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A Tensor Framework for Multi-linear Complex MMSE Estimation

Divyanshu Pandey, Harry Leib
Tensors are higher order generalization of vectors and matrices which can be used to describe signals indexed by more than two

indices. This paper introduces a tensor framework for minimum mean square error (MMSE) estimation for multi-domain signals
and data using the Einstein Product. The framework addresses both proper and improper complex tensors. The multi-domain nature
of tensors has been harnessed to provide an augmented representation of improper complex tensors to account for covariance and
pseudo-covariance. The classical notions of linear and widely linear MMSE estimators are extended to tensor case leading to the
notion of multi-linear and widely multi-linear MMSE estimation. The Tucker product based n-mode Wiener filtering approach
more commonly used in tensor estimation has been shown to be a special case of the proposed multi-linear MMSE estimation.
An application of the tensor based estimation in a multiple antenna Orthogonal Frequency Division Multiplexing (MIMO OFDM)
system is presented where the tensor formulation allows a convenient treatment of inter-carrier interference. A comparison between
the tensor estimation and per sub-carrier estimation used for MIMO OFDM is presented which shows a significant performance
advantage of using the tensor framework.

Index Terms—Einstein Product, Multi-linear MMSE, Tensors, Tensor Train format, Widely Multi-linear MMSE.

I. INTRODUCTION

Minimum mean square error (MMSE) estimation has been
extensively used in various disciplines including seismology,
radio astronomy, sonar, speech and image processing, radar,
medical signal processing, and communications [1]. However
in many modern day applications, the data or signals to be esti-
mated have an inherent dependency on more than two indices.
For such multi-domain signals, classical MMSE estimation
(based on vector and matrix operations) can not be directly
employed. Such multi-domain data is often represented using
tensors which can be seen as a generalization of vectors
and matrices to higher orders. Tensors are multi-way arrays
whose elements are indexed by more than two indices, also
known as modes. The number of modes is called the order of
the tensor. Hence matrices and vectors can be seen as order
2 and order 1 tensors respectively [2]. Tensors have found
widespread applications in various engineering disciplines
including computer vision [3], [4], signal processing [5]–[8],
big data and machine learning [9]–[12], image processing
[13], [14], communications [15]–[18], and multi-linear system
theory [19], [20]. Our work considers the MMSE estimation
problem in context of tensors, thereby extending the basic
subject beyond the common vectors and matrices settings.

So far, tensor based estimation techniques have been ad-
dressed in the literature for specific applications. For instance,
use of tensors for channel estimation in relay based multiple
input multiple output (MIMO) systems has been consid-
ered in [21], [22]. Blind receivers based on Parallel Factors
(PARAFAC) decomposition of tensors have been considered
for Direct-Sequence Code Division Multiple Access (DS-
CDMA) systems in [23] and for MIMO systems in [24], [25].
A tensor based MMSE channel estimation technique using
compressive sensing was proposed for massive MIMO Or-
thogonal Frequency Division Multiplexing (OFDM) systems
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in [26] and using PARAFAC decomposition for Millimeter
wave MIMO OFDM systems in [27]. In Image Processing,
tensor based estimation has been used for de-noising by
treating colored images as third order tensors and using a
Tucker product based estimator [13], [28]. However, Tucker
and PARAFAC operations can be represented by the Einstein
product as explained in [29]. Hence, the Einstein product can
be used to develop a generic framework for MMSE estimation
in many applications.

The most common methods for tensor estimation found in
literature are based on the Tucker or PARAFAC decompo-
sitions. The Tucker product based technique is also known
as the n-mode Wiener filtering approach [30]. This method
aims to find N separate factor matrices along each mode
of the order N tensor to be estimated. The mode-n product
between the observed noisy tensor and the factor matrices is
then used to find the estimate. Such an approach has been
employed in various applications including Image processing
[30], speech processing [31], and communication systems [26].
However, the additional constraint assuming that the multi-
linear estimator is separable across all the modes, makes the
Tucker approach sub-optimal within the class of multi-linear
estimators. The PARAFAC based technique [32] is also known
as the Canonical Polyadic (CP) decomposition approach. The
CP model decomposes a tensor into a sum of factor rank
one tensors. Estimation using CP model relies on matrix
unfolding of the observed tensor and uses an alternating least
squares method to find the separate factor tensors [32]. Such
an estimation technique assumes a finite rank decomposition
of the tensor to be estimated, and is often used for tensor
completion problems [33]. Further, it has applications in com-
munication systems for joint channel and symbol estimation
if the signal can be assumed to have a low rank CP structure
[27], [34]. The estimation method proposed in this paper uses
the Einstein product to find a multi-linear operator where no
such constraints on the tensor to be estimated or the estimator
are assumed.

In this paper, we present a generic tensor framework for
MMSE estimation based on the Einstein product, which is
concerned with estimating a signal in tensor form from a
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tensor based noisy observation. Many situations in practical
cases involve signals that naturally involve multiple indices
such as MIMO OFDM, Generalized Frequency Division Mul-
tiplexing (GFDM), Filter-bank Multi-carrier (FBMC) systems
[15]. Hence representing such signals by tensors is natural.
The proposed framework provides a structured method based
on a solid mathematical foundation to handle such signals. Our
framework is generic as we consider estimation of complex
data, both proper and improper. A majority of works that
deal with complex random signal, assume a proper regime
where a signal is uncorrelated with its complex conjugate.
This assumption often simplifies the problem formulation but
can not be justified in all cases. If the signal is improper, then
covariance is no longer sufficient to characterize the second
order statistics and the pseudo-covariance also needs to be
accounted for. In case of vectors, augmented representation of
complex data has been used for dealing with improper com-
plex signals [35]. In this paper, we harness the multi-domain
nature of tensors to provide an augmented representation of
improper tensor signals.

In [36] we presented the multi-linear MMSE estimator for
proper tensors. In this paper we consider the more general
case of widely multi-linear estimation, that makes [36] a
special case of this work. Furthermore, in addition to [36]
this paper also presents the best MMSE estimate for tensors
and shows that for jointly complex Gaussian tensors, the
best estimator is the widely multi-linear estimator. We also
present application of the tensor estimation in a MIMO OFDM
system with both proper and improper inputs. Furthermore,
the use of the proposed estimation technique in cases where
the tensor is stored in Tensor Train (TT) decomposed format
is also presented. The data in many scenarios, particularly
in Big Data applications, is often stored in TT decomposed
formats which restricts the freedom to convert the data into
matrices or vectors. We show the application of multi-linear
MMSE estimator for tensors stored in TT format. Also, we
present a detailed comparison between our proposed MMSE
estimator and the more commonly used estimator based on
Tucker product, in terms of complexity and the mean square
error performance.

The Einstein product is a form of tensor contraction which
was initially used in Physics and Continuum Mechanics. It
can be seen as a natural generalization of the matrix product
to higher order arrays. Lately it has been considered to define
notions for multi-linear algebra without reshaping the tensors
into vectors and matrices [29], [37]. Since different modes of a
tensor can attribute different physical meanings depending on
the system model, retaining the distinction between domains is
of paramount importance in order to leverage the information
encapsulated in the structure of a tensor. For instance, in a
communication system different modes can represent different
domains such as space, time, frequency, codes, channel taps
and users. Such a multi-domain approach towards communi-
cation systems using tensors can be employed in many multi-
users (MU), multi-antenna and multi-carrier schemes [15].

This paper is organized as follows : a brief review of
tensor algebra is presented in section II. Section III introduces
the tensor MMSE estimation problem. We present the best

MMSE estimator followed by a widely multi-linear MMSE
estimator which can be used for improper signals. A compar-
ison between the proposed estimator using Einstein product
and the Tucker product approach, both in terms of mean
square error performance and computational complexity is
also presented. Section IV presents numerical examples with
applications of the tensor framework for MMSE estimation
of Gaussian signals, tensors stored in TT format and multi-
domain communication systems. Simulation results for MIMO
OFDM systems are presented to illustrate the performance of
various tensor estimation techniques. The paper is concluded
in Section V. Further, Appendices A, B and C present detailed
proofs of some results in the paper and Appendix D presents
alternate and faster approaches to implement Newton method
for tensor inversion.

II. TENSOR ALGEBRA

A. Notations

Throughout this paper, deterministic vectors, matrices and
tensors will be represented using lowercase underlined fonts,
uppercase fonts, and uppercase calligraphic fonts respectively
e.g. x,X, and X. Their corresponding random quantities will
be denoted by bold fonts, e.g. x,X and XXX. Individual entries
of a tensor are denoted with the indices in subscript, e.g. the
(i, j, k)th element of a third order tensor X is denoted by
Xi,j,k. A colon in subscript is used to indicate all elements
of a mode, e.g. X:,j,k represents all the elements of first
mode corresponding to jth second and kth third mode. All
the augmented variables including vector, matrix or tensor are
represented with two dots on overline as ẍ, Ẍ, Ẍ. Furthermore,
()∗ represents the complex conjugate, E[.] represents expecta-
tion, <() and =() represents the real and imaginary part of a
complex entity, and 0T represents an all zero tensor.

B. Basic Definitions

In this section, we only provide some relevant tensor defi-
nitions and properties needed for this paper. More details on
tensor algebra can be found in [2], [12], [15], [29], [37], [38].

Definition 1. Tensor Linear Space : The set of all tensors
of size I1 × . . . × IK over C forms a linear space, denoted
as TI1,...,IK (C). For A,B ∈ TI1,...,IK (C) and α ∈ C, the
sum A + B = C ∈ TI1,...,IK (C) where Ci1,...,ik = Ai1,...,ik +
Bi1,...,ik , and scalar multiplication α ·A = D ∈ TI1,...,IK (C)
where Di1,...,ik = αAi1,...,ik .

A tensor valued function g(X) can be defined as a func-
tion whose domain and range are both tensors. Notationally,
g : CI1×...×IN → CJ1×...×JM represents a function where
CI1×...×IN and CJ1×...×JM are tensor linear spaces spanned
by the domain and range of function g respectively.

Definition 2. Einstein product [29]: For any N , the Einstein
product is defined using the operation ∗N , where :

(A ∗N B)i1,...,iP ,j1,...,jM =∑
k1,...,kN

Ai1,i2,...,iP ,k1,...,kN
Bk1,...kN ,j1,j2,...,jM (1)
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for tensors A ∈ CI1×...×IP×K1×...×KN ,B ∈
CK1×...×KN×J1×...×JM , and A∗NB ∈ CI1×...×IP×J1×...×JM .

For tensors X,Y ∈ CI1×I2×...×IN and Z ∈ CJ1×J2×...×JM ,
using Einstein product we can define the inner product 〈X,Y〉
and the outer product X ◦ Z as :

〈X,Y〉 =

I1∑
i1=1

. . .

IN∑
iN=1

Xi1,i2,...,iNY∗i1,i2,...,iN = X ∗N Y∗ (2)

(X ◦ Z)i1,...,iN ,j1,...,jM = Xi1,...,iNZj1,...,jM = X ∗0 Z (3)

Norm : ||X||=
√

(X ∗N X∗) (4)

Tensors X and Y are said to be mutually orthogonal if their
inner product (2) is 0 [39]. Using [29, Lemma 3.1] for order
4 tensors, which was further generalized in [37], [40] for any
size tensors, several linear algebra definitions can be extended
to a multi-linear setting as follows :
• A tensor A ∈ CI1×...×IN×J1×...×JM is called a square

tensor if N = M and Ik = Jk for k = 1, . . . , N [37].
• A square tensor D ∈ CI1×...×IN×I1×...×IN is pseudo-

diagonal if all its entries Di1,...,iN ,j1,...,jN are zero except
when i1 = j1, i2 = j2, . . . , iN = jN [15].

• An identity tensor, I ∈ CI1×...×IN×I1×...×IN is a square
pseudo-diagonal tensor such that for any square tensor
A ∈ CI1×...×IN×I1×...×IN , A ∗N I = I ∗N A = A.

