 2

N is the power of the additive white
Gaussian noise (AWGN).

Similarly, the downlink SINR can be expressed as:

R
D(0)
i = log(1+ ξ (1)k,up) (6)

Similar to [20], we use the probability of interruption as
a reliability metric. Under terminal threshold γ0 and allow-
able terminal probability P0, the reliability requirement of
D2D pair(k ∈ K ) is expressed as:

P{rD(0)i ≤ γ0} ≤ P0 (7)

According to [20], the reliability constraint (7) can be
transformed into (8) under Rayleigh fading:

rD(0)i ≤ reff =
γ0

ln( 1
1−p0

)
(8)

reff is the effective shutdown threshold.
Assuming that packet size, maximum tolerable delay and

the probability of tolerable interrupt are the same for all
D2D pairs, and uplink SINR should be greater than the given
threshold ξmin in order to ensure QoS of DU.

min{ξ (1)k,up} ≥ ξmin (9)

B. DEDICATED MODE
A dedicated mode is considered when two users are nearby,
and a CU has an empty channel that is not currently in use.
In the private mode, SINR of D2D pair can be expressed as:

RD(1)i = ξ
(2)
k =

p(2)k hDk
σ 2
N

(10)
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p(2)k is the transmitting power of D2D pair k in dedicated
mode.

C. REUSE MODE
In this mode, the two DUs communicate directly by reusing
the existing CU channel, which further improves the spectral
efficiency. However, this will cause interference between
D2D and its channel CU. In reuse mode, when the uplink
channel of CUm is reused, the SINR of D2D pair k can be
expressed as:

ξ
(3)
k,m =

p(3)k,mh
D
k

pck,mhk,m + σ
2
N

(11)

Where p(3)k,m and pck,m are respectively the transmitting
power of D2D pair k and CUm when D2D pair reuses CU.
At the same time, channel reuse will also cause interference
to the same channel CU, and the SINR of CUm with the
interference of D2D pair k can be expressed as:

ξ ck,m =
pck,mh

C
m,B

p(3)k,mh
D
k,B + σ

2
N

(12)

RD(2)i = log2(1+ ξ
c
k,m) (13)

If the spectrum of the jth CU is not reused by DU, then its
rate RC,uJ is:

RC .uJ = log2(1+
pck,mh

C
m,B

σ 2
N

) (14)

And if the spectrum of the j th CU is reused by DU, the rate
is:

RC .rJ = log2(1+
pck,mh

C
m,B

p(3)k,mh
D
k,B + σ

2
N

) (15)

Since CU has a higher priority, its QoS should be ensured,
and DU is allowed to reuse channels only if ξ ck,m ≥ ξmin.
In other words, only when the SINR requirements of both the
D2D pair and the interfering CU are satisfied, can a D2D pair
share the channel with the CU.

IV. D2D PROBLEM MODEL
We will maximize the throughput of the system with the
joint mode selection, channel allocation and power control
while ensuring the SINR of CU and DU. x = x(1), x(2), x(3)
is expressed as the mode selection and channel allocation
matrix, x(1) and x(2) are k-dimension indicator vectors of
cellular mode and dedicated mode, where, if the D2D pair
works in (dedicated) cellular mode, then x(1)k = 1(x(2)k =

1). x(3) is the k ∗ m channel allocation indicator matrix in
the multiplexing mode. If D2D is reused for K , x(3)k,m = 1;
otherwise, x(3)k,m = 0.
P = P(1),P(2),P(3),Pc is a power matrix, P(1), P(2) and

P(3) represent the transmitting power at the time of mode
selection, and their values are the same as x(1), x(2) and x(3)
respectively.