• The tensor A−1 ∈ CI1×...×IN×I1×...×IN is an inverse of
a square tensor of same size, A ∈ CI1×...×IN×I1×...×IN

if A ∗N A−1 = A−1 ∗N A = I [37].
• The Hermitian of a tensor A ∈ CI1×...×IN×J1×...×JM is

a tensor B ∈ CJ1×...×JM×I1×...×IN which has entries
B∗j1,j2,...,jM ,i1,i2,...,iN

= Ai1,i2,...,iN ,j1,j2,...,jM and is
denoted as AH . We denote transpose as AT . Since tensors
could have more than two modes, so there can be multiple
ways to define a tensor Hermitian or transpose. To avoid
overload of notation, in this paper whenever we write a
tensor explicitly as N +M or 2N order tensor, then AH

or AT is always with respect to partition after N modes.
• A square tensor X ∈ CI1×...×IN×I1×...×IN is called a

Hermitian tensor if X = XH , and a unitary tensor if
XH ∗N X = X ∗N XH = I.

• Let A ∈ CI1×...×IN×I1×...×IN ,X ∈ CI1×...×IN , λ ∈ C,
where X and λ satisfy A∗N X = λX, then we call X and
λ as eigentensor and eigenvalue of A respectively [14].

• The EVD of a Hermitian tensor A ∈
CI1×...×IN×I1×...×IN is given as A = U ∗N D ∗N UH

where U ∈ CI1×...×IN×I1×...×IN is a unitary tensor and
D ∈ CI1×...×IN×I1×...×IN is a square pseudo-diagonal
tensor with its non-zero values being the eigenvalues of
A and U containing the eigentensors of A.

• A square tensor as positive semi-definite, denoted by A �
0, if all its eigenvalues are non-negative.

• The trace of a tensor is defined as the sum
of its pseudo-diagonal entries, i.e. tr(A) =∑

i1,...,iN
Ai1,i2,...,iN ,i1,i2,...,iN .

• The determinant of a tensor is defined as
the product of its eigenvalues i.e., det(A) =∏

i1,...,iN
Di1,i2,...,iN ,i1,i2,...,iN . It is also sometimes

referred as the unfolding determinant [20], [37].

Further, the following properties can also be established:
1) For tensors A ∈ CI1×...×IP×J1×...×JN ,B ∈

CJ1×...×JN×K1×...×KM and C ∈
CK1×...×KM×T1×...×TQ , we have

(A ∗N B) ∗M C = A ∗N (B ∗M C)

(A ∗N B) ◦ C = A ∗N (B ◦ C)
(5)

2) For A ∈ CI1×...×IP×J1×...×JN and B ∈ CJ1×...×JN ,

A ∗N B = B ∗N AT and (A ∗N B)∗ = B∗ ∗N AH (6)

3) For tensors A ∈ CI1×...×IM×J1×...×JN and B ∈
CJ1×...×JN×K1×...×KP :

(A ∗N B)H = BH ∗N AH (7)

4) For A and B ∈ CI1×...×IN×I1×...×IN , we have :

(A ∗N B)−1 = B−1 ∗N A−1 (8)

5) For two tensors A ∈ CI1×...×IN and B ∈ CI1×...×IN of
same size and order N ,

A ∗N B = B ∗N A = tr(A ◦B) = tr(B ◦A) (9)

6) For tensors A ∈ CI1×...×IN×J1×...×JM and B ∈
CJ1×...×JM×I1×...×IN , we have :

tr(A ∗M B) = tr(B ∗N A) (10)

In this paper, to find the inverse of a tensor A ∈
CI1×...×IN×I1×...×IN , we use the Newton Method for tensor
inversion proposed in [36]. To approximate A−1, the Newton
Method requires to solve the following iterative equation:

B(k+1) = (2I−B(k) ∗N A) ∗N B(k) (11)

where the initial B(0) can be set to a ·AH . Using similar line
of arguments as in Theorem 2 in [41], it can be shown that
this method converges if 0 < a < 2/σ2

max where σ2
max is the

largest eigenvalue of C = AH ∗N A.

C. Second order characteristics of complex random tensors
and augmented representation

The covariance of a complex tensor XXX ∈ CI1×I2×...×IN can
be defined as a tensor of size I1×I2×. . .×IN×I1×I2×. . .×
IN represented by Q = E[(XXX−M) ◦ (XXX−M)∗] where M =
E[XXX] is the mean tensor. However, a complete second-order
characterization of complex tensors which accounts for corre-
lation between the real and imaginary components of the ten-
sor as well, requires defining pseudo-covariance, also known
as complementary covariance [42]. The pseudo-covariance of
tensor XXX is given as Q̃ = E[(XXX −M) ◦ (XXX −M)]. Similarly,
cross covariance and cross pseudo-covariance between random
tensors XXX and YYY can be defined as QXYXYXY = E[(XXX−E[XXX])◦(YYY−
E[YYY])∗] and Q̃XYXYXY = E[(XXX − E[XXX]) ◦ (YYY − E[YYY])] respectively.
We define a complex random tensor to be proper if its
pseudo-covariance vanishes, i.e Q̃ = 0T . Similarly random
tensors XXX and YYY are called cross proper if their cross pseudo-
covariance is 0T . Corresponding definitions for vectors can be
found in [35], [42]. For vectors, an augmented representation
completely defines the second order characteristics where the
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augmented vector is ẍ =

[
x
x∗

]
[43], [44]. Next, we will exploit

the multi-domain nature of tensors to develop an augmented
representation of complex tensors.

Unlike a vector, a tensor has more than one mode, therefore
concatenation by the conjugate tensor can be done across any
mode. However given that the primary advantage of a tensor
is its ability to maintain distinction between different domains,
we suggest that for a complex valued tensor XXX ∈ CI1×...×IN ,
the augmented tensor can be created by adding another domain
of size 2 such that ẌXX ∈ CI1×...×IN×2 where ẌXXi1,...,iN ,1 =

XXXi1,...,iN and ẌXXi1,...,iN ,2 = XXX
∗
i1,...,iN . The augmented mean

tensor will be M̈ = E[ẌXX], and the augmented covariance tensor
will be given as : Q̈ = E[(ẌXX − M̈) ◦ (ẌXX − M̈)∗] of size I1 ×
. . .× IN × 2× I1 × . . .× IN × 2.

The augmented covariance tensor Q̈ contains the covari-
ance Q and the pseudo-covariance tensor Q̃ along with
their conjugates as Q̈:, . . . , :︸ ︷︷ ︸

N

,1,:, . . . , :︸ ︷︷ ︸
N

,1 = Q, Q̈:,...,:,1,:,...,:,2 =

Q̃, Q̈:,...,:,2,:,...,:,1 = Q̃∗ and Q̈:,...,:,2,:,...,:,2 = Q∗.

Definition 3. The pdf of a general Gaussian distributed
complex-valued tensor XXX ∈ CI1×I2×...×IN of order N is given
by :

pXXX(x) =
exp { − 1

2
(ẍ− m̈)HQ̈

−1
(ẍ− m̈)}

(π)
I1I2...IN (det(Q̈))1/2

(12)

where ẍ = vec(Ẍ), m̈ = vec(E[ẌXX]) and Q̈ is the covariance
matrix of the vectorised augmented tensor. We can also write
this pdf as :

pXXX(X) =
exp { − 1

2
(Ẍ− M̈)∗ ∗N+1 Q̈

−1 ∗N+1 (Ẍ− M̈)}

(π)
I1I2...IN (det(Q̈))1/2

(13)
Notationally, we write XXX ∼ CN (M,Q, Q̃). The equivalence of
(12) and (13) can be directly established based on properties
of Einstein product. For proper complex Gaussian tensor, with
zero pseudo-covariance the pdf simplifies as :

pXXX(X) =
exp { − (X−M)∗ ∗N Q−1 ∗N (X−M)}

(π)
I1I2...IN det(Q)

(14)

where M = E[XXX] is the order N mean tensor and Q = E[(XXX−
M) ◦ (XXX−M)∗] is the order 2N covariance tensor.

III. MMSE TENSOR ESTIMATION

Consider the problem of estimating a complex tensor XXX ∈
CI1×...×IN from an observed complex tensor YYY ∈ CJ1×...×JM .
Throughout this section, we will assume the observed tensor
and the tensor to be estimated have zero mean. We first
establish an Orthogonality principle for tensors through the
following theorem :

Theorem 1. Let g : CJ1×...×JM → CI1×...×IN be a tensor
valued function of a tensor such that X̂XX = g(YYY) ∈ CI1×...×IN

is an estimator of tensor XXX ∈ CI1×...×IN based on the
observation tensor YYY ∈ CJ1×...×JM . We define the error tensor
as EEE = XXX− g(YYY), then if :

E[〈EEE, h(YYY)〉] = 0 for h : CJ1×...×JM → CI1×...×IN (15)

then,

E[||EEE||2] ≤ E[||XXX−h(YYY)||2] for h : CJ1×...×JM → CI1×...×IN

(16)

Proof of Theorem 1 is provided in Appendix A. Using sim-
ilar line of proof as for Theorem 1, the following corollaries
can be established :

Corollary 1.1. Let g, h : CJ1×...×JM → CI1×...×IN be tensor
valued functions of tensors such that g(YYY) = A1∗MYYY+A2∗M
YYY
∗ and h(YYY) = B1 ∗M YYY+B2 ∗M YYY

∗ where A1,A2,B1,B2 ∈
CI1×...IN×J1×...×JM . Let g(YYY) be an estimator of tensor XXX ∈
CI1×...×IN based on the observation tensor YYY ∈ CJ1×...×JM .
Then for the error tensor EEE = XXX− g(YYY), if,

E[〈EEE, h(YYY)〉] = 0 for B1,B2 ∈ CI1×...IN×J1×...×JM (17)

then,

E[||EEE||2] ≤ E[||XXX−h(YYY)||2] for B1,B2∈CI1×...IN×J1×...×JM

(18)

Corollary 1.2. Let g, h : CJ1×...×JM → CI1×...×IN be tensor
valued functions of tensors such that g(YYY) = A ∗M YYY and
h(YYY) = B ∗M YYY where A,B ∈ CI1×...IN×J1×...×JM . Let
g(YYY) be an estimator of tensor XXX ∈ CI1×...×IN based on the
observation tensor YYY ∈ CJ1×...×JM . Then for the error tensor
EEE = XXX− g(YYY), if

E[〈EEE, h(YYY)〉] = 0 for B ∈ CI1×...IN×J1×...×JM (19)

then,

E[||EEE||2] ≤ E[||XXX− h(YYY)||2] for B ∈ CI1×...IN×J1×...×JM

(20)

A proof of Corollary 1.2 is also provided in [36].

A. Best MMSE Estimation of Tensors

The objective is to find the function g(YYY) which is the best
estimator of XXX in mean square error sense. Let h(YYY) be any
other estimator. Then we have :

E[〈XXX− g(YYY),h(YYY)〉] = EYYY

[
E[〈XXX− g(YYY), h(YYY)〉 | YYY]

]
(21)

= EYYY

[
E[(XXX− g(YYY)) ∗N h(YYY)∗ | YYY]

]
(22)

Conditioned on YYY, we can take h(YYY)∗ and g(YYY) outside of the
inner expectation.

E[〈XXX− g(YYY),h(YYY)〉] = EYYY

[
E[(XXX− g(YYY)) | YYY] ∗N h(YYY)∗

]
(23)

= EYYY

[
(E[XXX | YYY]− g(YYY)) ∗N h(YYY)∗

]
(24)

From orthogonality principle, we know that (24) has to be 0
for any h(YYY) to minimize the mean square error. Thus g(YYY) =
E[XXX | YYY] is the best MMSE estimator of tensor XXX from YYY :

X̂XX = E[XXX | YYY] (25)

Since E[X̂XX] = E[E[XXX | YYY]] = E[XXX], the error EEE = XXX − X̂XX, is a
zero mean tensor with the associated covariance as :
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QEEE = E[(XXX− X̂XX) ◦ (XXX− X̂XX)∗] (26)
= EXXX,YYY[(XXX− E[XXX | YYY]) ◦ (XXX− E[XXX | YYY])∗]. (27)

Note that (27) represents the order 2N covariance tensor of
the error when conditional mean estimator is used to estimate
an order N tensor. The trace of such a covariance tensor gives
us the mean square error in estimation as :

E[||EEE||2] = E
[ ∑
i1,...,iN

|EEEi1,...,iN |2
]

=
∑

i1,...,iN

E[|EEEi1,...,iN |2] = tr(QEEE) (28)

Notice that similar to vector case [35], conditioning on YYY is
same as conditioning on YYY

∗, i.e. E[XXX | YYY] = E[XXX | YYY∗] . Hence
the estimator conditioned on both YYY and YYY

∗ gives no extra
information as compared to the one conditioned only on YYY.
Also the conditional mean estimator of XXX∗ would just be the
complex conjugate of the conditional mean estimator of XXX.

B. Widely Multi-linear and Multi-linear MMSE Estimation
of Tensors

A linear relationship between complex scalars x = xr +jxi
and y = yr + jyi, as y = kx implies both the real and
imaginary parts of y are related with the real and imaginary
parts of x with the same coefficient k, i.e. yr = kxr and
yi = kxi. However, in a more general case a linear-conjugate-
linear or widely linear relation is defined as y = k1x+ k2x

∗

[42] where both the real and imaginary parts of y are related
with real and imaginary parts of x using different coefficients,
i.e. yr = (k1 + k2)xr and yi = (k1 − k2)xi. This notion was
used to define the widely linear MMSE estimate of a complex
vector in [35], [45] where the estimate of a vector depends
widely linearly on the observed vector, or in other words
depends linearly on both the observed vector and its conjugate
through different coefficients. For complex data estimation,
assuming a widely linear dependence instead of linear can
significantly improve the performance since the former takes
into account covariance and pseudo-covariance both, while the
latter employs only the covariance [35].

In this section, we restrict ourselves to the class of esti-
mators which depend linearly on the received tensor YYY and
its conjugate YYY

∗. If the estimator depends linearly only on
tensor YYY, it is called a multi-linear estimate, whereas if the
estimator depends linearly on both YYY and YYY

∗ through different
set of coefficients, it is called a widely multi-linear estimate.
In order to estimate the tensor XXX ∈ CI1×...×IN from an
observed complex tensor YYY ∈ CJ1×...×JM and its conjugate
by a multi-linear structure, we are looking for the tensors
A1,A2 ∈ CI1×...IN×J1×...×JM such that the estimator:

X̂XXWL = A1 ∗M YYY + A2 ∗M YYY
∗ (29)

satisfies

E[||XXX− (A1 ∗M YYY + A2 ∗M YYY
∗)||2] ≤

E[||XXX− (B1 ∗M YYY + B2 ∗M YYY
∗)||2] (30)

for any other tensors B1,B2 ∈ CI1×...×IN×J1×...×JM . From
Corollary 1.1, we know that the optimal A1 and A2 will be
such that :

E[〈(XXX− X̂XXWL), (B1 ∗M YYY + B2 ∗M YYY
∗)〉] = 0 (31)

for any choice of B1,B2 ∈ CI1×...×IN×J1×...×JM . From (2)
and (29) , we can write (31) as :

E[(XXX−A1 ∗M YYY−A2 ∗M YYY
∗)∗N (B1 ∗M YYY+B2 ∗M YYY

∗)∗] = 0
(32)

From (6), we can write (B1∗MYYY)∗ = (YYY∗∗MBH
1 ) and (B2∗M

YYY
∗)∗ = (YYY ∗M BH

2 ), and hence the left hand side of (32) can
be written as :

E[(XXX−A1∗MYYY−A2∗MYYY
∗)∗N ((YYY∗∗MBH

1 )+(YYY∗MBH
2 ))]

= E[ tr {(XXX−A1 ∗M YYY−A2 ∗M YYY
∗)◦

((YYY∗ ∗M BH
1 ) + (YYY ∗M BH

2 ))}] (from (9)) (33)

= E[ tr {XXX ◦YYY∗ ∗M BH
1 −A1 ∗M YYY ◦YYY∗ ∗M BH

1 −
A2 ∗M YYY

∗ ◦YYY∗ ∗M BH
1 +XXX ◦YYY ∗M BH

2 −
A1 ∗M YYY ◦YYY ∗M BH

2 −A2 ∗M YYY
∗ ◦YYY ∗M BH

2 }] (34)

= tr {E[XXX ◦YYY∗]︸ ︷︷ ︸
CXYXYXY

∗MBH
1 −A1 ∗M E[YYY ◦YYY∗]︸ ︷︷ ︸

CYYY

∗MBH
1 −

A2 ∗M E[YYY∗ ◦YYY∗]︸ ︷︷ ︸
C̃∗
YYY

∗MBH
1 + E[XXX ◦YYY]︸ ︷︷ ︸

C̃XYXYXY

∗MBH
2 −

A1 ∗M E[YYY ◦YYY]︸ ︷︷ ︸
C̃YYY

∗MBH
2 −A2 ∗M E[YYY∗ ◦YYY]︸ ︷︷ ︸

C∗
YYY

∗MBH
2 } (35)

= tr { (CXYXYXY −A1 ∗M CYYY −A2 ∗M C̃∗YYY)︸ ︷︷ ︸
B̄1

∗MBH
1 +

(C̃XYXYXY −A1 ∗M C̃YYY −A2 ∗M C∗YYY)︸ ︷︷ ︸
B̄2

∗MBH
2 } (36)

For (36) to be 0, for any B1 and B2, we need B̄1 and B̄2 to
be all zero tensors, which gives us the conditions for optimal
A1 and A2 :

CXYXYXY = A1 ∗M CYYY + A2 ∗M C̃∗YYY (37)

C̃XYXYXY = A1 ∗M C̃YYY + A2 ∗M C∗YYY (38)

Equations (37) and (38) are systems of multi-linear equations
which can be solved for A1 and A1 using methods described
in [29]. If the inverse of the covariance of YYY exists, then from
(38), we get A2 = (C̃XYXYXY−A1 ∗M C̃YYY) ∗M C∗−1

YYY
which we can

substitute in (37) to get :

CXYXYXY = A1 ∗M CYYY + (C̃XYXYXY −A1 ∗M C̃YYY) ∗M C∗−1
YYY
∗M C̃∗YYY

= A1∗M (CYYY−C̃YYY∗MC∗−1
YYY
∗M C̃∗YYY)+(C̃XYXYXY∗MC∗−1

YYY
∗M C̃∗YYY)

⇒ A1 =
(
CXYXYXY − C̃XYXYXY ∗M C∗−1

YYY
∗M C̃∗YYY

)
∗M P−1

YYY
(39)

where, PYYY = (CYYY − C̃YYY ∗M C∗−1
YYY
∗M C̃∗YYY). (40)

Also from (37) we get A1 = (CXYXYXY−A2∗M C̃∗YYY)∗M C−1
YYY

which
we can substitute in (38) to get :

A2 =
(
C̃XYXYXY − CXYXYXY ∗M C−1

YYY
∗M C̃YYY

)
∗M P∗−1

YYY
(41)
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Substituting (39) and (41) into (29) gives us the widely multi-
linear estimate X̂XXWL of the tensor XXX. The covariance of the
corresponding error tensor is :

QWL = E[(XXX− X̂XXWL) ◦ (XXX− X̂XXWL)∗]

= CXXX −A1 ∗M CH
XYXYXY −A2 ∗M C̃H

XYXYXY (42)

A detailed derivation of (42) has been included in Appendix
B. On substituting A1 and A2 from (39) and (41) respectively,
we get :

QWL = CXXX−
(
CXYXYXY−C̃XYXYXY∗MC∗−1

YYY
∗M C̃∗YYY

)
∗MP−1

YYY
∗MCH

XYXYXY−(
C̃XYXYXY − CXYXYXY ∗M C−1

YYY
∗M C̃YYY

)
∗M P∗−1

YYY
∗M C̃H

XYXYXY (43)

The quantity A1∗M CH
XYXYXY+A2∗M C̃H

XYXYXY can be seen as the cross
covariance between the widely multi-linear estimator X̂XXWL

and the tensor XXX (based on (94)). Hence, intuitively the error
covariance tensor is the difference between the covariance
tensor of XXX and the cross covariance between X̂XXWL and XXX,
i.e. QWL = CXXX − C

X̂XXWLXXX
.

The corresponding mean square error is given by

MSEWL = tr(QWL) = tr(CXXX−A1 ∗M CH
XYXYXY−A2 ∗M C̃H

XYXYXY)

= tr(CXXX − (CXYXYXY − C̃XYXYXY ∗M C∗−1
YYY
∗M C̃∗YYY) ∗M P−1

YYY
∗M CH

XYXYXY−
(C̃XYXYXY − CXYXYXY ∗M C−1

YYY
∗M C̃YYY) ∗M P∗−1

YYY
∗M C̃H

XYXYXY) (44)

Next we consider the problem of MMSE estimation where
we assume that the estimate of XXX depends linearly only on the
received tensor YYY and not its conjugate, i.e.

X̂XXL = A ∗M YYY (45)

and we want to find the tensor A ∈ CI1×...×IN×J1×...×JM

such that E[||XXX − A ∗M YYY||2] ≤ E[||XXX − B ∗M YYY||2] for any
other tensor B ∈ CI1×...×IN×J1×...×JM . Using corollary 1.2,
we know that the optimal A will satisfy E[(XXX−A ∗M YYY) ∗N
(B ∗M YYY)] = 0. Now using the same line of proof as for (36)
by substituting A2 = 0T and A1 = A we can get the condition
for optimal A as :

CXYXYXY = A ∗M CYYY (46)

Equation (46) can be solved using methods described in [29]
for A. If the inverse of CYYY does not exist, a minimum norm
least square solution is suggested in [46] leading to Moore-
Penrose inverse of tensors. If the inverse of CYYY exists, then we
have

A = CXYXYXY ∗M C−1
YYY

(47)

and the multi-linear MMSE estimate of XXX is given by :

X̂XXL = (CXYXYXY ∗M C−1
YYY

) ∗M YYY (48)

The covariance of the corresponding error tensor is :

QL = E[(XXX− X̂XXL) ◦ (XXX− X̂XXL)∗] (49)

which we can solve by substituting A2 = 0T and A1 =
(CXYXYXY ∗M C−1

YYY
) in (44), to get:

QL = CXXX −A ∗M CH
XYXYXY = CXXX − CXYXYXY ∗M C−1

YYY
∗M CH

XYXYXY (50)

The quantity A ∗M CH
XYXYXY can be seen as the cross covariance

between X̂XXL and XXX. Hence, intuitively the error covariance
tensor is the difference between the covariance tensor of XXX and
the cross covariance between X̂XXL and XXX, i.e. QL = CXXX−CX̂XXLXXX

.
The mean square error is given as:

MSEL = tr(QL) = tr(CXXX − CXYXYXY ∗M C−1
YYY
∗M CH

XYXYXY) (51)

C. Comparing Multi-linear and Widely Multi-linear MMSE
Estimation

Let g(YYY) = A1 ∗M YYY + A2 ∗M YYY
∗ be a widely multi-linear

estimator of XXX based on tensor YYY and its conjugate YYY
∗. From

corollary 1.1, we know that the mean square error achieved by
the widely multi-linear estimate g(YYY) with A1 and A2 given
in (39) and (41) respectively will be less than or equal to the
mean square error achieved by any other choice of A1 and A2.
An alternate choice of A1 and A2 can be A1 = A (obtained
from (47)) and A2 = 0T , in which case g(YYY) will represent the
multi-linear estimate. Hence the mean square error achieved by
a widely multi-linear estimate given by (44) is always less than
or equal to the mean square error achieved by the multi-linear
estimate given by (51). The performance difference between
the two cases can be found by comparing the error covariance
tensors. On substituting CXYXYXY from (37) into (50), we get :

QL = CXXX − (A1 ∗M CYYY + A2 ∗M C̃∗YYY)

∗M C−1
YYY
∗M (A1 ∗M CYYY + A2 ∗M C̃∗YYY)H

=CXXX− (A1+A2∗M C̃∗YYY∗MC−1
YYY

)∗M (CYYY∗MAH
1 +C̃YYY∗MAH

2 )

= CXXX −A1 ∗M CYYY ∗M AH
1 −A1 ∗M C̃YYY ∗M AH

2

−A2∗M C̃∗YYY∗MAH
1 −A2∗M C̃∗YYY∗MC−1

YYY
∗M C̃YYY∗MAH

2

(52)

Note that we have used the properties CYYY = CH
YYY and C̃YYY = C̃T

YYY

in the derivation. Similarly on substituting CXYXYXY from (37) and
C̃XYXYXY from (38) into (42), we get

QWL = CXXX −A1 ∗M (A1 ∗M CYYY + A2 ∗M C̃∗YYY)H

−A2 ∗M (A1 ∗M C̃YYY + A2 ∗M C∗YYY)H

= CXXX −A1 ∗M CYYY ∗M AH
1 −A1 ∗M C̃YYY ∗M AH

2

−A2 ∗M C̃∗YYY ∗M AH
1 −A2 ∗M C∗YYY ∗M AH

2 (53)