And then, the joint mode selection, channel allocation, and
power control problems can be modeled as:

(p∗, x∗) = argmax
p,x
{

K∑
k=1

x(1)k log(1+
p(1)k hDk,B
σ 2
N

)

+

K∑
k=1

x(2)k log(1+
p(2)k hDk
σ 2
N

)

+

K∑
k=1

M∑
m=1

x(3)k,m log(1+
p(3)k,mh

D
k

pck,mhk,m + σ
2
N

)

+

K∑
k=1

M∑
m=1

x(3)k,m log(1+
p(c)k,mh

C
k,B

p(3)k,mh
(D)
k,B + σ

2
N

)

+

M∑
m=1

(1−
K∑
k=1

x(3)k,m) log(1+
pcmh

C
m,B

σ 2
N

) (16)

x(1)k , x(2)k , x(3)k ∈ {0, 1},∀k,m, (16a)
K∑
k=1

x(1)k ≤ min{NU ,ND}, (16b)

2
K∑
k=1

x(1)k +

K∑
k=1

x(2)k ≤ NU + ND, (16c)

x(1)k + x
(2)
k +

M∑
k=1

x(3)k,m ≤ 1,∀m, (16d)

K∑
k=1

x(3)k,m ≤ 1,∀m, (16e)

x(1)k

p(1)k hDk,B
σ 2
N

+ x(2)k
p(2)k hDk
σ 2
N

, (16f)

(1−
K∑
k=1

x(3)k,m)p
c
m +

K∑
k=1

x(3)k,mp
c
k,m ≤ P

C
max,∀k,

(16g)

x(1)k

p(1)k hDk,B
σ 2
N

+ x(2)k

p(2)k hDk,B
σ 2
N

+

M∑
m=1

x(3)k,m

p(3)k,mh
D
K

p(3)k,mh
D
k,B + σ

2
N

(16h)

K∑
k=1

x(3)k,m

pck,mh
C
m,B

p(3)k,mh
D
k,B + σ

2
N

+ (1−
K∑
k=1

x(3)k,m)
pcmh

C
m,B

σ 2
N

≥ ξmin,∀m. (16i)

PDmax and P
C
max respectively represent the maximum trans-

mitting power of DUs and CUs, ξdk , and ξ
c
m are the SINR of

D2D pair and CU. The constraint (16b) is that the number
of D2D pairs in cellular mode should be not greater than
the number of unused uplink channels. (16c) means that the
number of channels used for D2D communication in cellular
and dedicated mode should not exceed the total number of
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unused channels. (16d) means that any D2D pair will choose
up to one of three patterns. (16e) indicates that a CU can only
be reused by at most one D2D pair. (16f) Moreover, (16g)
indicates that the transmitting power of DUs and CUs cannot
exceed the maximum. Furthermore, (16h) and (16i) show that
the SINR of DUs and CUs should have a minimum.

V. MODE SELECTION,Channel ALLOCATION AND POWER
CONTROL ALGORITHM
In this section, we will address the optimization problem
presented in (16). Suppose (16) has second order continuous
partial derivative on region D, denoted as A = f ′′p∗p∗ (p

∗, x∗),
B = f ′′p∗x∗ (p

∗, x∗),C = f ′′x∗x∗ (p
∗, x∗), and A > 0 is always

on D, and AC − B2 ≥ 0 [23]. Then (16) contains p∗ and
x∗ binary variables, so this problem is non-concave and can-
not be solved directly. We overcome the problem down into
three subproblems and solve them separately. The original
optimization problem is rewritten as:

(p∗, x∗) = argmax{
K∑
k=1

x(1)k Q1 +

K∑
k=1

x(2)k Q2

+

K∑
k=1

M∑
m=1

x(3)k,mQ3+

M∑
m=1

(1−
K∑
k=1

k (3)k,m)Q4},

Q1 = argmax{log(1+
p(1)k hDk,B
σ 2
N

)},

Q2 = argmax{log(1+
p(2)k hDk
σ 2
N

)},

Q3 = argmax{log(1+
p(3)k,mh

D
k

p(c)k,mhk,m + σ
2
N

)

+ log(1+
p(c)k,mh

C
m,B

p(3)k,mh
D
k,B + σ

2
N

)},

Q4 = argmax{log(1+
pcmh

C
m,B

σ 2
N

)}. (17)

It can be seen from (17) that the optimization problem is
composed of two layers. Internal control is the power control
represented by Q1, Q2, Q3, and Q4 to determine the optimal
transmission power of DUs and CUs in each mode. The other
is the decision-making process of communication mode and
channel allocation. So we optimize the inner layer and the
outer layer to obtain the optimal solution.