Subtracting (53) from (52), we get

∆Q =QL−QWL =A2∗M (C∗YYY − C̃∗YYY∗MC−1
YYY
∗M C̃YYY) ∗M AH

2

= A2 ∗ P∗YYY ∗M AH
2 (from (40))

= (C̃XYXYXY − CXYXYXY ∗M C−1
YYY
∗M C̃YYY) ∗M P∗−1

YYY
∗M

(C̃XYXYXY − CXYXYXY ∗M C−1
YYY
∗M C̃YYY)H (based on (41)) (54)

∆e =MSEL−MSEWL =tr(QL−QWL)=tr(∆Q) (55)

Since P∗−1
YYY

is a positive definite tensor, hence the pseudo-
diagonal entries of ∆Q are always non negative. Hence ∆e is
always non negative. The condition when the two estimates
are identical and hence provide the same mean square error,
i.e. ∆e = 0, is formally established in the following Lemma.
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Lemma 1. The widely multi-linear and multi-linear MMSE
estimates are identical when :

C̃XYXYXY = CXYXYXY ∗M C−1
YYY
∗M C̃YYY (56)

Proof. Substituting (56) in (39), we get :

A1 = (CXYXYXY − CXYXYXY ∗M C−1
YYY
∗M C̃YYY ∗M C∗−1

YYY
∗M C̃∗YYY)∗M

(CYYY − C̃YYY ∗M C∗−1
YYY
∗M C̃∗YYY)

−1

= CXYXYXY ∗M (I− C−1
YYY
∗M C̃YYY ∗M C∗−1

YYY
∗M C̃∗YYY)∗M

(CYYY ∗M (I− C−1
YYY
∗M C̃YYY ∗M C∗−1

YYY
∗M C̃∗YYY))

−1

= CXYXYXY ∗M (I− C−1
YYY
∗M C̃YYY ∗M C∗−1

YYY
∗M C̃∗YYY)∗M

(I− C−1
YYY
∗M C̃YYY ∗M C∗−1

YYY
∗M C̃∗YYY)

−1 ∗M C−1
YYY

= CXYXYXY ∗M C−1
YYY

(57)

Also, substituting (56) in (41), we get A2 = 0T . In this case,
the widely multi-linear estimate is given as (CXYXYXY ∗M C−1

YYY
)∗M

YYY+0T∗MYYY
∗, which is the multi-linear estimate from (48).

Lemma 1 essentially represents a condition when the error
of the multi-linear estimate (X̂XXL − XXX) is uncorrelated with
YYY
∗, i.e. E[(X̂XXL − XXX) ◦ (YYY∗)∗] = 0T . Substituting (48) in this

condition we get :

E[((CXYXYXY ∗M C−1
YYY

) ∗M YYY−XXX) ◦ (YYY∗)∗] = 0T (58)

⇒ (CXYXYXY ∗M C−1
YYY

) ∗M E[YYY ◦YYY]− E[XXX ◦YYY] = 0T (59)

⇒ CXYXYXY ∗M C−1
YYY
∗M C̃YYY − C̃XYXYXY = 0T (60)

which is same as (56). One of the trivial cases when this
will be satisfied is when the tensor to be estimated and the
observation are jointly proper. Tensors XXX and YYY are called
jointly proper if they are both individually proper, i.e. C̃XXX =
C̃YYY = 0T and cross-proper, i.e. C̃XYXYXY = 0T . In this case, (56) is
satisfied, hence multi-linear estimate is same as widely multi-
linear estimate. Notice however, that XXX and YYY being jointly
proper is not a necessary condition, as even if XXX is not proper,
i.e. C̃XXX 6= 0T but C̃YYY = 0T and C̃XYXYXY = 0T , still (56) is satisfied
and multi-linear and widely multi-linear estimate will be same.

Further, if the tensor to be estimated XXX is real, the cross
pseudo-covariance is given as :

C̃XYXYXY = E[XXX ◦YYY] = E[(XXX ◦YYY∗)∗] = C∗XYXYXY (since XXX = XXX
∗)
(61)

Substituting (61) into (37) and comparing with (38) shows that
A2 = A∗1. Thus for real XXX, the widely multi-linear MMSE
estimate and the associated mean square error (from (44)) are
given as :

X̂XXWL = A1 ∗M YYY + A∗1 ∗M YYY
∗ = 2<(A1 ∗M YYY)

= 2<((CXYXYXY − C̃XYXYXY ∗M C∗−1
YYY
∗M C̃∗YYY) ∗M P−1

YYY
∗M YYY) (62)

which shows that the widely multi-linear estimate of a real
signal is always real irrespective of the observation being
complex. The corresponding mean square error is given as:

MSEWL = tr(CXXX −A1 ∗M CH
XYXYXY −A∗1 ∗M C∗HXYXYXY)

= tr(CXXX − 2<(A1 ∗M CH
XYXYXY))

= tr(CXXX − 2<((CXYXYXY−C̃XYXYXY∗MC∗−1
YYY
∗M C̃∗YYY)∗MP−1

YYY
∗M CH

XYXYXY))
(63)

For real or proper complex vectors, it is well known that
if the signal to be estimated x and the observed vector y
are jointly Gaussian random vectors, then the best MMSE
estimate is same as the LMMSE estimate. However, to be more
accurate, we can say that if x and y are two jointly complex
Gaussian random vectors, then the best MMSE estimator
E[x|y] is the WLMMSE estimator of x from y [42]. We can
extend this result to widely multi-linear MMSE estimate in
the form of the following theorem.

Theorem 2. If XXX and YYY are two jointly complex Gaussian
tensors, then the best MMSE estimator E[XXX|YYY] is the widely
multi-linear estimator of XXX from YYY.

A proof of Theorem 2 has been included in Appendix C.

D. Comparison with Tucker based Tensor MMSE filter

The n-mode Wiener filter which makes use of the Tucker
product [13], [47] constitutes a commonly used signal process-
ing technique. Consider an observed tensor YYY ∈ CI1×...×IN .
The objective is to estimate XXX ∈ CI1×...×IN based on
observation YYY. Note that such class of estimators assume
that the signal to be estimated and observed signals have the
same dimensions. The estimator of the signal tensor XXX can be
represented by N n-mode filters A(n) ∈ CIn×In using Tucker
product as follows [28]:

X̂XXT = YYY×1 A(1) ×2 A(2) ×3 . . .×N A(N) (64)

where the criteria for obtaining the optimal n-mode filters A(n)

is the minimization of the mean square error between XXX and
X̂XXT , defined as :

e(A(1),A(2), . . . ,A(N)) = E[||XXX− X̂XXT ||2] (65)

= E[||XXX−YYY×1 A(1) ×2 A(2) ×3 . . .×N A(N)||2] (66)

The optimal choice of the n-mode filters A(n) which ensures
minimum mean-square error between XXX and X̂XXT is calculated
using n-mode Wiener filtering method which relies on matrix
unfoldings of YYY [47]. Initially, all the factor matrices A(n)

are set to identity matrices. For updating A(n) for each n,
it is assumed that A(m) for m 6= n are known. Hence an
alternative least squares approach is employed to calculate all
the optimal A(n) where A(m) for m 6= n is fixed to find A(n)

for all n, and then we repeat for all n until a convergence
criteria is met. A detailed derivation of the solution and the
algorithm to calculate the optimal n-mode matrix filters is
presented in [13], [28], [47]. Note that in literature the Tucker
operator based estimator is presented only for the multi-linear
case and not widely multi-linear. A simple extension to a
widely multi-linear case using Tucker operator would require
finding optimal factor matrices B(n) ∈ CIn×In to operate on
the conjugate of YYY as well, i.e.

X̂XXWT = YYY×1 A(1)×2 . . .×N A(N) +YYY
∗×1 B(1)×2 . . .×N B(N)

(67)
such that the mean square error between XXX and X̂XXWT is
minimized. Notice that both (64) and (67) can be seen as
specific cases of the widely multi-linear estimator from (29).
Hence the Tucker product based estimator can be seen as a
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specific case of the MMSE estimator presented in this paper
with an additional constraint. On writing (64) element-wise,

X̂XXTi1,...,iN =

IN∑
jN=1

. . .

I1∑
j1=1

YYYj1,...,jN ·A
(1)
i1,j1
· A(2)

i2,j2
· · ·A(N)

iN ,jN

(68)
We define a tensor A ∈ CI1×...×IN×I1×...×IN such that

Ai1,...,iN ,j1,...,jN = A(1)
i1,j1
· A(2)

i2,j2
· · ·A(N)

iN ,jN
(69)

In this case we can re-write (68) as :

X̂XXTi1,...,iN =

IN∑
jN=1

. . .

I1∑
j1=1

YYYj1,...,jN ·Ai1,...,iN ,j1,...,jN

⇒X̂XXT = A ∗N YYY (70)

The solution for the optimal tensor A which mini-
mizes the mean square-error between XXX and X̂XXT in
(70) is the multi-linear MMSE estimator as given by
(47). Similarly (67) can be equivalently written as (29)
with constraints A1i1,...,iN ,j1,...,jN = A(1)

i1,j1
· · ·A(N)

iN ,jN
and

A2i1,...,iN ,j1,...,jN = B(1)
i1,j1
· · ·B(N)

iN ,jN
. Hence the Tucker

multi-linear MMSE estimator can be seen as a special case
of the Einstein product based multi-linear MMSE estimator
with an additional constraint that the tensor A can be written
as in (69). Similarly, the Tucker widely multi-linear MMSE
estimator can be seen as a constrained case of the widely
multi-linear MMSE estimator from (29). The constraint (69)
expresses the tensor A as a rearranged outer product of N
factor matrices A(n). This extra constraint makes the perfor-
mance of Tucker operator based estimators sub-optimal within
the class of multi-linear estimators. The Tucker or the n-
mode filtering approach aims to find factor matrices along
each mode separately, thereby assumes that the optimal multi-
linear estimator can be written in terms of product of such
factor matrix elements. But the proposed estimator based on
Einstein product finds the best multi-linear estimator with no
constraints or assumptions on separability of the estimator
across different modes, thereby providing better mean square
error performance.

Complexity Analysis: Even though Tucker operator based
estimator is sub-optimal, it has a computational advantage
over the more general multi-linear estimator using the Einstein
product proposed in our work. Finding the estimator for multi-
linear MMSE estimation of order N tensor requires inverting
the covariance tensor of size I1×I2×. . . IN×I1×I2×. . .×IN ,
which requires O((I1 · · · IN )3) operations [36]. The Tucker
operator based approach while admitting sub-optimality breaks
the tensor estimation problem into N smaller linear estimation
problems which requires inverting N matrices of size In× In
for n = 1, . . . , N where complexity of each matrix inversion
is O(I3

n) [26]. A comparison of the computational cost for the
two methods is presented in Table I. Assuming In = L for
all n, it can be seen from Table I that the complexity of the
Einstein product approach is O(L3N ), i.e. exponential in the
number of domains N as opposed to the Tucker approach
which has a complexity of O(NL3). So as N increases,
the Tucker method provides a low complexity solution but

with sub-optimal performance. In section IV-B we present
numerical examples illustrating the loss of performance due
to the sub-optimality of Tucker approach as N grows, and
compare it with the Einstein product based approach.

TABLE I: Complexity comparison for tensor estimation

Method Complexity
Using Tucker product O(I3

1 + I3
2 + · · ·+ I3

N )
Using Einstein product O((I1 · I2 · · · IN )3)

The higher complexity for Einstein product approach is
primarily because of the tensor inversion operation. Various
algorithms, both direct and iterative are considered in literature
for finding the inverse of a tensor such as higher order bicon-
jugate gradient method [29], Newton method [36], elimination
method using tensor triangular decomposition [37], which all
rely on the Einstein product. Several approaches can be used to
reduce the complexity of such operations. For instance, since
the entity to be inverted is covariance, which is a Hermitian
tensor, the symmetry in its elements can be exploited to
reduce the complexity in half by utilizing appropriate trian-
gular decompositions. For such purposes, tensor triangular
decompositions are considered in [37] which also presents a
Gauss elimination method for solving tensor inversion with
complexity reduced by a constant factor but still remaining
O(L3N ). Iterative approaches such as the Newton method
(NM) can provide fast convergence as shown in [36], however
the complexity of each iteration is itself cubic in tensor size
as it performs an Einstein product between two tensors of
order 2N . But this can be reduced to a complexity which is
square in tensor size. Using the approach in Appendix D-1,
the per iteration complexity of tensor inversion using NM can
be brought to O(L2N ). Further, use of parallel processing can
bring down the time complexity of such tensor operations sig-
nificantly. It was shown in [48] that the NM requiresO(log2 n)
operations for large n with parallel processors to reach a fixed
error bound while computing the inverse of an n× n matrix.
In case of tensor inversion, developing such parallel approach
for NM can lead to a per-iteration complexity which is linear
in the number of domains and not exponential. Using parallel
processing, the time complexity of each iteration in NM is
O(logLN ) as shown in Appendix D-2. Further using similar
line of arguments as in [48, Theorem 2.1], it can be shown that
the NM requires O(logLN ) iterations to converge to a fixed
error bound. Some numerical results on number of iterations
showing the fast convergence of NM are also presented in
[36]. Hence using parallel processing, the time complexity
of NM for tensor inversion is O(log2 LN ). Further exploring
different tensor algorithms and their efficient implementation
by exploiting their structural properties remain a topic for
future investigation. Developing such algorithms for various
tensor computations, particularly solving systems of multi-
linear equations using the Einstein product is an active area
of research in the field of numerical tensor algebra [49]–[53].