A. ALGORITHM1 (PATTERN SELECTION ALGORITHM
BASED ON HEURISTIC ALGORITHM)
To solve the problem of light load under the cellular mode
and dedicated mode selection, x(3)k,m = 0,∀k,m, (17) can be
simplified to:

x∗ = argmax{
K∑
k=1

x(1)k γk +

K∑
k=1

x(2)k θk}, (18)

A sufficient number of empty channels can eliminate the
constraints (16b) and (16c). The best mode selection for each
D2D pair can be found by comparing the capacity of the
cellular mode and the dedicated mode. In other words, if
the capacity of the dedicated mode is greater than that of the
cellular mode, the D2D pair will choose the dedicated mode
and vice versa.
If there are insufficient empty channels, pattern selection

has to be done jointly, making the problem even more com-
plicated. Since the abundance of channels consumed by the
cellularmode is twice that of the dedicatedmode, we compare
the capacity of the cellular mode with the capacity of the ded-
icated mode. Only when the capacity of the cellular mode is
twice that of the dedicatedmode, D2Dwill choose the cellular
mode; otherwise, the dedicated mode will be selected, and
the D2D pairs must use the dedicated mode when the uplink
channel is not available.
The detailed algorithm is shown in Algorithm 1. Its main

computational complexity is the sorting of k-dimension
vector T , the complexity is O(KlogK2 ).

Algorithm 1 Heuristic Algorithm for the Light Load
Scenario
1: Calculate the capacity of each DU working

in the cellular mode and the dedicated mode,
as: T (1)

= (T (1)
1 , · · · ,T (1)

k , · · · ,T (1)
K ), T (2)

=

(T (2)
1 , · · · ,T (2)

k , · · · ,T (2)
K ), where T (1)

k = log(1 +
pDmaxh

D
k,B

σ 2N
) and T (2)

k = log(1+
pDmaxh

D
k

σ 2N
)

2: Construct a vector T, whose element
is the higher of T (1) and 2T (2), T =

(max{T (1)
1 , 2T (2)

1 }, · · · ,max{T (1)
K , 2T (2)

K }).
3: Initialize the allocated uplink channel counter n1 = 0,

the allocated downlink channel counter n2 = 0.
4: while n1 < NU and n2 < ND do
5: select k∗ = argmaxTk .
6: if Tk∗ = T (1)

k∗ then
7: set n1 = n1 + 1, n2 = n2 + 1, and x(1)k∗ = 1.
8: else
9: if NU − n1 > ND − n2 then

10: set n1 = n1 + 1 and x(2)k∗ .

11: else
12: set n2 = n2 + 1 and x(2)k∗ .

13: end if
14: end if
15: set T (2)

k∗ = T (1)
k∗ = 0

16: end while
17: for i = 1 to maxNU − n1,ND − n2 do
18: select k∗ = argmaxT (2)

k , and set x(2)k∗ = 1
19: end for

B. ALGORITHM2 (CHANNEL ALLOCATION ALGORITHM
BASED ON MATCHING THEORY)
We simplify by disregarding the cellular mode. There are
for two reasons for this. First, for adjacent DU, the channel
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gain between D2D pairs is usually more significant than that
between DU and eNB so that D2D communications will
improve system capacity and energy efficiency. Second, in a
dedicated mode, each D2D pair occupies only one channel,
which also improves bandwidth utilization.

Let x(1)k = 0,∀k , then simplify the problem in (17) to:

x∗ = argmax{
K∑
k=1

x(2)k θk +

K∑
k=1

M∑
m=1

x(3)k,mηk,m

+

K∑
k=1

M∑
m=1

x(3)k,mλk,m +

M∑
m=1

(1−
K∑
k=1

x(3)k,m)τm} (19)

x(2)k , x(3)k,m ∈ {0, 1},∀k,m, (19a)
K∑
k=1

x(2)k ≤ NU + ND, (19b)

x(2)k +

M∑
m=1

x(3)k,m ≤ 1,∀k, (19c)

K∑
k=1

x(3)k,m ≤ 1,∀m. (19d)

Furthermore, the optimization problem can be reformu-
lated by inserting a constraint into the objective function.

x∗ = argmax
K∑
k=1

M∑
m=1

x(3)k,m(ηk,m

+ λk,m − θk − τm) (20)

x(3)k,m ∈ {0, 1},∀k,m, (20a)
K∑
k=1

M∑
m=1

x(3)k,m ≥ K − NU−ND, (20b)

K∑
k=1

x(3)k,m ≤ 1,∀m, (20c)

M∑
m=1

x(3)k,m ≤ 1,∀k. (20d)

We can easily infer ηk,m + λk,m − θk − τm < 0,∀k,m,
so the constraint (20b) can be forced to be equal to∑K

k=1
∑M

m=1 x
(3)
k,m = K − NU − ND.