IV. APPLICATIONS OF TENSOR MMSE ESTIMATION

In this section, we explore the application of tensor MMSE
estimation in multi-domain communication systems. In most
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modern communication systems, multiple domains of trans-
mission and reception are utilized to fully exploit the diversity
and multiplexing benefits associated with all the available
resources. For instance, exploiting the space domain through
use of multiple antennas (MIMO) is a common practice in
most wireless communication systems. Further, exploiting the
frequency domain through multi-carrier techniques such as
OFDM is also widespread. In fact, the number of domains
in modern communication systems go well beyond space and
frequency, and can include time slots, users, transmissions
devices, multipath, spreading sequence, and code, depending
on specific system. A few examples of such communication
systems along with the considered signal domains are pre-
sented in Table II.

TABLE II: Examples of multiple domains in Communication
Systems.

Systems Input/Output Domains
MIMO OFDM Antenna, and sub-carrier [36].
Wideband MIMO Antenna, and delay [54].
MIMO FBMC Antenna, and sub-carrier [15].
MIMO OFDM-CDMA Antenna, data stream, sub-

carrier, time blocks, and chips
[17].

MU-MIMO GFDM Users, data streams, sub-carriers,
and sub-symbols [15].

Tensors are a natural choice to represent such signals which
are indexed by multiple indices. Subsequently, in a generic
system model of a multi-domain communication system, the
input and output signals can be defined using tensors of order
N and M respectively where N denotes the number of trans-
mit domains and M denotes the number of receive domains.
A multi-linear channel between the input and output can be
defined as an order N+M tensor such that the output is given
using the Einstein product between the input and channel.
Let us consider a general case with input XXX ∈ CI1×...×IN

and output YYY ∈ CJ1×...×JM . The channel is denoted using
H ∈ CJ1×...×JM×I1×...×IN . Each In denotes the dimension
of the nth transmit domain, and Jm denotes the dimension of
the mth receive domain. The system model for a multi-domain
communication system can be written as :

YYY = H ∗N XXX +NNN (71)

where NNN ∈ CJ1×...×JM is the received noise tensor. The
model presented in (71) is generic where the values of N,M
and the individual dimensions of each domain would depend
on the specific system being considered. For instance, in a
MIMO GFDM system, S streams of data are transmitted
using K sub-carriers and P timeslots called sub-symbols.
Hence the transmit data symbols corresponding to kth sub-
carrier, pth sub-symbol and sth data stream denoted as ds,k,p
can be represented using elements of a third order tensor
DDD ∈ CS×K×P . Similarly the received signal and noise tensors
can be represented using third order tensors D̃DD ∈ CS×K×P

and NNN ∈ CS×K×P respectively. Subsequently the channel
that couples the input DDD with the output D̃DD can be seen as

a sixth order tensor H ∈ CS×K×P×S×K×P which contracts
with input over 3 modes (∗3) to generate the output. Hence the
system model can be specified using (71) with N = M = 3
and I1 = J1 = S (number of data streams), I2 = J2 = K
(number of sub-carriers) and I3 = J3 = P (number of sub-
symbols), as [55]:

D̃DD = H ∗3 DDD +NNN (72)

The tensor channel considered here for MIMO GFDM is the
equivalent channel obtained from the cascading of the transmit
filter, physical channel and the receive filter. A detailed deriva-
tion of this system model is presented in [55]. Similarly, in
section IV-D, we present the system model for MIMO OFDM
using (71) where the channel is modelled as a fourth order
tensor.

Note that the system model in (71) is not obtained from
any mapping of the MIMO matrix channel corresponding to
multiple antennas at transmitter and receiver into a tensor
channel. The dependence of input, output and channel on
multitude of indices beyond just antenna in a multi-domain
communication system naturally gives rise to the system
model in (71). In fact, the standard MIMO matrix channel
model is also a special case of (71) where input, output
and noise are order 1 tensors (vectors), the channel is an
order 2 tensor (matrix), and the Einstein product reduces to
standard matrix multiplication. The advantage of defining a
multi-domain communication system model using (71) is that
it allows a consolidated representation of all the signalling
domains while retaining the distinction between them. Further
it enables characterizing all the inter-domain interferences such
as inter-carrier interference, inter-antenna interference, inter-
user interference in a single framework.

A standard task for a receiver in a communication system
is to estimate the transmitted signal based on the noisy
observation received through the channel. Hence for a system
where the input and output signals are modelled using tensors
as in (71), the tensor based MMSE estimation techniques
developed in this paper can be employed at the receiver.

For a known channel H, assuming XXX and NNN to be inde-
pendent and zero mean, using (71) we can write the received
covariance, cross covariance, received pseudo-covariance and
cross pseudo-covariance tensors as :

CYYY = H ∗N CXXX ∗N HH + CNNN (73)

CXYXYXY = CXXX ∗N HH (74)

C̃YYY = H ∗N C̃XXX ∗N HT + C̃NNN (75)

C̃XYXYXY = C̃XXX ∗N HT (76)

respectively. Here CXXX, C̃XXX,CNNN, and C̃NNN denote the input co-
variance, input pseudo-covariance, noise covariance and noise
pseudo-covariance tensors respectively. Substituting (73) and
(74) into (48) and (51) gives the receiver structure based
on multi-linear MMSE estimation and the associated mean
square error respectively. Similarly substituting (73), (74), (75)
and (76) into (39) and (41) gives us tensors A1 and A2

which on substituting into (29) and (44) yields the receiver
structure based on widely multi-linear MMSE estimation and
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the associated mean square error respectively.

Let us assume that the transmitted tensor contains indepen-
dent elements normalised to unit power such that CXXX = IN
which is an identity tensor of size I1×. . .×IN×I1×. . .×IN .
Let the noise be additive circular Gaussian noise with mean
zero and variance σ2

n, such that CNNN = σ2
nIM and C̃NNN = 0T .

Hence the mean square error from widely multi-linear estima-
tion (based on (44)) can be given as :

MSE=tr(IN )−tr
(

(HH−C̃XXX ∗N HT ∗M (H∗NHH+

σ2
nIM )∗−1 ∗M (H ∗N C̃XXX ∗N HT )∗) ∗M P−1

YYY
∗M H

)
−

tr
(

(C̃XXX ∗N HT −HH ∗M (H∗NHH +σ2
nIM )−1∗M

H ∗N C̃XXX ∗N HT ) ∗M P∗−1
YYY
∗M H∗ ∗N C̃H

XXX

)
(77)

where PYYY is given by (40). The MSE performance difference
between receivers employing widely multi-linear and multi-
linear estimators in such multi-domain communication sys-
tems can be found using (55) as :

∆e = tr
[(

C̃XXX ∗N HT −HH ∗M (H ∗N HH + σ2
nIM )−1∗M

H ∗N C̃XXX ∗N HT
)
∗M P∗−1

YYY
∗M

(
C̃XXX ∗N HT −HH∗M

(H ∗N HH + σ2
nIM )−1 ∗M H ∗N C̃XXX ∗N HT

)H]
(78)

Notice that if C̃XXX = 0T which is when XXX is proper, then ∆e is
also zero as widely multi-linear estimator reduces to a multi-
linear estimator in this case. The MSE expression from (77)
simplifies to :

MSE = tr (IN−HH ∗M (H∗NHH +σ2
nIM )−1∗MH) (79)

which is same as the MSE from multi-linear estimation (from
(51)) with CXYXYXY = HH and CYYY = (H ∗N HH + σ2

nIM ).

In the subsequent sub-sections, we present numerical ex-
amples to illustrate the concept of tensor multi-linear (dubbed
as TL henceforth) and tensor widely multi-linear (dubbed as
TWL henceforth) MMSE estimators in the context of multi-
domain communication systems. We use (29) at the receiver
for TWL estimation with A1 and A2 calculated from (39) and
(41). Also, (48) is used at the receiver for TL estimation. The
received covariance, cross covariance, pseudo-covariance and
cross pseudo-covariance are calculated based on (73)-(76). The
elements of input tensor are generated with zero mean variance
σ2
s and noise tensor with zero mean variance σ2

n. The SNR
is defined as σ2

s/σ
2
n. For all the examples, we keep σ2

s = 1
and vary σ2

n to attain different SNR values. We use Monte
Carlo simulations where input, channel and noise are randomly
generated with channel realizations known at the receiver. The
results are averaged over Nch = 500 channel realizations
for each SNR, with Nin = 100 noise and input realizations
for each channel realization. The performance is evaluated in
terms of mean square error normalized with respect to the
number of transmit tensor elements, i.e.

MSE =
1

Nch

1

Nin

Nch∑
k=1

Nin∑
l=1

||XXX(k,l) − X̂XX
(k,l)
||2

numel[XXX(k,l)]
(80)

where XXX
(k,l) and X̂XX

(k,l)
denote the actual and the estimated

tensors at the kth channel and lth input run for a fixed SNR.
The number of transmit elements are denoted by numel[XXX(k,l)].

A. Example with Gaussian input signals

In (71), let the input tensor, XXX ∈ C4×4×4 have independent
zero mean unit variance improper complex Gaussian entries.
Let each element of XXX be represented by x = a + ib
where a and b are real scalar random variables. To generate
a and b in simulation such that they are correlated with
coefficient ρ, we consider the vector p = [a, b]T and its
correlation matrix R = [var(a), cov(a, b); cov(b, a), var(b)],
where cov(a, b) = ρ

√
var(a)var(b). The Cholesky decom-

position of R is given as R = LLT . We generate vector
q = [c, d]T where c and d are uncorrelated zero mean and
variance 1/2 Gaussian scalars. Then p = Lq generates vector
with entries a and b such that var(a) = var(b) = 1/2 and
they are correlated with coefficient ρ. All the entries of XXX

designated as x = a + ib are generated independently using
this Cholesky Decomposition method. Hence input pseudo-
covariance C̃XXX is a pseudo-diagonal tensor where all its non-
zero entries are E[x2] = var(a)− var(b) + i · 2cov(a, b). Thus
for different ρ, we get different C̃X. The input covariance
is CXXX = σ2

sI where I is an order 6 identity tensor and
σ2
s = var(a) + var(b) = 1. Furthermore NNN ∈ C4×4×4 is

an order three received noise tensor with zero mean circular
complex Gaussian entries and independent of input signal with
covariance CNNN = σ2

nI and pseudo-covariance C̃NNN = 0T . The
channel H ∈ C4×4×4×4×4×4 contains i.i.d. zero mean unit
variance circular complex Gaussian entries. The objective is
to estimate XXX based on the observation YYY.

Figure 1 represents the MSE vs ρ at 10 dB SNR . We can
see that for a low magnitude of ρ, i.e when the signal is almost
proper, both TL and TWL estimation results in almost same
mean square error, but as the magnitude of ρ increases the
TWL estimator performs much better than TL estimator. The
mean square error essentially remains flat for TL estimation
when changing ρ as it does not take into account the pseudo-
covariance. As seen in Figure 1, the mean square error follows
quite well the theoretical mean square error calculated from
(51) and (44), which validates our simulation set up. Further,
Figure 2 presents the mean square error against SNR for
specific values of ρ. With increase in SNR, mean square error
reduces but the TWL estimator performs much better than
the TL estimator for higher values of ρ. The TL estimator
performance does not change with ρ as it does not depend
on pseudo-covariance. However, for a given SNR the TWL
estimator performance improves as ρ increases as it uses the
correlation between real and imaginary components of the
tensor for estimation.

B. Example of Tucker based MMSE Estimation

We compare the Tucker operator based MMSE estimator
with the Einstein product based multi-linear MMSE estimator
presented in this paper. In a multi-domain communication
system, consider input XXX, output YYY and noise NNN are order N
tensors where dimension of each individual domain is 3. Hence
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the channel H is an order 2N tensor with all the dimensions
being 3. We assume that the channel can be written in terms
of N factor matrices H(1),H(2), . . . ,H(N) of size 3× 3 each
as in (69). Hence the system model can be written in two
equivalent forms as :

YYY = XXX×1 H(1) ×2 H(2) ×3 . . .×N H(N) +NNN (81)
YYY = H ∗N XXX +NNN (82)

where Hi1,i2,...,iN ,j1,j2,...,jN = H(1)
i1,j1
· H(2)

i2,j2
· · ·H(N)

iN ,jN
. The

equivalence of these system models can be established by
writing the equations element-wise as shown in (68)-(70). For
simulations, XXX and NNN are generated using circular symmet-
ric complex Gaussian distribution with covariance as scaled
identity tensor σ2

sI and σ2
nI respectively, with σ2

s = 1. The
components of H(1),H(2), . . . ,H(N) are i.i.d. drawn from cir-
cular complex Gaussian distribution with zero mean and unit
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Fig. 3: MSE vs SNR for different estimation techniques

variance. The objective is to estimate XXX based on observing
YYY. The Tucker operator based estimator finds factor matrices
A(1),A(2), . . . ,A(N) such that the estimate is given by (64).
For the channel model (81) the factor matrices A(n) are given
as [26] :

A(n) = R(n)
XXX

H(n)H(H(n)R(n)
XXX

H(n)H + R(n)
NNN

)−1 (83)

for n = 1, 2, . . . , N where R(n)
XXX

= E[X(n)XH
(n)] and R(n)

NNN
=

E[N(n)NH
(n)]. The quantities X(n) and N(n) are the n-mode

matrix unfoldings of XXX and NNN respectively. The mean square
error achieved by this estimator is compared with the mean
square error achieved by the Einstein product based multi-
linear MMSE estimator of (45) where A is given by (47). The
MSE plot is presented in Figure 3 for three different values of
N = 2, 3, 4. The solid line corresponds to MSE when Einstein
product method is used, and the dashed line corresponds to
MSE when the Tucker method is used. It can be observed that
in all the three cases the multi-linear MMSE estimator based
on Einstein product achieves lower mean square error than the
Tucker operator based estimator, and they perform similar at
high SNR. Further, it can be observed that as N increases,
the difference between the performance of Tucker method
and Einstein product method also widens. For N = 2, the
performance gap between the two cases is small especially at
high SNR, but for N = 4 the gap is significant. This shows that
for higher order tensors, assuming the multi-linear estimator
to be separable across all the domains (as in the Tucker
approach) makes the performance more sub-optimal. This is
further apparent in Figure 4 where the MSE performance for
the two methods is plotted against N for a fixed SNR of 30
dB. For N = 1, both the methods reduce to standard vector
based LMMSE solution, hence they perform exactly same. As
can be seen in Figure 4, with increasing N the performance
difference of the Tucker approach can be significantly worse
than the Einstein product method. However, it is to be noted
that the complexity of Tucker approach is less than the Einstein
product method as discussed in section III-D. Hence there
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is an inherent trade-off between the Einstein product method
and Tucker approach where the former provides much better
performance, but the latter has lower complexity.

C. Estimation of Tensors in TT format

The size of a tensor grows exponentially with the number
of domains. In addition, the dimensionality of each domain
may be large as well. Hence tensor-based systems generate
large data often which poses challenges on their storage com-
plexity. For instance, in modern multi-domain communication
systems, dimensionality of domains such as space (antenna) or
frequency (sub-carriers) can be significantly large in a massive
MIMO or multi-carrier scheme. However, with the help of
tensor tools such as Tensor Train (TT) decomposition, effective
storage mechanisms have been proposed in literature for large
data. The approach using TT decomposition is not only used
in cases where the data has a natural multi-way structure, but
also where the data to be stored is a large vector or matrix. In
such cases, the large matrix or vector is converted to a tensor
for storage efficiency. This process is called Tensorization [56].

The Tensor Train (TT) decomposition represents a higher
order tensor by a set of sparsely connected lower order tensors
called cores or components. For a tensor T of size I1 × I2 ×
. . .× IN , the TT decomposition is written as [57] :

Ti1,...,iN =
∑

r0,r1,...,rN

T
(1)
r0,i1,r1

·T(2)
r1,i2,r2

· · ·T(N)
rN−1,iN ,rN

(84)

where each T(i) is a third order tensor of size Ri−1× Ii×Ri

and Ri denote the TT ranks with R0 = RN = 1 and Ri ≥ 1
for i = 1, . . . , N − 1 [57]. In such a decomposition, the low
rank structure of the core tensors is exploited for reducing
the storage complexity. Rather than storing the entire tensor,
only the tensor cores T(i) are stored. Different cores can
also be stored in distributed storage systems. This imposes a
constraint that any mathematical operation to be performed on
the tensor should not require full reconstruction or rearranging

of the data but should be able to act on the cores themselves.
The mechanism with which tensor operations act on the
cores can be best understood using a graphical representation
of the TT decomposition through a Tensor Network (TN)
containing nodes and edges. A Tensor Network is a graphical
illustration of tensors where each node represents a core. An
edge connecting two nodes represents contraction between the
two cores. The free edges correspond to the modes which are
not contracted. The total number of free edges represent the
order of the tensor. Hence a vector can be represented in a
TN using a node with a single edge, a matrix with a node
and two edges, and a tensor of order N with a node and N
edges. Subsequently, the TT decomposition from (84) can be
represented using a TN as shown in Figure 5. The TT ranks of
a tensor determine the storage consumption of the tensor train.
In many cases, the exact TT decomposition of a tensor may
lead to high TT ranks. Hence often an approximation of the TT
decomposition of a tensor is computed with a given accuracy
ε to fit a desired set of low TT ranks for reduced storage
[57]. We denote the TT approximation of a tensor A as Ā.
The computed approximation satisfies ||A − Ā||F≤ ε||A||F .
A sequential SVD based algorithm to compute such TT
decomposition with given accuracy ε is presented in [57].

The use of TT decomposition in signal processing applica-
tions is widespread. For instance, [58] presents the application
of TT decomposition in Industrial Internet of Things (IIoT) as
the TT format enables distributed processing of large scale
multi-attribute data by decomposing it into different cores. A
tensor framework for efficient big data processing, storage and
streaming based on TT decomposition has been presented in
[59]. A TT based deep neural network has been considered in
[60] for channel estimation in time varying MIMO systems.
Furthermore, the use of TT format in wireless communication
systems has been considered in [61], [62]. In [61], the channel
for a dual polarized MIMO antenna system is expressed as
a fifth order tensor by exploiting the azimuth and elevation
diversities at both the transmit and receive ends along with
multipath. Such a fifth order tensor channel is represented us-
ing the TT format to allow low computation channel parameter
estimation. In [62], a joint channel and symbol estimation
approach is presented using the TT decomposition, where
the received signal in a MIMO OFDM relaying system is
expressed in TT format.

The tensor-based technique presented in this paper offers
itself as an effective mechanism for data estimation when
tensors are expressed in TT format. This is because the MMSE
estimation methods proposed in our work do not rely on any
tensor to vector/matrix transformation, but makes use of the
Einstein Product. The Einstein product between two different
tensors, Q ∗K P stored in TT format can be represented using
TN as shown in Figure 6. The gray nodes represent the cores
in the tensor train of P ∈ CL1×...×LK×J1×...×JM and the
white nodes represent the cores in the tensor train of Q ∈
CI1×...×IN×L1×...×LK . An algorithm to compute the Einstein
Product for tensors in TT format without reconstructing the
whole tensor is presented in [63]. Next we will show through
an example the application of tensor MMSE estimator for
tensor stored in TT format.
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in TT format where Ri and Sj represent TT ranks for Q and P respectively.

Consider the system model from (71) where YYY,XXX and NNN are
order 3 tensors of size 5×5×5 each and H is an order 6 tensor
of size 5× 5× 5× 5× 5× 5. We use the multi-linear MMSE
tensor A from (47) to find the estimate X̂XX at the receiver. For
the numerical example, XXX and NNN are generated using i.i.d. zero
mean proper complex Gaussian distribution with covariance as
σ2
sI and σ2

nI respectively, with σ2
s = 1. The channel contains

i.i.d. zero mean unit variance complex Gaussian entries and
is normalized to provide unit power gain at the receiver. We
show the MSE results when the observed tensor YYY and the
multi-linear MMSE tensor A are instead stored in their TT
formats ȲYY and Ā at the receiver with accuracy ε. Algorithm 1
from [57] is employed to calculate the TT decompositions. The
estimation in tensor’s original format is given as X̂XX = A ∗3 YYY.
However, since we assume YYY and A are stored in TT formats,
we find the estimate X̂XX also in TT format denoted as ¯̂

XXX using
ȲYY and Ā as :

¯̂
XXX = Ā ∗3 ȲYY (85)

which can be written in terms of their cores as :
¯̂
XXXi,j,k =

∑
r0,r1,r2,r3

X̂XX
(1)

r0,i,r1 · X̂XX
(2)

r1,j,r2 · X̂XX
(3)

r2,k,r3 (86)

= (Ā ∗3 ȲYY)i,j,k =
∑
l,m,n

Āi,j,k,l,m,n · ȲYYl,m,n (87)

=
∑
l,m,n

( ∑
p0,p1,...,p6

A
(1)
p0,i,p1

·A(2)
p1,j,p2

·A(3)
p2,k,p3

· · ·A(6)
p5,n,p6

)
·
( ∑

s0,s1,s2,s3

YYY
(1)
s0,l,s1

·YYY(2)
s1,m,s2 ·YYY

(3)
s2,n,s3

)
(88)

The objective here is to estimate the TT cores
X̂XX

(1)
, X̂XX

(2)
and X̂XX

(3)
using the TT cores of ȲYY and Ā without

explicitly constructing the whole tensor at any stage. We use
Algorithm 1 from [63] for this purpose which finds the TT
cores of ¯̂

XXX using the TT cores of ȲYY and Ā. From the estimated
cores we reconstruct ¯̂

XXX and compare it with the transmitted
tensor XXX to calculate the mean square error in estimation.
Figure 7 presents the MSE against SNR in dB for different
accuracy ε with which TT decomposition is calculated. We
compare this result with the MSE achieved when all the
tensors are taken in their original non-decomposed formats,
referred as ‘original case’ in the figure. We can see that for
lower value of ε such as ε = 0.01, the MSE achieved by
the multi-linear MMSE estimation performed on tensors in
TT format is indistinguishable from the case where tensors
were used in original format. The performance degradation in
MSE is observed at high SNR as ε increases. A small value
of ε indicates an almost exact TT decomposition whereas a
larger value of ε indicates a larger approximation error in the
TT decomposed format. Further, Figure 8 presents the MSE
against the accuracy ε for a fixed SNR at 20 dB. The MSE
for the original case is unaffected by ε. For estimation in TT
format, the MSE is almost same as the original case for small
ε but after a certain value (> 0.03 in this case), the MSE
increases. This increase in MSE is due to the approximation
tolerance set in the computation of TT format by fixing ε.
Hence multi-linear MMSE estimation can be used for tensors
stored in TT format, and its MSE performance remains the
same as that of the original case if the TT decomposition
is computed with high accuracy, i.e. low ε. Also, since
the Einstein product can be implemented directly on the
cores, the proposed estimation technique does not require
reconstructing the original tensors.
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D. Tensor Estimation for MIMO OFDM System

OFDM has been one of the most popular multi-carrier
scheme which has been used in conjunction with MIMO for
4G, Wi-Fi and now also for 5G [64]. A conventional system
model for MIMO OFDM in the frequency domain can be
written as [65] :

y(p) = H(p,p)x(p)+

Nsc∑
q=1,q 6=p

H(p,q)x(q)+n(p), p = 1, . . . , Nsc

(89)
where y(p) ∈ CNR , x(p) ∈ CNT and n(p) ∈ CNR are the
frequency domain received, transmitted and noise symbol
vectors at sub-carrier p, and NR, NT and Nsc denote the
number of receive antennas, transmit antennas and sub-carriers
respectively. The frequency domain channel matrix of size
NR × NT between transmit sub-carrier q and receive sub-
carrier p is H(p,q).