We define ρk,m = ηk,m + λk,m − θk − τm, and the utility
matrix is:

2 =


ρ1,1 · · · ρ1,m · · · ρ1,M
· · · · · · · · · · · · · · ·

ρk,1 · · · ρk,m · · · ρk,M
· · · · · · · · · · · · · · ·

ρK ,1 · · · ρK ,m · · · ρK ,M

 (21)

The optimization problem is now required to select
K − NU − ND elements from the matrix in such a way that
the resulting rows and columns are selected with at most
one element. If the total number of elements is equivalent
to K , i.e., NU = ND = 0, then the problem will be an

allocation problem. Therefore, we propose an optimal solu-
tion to the assignment problem using the maximum weight
binary matching algorithm with polynomial time complexity.
To allocate at most one resource block to a D2D pair, let us
take a look at a bipartite graph in which the vertex set U is
a set of D2D pairs and the vertex set V is a set of resource
blocks. The edge weight of resource block K in D2D pair
and subframe N is determined by λkd [n] = rkd [n]/Rd [n− 1].
To allocate a maximum of T resource blocks to D2D

pairs, we create a new bipartite graph G′ = (U ′,V ,E ′),
where vertex set U ′ is a set of D2D pairs that repeat T
times, and vertex set V is a set of resource blocks. Therefore,
as showed in Figure 2, in the case of T = 2, the edge weight
is λkd [n]. Once the graph G′ is formed, we can apply the
maximum weight binary matching algorithm on G′ to get the
best resource allocation result. In algorithm 2, we explain the
proposed resource allocation scheme for D2D users.

FIGURE 2. Bipartite graph for allocating multiple shared resource
block (T=2).

Now we discuss the complexity of the proposed maximum
weight binarymatching algorithm. For the general case, when
a D2D pair can share at most T resource blocks, the complex-
ity of calculating edge weight is O(ND × T2). To determine
the maximum weight bipartite matching algorithm of the
bipartite graph, we use the original dualmethod [15] to realize
the Blossom algorithm. The computational complexity of this
algorithm is O(n3), where n is the total number of nodes in
the graph given by n = (T + 1)ND. Therefore, the overall
complexity of this algorithm amounts to O(ND × T2 + n3).

C. ALGORITHM3 (POWER CONTROL ALGORITHM BASED
ON DQN)
The maximum throughput of a D2D user pair multiplexed
over a cellular user channel can be obtained bymode selection
and channel allocation. This section focuses on how to allo-
cate the appropriate power for each D2D user pair. In many
applications, like video games, the current strategy has a
long-term impact on cumulative returns [24], from which the
DQN algorithm can achieve significant results, and power
control, however, the discount factor is set to 0. So the DQN
algorithm is designed to maximize the Q function. That is:

maxQ = maxEπ [r t |st = s, at = a]. (22)
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Algorithm 2 Heuristic Algorithm for the Medium Load
Scenario
1: Utilize the Hungarian algorithm for K D2D pairs and M

CUs with cost matrix 2
2: Let
ω = (ω1, · · · , ωk , · · · , ωK )(ωk ∈ {1, 2, · · · ,M},∀k)
denote the resulting channel assignment vector by the
Hungarian algorithm and T = (T1, · · · ,Tk , · · · ,TK ),
where Tk = ρk,ωk

3: Denote π as the permutation on 1, 2, · · · ,K which rear-
ranges T into a non-ascending order.