One common approach used in MIMO OFDM receiver
design is to assume that there is no inter-carrier interference,
i.e. H(p,q) = 0 if p 6= q, and perform linear MMSE estimation
on a per sub-carrier basis [66]–[68]. Assuming that the input
x(p) have independent zero mean unit variance entries such
that input covariance is an identity matrix, I for each p, and
is independent of noise n(p), the receiver structure with per
sub-carrier estimation is given as [66]:

x̂(p) = H(p,p)H · (H(p,p) · H(p,p)H + CN )−1 · y(p) (90)

for p = 1, . . . , Nsc, and CN ∈ CNR×NR is the noise
covariance matrix. The per-sub-carrier estimation in (90) is
based on the standard LMMSE filter used in matrix based
systems. If we ignore the inter-carrier interference completely
and assume noise to be circular symmetric white Gaussian
with σ2

n variance entries, then CN = σ2
n ·I. Alternately, one can

treat the inter-carrier interference term in (89) also as noise,
in which case CN = (σ2

n · I +
∑

q 6=p H(p,q) · H(p,q)H). This
approach however does not make good use of the inter-carrier
interference (ICI) terms to extract signal information. In many
cases such as in high mobility systems, the channel will be
doubly selective leading to significant inter-carrier interference
in which case ignoring the interference terms or treating them
as noise would lead to sub-optimal performance. The system
model suggested in (71) can be used in such a scenario where
the input, output and noise can be treated as order two tensors
with the two domains corresponding to antenna and sub-
carriers and the channel as an order four tensor accounting
for interference between antennas and between sub-carriers as
well. The system model can be represented as

Y = H ∗2 X + N, (91)

where each vector y(p) and n(p) from (89) for p = 1, . . . , Nsc

form the columns of received matrix Y and noise matrix N of
size NR ×Nsc, each vector x(p) from (89) form the columns
of transmit matrix X ∈ CNT×Nsc . The channel is represented
as a fourth order tensor H ∈ CNR×Nsc×NT×Nsc such that
H:,p,:,q = H(p,q). The ICI is reflected in the elements of
Hnr,p,nt,q when p 6= q. With such a system model in place,
one can use the tensor based receiver structure from (29) or
(48) as the tensor formulation gives an easy mechanism to
take into account the information provided by the interfering
terms across all the domains.

In literature, a doubly selective channel for MIMO OFDM
is handled by concatenating the transmit and receive vectors
for each sub-carrier into a long vector and thereby representing
the channel by a large matrix [69]–[71]. However, the tensor
framework is more intuitive as it retains the distinction be-
tween the domains. Besides, for future communication systems
where more than 1024 sub-carriers or hundreds of antennas in
case of massive MIMO are envisioned, the number of sub-
carriers and antennas can be very large. Hence concatenating
the input and output as vectors will result into a large matrix
channel and vector output which might be tensorized for
storage efficiency through TT decomposition. Additionally, the
tensor framework is intuitive and easy to extend incorporating
more domains in the system model. For instance, the system



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3084541, IEEE Open
Journal of Signal Processing

15

0 5 10 15 20 25 30 35 40

E
b
/N

0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

M
S

E
 /

 B
E

R

MSE, EMI

 MSE, NM

 MSE, HOBG

BER, EMI

BER, NM

BER, HOBG

(    ,- -,   )

(    , - ,   )

Fig. 9: MSE and BER vs Eb/N0 for 2 × 2 MIMO OFDM
system with 4QAM modulation

model in (89) can be easily extended to multi user MIMO
OFDM system incorporating users also as a domain in the
system model accounting for inter-user interference as well.

We present simulation results using tensor based MMSE
estimation for a MIMO OFDM system with Nsc = 64
sub-carriers, 2 transmit and 2 receive antennas. The channel
between each transmit and receive pair of antennas was
generated as in [72], [73]. The channel impulse response
matrix between ntth transmit and nrth receive antenna denoted
as H̄(nr,nt) ∈ CNsc×Nsc is generated by employing a two
tap multipath (L = 2) fading channel following Jakes’ model
[74] using exponential power profile, σ2

l = exp(−l/L)∑L−1
l=0 exp(−l/L)

where σ2
l represents the variance of the lth channel tap.

This matrix is further converted to frequency domain using
the DFT matrix W ∈ CNsc×Nsc with elements Wm,n =
1/
√
Nsc exp(−j2πmn/Nsc), which then forms the sub-tensor

of the frequency domain channel tensor as Hnr,:,nt,: =

WH̄(nr,nt)WH . The channels are generated for different values
of Doppler d, normalized to the OFDM symbol rate, to induce
inter-carrier interference. Unless otherwise stated, we take
d = 0.2. All the results presented were calculated using
Monte Carlo simulations with averaging over 500 channel
realizations, where at least 100 bit errors were collected for
each channel realization to calculate Bit-error Rate (BER). The
MSE / BER results are plotted against received SNR per bit.

1) Comparing different tensor inversion algorithms
In Figure 9 we present the MSE and BER performance

for 4QAM where receiver employs TL estimator from (48)
with different algorithms for tensor inversion. The output
of the estimator is passed through a QAM demodulator to
determine the transmitted symbols and find BER. We com-
pare the Newton Method (NM) from (11) and Higher order
Biconjugate Method (HOBG) from [29], and see that they
provide similar performance. For validation of results, we
also present in Figure 9 the case where tensor inversion was
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Fig. 10: MSE and BER vs Eb/N0 for 2 × 2 MIMO OFDM
system with BPSK modulation

done via matrix transformation and using MATLAB inverse
function to compute exact matrix inverse (EMI). A detailed
comparison between the convergence of NM and HOBG
method is presented in [36]. It is shown in [36] that as the
size of tensor increases, the number of iterations required
by HOBG increases significantly. The number of required
iterations by the NM depends less on the tensor size, and
it is in general much lower than in the HOBG technique. The
rest of the results in this paper use NM for tensor inversion.

2) Improper inputs
In the previous example, a 4QAM input constellation was

employed. Since 4QAM generates proper signals, hence both
widely multi-linear and multi-linear receivers would give ex-
actly same performance. Figure 10 presents the performance of
TL and TWL estimators with input drawn from a BPSK con-
stellation which makes the input improper. Hence the pseudo-
covariance will be non-zero in this case. For the simulation,
all the elements in the input tensor are uncorrelated and drawn
from a BPSK constellation with unit energy, thereby making
the input covariance CXXX and pseudo-covariance C̃XXX as identity
tensors. To ensure that the input symbols are uncorrelated,
one can use symbol interleaving which is commonly used
in practice [75]. The received covariance, cross covariance,
pseudo-covariance and cross pseudo-covariance are calculated
based on (73)-(76).

For TWL estimation, (29) is used at the receiver where A1

and A2 are given by (39) and (41). For TL estimation, (48)
is used at the receiver. The output of the estimator in both
cases is passed through a BPSK demodulator to determine the
transmitted symbols and calculate BER. Since BPSK generates
improper signals, we can clearly see in Figure 10 that the
widely multi-linear MMSE estimator from (29) outperforms
multi-linear MMSE estimator from (48).

3) Tensor estimation against per sub-carrier estimation
In this section, we compare estimation in MIMO OFDM

with 4QAM using tensor and per sub-carrier estimation. We
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consider three different cases based on the estimation tech-
nique that the receiver employs :
Case 1 : Per sub-carrier estimation from (90) where interfer-
ence terms are completely ignored, such that CN = σ2

n · I.
Case 2 : Per sub-carrier estimation from (90) with interference
treated as noise, such that CN = (σ2

n · I +
∑

q 6=p H(p,q) ·
H(p,q)H).
Case 3 : Multi-linear MMSE estimation from (48) with CYYY

and CXYXYXY calculated from (73) and (74) respectively.

Figures 11 and 12 present the MSE and BER for the three
cases with different values of the Doppler parameter d. It can
be seen that as d increases, there is a significant performance
degradation for case 1 and case 2 as compared to case 3.
Case 2 slightly performs better than case 1 at higher SNRs as
it accounts for interference albeit as noise. It can be observed
in Figure 11 that for case 1 at d = 1, the mean square error
increases at very high SNR. This is because at high SNR,
the receiver of case 1 tends to a zero forcing receiver which
tries to invert the channel while ignoring the interference terms
totally. Hence at high value of d when the interfering terms are
dominant in the received signal, the channel inversion further
amplifies the interference part of the received signal leading to
higher mean square error. This is easily remedied by making
simultaneous use of information from all the domains with
the tensor multi-linear MMSE estimator, as done in case 3.
Also, case 3 shows robustness to a change in d, as the MSE
or BER performance does not change significantly between
d = 0 to d = 2. The robustness of the multi-linear MMSE
estimation can be further seen in Figure 13 where the MSE
results for case 3 are presented for very high values of Doppler
parameter, d. It can be seen that only at extremely large values
of Doppler, does the performance degrades. Such large values
of the Doppler may not be very practical but are presented
here only for a comparison and to illustrate the behavior of
the proposed estimator in extreme cases.
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V. CONCLUSIONS

This paper considered MMSE estimation techniques for
tensor based signals. A unified framework for estimation of
complex tensors, proper or improper, has been developed using
the Einstein product. The tensor multi-linear (TL) and widely
multi-linear (TWL) MMSE estimation techniques for multi-
domain signals have been formulated while keeping the multi-
way structure of the signals intact. We proved that for jointly
complex Gaussian tensors, the best MMSE estimator is the
widely multi-linear estimator. It was shown that the MSE
achieved by a TWL estimator is always less than or equal
to the MSE achieved by TL estimators. As compared to the
TL estimator, the TWL estimator requires almost twice the
computation since it finds two separate operators which act
on the signal and its conjugate both for estimation. However,
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the TWL estimator provides much better MSE performance
compared to TL when the signal is improper by accounting
for both covariance and pseudo-covariance. We compared
the proposed estimator using the Einstein product with the
Tucker approach. The Tucker product based estimator offers
sub-optimal performance while providing lower computational
complexity. The estimator using Einstein product has a higher
computational complexity but provides much better MSE
performance. We showed that the proposed estimator can
also be used in applications where tensors are stored in TT
formats. In such cases, the stored TT cores are used to find the
estimate without constructing or reshaping the whole tensor. If
the TT decomposition is computed with high accuracy, then
the MSE performance of the proposed tensor estimation in
TT format is indistinguishable from the case where tensors
are stored in original format. We also presented a tensor
based system model for multi-domain communication systems.
As an example, we considered MIMO OFDM in a doubly
selective channel using the tensor framework. The channel was
represented using an order four tensor, accounting for inter-
carrier and inter-antenna interference in a single framework. It
was shown that tensor based MMSE estimation outperforms
per sub-carrier estimation for MIMO OFDM by a significant
margin when the inter-carrier interference is high.