4: for k = 1 : K − ND − NU do
5: set x(3)πk,ωπk = 1.
6: end for
7: for k = K − ND − NU + 2 : K do
8: set x(2)πk = 1.
9: end for

For the power control, s = ht , a = pt . Then let r t = Ri to
get:

maxQ = maxEπ [C t
|ht , pt ]. (23)

The policy is determined during the execution period,
so (23) can be rewritten as:

maxQ = maxC t (ht , pt ), (24)

As shown in Figure 3, the optimal solution pt
∗

of (3) is
determined only by the current CSI ht , and (ht , pt ) is used to
calculate the rate Rt . The optimal power pt

∗

can be obtained
by taking ht as the input of DQN theoretically, but the DQNof
this design is non-convex, and it is difficult to find the best so
that poor performance. Therefore, we proposed two auxiliary
functions: C t−1 and Pt−1. Since the channel can be modeled
as a first-order Markov process, the solution of the preceding
period can help DQN approach the optimal. Rewrite (24) as:

maxQ = maxC t (ht , pt ,C t−1, pt−1), (25)

Once γ = 0 and γt = Ct , the replay memory is also
reduced to (st , at , rt ). As an estimator, DQN can predict
the current consumption rate of response power level under
certain CSI.

In our proposed model-free two-step training framework,
DQNuses a deep reinforcement learning algorithm for offline
pre-training for the first time in a simulated wireless commu-
nication system. Due to the high demand for a data-driven
algorithm, this process narrows the pressure of online train-
ing. And then with the help of transfer learning, the trained
DQN need to be further fine-tuned in the actual scene.

In a certain cellular network, each BS-user link is regarded
as an agent and thus amulti-agent system is studied. However,
for a large amount of learning data, training time, and appro-
priate DNN parameters are required for multi-agent training,
leading to the problematic training consequence. Therefore,
centralized training is consideration using the experience
playback memory of all agents to train only one agent, and

FIGURE 3. The solution of DQN is determined by CSI ht , along with
downlink rate C t−1 and transmitting power pt−1.

then the agent’s learning strategy during distributed execu-
tion. For the designed DQN designed, the composition of
replay memory is as following:

1) Statement: The statement design of an agent (n, k) is
very important, for the entire environment information
is redundant and irrelevant elements must be removed.
We assume that the environment is in a logarithmic
complete set and define the interference factors as:

τ tn,k = {1, · · · , 1,︸ ︷︷ ︸
k−1

{log2(1+
pck,mh

C
m,B

p(3)k,mh
D
k,B + σ

2
N

)}} (26)

The channel amplitude of the interference sources are
normalized by the amplitude of the required links, and
since the channel amplitudes usually vary by orders of
magnitude, it is preferable to express them logarith-
mically. Base 0tn,k is represented as (|Dn| + 1)K − 1,
and in order to further reduce the input dimension and
the computational complexity, the elements in radix
0tn,k are sequence successively, and only the first C
elements are retained. The rate C t−1

n,k and transmitting
power pt−1n,k of the corresponding uplink of the link act
as two additional parts of the DQN input at the last
time slot. Therefore, a statement is composed of three
characteristics:stn,k = 0

t
n,k ,C

t−1
n,k , p

t−1
n,k .

2) Action: In (3), the upstream power is a continuous vari-
able constrained by the maximum power. Considering
limited action space of DQN, the transmitting power is
quantized as |A|, and the settings are as follows, where
Pmin is non-zero minimum transmitting power:

A = {0,Pmin,Pmin(
Pmax

Pmin
)

1
|A|−2 , · · · ,Pmax}, (27)

3) Rewards: In order to increase the transmission rate of
agents and reduce the incidence of interference, other
studies have carefully designed reward functions, most
of which however are actually suboptimal methods
to solve the target function. In this paper, the system
sum-rate is directly shared by all agents as a reward
functions instead. The feasibility of this method is
demonstrated in the training simulation of small and
medium-sized cellular networks.

The selection of right action is based upon accurate
estimation, and thus DQN is aimed to search for optimal
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parameter θ∗q to minimize the loss:

θ∗q = argmin
1
2
(Q(s, a; θq)− ras )

2. (28)

The gradient concerning θq is given as

∇θq = (Q(s, a; θq)− ras )∇θqQ(s, a; θq) (29)

The optimal action a∗ is selected to maximize the Q value,
and it is given by

a∗ = argmaxQ(s, a; θq). (30)

During training, a dynamic ε-greedy policy is adopted to
control the exploration probability, and εk is defined as

εk = ε1 +
k − 1
Ne − 1

(εNe − ε1), k = 1, · · · ,Ne (31)

where Ne denotes the episode times, ε and εNe are initial
and final exploration probabilities, respectively.

In terms of computational complexity, because there
are too many variables describing the time complexity of
deep learning, it cannot be accurately described. For exam-
ple, the time complexity of neural network training is
O(E ∗D/B∗T ), where E is epochs,D is the data set size, B is
Batch Size, and T is the time complexity of a single iter. Here
T can continue to be decomposed into O(T ) = O(L ∗ n), L is
the average time complexity of each layer, and n is the number
of layers. Among them, L can continue to be decomposed into
O(L) = O(M∗N ∗K ∗K ∗H∗W ). It is assumed that each layer
has several calculations in conv2d, where M and N are the
number of input and output channels, respectively. K is the
size of the convolution kernel, H and W are the spatial sizes
of the output feature map respectively. In summary, the time
complexity of the training process is related to at least 10 free
variables, so we do not specifically analyze the computational
complexity of DQN.

A detailed description of our DQL algorithm is presented
in Algorithm 3.

VI. SIMULATION
According to the hexagon element model [11], as shown
in Figure 4, we summarizes the simulation parameters
that measure the performance of the proposed algorithm
in Table 2. The hexagon element model is constituted of CUs

FIGURE 4. Hexagonal cell model.

Algorithm 3 DQN Algorithm
1: input : Episode times Ne,exploration times T, learning

rate ηq, initial and final exploration probability ε1, εNe
2: Initialization : Initialize DQN Q(s, a; θq) with random

parameter θq.
3: for k = 1 to Nc do
4: Update εk by (31)
5: Receive initial state s.
6: for t = 1 to T do
7: if rand() < εk then

Randomly select action at ∈ A with uniform
probability.

8: else
9: Select action at by (30)
10: end if
11: Execute action at , achieve reward r t and

observe new state st+1.
12: Calculate gradient ∇θq by(29), and update

parameter along negative gradient direction:
θq← θq − ηq∇θq

13: st ← st+1

14: end for
15: end for
16: Output : Learned DQN Q(s, a; θq)

TABLE 2. List of notations.

and D2D transmitters are uniformly distributed. The range of
D2D communication is defined as the distance between the
D2D receiver and its corresponding transmitter. It is assumed
that the D2D receiver is uniformly distributed around the
D2D transmitter, and the range is RD2D. In order to examine
the system performance of RD2Dwith different value ranges,
we change it from 10m to 100m, and the step length is 10m.
All other parameters related to the DQN are given in Table 3.
Note that the listed parameters are selected from multiple
simulation tests to balance complexity and performance of
DRL algorithm.
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TABLE 3. Simulation Parameters for DRL.

Figure 5 shows the relationship between the total through-
put of the different scenarios and the number of D2D pairs N .
It can be seen that the scheme combining the three algorithms
improve the total throughput of the system compared with
other schemes.

FIGURE 5. Throughput versus different CU numbers
(r=5,PD

max=250mW,PC
max=250mW,B=1).

We can also observe that the mode selection of the heuristic
algorithm alone has similar performance to the algorithm
based on the bipartite graph proposed in [11], becauseDU and
CU have no interference between the same channel in the cel-
lular mode or the dedicated mode. Therefore, the maximum
throughput can be guaranteed when DU and CU have the
maximum power, which is similar to the resource allocation
scheme proposed in [11].

Figure 6 shows the impact of the link length of the D2D
pair on the system throughput of different algorithms. As can
be observed in the figure, the system throughput of all algo-
rithms decreases with the increase of the maximum trans-
mission distance, which is that the gain of each algorithm
decreases as the distance increases. Besides, when the maxi-
mum transmission distance increases, the transmitting power
of the D2D transmitter has to be increased to guarantee the
transmission quality but reduce the throughput. Nonetheless

FIGURE 6. Overall system throughput for different D2D
distances(NU=20,ND=20PD

max=250mW,PC
max=250mW,B=1).

on the whole, the combined algorithm is superior to the other
four comparison algorithms.