APPENDIX A
PROOF OF THEOREM 1

E[||XXX− h(YYY)||2] = E[||XXX− g(YYY)︸ ︷︷ ︸
EEE

+ g(YYY)− h(YYY)︸ ︷︷ ︸
h̄(YYY)

||2]

= E[(EEE + h̄(YYY)) ∗N (EEE + h̄(YYY))∗]

= E[EEE ∗N E∗E∗E∗ +EEE ∗N h̄(YYY)∗ + h̄(YYY) ∗N EEE
∗ + h̄(YYY) ∗N h̄(YYY)∗]

= E[||EEE||2] + E[EEE ∗N h̄(YYY)∗] + E[h̄(YYY) ∗N EEE
∗]︸ ︷︷ ︸

cross-terms

+E[||h̄(YYY)||2]

Since h̄(YYY) is another function of YYY, hence if (15) holds, then
the cross terms above would be zero, which results into :

E[||XXX− h(YYY)||2] = E[||EEE||2] + E[||h̄(YYY)||2]︸ ︷︷ ︸
≥0

≥ E[||EEE||2]

APPENDIX B
DERIVATION OF ERROR COVARIANCE TENSOR FROM (42)

QWL = E[(XXX− X̂XXWL) ◦ (XXX− X̂XXWL)∗] = E[XXX ◦XXX∗]−

E[XXX ◦ X̂XX
∗
WL]− E[X̂XXWL ◦XXX∗] + E[X̂XXWL ◦ X̂XX

∗
WL] (92)

Using (6), (A1 ∗M YYY)∗ = (YYY∗ ∗M AH
1 ) and (A2 ∗M YYY

∗)∗ =
(YYY ∗M AH

2 ). So individual terms in (92) can be simplified as :

E[XXX ◦ X̂XX
∗
WL] = E[XXX ◦ (A∗1 ∗M YYY

∗ + A∗2 ∗M YYY)]

= E[(XXX ◦YYY∗) ∗M AH
1 + (XXX ◦YYY) ∗M AH

2 ]

= CXYXYXY ∗M AH
1 + C̃XYXYXY ∗M AH

2 (93)

E[X̂XXWL ◦XXX∗] = E[(A1 ∗M YYY + A2 ∗M YYY
∗) ◦XXX∗]

= A1 ∗M E[YYY ◦XXX∗] + A2 ∗M E[YYY∗ ◦XXX∗]
= A1 ∗M CH

XYXYXY + A2 ∗M C̃H
XYXYXY (94)

E[X̂XXWL ◦ X̂XX
∗
WL]

= E[(A1 ∗M YYY + A2 ∗M YYY
∗) ◦ (A∗1 ∗M YYY

∗ + A∗2 ∗M YYY)]

= E[(A1 ∗M YYY + A2 ∗M YYY
∗) ◦ (YYY∗ ∗M AH

1 +YYY ∗M AH
2 )]

= A1 ∗M CYYY ∗M AH
1 + A2 ∗M C̃∗YYY ∗M AH

1 +

A1 ∗M C̃YYY ∗M AH
2 + A2 ∗M C∗YYY ∗M AH

2

= (A1 ∗M CYYY + A2 ∗M C̃∗YYY) ∗M AH
1 +

(A1 ∗M C̃YYY + A2 ∗M C∗YYY) ∗M AH
2

= CXYXYXY ∗M AH
1 + C̃XYXYXY ∗M AH

2 (from (37) and (38)) (95)

Substituting E[XXX ◦XXX∗] = CXXX along with (93), (94) and (95)
into (92), we get :

QWL = CXXX −A1 ∗M CH
XYXYXY −A2 ∗M C̃H

XYXYXY (96)

APPENDIX C
PROOF OF THEOREM 2

To prove Theorem 2, we show that given YYY = Y, XXX is
conditionally CN (A1 ∗M Y + A2 ∗M Y∗,QWL, Q̃WL) using
the characteristic function.

The characteristic function of a complex random vector x ∈
CN is defined as Φx(ω) = E[ exp(i<(ωHx))] for ω ∈ CN

[76]. Using Einstein Product, the characteristic function of a
complex random tensor XXX ∈ CI1×...×IN is

ΦXXX(W) = E[ exp(i<(W∗ ∗N XXX))] (97)

for tensor W ∈ CI1×...×IN . Notice that z = W∗ ∗N XXX is a
complex scalar random variable. If XXX is a complex Gaussian
tensor with mean M, covariance C and pseudo-covariance C̃,
then z will be Gaussian distributed with mean µz as:

µz = E[z] = W∗ ∗N E[XXX] = W∗ ∗N M (98)

with variance σ2
z and pseudo-variance σ̃2

z found using proper-
ties (5) and (9) as

σ2
z = E[(W∗ ∗N (XXX−M)) ◦ (W∗ ∗N (XXX−M))∗]

= W∗ ∗N E[(XXX−M) ◦ ((XXX−M)∗] ∗N W

= W∗ ∗N C ∗N W (99)

σ̃2
z = E[(W∗ ∗N (XXX−M)) ◦ (W∗ ∗N (XXX−M))]

= W∗ ∗N C̃ ∗N W∗ (100)

The characteristic function Φz(ω) of a Gaussian scalar z ∼
CN (µz, σ

2
z , σ̃

2
z ) is given by [77]:

Φz(ω) = exp
{
i<(ω∗µz)−

1

4

(
ω∗σ2

zω+<(ω∗σ̃2
zω
∗)
)}

(101)

Now on putting z = W∗ ∗N XXX in (97) we get :

ΦXXX(W) = E[ exp(i<(ω∗ · z))]
∣∣∣
ω=1

= Φz(ω)
∣∣∣
ω=1

(102)
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On substituting (98), (99), (100) and ω = 1 in (101),

ΦXXX(W) = exp

{
i<(W∗ ∗N M)

− 1

4

(
W∗ ∗N C ∗N W + <(W∗ ∗N C̃ ∗N W∗)

)}
(103)

The characteristic function of an improper complex Gaussian
vector as given in [77], [78] can be seen as a specific case of
(103). Further, the characteristic function of XXX given YYY = Y

can be written as (from (97)) :

ΦXXX|YYY(W) = E
[

exp
(
i<(W∗ ∗N XXX)

)
| YYY = Y

]
= E

[
exp

(
i<(W∗ ∗N (XXX− X̂XXWL + X̂XXWL))

)
| YYY = Y

]
= E

[
exp(i<(W∗ ∗N (XXX− X̂XXWL)))︸ ︷︷ ︸

a

exp
(
i<(W∗ ∗N X̂XXWL)

)
︸ ︷︷ ︸

b

| YYY = Y
]

(104)

Term b can be taken out of the expectation as given YYY = Y, we
also know Y∗, so X̂XXWL which is given as A1 ∗M YYY+A2 ∗M YYY

∗

becomes deterministic. In term a, the vector (XXX−X̂XXWL) is the
error tensor EEE, hence we get :

ΦXXX|YYY(W) = exp
(
i<(W∗ ∗N (A1 ∗M Y + A2 ∗M Y∗))

)
E
[

exp
(
i<(W∗ ∗N EEE)

)
| YYY = Y

]
(105)

Since the error is orthogonal to YYY, we drop the conditioning.

ΦXXX|YYY(W) = exp
(
i<(W∗ ∗N (A1 ∗M Y + A2 ∗M Y∗))

)
E
[

exp
(
i<(W∗ ∗N EEE)

)]
︸ ︷︷ ︸

ΦEEE(W)

(106)

Since XXX and YYY are assumed zero mean and jointly Gaussian,
so the error tensor EEE will also be Gaussian with zero mean.
Hence its characteristic function is given as (from (103)):

ΦEEE(W) = exp

{
−1

4

(
W∗∗NCEEE∗NW+<(W∗∗N C̃EEE∗NW∗)

)}
(107)

Substituting (107) into (106) with the error covariance CEEE =
QWL and pseudo-covariance C̃EEE = Q̃WL, we get :

ΦXXX|YYY(W) = exp

{
i<(W∗ ∗N (A1 ∗M Y + A2 ∗M Y∗))

− 1

4

(
W∗ ∗N QWL ∗N W + <(W∗ ∗N Q̃WL ∗N W∗)

)}
which is the characteristic function of a complex Gaussian
tensor with mean (A1∗M Y+A2∗M Y∗), covariance QWL and
pseudo-covariance Q̃WL (based on (103)). So we have shown
that given YYY = Y, XXX is conditionally CN (A1 ∗M Y + A2 ∗M
Y∗,QWL, Q̃WL). Hence the best MMSE estimate which is the
conditional mean is same as the widely multi-linear MMSE
estimate for jointly complex Gaussian tensors.

APPENDIX D
FASTER IMPLEMENTATION OF NEWTON’S ITERATION

1) Reducing the complexity using an alternate NM form
The Newton Method recursion from (11) is used to itera-

tively find the inverse of a tensor. Most often the objective
of finding the inverse is to find the solution to a system of
multi-linear equations represented by A ∗N Y = X, where
A ∈ CI1×...×IN×I1×...×IN , and X,Y ∈ CI1×...×IN . If we
use Newton’s iteration from (11) to find A−1, each iteration
requires computing Einstein product (∗N ) between tensors of
order 2N . Hence the complexity per iteration will be cubic in
the size of tensor, i.e. O((I1 · · · IN )3) . However, employing
an alternate form of the Newton’s iteration can reduce this
complexity from cubic to square in the size of the tensor. An
alternate way to express Newton’s method has been presented
in [79]. Using the Einstein product, we can write (11) in
expanded form linking B(k) to B(0) as :

B(k) =
2k−1∑
m=1

ck,m(B(0) ∗N A)m ∗N B(0) (108)

where ck,m is the coefficient of the mth summation term in
(108) and B(k) is the approximation of A−1 at kth iteration.
For an order 2N tensor, the notation (A)m denotes :

(A)m = A ∗N A ∗N · · · ∗N A︸ ︷︷ ︸
m times

(109)

Equation (108) can be seen as another form of the Newton’s
method. By considering ck,m as coefficients of a polynomial
fk(z) = ck,0z

0 + ck,1z
1 + · · · + ck,2k−1z

2k−1, we can write
fk+1(z) = 2fk(z) − z[fk(z)]2 with f0(z) = 1 [79]. Thus
the coefficients ck,m can be found recursively. In fact these
coefficients do not depend on the tensor to be inverted, so can
be calculated before hand and used in the solution. Since the
objective is to find X = A−1 ∗N Y, rather than approximating
A−1 and then taking its Einstein product with Y, we can find
the approximation of A−1∗N Y directly. Take Einstein product
with Y on both sides in (108) to get :

B(k) ∗N Y =
2k−1∑
m=1

ck,m (B(0) ∗N A)m ∗N B(0) ∗N Y︸ ︷︷ ︸
Ỹ(m)

(110)

where the left hand side is the approximation of X at kth
iteration, and thus we can write :

X(k) =
2k−1∑
m=1

ck,mỸ(m) (111)

Since Ỹ(m) = (B(0) ∗N A)m ∗N B(0) ∗N Y, we have :

Ỹ(m+1) = (B(0) ∗N A) ∗N Ỹ(m) (112)

Hence Ỹ(m) ∈ CI1×...×IN can be found recursively. Using
such an approach the Newton’s method now requires taking
Einstein product over N modes between a tensor of order
2N with a tensor of order N in each iteration, thus reducing
the complexity to O((I1 · · · IN )2) from O((I1 · · · IN )3). The
complexity still remains exponential in the number of domains.
However, using parallel processing of NM, the exponential
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dependence on number of domains can be brought to linear
dependence as shown next.

2) Reducing the complexity using parallel processing
Each iteration in (11) requires taking Einstein product (∗N )

between two tensors, say A and B of size I1 × . . . × IN ×
I1× . . .×IN . The Einstein product can be implemented using
multiple parallel processors. Consider C = A ∗N B, then by
definition of Einstein product we have :

Ci1,...,iN ,i′1,...,i
′
N

=
∑

j1,...,jN

Ai1,...,iN ,j1,...,jNBj1,...,jN ,i′1,...,i
′
N

(113)
For ease of notation, given a fixed i1, . . . , iN , i

′
1, . . . , i

′
N ,

we represent Ai1,...,iN ,j1,...,jNBj1,...,jN ,i′1,...,i
′
N

using fj1,...,jN .
Summing over fj1,...,jN for all the indices (j1, . . . , jN ) gives
us an element in tensor C denoted by Ci1,...,iN ,i′1,...,i

′
N

as
per (113). Each fj1,...,jN can be concurrently computed
for a given i1, . . . , iN , i

′
1, . . . , i

′
N , using (I1 · · · IN ) proces-

sors. Further parallel computation of these factors for all
i1, . . . , iN , i

′
1, . . . , i

′
N elements would require (I1 · · · IN )3 pro-

cessors. All these parallelly computed results can be combined
using a binary tree approach as shown in Figure 14.

Ci1,...,iN ,i′1,...,i
′
N

+

+
. .
.

f 1
,1
,.
..
,1

f 1
,1
,.
..
,2

+
..
.

f 1
,1
,.
..
,3

f 1
,1
,.
..
,4

+

f j
1
,.
..
,j

N

+
. .
.

f I
1
,.
..
,I

N

...

. . . . . .

. . .

Fig. 14: Parallel execution of Einstein product

The height of the tree in Figure 14 is log(I1 · · · IN ). Hence
assuming each level of the tree is computed parallelly, the time
complexity of computing all the elements of A ∗N B using
parallel processors is O(log(I1 · · · IN )). Other than Einstein
products, the NM iteration from (11) also requires one tensor
subtraction which has a time complexity of O(1) using mul-
tiple processors. Hence the time complexity of each Newton
iteration using parallel processors is O(log(I1 · · · IN )). With
In = L for all n, the complexity is given as O(N logL),
which is linear in the number of domains.
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