Figure 7 displays the change in throughput after increasing
the resource block while keeping the number of D2D pairs
constant. As showed from the figure, the system will achieve
higher throughput as the resource blocks increase. Moreover,
the algorithm combining the three modes can make the sys-
tem throughput is increasingly rapidly.

FIGURE 7. Overall system throughput for different Block(r=5, NU=20,
ND=20, PD

max=250mW, PC
max=250mW, B=1).

The key technology for DQN is the point of experience
playback. The correlation between training samples was bro-
ken through random and uniform sampling in experience
playback. Simultaneously, multiple samples in the past were
used for averaging, which also smoothed the distribution
of training samples and alleviated the problem of sampling
distribution changes. Figure 8 shows the smoothing Training
step with different learning rates to evaluate the Algorithm3.
As shown from the graph, the Smoothing Training Step index
is the highest at a learning rate of 0.001. A high learning rate
may lead to a local optimal rather than a globally optimal,
so considering the actual real-time execution of the algorithm.
The learning rate is selected as 0.001.

To assess the fairness of the average user data rate of
our proposed scheduling algorithm, we measure it using the

Fairness index of Jain’s fairness Index (JFI). Let
−

Rd be the
average data rate of D2D user D on subframe N. Since the
total number of D2D users is ND, and the JFI equity index is
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FIGURE 8. With different Learning rate, the smoothing training steps
during training period.

defined as:

η = (
∑
d

−

Rd/(ND
∑
d

−

R2d )) (32)

The range of JFI values is [1/N , 1], where JFI = 1
when all users have the exact same rate. Therefore, the closer
JFI is 1, the better the fairness between users will be
proved. As shown in Figure 9, the JFI of the proposed
scheme is about 0.9, which is much higher than that of the
pre-optimization scheme. Moreover, with the given number
of cellular users, this advantage will be any more evident as
the number of D2D users increases.

FIGURE 9. Comparison of jain’s fairness index between PF and MR
scheduling with increasing number of D2D pairs for r=5, NU=20,
ND=20, PD

max=250mW, PC
max=250mW, B=1.

In the pre-optimization scheme, the base station tends to
allocate the resource block to the DU, bringing the maxi-
mum rate gain. When the number of CU channels is fixed,
the increase of DU will make it more and more challenging
tomeet the rate requirements of part DU, and the performance
of users with poor performance will be worse and worse. Fur-
ther, in our proposed scheme, the system always prioritizes
those users with the worst performance no matter how many
D2D users there are, so the performance gap between users
will not increase further.

Figure 10 indicates the D2D communication pairs’
cumulative distribution function curve of effective outage
threshold. It can be observed in the figure that the scheme
combined with the three algorithms is superior to the other
four schemes. Due to the effective outage threshold increase,
D2D pairs tend to choose an immense transmission power to

FIGURE 10. Cumulative distribution function curve of effective outage
threshold.

ensure the reliability requirements, causingmore severe inter-
ference to the adjacent D2D pairs. Furthermore, the proposed
scheme of combining the three algorithms can effectively
suppress the interference by the adaptive selection of the best
transmission mode.

Figure 11 shows the training process of Power Control. The
reward value is the average value of the numerical simula-
tion obtained over 10 training sessions. It can be seen from
the experimental results that the average reward of iteration
increases with the increase of the number of interactions
between user agents. This shows that the proposed method
combined with the three schemes can be a successful and
effective learning strategy, and the algorithm can converge
faster.

FIGURE 11. Learning process of combining three algorithms.

VII. CONCLUSION
In this paper, we consider joint mode selection, channel allo-
cation and power control in D2D communication in cellular
networks. The throughput of whole system is optimized by
combining the three proposed algorithms, and the SINR of
cellular and D2D links is guaranteed. The optimization prob-
lem is decomposed into three subproblems: Transmission
power control, joint mode selection and channel allocation
for each D2D pair. And we find that the proposed scheme
combining three algorithms can effectively improve system
performance through numerical simulation. In the future, our
research will be extended to the scene of ultra-dense network,

29030 VOLUME 9, 2021



Y. Du et al.: Joint Resource Allocation and Mode Selection for D2D Communication Underlying Cellular Networks

considering the interference between cells, and designing an
effective distribution scheme reasonably.
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